

Annual Groundwater Monitoring and Corrective Action Report

Texas Municipal Power Agency Gibbons Creek Steam Electric Generating Station Anderson, Texas





### **Table of Contents**

|             |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Page |
|-------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.          | Introdu                                                                                                      | ction                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1    |
| 2.          | Ground                                                                                                       | water Monitoring Networks                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1    |
| 2.1         | Monito                                                                                                       | ring Well Installation and Rehabilitation                                                                                                                                                                                                                                                                                                                                                                                                                    | 1    |
| 2.2         | Site F I                                                                                                     | _andfill Groundwater Monitoring Network                                                                                                                                                                                                                                                                                                                                                                                                                      | 2    |
| 2.3         | Scrubb                                                                                                       | er Sludge Pond Groundwater Monitoring Network                                                                                                                                                                                                                                                                                                                                                                                                                | 2    |
| 2.4         | Ash Po                                                                                                       | nds Groundwater Monitoring Network                                                                                                                                                                                                                                                                                                                                                                                                                           | 3    |
| 3.          | Ground                                                                                                       | water Monitoring Events Summary                                                                                                                                                                                                                                                                                                                                                                                                                              | 3    |
| 4.          | Ground                                                                                                       | water Monitoring Data Summary                                                                                                                                                                                                                                                                                                                                                                                                                                | 3    |
| 4.1         | Ground                                                                                                       | dwater Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3    |
| 4.1         | 1.1 Site F                                                                                                   | - Landfill                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4    |
| 4.1         | 1.2 Scrul                                                                                                    | ober Sludge Pond                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4    |
| 4.1         | 1.3 Ash F                                                                                                    | Ponds                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4    |
| 4.2         | Ground                                                                                                       | dwater Quality                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5    |
| 5.          | Ground                                                                                                       | water Quality Data Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5    |
| List of Fig | gures                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|             | Figure 1.1<br>Figure 1.2<br>Figure 2.1<br>Figure 2.1<br>Figure 4.1<br>Figure 4.2<br>Figure 4.3<br>Figure 4.4 | Site Location Map CCR Units Site F Landfill Monitoring Well Network Scrubber Sludge Pond and Ash Ponds Monitoring Well Network Site F Landfill Groundwater Potentiometric Surface Map-June 12, 2017 Site F Landfill Groundwater Potentiometric Surface Map-August 22, 2017 Scrubber Sludge Pond and Ash Ponds Groundwater Potentiometric Surface Map-June 12, 2017 Scrubber Sludge Pond and Ash Ponds Groundwater Potentiometric Surface Map-August 22, 2017 |      |
| List of Ta  | ibles                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |

Table 2.1

Well Completion Summary Site F Landfill Groundwater Sampling Summary Table 3.1



Scrubber Sludge Ponds Groundwater Sampling Summary Ash Ponds Groundwater Sampling Summary Site F Landfill Groundwater Elevation Data Table 3.2 Table 3.3 Table 4.1 Table 4.2 SSP/AP Groundwater Elevation Data

### List of Appendices

Borehole and Well Completion Logs

Appendix A Appendix B Appendix C Field Data Forms
Laboratory Analytical Reports

Document16



### 1. Introduction

The Texas Municipal Power Agency (TMPA) Gibbons Creek Steam Electric Station (GCSES) is located at 12824 FM 244 Road, Anderson, Texas 77830 (Figure 1.1). The GCSES began operating as a 405 Megawatt (MW) capacity power plant burning lignite from the adjacent Bryan Lignite No. 1 mine in 1983. In 1996, the GCSES converted to Powder River Basin coal and the lignite mine was closed.

The GCSES currently operates one Coal Combustion Residuals (CCR) landfill identified as the Site F Landfill (SFL), and two CCR surface impoundments, the Scrubber Sludge Pond (SSP) and Ash Ponds (AP), that are subject to regulation under 40 CFR 257 Subpart D. The locations of the CCR units are shown on Figure 1.2.

The SFL, located northeast of the power generating plant, was constructed in 1990, is approximately 114 acres and receives solid CCR generated by the GCSES. The SSP was constructed in 1982 and began receiving CCR in 1987. The SSP is approximately 7.4 acres in size and 20 feet (ft.) deep. The AP consists of three interconnected ponds that began operation with the start-up of the GCSES in 1987. Each pond is approximately 260 ft. wide, 1,800 ft. long and 20 ft. deep.

This annual groundwater and corrective action report has been prepared to meet the requirements of 40 CFR 257.90(e). This is the initial annual report and there are no corrective action programs for CCR units underway at the facility; therefore, only the status of the groundwater monitoring program is summarized. This report covers the period January 1, 2016 through December 31, 2017.

This report contains a discussion of the installation of groundwater monitoring networks for the CCR units, summarizes the baseline groundwater monitoring events, presents groundwater analytical results, and discusses groundwater flow directions and rates at the CCR units. This report also presents a discussion of the statistical evaluations completed as of the end of 2017.

### 2. Groundwater Monitoring Networks

### 2.1 Monitoring Well Installation and Rehabilitation

An initial review of GCSES's existing hydrogeologic and groundwater monitoring data was completed in early 2016 to preliminarily evaluate the location of the uppermost aquifer at each of the CCR units. Following the initial review, a limited field investigation consisting of drilling stratigraphic borings and the installation of five monitoring wells was completed in March 2016. This investigation provides additional aquifer information for use in the final design of the CCR groundwater monitoring networks. Monitoring well locations and well designs were developed and monitoring wells and piezometer were installed in May and June 2016 at the SFL, SSP, and AP. Subsequently, after review of five rounds of groundwater monitoring data, one additional monitoring well was installed at both the SFL and AP in May 2017 to enhance the groundwater monitoring network. The final groundwater monitoring network is comprised of monitoring wells which are utilized for both water level measurements and groundwater sampling, and piezometers which are utilized for water level measurements only.

The new groundwater monitoring wells and piezometers were installed using a truck-mounted hollow stem-auger drilling rig equipped with 8-5/8 in. O.D. (outside diameter) augers. The monitoring wells and piezometers were constructed with 2-inch diameter factory-sealed PVC well screen and casing. The screen sections have 0.010" slot size and the length of the screen was either five or 10 feet, as determined by well-specific hydrogeologic conditions. Well screen and casing sections were joined together by flush-threaded joints with an O-ring seal. The wells and piezometers were completed with a bottom cap. A 20/40-grade sand filter pack



was installed to a depth extending two to three feet above the top of the screen. A two-foot thick annular seal consisting of hydrated bentonite chips or pellets were placed directly above the filter pack. The remaining annular space (to within approximately 12 inches of the surface) was filled with a cement/bentonite grout. All wells and piezometers were finished at the surface with an above-grade, lockable, steel protective pipe and cap set in an approximately four-foot square concrete pad.

After installation, the wells and piezometers were developed by pumping groundwater using a submersible pump until the water was clear and sediment free. During development, the pump was moved up and down within the well screen as needed to ensure development of the full screen length.

After a preliminary data review indicated that additional water quality and water level data was needed at the SFL CCR unit to meet the requirements of baseline sample collection, pre-existing monitoring wells were incorporated into the groundwater monitoring network. These wells were installed by Black and Veatch during pre-SFL construction studies and were periodically sampled between 2010 and 2014. The Black and Veatch wells are labeled as "MNW" wells. Well construction details were examined and the wells were inspected in the field to assess usability for monitoring. Repairs were made to the wells on an 'as needed' basis. The "MNW" wells are used for water level monitoring and/or groundwater sampling as identified in Section 2.2 below.

Well and piezometer construction details for groundwater monitoring networks at the CCR Units are summarized in Table 2.1. Borehole and Completion Logs are included in Appendix A.

### 2.2 Site F Landfill Groundwater Monitoring Network

The SFL is underlain by stratified, heterogeneous layers of clays, silts, and sands with varying thicknesses. Sandstone was observed at some boring locations as well. The uppermost aquifer is considered confined to semi-confined and generally encountered at depths of 15 to 35 feet below land surface. The elevations of screened intervals in monitoring wells completed in the uppermost aquifer range from approximately 250 feet to 220 feet above mean sea level (amsl). The screened intervals are generally completed in silty sands (SM) with intervals of clayey sands and silts.

The general groundwater flow direction inferred from site data obtained prior to the installation of the CCR groundwater monitoring network was primarily northeast to southwest. Downgradient wells were placed at the unit boundary based on this information. The SFL monitoring network is illustrated on Figure 2.1 and described as follows:

- Background Monitoring Well: MNW-18
- Downgradient Boundary Monitoring Wells: SFL MW-2, SFL MW-3, SFL MW-4, SFL MW-5, SFL MW-6, SFL MW-7, and MNW-15
- Piezometers (water levels only): MNW-11, MNW-17, MNW-16

### 2.3 Scrubber Sludge Pond Groundwater Monitoring Network

The SSP is underlain by interbedded silty and sandy clays, clay, clayey sands and silty sand. Hard sandstone intervals are intermittently present, as are thin layers of lignite or lignitic silts. The uppermost aquifer is considered confined to semi-confined, and generally encountered at depths of 30 to 40 feet below ground surface. The elevation of monitoring well screened intervals in the uppermost aquifer ranges from approximately 240 ft. above mean sea level (amsl) to 220 ft. amsl. The screened intervals are generally completed in silty sands (SM) and sandy clay (CH).



The general groundwater flow direction at the SSP based on site data at the time of the monitoring well network installation indicated that a groundwater divide exists between the SSP and the adjacent AP. The general groundwater flow direction from northeast to southwest across the SSP was used to locate downgradient wells on the unit boundary. The SSP monitoring network is illustrated on Figure 2.2 and described as follows:

- Background Monitoring Well: SSP/AP MW-1 (used as background for both The AP and SSP networks)
- Downgradient Boundary Monitoring Wells: SSP MW-2, SSP MW-3, SSP MW-4

### 2.4 Ash Ponds Groundwater Monitoring Network

The subsurface stratigraphic units at the AP are similar to those found beneath the adjacent SSP and groundwater is also considered confined to semi-confined, and generally encountered at depths of 30 to 40 feet below ground surface. The screened intervals are generally completed in in silty sands (SM) and sandy clay (CH).

The general groundwater flow direction at the AP based on site data at the time of the monitoring well network installation indicated a general groundwater flow direction from west to east across the AP. This information was used to locate downgradient wells on the unit boundary. The AP monitoring network is illustrated on Figure 2.2 and described, as follows:

- ▶ Background Monitoring Well: SSP/AP MW-1 (used as background for both The AP and SSP networks)
- Downgradient Boundary Monitoring Wells: AP MW-1D, AP MW-3, AP MW-4, AP MW-5
- ▶ Piezometers (water levels only): AP PZ-1, AP PZ-2, AP PZ-3, AP PZ-4

### 3. Groundwater Monitoring Events Summary

Groundwater monitoring events completed during 2016 and 2017 consisted of collection of eight baseline groundwater quality samples in accordance with 40 CFR 257.94(b). The well locations relative to each CCR unit, number of samples collected, and sampling dates are summarized in Table 3.1 for the SFL, Table 3. 2 for the SSP, and Table 3.3 for the AP.

The expansion of the groundwater monitoring network at the SFL discussed in Section 2.0 is noted in Table 3.1 which indicates sampling of wells MNW-18, SFL MW-7, and MNW-15 was initiated in May 2017.

Groundwater monitoring was completed in accordance with the methods and procedures documented in the Field Sampling Plan dated October 16, 2017. Field data sheets completed during each of the sampling events are included in Appendix B. Laboratory analytical reports can be found in Appendix C.

### 4. Groundwater Monitoring Data Summary

### 4.1 Groundwater Flow

As required by CCR regulations, water levels were measured in monitoring wells prior to the collection of groundwater samples. Water levels were also measured in all monitoring network piezometers. The measured water levels were subtracted from surveyed top-of-casing (TOC) elevations to develop potentiometric surface elevation maps for the CCR units. These maps were used to interpret groundwater flow directions and



gradients. Information on groundwater gradients and hydraulic conductivity of subsurface geologic units was used to calculate groundwater flow rates using the following formula:

 $V = Ki\phi$ 

Where:

V = average linear velocity (ft./day)

K = hydraulic conductivity (ft./day)

i = hydraulic gradient (ft./ft.)

 $\phi$  = effective porosity (%)

#### 4.1.1 Site F Landfill

Groundwater level measurements for the SFL monitoring wells are included in Table 4.1. Two complete rounds of water level measurements were collected at the SFL after the expansion of the monitoring network in May 2017. These measurements were completed on June 12, 2017 and August 22, 2017. Potentiometric surface maps for these sampling events are included as Figure 4.1 and 4.2, respectively.

Groundwater flow patterns are similar for the two dates with a general groundwater flow gradient from northeast to southwest. Additional flow directions to the northwest and southeast in the vicinity of the landfill are observed due to an apparent groundwater divide that trends from northeast to southwest.

The average linear velocity of groundwater flow at the SFL is 0.0012 ft./day, or 0.44 ft./year. Groundwater flow velocity was determined using an estimated hydraulic conductivity value of 0.028 ft./day based on observed grain sizes in the screened intervals, a calculated hydraulic gradient of 0.011 ft./ft., and an estimated effective porosity of 25%.

### 4.1.2 Scrubber Sludge Pond

Groundwater level measurements for the SSP monitoring wells are included in Table 4.2. Groundwater elevations were generally consistent during the eight groundwater monitoring events. Groundwater levels varied by less than one foot in most wells. Potentiometric surface maps are included for June 12, 2017 (Figure 4.3) and August 22, 2017 9(Figure 4.4).

Based on the potentiometric surface maps, the groundwater flow direction in the vicinity of the SSP is southwest.

The average linear velocity of groundwater flow at the SSP is 0.001 ft./day, or 0.365 ft./year. Groundwater flow velocity was determined using an estimated hydraulic conductivity value of 0.028 ft./day, the calculated hydraulic gradient of 0.009 ft./ft. and an estimated effective porosity of 25%.

#### 4.1.3 Ash Ponds

Groundwater level measurements for the AP monitoring wells are included in Table 4.2. Groundwater elevations were generally consistent during the eight groundwater monitoring events. Groundwater levels varied by less than one foot in most wells. The potentiometric surface maps included for the SSP also illustrate the potentiometric surface at the AP on June 12, 2017 (Figure 4.3) and August 22, 2017 (Figure 4.4).

The groundwater flow direction within the AP is generally east with a north-easterly flow direction at the north end of the AP. The average linear velocity of groundwater flow to the east at the AP is 0.001 ft./day, or 0.32



ft./year. The groundwater flow in the eastern direction was calculated using an estimated hydraulic conductivity value of 28 ft./day, a hydraulic gradient of 0.020 ft./ft. and an estimated effective porosity of 25%.

The average linear groundwater velocity to the north at the Ash Ponds is 0.002 ft./day, or 0.83 ft./year. The calculated groundwater flow rate is based on an estimated hydraulic conductivity value of 0.028 ft./day, a hydraulic gradient of 0.008 ft./ft. and an estimated effective porosity of 25%.

### 4.2 Groundwater Quality

Laboratory analytical results for all sampling events are included in Appendix C.

### 5. Groundwater Quality Data Analysis

Exploratory Data Analysis (EDA) was completed on the groundwater quality data set collected from the SFL, SSP, and AP monitoring networks in February 2017 and August 2017. The EDA is a preliminary diagnostic data evaluation step to assess the groundwater monitoring networks' ability to collect the correct quantity, quality, and type of data to adequately perform the statistical analyses set forth in 40 CFR 257.93. The EDA included the development of spatiotemporal maps, time series plots, histograms and basic statistics such as mean and standard deviation. Due to the limited number of sampled data points in the EDA, this preliminary analysis does not make a conclusion regarding groundwater impact.



## **FIGURES**



### **Amec Foster Wheeler Environment & Infrastructure**

3755 S. Capital of Texas Highway, Ste. 375 Phone: (512) 795-0360 Fax: (512) 795-8423







#### SITE LOCATION MAP

**Texas Municipal Power Agency Gibbons Creek Steam Electric Station Grimes County, Texas** 

Project No. 6706170058 Date: 01/02/2018

Figure 1.1



## Amec Foster Wheeler Environment & Infrastructure

3755 S. Capital of Texas Highway, Ste. 375 Phone: (512) 795-0360 Fax: (512) 795-8423

Approximate Scale in Miles



# amec foster wheeler

### **CCR UNITS**

Texas Municipal Power Agency Gibbons Creek Steam Electric Station Grimes County, Texas

**Project No.** 6706150060 **Date:** 10/12//2017

Figure 1.2

0 1 mi

Source: Google Earth















## **TABLES**

Table 2-1
Well Construction Details
TMPA Gibbons Creek Steam Electric Station

|                      |              |                      |                   |                   | Well     | Borehole | Land Surface | Measuring Point | Total Well      | Total Well | Total Borehole |             |      | Interval |       | Interval |
|----------------------|--------------|----------------------|-------------------|-------------------|----------|----------|--------------|-----------------|-----------------|------------|----------------|-------------|------|----------|-------|----------|
|                      |              |                      | Date              |                   | Diameter | Diameter | Elevation    | Elevation       | Depth           | Depth      | Depth          | Total Depth | (ft. | bgs)     |       | ration)  |
| Well ID              | Northing     | Easting <sup>1</sup> | Completed         | Well Construction | (in.)    | (in.)    | (ft. amsl)   | (ft. amsl)      | (ft. below TOC) | (ft. bgs)  | (ft. bgs)      | (elevation) | Top  | Bottom   | Тор   | Bottom   |
| AP MW-1D             | 10213589.808 | 3635630.942          | May 24, 2016      | Schedule 40 PVC   | 2        | 8 5/8    | 269.02       | 272.04          | 43.0            | 40.0       | 40.0           | 229.0       | 34.5 | 39.5     | 234.5 | 229.5    |
| AP MW-3              | 10213665.476 | 3635026.590          | May 25, 2016      | Schedule 40 PVC   | 2        | 8 5/8    | 271.46       | 274.68          | 43.4            | 40.2       | 40.0           | 231.3       | 34.5 | 39.5     | 237.0 | 232.0    |
| AP MW-4              | 10212415.597 | 3635562.990          | June 1, 2016      | Schedule 40 PVC   | 2        | 8 5/8    | 270.93       | 274.16          | 52.8            | 49.6       | 50.0           | 221.4       | 44.5 | 49.5     | 226.4 | 221.4    |
| AP MW-5              | 10212901.968 | 3635577.940          | June 1, 2016      | Schedule 40 PVC   | 2        | 8 5/8    | 271.16       | 274.13          | 43.1            | 40.1       | 40.0           | 231.0       | 30.5 | 35.5     | 240.7 | 235.7    |
| AP PZ-1 <sup>2</sup> | 10214173.721 | 3634278.958          | May 24, 2016      | Schedule 40 PVC   | 2        | 8 5/8    | 262.70       | 265.67          | 29.4            | 26.4       | 35.0           | 236.3       | 21.0 | 26.0     | 241.7 | 236.7    |
| AP PZ-2 <sup>2</sup> | 10214308.029 | 3634847.514          | May 24, 2016      | Schedule 40 PVC   | 2        | 8 5/8    | 271.71       | 274.91          | 43.2            | 40.0       | 40.0           | 231.7       | 34.5 | 39.5     | 237.2 | 232.2    |
| AP PZ-3 <sup>2</sup> | 10213822.938 | 3635414.358          | May 25, 2016      | Schedule 40 PVC   | 2        | 8 5/8    | 255.76       | 259.11          | 43.1            | 39.7       | 40.0           | 216.0       | 34.5 | 39.5     | 221.3 | 216.3    |
| AP PZ-4 <sup>2</sup> | 10211826.931 | 3634752.131          | June 2, 2016      | Schedule 40 PVC   | 2        | 8 5/8    | 271.39       | 273.65          | 45.3            | 43.0       | 45.0           | 228.4       | 38.5 | 43.5     | 232.9 | 227.9    |
| SSP MW-2             | 10212007.735 | 3633835.274          | June 2, 2016      | Schedule 40 PVC   | 2        | 8 5/8    | 280.62       | 283.66          | 46.9            | 43.9       | 45.0           | 236.8       | 38.5 | 43.5     | 242.1 | 237.1    |
| SSP MW-3             | 10211581.588 | 3633889.744          | June 3, 2016      | Schedule 40 PVC   | 2        | 8 5/8    | 280.95       | 283.97          | 48.2            | 45.2       | 45.0           | 235.8       | 39.5 | 44.5     | 241.5 | 236.5    |
| SSP MW-4             | 10211577.225 | 3634198.516          | June 3, 2016      | Schedule 40 PVC   | 2        | 8 5/8    | 280.86       | 283.86          | 51.5            | 48.5       | 50.0           | 232.3       | 43.0 | 48.0     | 237.9 | 232.9    |
| SSP/AP MW-1          | 10212432.016 | 3634290.363          | May 26, 2016      | Schedule 40 PVC   | 2        | 8 5/8    | 269.33       | 272.53          | 43.2            | 40.0       | 40.0           | 229.3       | 29.5 | 39.5     | 239.8 | 229.8    |
| SFL MW-1             | 10222937.337 | 3638046.475          | March 15, 2016    | Schedule 40 PVC   | 2        | 8        | 298.90       | 301.80          | 22.8            | 19.9       | 22.0           | 279.0       | 15.0 | 20.0     | 283.9 | 278.9    |
| SFL MW-2             | 10220908.018 | 3636738.712          | March 16, 2016    | Schedule 40 PVC   | 2        | 8        | 265.69       | 268.31          | 23.6            | 21.0       | 50.0           | 244.7       | 16.0 | 21.0     | 249.7 | 244.7    |
| SFL MW-3             | 10220174.555 | 3637846.961          | May 25, 2016      | Schedule 40 PVC   | 2        | 8 5/8    | 271.65       | 275.00          | 28.2            | 24.9       | 25.0           | 246.8       | 19.5 | 24.5     | 252.2 | 247.2    |
| SFL MW-4             | 10220291.840 | 3637261.610          | May 31, 2016      | Schedule 40 PVC   | 2        | 8 5/8    | 266.46       | 269.53          | 42.7            | 39.6       | 40.0           | 226.8       | 34.5 | 39.5     | 232.0 | 227.0    |
| SFL MW-5             | 10221191.234 | 3636721.834          | May 23, 2016      | Schedule 40 PVC   | 2        | 8 5/8    | 273.33       | 276.25          | 24.3            | 21.4       | 25.0           | 251.9       | 16.0 | 21.0     | 257.3 | 252.3    |
| SFL MW-6             | 10221819.634 | 3636700.033          | May 23, 2016      | Schedule 40 PVC   | 2        | 8 5/8    | 283.49       | 286.66          | 23.1            | 19.9       | 20.0           | 263.6       | 14.5 | 19.5     | 269.0 | 264.0    |
| SFL MW-7             | 10220517.925 | 3638408.836          | May 3, 2017       | Schedule 40 PVC   | 2        | 8 5/8    | 264.83       | 264.63          | 58.1            | 58.3       | 55.0           | 206.5       | 50.0 | 55.0     | 214.8 | 209.8    |
| MNW-11 <sup>2</sup>  | 10220909.018 | 3635624.897          | February 26, 1988 | Schedule 40 PVC   | 2        | 4 1/2    | 268.12       | 267.95          | 47.3            | 47.5       | 48.0           | 220.7       | 42.5 | 47.5     | 225.7 | 220.7    |
| MNW-15               | 10220778.128 | 3638974.095          | February 23, 1988 | Schedule 40 PVC   | 2        | 4 1/2    | 257.536      | 257.331         | 27.0            | 27.2       | 27.7           | 230.3       | 22.2 | 27.2     | 235.3 | 230.3    |
| MNW-16 <sup>2</sup>  | 10222188.729 | 3635593.380          | February 25, 1988 | Schedule 40 PVC   | 4        | 7        | 263.333      | 263.191         | 40.4            | 40.5       | 41.0           | 222.8       | 35.5 | 40.5     | 227.8 | 222.8    |
| MNW-17 <sup>2</sup>  | 10223663.517 | 3637468.447          | February 17, 1988 | Schedule 40 PVC   | 4        | 7        | 293.864      | 293.724         | 50.2            | 50.4       | 50.9           | 243.5       | 45.4 | 50.4     | 248.5 | 243.5    |
| MNW-18               | 10224118.439 | 3639397.902          | February 18, 1988 | Schedule 40 PVC   | 4        | 7        | 270.912      | 270.755         | 51.0            | 51.2       | 51.7           | 219.7       | 46.2 | 51.2     | 224.7 | 219.7    |

<sup>1</sup>Datum - NAD 83 (Conus)

<sup>&</sup>lt;sup>2</sup>Water level monitoring only, not used in groundwater quality monitoring

# Table 3.1 Site F Landfill Groundwater Sampling Summary 2017 Annual Report TMPA Gibbons Creek Steam Electric Station Anderson, Texas

| Well     | Location     | Monitoring<br>Program | Number of Samples* |           |           |            | Sample Colle | ection Dates |           |           |           |
|----------|--------------|-----------------------|--------------------|-----------|-----------|------------|--------------|--------------|-----------|-----------|-----------|
| MNW-18   | Upgradient   | Baseline              | 8                  | 5/3/2017  | 5/30/2017 | 6/13/2017  | 6/27/2017    | 7/19/2017    | 8/23/2017 | 8/31/2017 | 9/7/2017  |
| SFL MW-2 | Downgradient | Baseline              | 8                  | 6/23/2016 | 8/25/2016 | 10/19/2016 | 12/22/2016   | 2/22/2017    | 5/3/2017  | 6/14/2017 | 8/23/2017 |
| SFL MW-3 | Downgradient | Baseline              | 8                  | 6/23/2016 | 8/25/2016 | 10/19/2016 | 12/22/2016   | 2/23/2017    | 5/2/2017  | 6/14/2017 | 8/22/2017 |
| SFL MW-4 | Downgradient | Baseline              | 8                  | 6/23/2016 | 8/25/2016 | 10/19/2016 | 12/22/2016   | 2/22/2017    | 5/2/2017  | 6/14/2017 | 8/22/2017 |
| SFL MW-5 | Downgradient | Baseline              | 8                  | 6/23/2016 | 8/25/2016 | 10/19/2016 | 12/21/2016   | 2/23/2017    | 5/3/2017  | 6/14/2017 | 8/23/2017 |
| SFL MW-6 | Downgradient | Baseline              | 8                  | 6/23/2016 | 8/25/2016 | 10/19/2016 | 12/21/2016   | 2/22/2017    | 5/3/2017  | 6/13/2017 | 8/23/2017 |
| SFL MW-7 | Downgradient | Baseline              | 8                  | 5/11/2017 | 5/31/2017 | 6/14/2017  | 6/28/2017    | 7/20/2017    | 8/23/2017 | 8/31/2017 | 9/7/2017  |
| MNW-15   | Downgradient | Baseline              | 8                  | 5/2/2017  | 5/31/2017 | 6/14/2017  | 6/28/2017    | 7/20/2017    | 8/22/2017 | 8/31/2017 | 9/7/2017  |

<sup>\*</sup> does not include duplicate samples for QA

# Table 3.2 Scrubber Sludge Ponds Groundwater Sampling Summary 2017 Annual Report TMPA Gibbons Creek Steam Electric Station Anderson, Texas

| Well       | Location     | Monitoring<br>Program | Number of Samples* |           |           |            | Sample Colle | ection Dates |          |           |           |
|------------|--------------|-----------------------|--------------------|-----------|-----------|------------|--------------|--------------|----------|-----------|-----------|
| SSP APMW-1 | Upgradient   | Baseline              | 8                  | 6/21/2016 | 8/23/2016 | 10/17/2016 | 12/20/2016   | 2/21/2017    | 5/3/2017 | 6/12/2017 | 8/23/2017 |
| SSP MW-2   | Downgradient | Baseline              | 8                  | 6/21/2016 | 8/23/2016 | 10/18/2016 | 12/20/2016   | 2/21/2017    | 5/3/2017 | 6/14/2017 | 8/24/2017 |
| SSP MW-3   | Downgradient | Baseline              | 8                  | 6/21/2016 | 8/23/2016 | 10/18/2016 | 12/20/2016   | 2/21/2017    | 5/4/2017 | 6/13/2017 | 8/24/2017 |
| SSP MW-4   | Downgradient | Baseline              | 8                  | 6/21/2016 | 8/23/2016 | 10/18/2016 | 12/20/2016   | 2/21/2017    | 5/4/2017 | 6/14/2017 | 8/24/2017 |

<sup>\*</sup> does not include duplicate samples for QA

# Table 3.3 Ash Ponds Groundwater Sampling Summary 2017 Annual Report TMPA Gibbons Creek Steam Electric Station Anderson, Texas

|            |              | Monitoring | Number of |           |           |            |               |             |          |           |           |
|------------|--------------|------------|-----------|-----------|-----------|------------|---------------|-------------|----------|-----------|-----------|
| Well       | Location     | Program    | Samples*  |           |           |            | Sample Collec | ction Dates |          |           |           |
| SSP/AP MW1 | Upgradient   | Baseline   | 8         | 6/21/2016 | 8/23/2016 | 10/17/2016 | 12/20/2016    | 2/21/2017   | 5/3/2017 | 6/12/2017 | 8/23/2017 |
| AP MW-1D   | Downgradient | Baseline   | 8         | 6/22/2016 | 8/24/2016 | 10/18/2016 | 12/20/2016    | 2/21/2017   | 5/4/2017 | 6/13/2017 | 8/24/2017 |
| AP MW-3    | Downgradient | Baseline   | 8         | 6/22/2016 | 8/24/2016 | 11/10/2016 | 12/21/2016    | 2/20/2017   | 5/3/2017 | 6/12/2017 | 8/22/2017 |
| AP MW-4    | Downgradient | Baseline   | 8         | 6/22/2016 | 8/24/2016 | 10/18/2016 | 12/20/2016    | 2/21/2017   | 5/4/2017 | 6/12/2017 | 8/24/2017 |
| AP MW-5    | Downgradient | Baseline   | 8         | 6/22/2016 | 8/24/2016 | 10/18/2016 | 12/20/2016    | 2/21/2017   | 5/4/2017 | 6/12/2017 | 8/24/2017 |

<sup>\*</sup> does not include duplicate samples for QA

# Table 4.1 Site F Landfill Groundwater Elevation Summary 2017 Annual Report

| Well         | Date      | Depth to<br>Water<br>(ft. below MP) | Measuring<br>Point<br>Elevation <sup>1</sup><br>(ft. amsl) | Water Level<br>Elevation<br>(ft. amsl) |
|--------------|-----------|-------------------------------------|------------------------------------------------------------|----------------------------------------|
|              | 5/2/2017  | 19.64                               | 268.115                                                    | 248.48                                 |
|              | 5/31/2017 | 21.41                               | 268.115                                                    | 246.71                                 |
|              | 6/12/2017 | 22.53                               | 268.115                                                    | 245.59                                 |
| MNW-11       | 6/28/2017 | 22.87                               | 268.115                                                    | 245.25                                 |
| 1011406-11   | 7/19/2017 | 23.02                               | 268.115                                                    | 245.10                                 |
|              | 8/22/2017 | 20.88                               | 268.115                                                    | 247.24                                 |
|              | 8/31/2017 | 22.74                               | 268.115                                                    | 245.38                                 |
|              | 9/7/2017  | 25.40                               | 268.115                                                    | 242.72                                 |
|              | 5/2/2017  | 4.63                                | 257.536                                                    | 252.91                                 |
|              | 5/31/2017 | 4.85                                | 257.536                                                    | 252.69                                 |
|              | 6/12/2017 | 4.46                                | 257.536                                                    | 253.08                                 |
| NANI\A/ 1 F  | 6/28/2017 | 4.59                                | 257.536                                                    | 252.95                                 |
| MNW-15       | 7/20/2017 | 4.98                                | 257.536                                                    | 252.56                                 |
|              | 8/22/2017 | 5.14                                | 257.536                                                    | 252.40                                 |
|              | 8/31/2017 | 4.65                                | 257.536                                                    | 252.89                                 |
|              | 9/7/2017  | 5.00                                | 257.536                                                    | 252.54                                 |
|              | 5/2/2017  | 13.53                               | 263.333                                                    | 249.80                                 |
|              | 5/30/2017 | 12.62                               | 263.333                                                    | 250.71                                 |
|              | 6/12/2017 | 12.43                               | 263.333                                                    | 250.90                                 |
| NANIVA / 1.6 | 6/27/2017 | 12.49                               | 263.333                                                    | 250.84                                 |
| MNW-16       | 7/19/2017 | 12.61                               | 263.333                                                    | 250.72                                 |
|              | 8/22/2017 | 12.75                               | 263.333                                                    | 250.58                                 |
|              | 8/31/2017 | 12.27                               | 263.333                                                    | 251.06                                 |
|              | 9/7/2017  | 12.37                               | 263.333                                                    | 250.96                                 |
|              | 5/2/2017  | 35.26                               | 293.864                                                    | 258.60                                 |
|              | 5/30/2017 | 38.61                               | 293.864                                                    | 255.25                                 |
| NANINA/ 17   | 6/12/2017 | 42.6                                | 293.864                                                    | 251.26                                 |
| MNW-17       | 6/27/2017 | 44.74                               | 293.864                                                    | 249.12                                 |
|              | 7/19/2017 | 48.23                               | 293.864                                                    | 245.63                                 |
|              | 8/22/2017 | 48.40                               | 293.864                                                    | 245.46                                 |
|              | 5/2/2017  | 8.84                                | 270.912                                                    | 262.07                                 |
|              | 5/30/2017 | 9.40                                | 270.912                                                    | 261.51                                 |
|              | 6/12/2017 | 9.37                                | 270.912                                                    | 261.54                                 |
|              | 6/27/2017 | 9.43                                | 270.912                                                    | 261.48                                 |
| MNW-18       | 7/19/2017 | 9.71                                | 270.912                                                    | 261.20                                 |
|              | 8/22/2017 | 10.04                               | 270.912                                                    | 260.87                                 |
|              | 8/31/2017 | 9.83                                | 270.912                                                    | 261.08                                 |
|              | 9/7/2017  | 9.87                                | 270.912                                                    | 261.04                                 |

# Table 4.1 Site F Landfill Groundwater Elevation Summary 2017 Annual Report TMPA Gibbons Creek Steam Electric Station Anderson, Texas

| Well         | Date       | Depth to<br>Water<br>(ft. below MP) | Measuring<br>Point<br>Elevation <sup>1</sup><br>(ft. amsl) | Water Level<br>Elevation<br>(ft. amsl) |
|--------------|------------|-------------------------------------|------------------------------------------------------------|----------------------------------------|
|              | 6/23/2016  | 14.85                               | 269.53                                                     | 254.7                                  |
|              | 8/25/2016  | 15.05                               | 269.53                                                     | 254.5                                  |
|              | 10/19/2016 | 14.81                               | 269.53                                                     | 254.72                                 |
| CEL NAVA / 2 | 12/22/2016 | 15.41                               | 269.53                                                     | 254.12                                 |
| SFL MW-2     | 2/22/2017  | 14.79                               | 269.53                                                     | 254.74                                 |
|              | 5/3/2017   | 11.17                               | 268.31                                                     | 257.14                                 |
|              | 6/12/2017  | 11.08                               | 268.31                                                     | 257.23                                 |
|              | 8/22/2017  | 11.36                               | 268.31                                                     | 256.95                                 |
|              | 6/23/2016  | 11.22                               | 268.31                                                     | 257.1                                  |
|              | 8/25/2016  | 11.37                               | 268.31                                                     | 256.9                                  |
|              | 10/19/2016 | 11.24                               | 268.31                                                     | 257.07                                 |
| CEL NAVA / 2 | 12/22/2016 | 11.68                               | 268.31                                                     | 256.63                                 |
| SFL MW-3     | 2/23/2017  | 11.32                               | 268.31                                                     | 256.99                                 |
|              | 5/2/2017   | 17.55                               | 275.00                                                     | 257.45                                 |
|              | 6/12/2017  | 17.55                               | 275.00                                                     | 257.45                                 |
|              | 8/22/2017  | 17.46                               | 275.00                                                     | 257.54                                 |
|              | 6/23/2016  | 17.63                               | 275.00                                                     | 257.4                                  |
|              | 8/25/2016  | 17.34                               | 275.00                                                     | 257.7                                  |
|              | 10/19/2016 | 17.07                               | 275.00                                                     | 257.93                                 |
| SFL MW-4     | 12/22/2016 | 17.69                               | 275.00                                                     | 257.31                                 |
| 3FL IVIVV-4  | 2/22/2017  | 17.42                               | 275.00                                                     | 257.58                                 |
|              | 5/2/2017   | 14.87                               | 269.53                                                     | 254.66                                 |
|              | 6/12/2017  | 14.94                               | 269.53                                                     | 254.59                                 |
|              | 8/22/2017  | 15.29                               | 269.53                                                     | 254.24                                 |
|              | 6/23/2016  | 15.91                               | 276.25                                                     | 260.3                                  |
|              | 8/25/2016  | 16.11                               | 276.25                                                     | 260.1                                  |
|              | 10/19/2016 | 16.07                               | 276.25                                                     | 260.18                                 |
| SFL MW-5     | 12/21/2016 | 16.30                               | 276.25                                                     | 259.95                                 |
| 31 2 11111 3 | 2/23/2017  | 16.03                               | 276.25                                                     | 260.22                                 |
|              | 5/3/2017   | 15.85                               | 276.25                                                     | 260.40                                 |
|              | 6/12/2017  | 15.94                               | 276.25                                                     | 260.31                                 |
|              | 8/22/2017  | 16.34                               | 276.25                                                     | 259.91                                 |
|              | 6/23/2016  | 17.50                               | 286.66                                                     | 269.2                                  |
|              | 8/25/2016  | 17.14                               | 286.66                                                     | 269.5                                  |
|              | 10/19/2016 | 17.01                               | 286.66                                                     | 269.65                                 |
| SFL MW-6     | 12/21/2016 | 17.50                               | 286.66                                                     | 269.16                                 |
| SI LIVIVV-O  | 2/22/2017  | 17.67                               | 286.66                                                     | 268.99                                 |
|              | 5/3/2017   | 17.95                               | 286.66                                                     | 268.71                                 |
|              | 6/12/2017  | 17.97                               | 286.66                                                     | 268.69                                 |
|              | 8/22/2017  | 17.82                               | 286.66                                                     | 268.84                                 |

# Table 4.1 Site F Landfill Groundwater Elevation Summary 2017 Annual Report TMPA Gibbons Creek Steam Electric Station Anderson, Texas

| Well        | Date      | Depth to<br>Water<br>(ft. below MP) | Measuring<br>Point<br>Elevation <sup>1</sup><br>(ft. amsl) | Water Level<br>Elevation<br>(ft. amsl) |
|-------------|-----------|-------------------------------------|------------------------------------------------------------|----------------------------------------|
|             | 5/11/2017 | 13.56                               | 264.831                                                    | 251.27                                 |
|             | 5/31/2017 | 13.56                               | 264.831                                                    | 251.27                                 |
|             | 6/12/2017 | 13.24                               | 264.831                                                    | 251.59                                 |
| SFL MW-7    | 6/28/2017 | 13.42                               | 264.831                                                    | 251.41                                 |
| SFL IVIVV-7 | 7/20/2017 | 13.21                               | 264.831                                                    | 251.62                                 |
|             | 8/22/2017 | 14.16                               | 264.831                                                    | 250.67                                 |
|             | 8/31/2017 | 13.01                               | 264.831                                                    | 251.82                                 |
|             | 9/7/2017  | 13.15                               | 264.831                                                    | 251.68                                 |

# Table 4.2 Scrubber Sludge Pond and Ash Ponds Groundwater Elevation Summary 2017 Annual Report

| Well        | Date       | Depth to<br>Water<br>(ft. below MP) | Measuring Point Elevation <sup>1</sup> (ft. amsl) | Water Level<br>Elevation<br>(ft. amsl) |
|-------------|------------|-------------------------------------|---------------------------------------------------|----------------------------------------|
|             | 6/21/2016  | 6.72                                | 272.53                                            | 265.8                                  |
|             | 8/23/2016  | 6.80                                | 272.53                                            | 265.7                                  |
|             | 10/17/2016 | 6.40                                | 272.53                                            | 266.13                                 |
|             | 12/20/2016 | 7.04                                | 272.53                                            | 265.49                                 |
| SSP/AP MW-1 | 2/21/2017  | 6.42                                | 272.53                                            | 266.11                                 |
|             | 5/3/2017   | 6.64                                | 272.53                                            | 265.89                                 |
|             | 6/12/2017  | 6.93                                | 272.53                                            | 265.60                                 |
|             | 8/22/2017  | 7.42                                | 272.53                                            | 265.11                                 |
|             | 6/21/2016  | 12.38                               | 283.66                                            | 271.3                                  |
|             | 8/23/2016  | 21.33                               | 283.66                                            | 262.3                                  |
|             | 10/17/2016 | 21.31                               | 283.66                                            | 262.35                                 |
| SSP MW-2    | 12/20/2016 | 22.04                               | 283.66                                            | 261.62                                 |
| 55P IVIVV-2 | 2/21/2017  | 21.37                               | 283.66                                            | 262.29                                 |
|             | 5/3/2017   | 21.52                               | 283.66                                            | 262.14                                 |
|             | 6/12/2017  | 21.77                               | 283.66                                            | 261.89                                 |
|             | 8/22/2017  | 22.13                               | 283.66                                            | 261.53                                 |
|             | 6/21/2016  | 26.54                               | 283.97                                            | 257.4                                  |
|             | 8/23/2016  | 27.41                               | 283.97                                            | 256.6                                  |
|             | 10/17/2016 | 27.21                               | 283.97                                            | 256.76                                 |
| SSP MW-3    | 12/20/2016 | 27.63                               | 283.97                                            | 256.34                                 |
| 33F WW-3    | 2/22/2017  | 26.90                               | 283.97                                            | 257.07                                 |
|             | 5/4/2017   | 27.09                               | 283.97                                            | 256.88                                 |
|             | 6/12/2017  | 27.39                               | 283.97                                            | 256.58                                 |
|             | 8/22/2017  | 28.20                               | 283.97                                            | 255.77                                 |
|             | 6/21/2016  | 24.11                               | 283.86                                            | 259.7                                  |
|             | 8/23/2016  | 24.19                               | 283.86                                            | 259.7                                  |
|             | 10/17/2016 | 24.25                               | 283.86                                            | 259.61                                 |
| SSP MW-4    | 12/20/2016 | 24.36                               | 283.86                                            | 259.50                                 |
| 331 11111   | 2/21/2017  | 23.74                               | 283.86                                            | 260.12                                 |
|             | 5/4/2017   | 23.98                               | 283.86                                            | 259.88                                 |
|             | 6/12/2017  | 24.32                               | 283.86                                            | 259.54                                 |
|             | 8/22/2017  | 24.68                               | 283.86                                            | 259.18                                 |
|             | 6/22/2016  | 13.91                               | 272.04                                            | 258.1                                  |
|             | 8/24/2016  | 13.79                               | 272.04                                            | 258.2                                  |
|             | 10/17/2016 | 13.48                               | 272.04                                            | 258.56                                 |
| AP MW-1D    | 12/21/2016 | 14.06                               | 272.04                                            | 257.98                                 |
| VI 14144-ID | 2/21/2017  | 13.69                               | 272.04                                            | 258.35                                 |
|             | 5/4/2017   | 13.84                               | 272.04                                            | 258.20                                 |
|             | 6/12/2017  | 13.75                               | 272.04                                            | 258.29                                 |
|             | 8/22/2017  | 13.85                               | 272.04                                            | 258.19                                 |

# Table 4.2 Scrubber Sludge Pond and Ash Ponds Groundwater Elevation Summary 2017 Annual Report

| Well        | Date       | Depth to<br>Water<br>(ft. below MP) | Measuring<br>Point<br>Elevation <sup>1</sup><br>(ft. amsl) | Water Level<br>Elevation<br>(ft. amsl) |
|-------------|------------|-------------------------------------|------------------------------------------------------------|----------------------------------------|
|             | 6/22/2016  | 10.46                               | 274.68                                                     | 264.2                                  |
|             | 8/24/2016  | 10.43                               | 274.68                                                     | 264.3                                  |
|             | 10/17/2016 | 10.22                               | 274.68                                                     | 264.46                                 |
| AP MW-3     | 12/21/2016 | 10.65                               | 274.68                                                     | 264.03                                 |
| AP IVIVV-3  | 2/20/2017  | 10.48                               | 274.68                                                     | 264.20                                 |
|             | 5/3/2017   | 10.65                               | 274.68                                                     | 264.03                                 |
|             | 6/12/2017  | 10.57                               | 274.68                                                     | 264.11                                 |
|             | 8/22/2017  | 10.62                               | 274.68                                                     | 264.06                                 |
|             | 6/22/2016  | 12.86                               | 274.16                                                     | 261.3                                  |
|             | 8/24/2016  | 13.06                               | 274.16                                                     | 261.1                                  |
|             | 10/17/2016 | 13.06                               | 274.16                                                     | 261.10                                 |
| AP MW-4     | 12/21/2016 | 13.15                               | 274.16                                                     | 261.01                                 |
| AF IVIVV-4  | 2/21/2017  | 12.72                               | 274.16                                                     | 261.44                                 |
|             | 5/4/2017   | 13.15                               | 274.16                                                     | 261.01                                 |
|             | 6/12/2017  | 12.77                               | 274.16                                                     | 261.39                                 |
|             | 8/22/2017  | 13.24                               | 274.16                                                     | 260.92                                 |
|             | 6/22/2016  | 10.99                               | 274.13                                                     | 263.1                                  |
|             | 8/24/2016  | 10.96                               | 274.13                                                     | 263.2                                  |
|             | 10/17/2016 | 10.82                               | 274.13                                                     | 263.31                                 |
| AP MW-5     | 12/21/2016 | 11.15                               | 274.13                                                     | 262.98                                 |
| 711 10100 3 | 2/21/2017  | 10.98                               | 274.13                                                     | 263.15                                 |
|             | 5/4/2017   | 11.17                               | 274.13                                                     | 262.96                                 |
|             | 6/12/2017  | 11.09                               | 274.13                                                     | 263.04                                 |
|             | 8/22/2017  | 11.10                               | 274.13                                                     | 263.03                                 |
|             | 8/23/2016  | 6.75                                | 265.67                                                     | 258.92                                 |
|             | 10/17/2016 | 8.31                                | 265.67                                                     | 257.36                                 |
|             | 12/20/2016 | 6.75                                | 265.67                                                     | 258.92                                 |
| AP PZ-1     | 2/21/2017  | 6.75                                | 265.67                                                     | 258.92                                 |
|             | 5/2/2017   | 8.10                                | 265.67                                                     | 257.57                                 |
|             | 6/12/2017  | 9.00                                | 265.67                                                     | 256.67                                 |
|             | 8/22/2017  | 9.00                                | 265.67                                                     | 256.67                                 |

# Table 4.2 Scrubber Sludge Pond and Ash Ponds Groundwater Elevation Summary 2017 Annual Report

| Well     | Date       | Depth to<br>Water<br>(ft. below MP) | Measuring<br>Point<br>Elevation <sup>1</sup><br>(ft. amsl) | Water Level<br>Elevation<br>(ft. amsl) |
|----------|------------|-------------------------------------|------------------------------------------------------------|----------------------------------------|
|          | 8/23/2016  | 18.94                               | 274.91                                                     | 255.97                                 |
|          | 10/17/2016 | 18.84                               | 274.91                                                     | 256.07                                 |
|          | 12/20/2016 | 18.94                               | 274.91                                                     | 255.97                                 |
| AP PZ-2  | 2/21/2017  | 18.94                               | 274.91                                                     | 255.97                                 |
|          | 5/2/2017   | 18.98                               | 274.91                                                     | 255.93                                 |
|          | 6/12/2017  | 19.36                               | 274.91                                                     | 255.55                                 |
|          | 8/22/2017  | 19.36                               | 274.91                                                     | 255.55                                 |
|          | 8/23/2016  | 4.61                                | 259.11                                                     | 254.50                                 |
|          | 10/17/2016 | 4.52                                | 259.11                                                     | 254.59                                 |
|          | 12/20/2016 | 4.61                                | 259.11                                                     | 254.50                                 |
| AP PZ-3  | 2/21/2017  | 4.61                                | 259.11                                                     | 254.50                                 |
|          | 5/2/2017   | 4.81                                | 259.11                                                     | 254.30                                 |
|          | 6/12/2017  | 4.83                                | 259.11                                                     | 254.28                                 |
|          | 8/22/2017  | 4.83                                | 259.11                                                     | 254.28                                 |
|          | 8/23/2016  | 8.40                                | 273.65                                                     | 265.25                                 |
|          | 10/17/2016 | 8.72                                | 273.65                                                     | 264.93                                 |
|          | 12/20/2016 | 8.40                                | 273.65                                                     | 265.25                                 |
| AP P7-4  | 2/21/2017  | 8.40                                | 273.65                                                     | 265.25                                 |
| AF F Z-4 | 5/2/2017   | 8.74                                | 273.65                                                     | 264.91                                 |
|          | 6/12/2017  | 8.80                                | 273.65                                                     | 264.85                                 |
|          | 8/22/2017  | 8.80                                | 273.65                                                     | 264.85                                 |
|          | 9/7/2017   | 8.38                                | 273.65                                                     | 265.27                                 |



## APPENDIX A

Borehole and Well Completion Logs

|                                        | PROJECT: TMPA Gibbons Creek Plant<br>Carlos, Texas |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                 |                                                                        |                     | g of V                                | Vell l     | No. AP               | MW-1D                                   |
|----------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------|---------------------------------------|------------|----------------------|-----------------------------------------|
| BORING LOCATION                        | N: Northe                                          | east Corne                                                                                     | er of Ash Pon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ds                                                                                                                                                                              |                                                                        | GROUND              | SURFACE                               | ELEVA      | TION AND DA          | ATUM:                                   |
| DRILLING CONTRA                        | ACTOR:                                             | Best Dril                                                                                      | ling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                 |                                                                        | DATE STA<br>5/24/16 | RTED:                                 |            | DATE FINI<br>5/24/16 | SHED:                                   |
| DRILLING METHOL                        | D: HSA                                             | 4                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                 |                                                                        | TOTAL DE 40.0       | , ,                                   | 4.TD       | SCREEN II 34.5'-39.  | NTERVAL (ft.):<br>5                     |
| DRILLING EQUIPM                        | IENT: {                                            | 3 5/8" OD                                                                                      | HSA Truck M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lounded Rig                                                                                                                                                                     |                                                                        | DEPTH TO            |                                       | AID:       | CASING:              |                                         |
| SAMPLING METHO                         | DD: 5'                                             | x 4" Core                                                                                      | Barrel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                 |                                                                        | LOGGED B            |                                       | P.G.       |                      |                                         |
| HAMMER WEIGHT                          | : NA                                               |                                                                                                | DROP:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA                                                                                                                                                                              |                                                                        | RESPONS<br>Daniel B | IBLE PRO                              | FESSIO     | NAL:                 | REG. NO.<br>1773                        |
| Cfeet) (feet) No. Sample Sample Blows/ |                                                    | NAME (                                                                                         | USCS): color, mo<br>cementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ESCRIPTION<br>ist, % by wt., plast. der<br>react. w/HCl, geo. into                                                                                                              | nsity, structi<br>er.                                                  |                     | , , , , , , , , , , , , , , , , , , , |            | DETA                 | ONSTRUCTION<br>ILS AND/OR<br>NG REMARKS |
| -<br>-<br>-<br>-                       |                                                    |                                                                                                | clay fill to 4.5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                 |                                                                        |                     |                                       |            | – 2" Diamete         | r PVC                                   |
| 5-                                     |                                                    | hard, tr<br>sand to<br>SAND\<br>moist, I<br>Lignite,<br>SAND\<br>fine-gra<br>minor fo<br>SAND\ | ace calcium ca<br>5'<br>CLAY (CH): lighter<br>fraction of the common of the co | (CH): light yellowish rbonate nodules, fir ght yellowish-browned sand, trace pebbighly moist, firm 7'-8 ght olive brown, moise of small gravel size that olive brown, browstiff | ne-grained<br>, slightly<br>ples<br>3.5'<br>st, very sti<br>re nodules | off,                |                                       |            |                      |                                         |
| 15-                                    |                                                    | CLAYE<br>fine-gra<br>CLAYE<br>fine-gra<br>SILTY                                                | Y SAND (SC):<br>nined sand<br>Y SAND (SC):<br>nined sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | irk gray, very moist<br>light olive brown, m<br>light olive brown, m<br>ht olive brown, wet,                                                                                    | oist, firm,                                                            | stiff,              |                                       |            | – Grout              |                                         |
| 20-                                    |                                                    | SILTY                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ht olive brown, wet,                                                                                                                                                            | loose,                                                                 |                     |                                       |            |                      |                                         |
| 25 Amec Foster V                       | Whoolar                                            | n viron m s                                                                                    | ot 9 Infrastru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | turo los                                                                                                                                                                        |                                                                        |                     | Project N                             | 670045     | 20000 04 000         | WELLS                                   |
| AITIECT USIEL V                        | ALICCIGI EL                                        | I VII OI II II EI                                                                              | n a minastiut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | iuie, iiio.                                                                                                                                                                     |                                                                        | !                   | roject INO                            | . 07 00 10 | 0060.01.006          | i aye i Ui Z                            |

PROJECT: TMPA Gibbons Creek Plant Carlos, Texas Log of Well No. AP MW-1D (cont'd) SAMPLES OVM Reading WELL CONSTRUCTION DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, structure, cementation, react. w/HCl, geo. inter. **DETAILS AND/OR** DRILLING REMARKS 1" hard shaley sand lenses at 25.5' SILTY SAND (SM): light olive brown, wet, loose, fine-grained, one ferrsous stained sand lense 30 at 16' SILTY SAND (SM): light olive brown, wet, loose, fine-grained sand 2" sandstone lense, hard at 31.5' Bentonite 4" sandstone lense, hard at 33' 20/40 Grade Silica Sand 3" sandstone lense, ferrous staining, hard, blocky at  $\nabla$ 35 SILTY SAND (SM): light olive brown, wet, loose, fine-grained sand Schedule 40 PVC 0.010 SILTY SAND (SM): light olive brown with very thin Slot Screen lignite lenses 2" hard sandstone layer at 40' 6" End Cap 40 Total Depth = 40' 45 50

WELL3

55

| Carlo                                      | os, Texas   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Log of Well No. AP-MW-3  GROUND SURFACE ELEVATION AND DATUM: |                                                                       |                                   |        |  |  |
|--------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------|--------|--|--|
| BORING LOCATION:                           | Northea     | st Corner of Ash Ponds                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GROUND                                                       | OURFACE ELEVA                                                         | HON AND L                         | ATOM.  |  |  |
| DRILLING CONTRACT                          | OR: B       | est Drilling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DATE STAI<br>5/25/16                                         | RTED:                                                                 | DATE FINISHED: 5/25/16            |        |  |  |
| DRILLING METHOD:                           | HSA         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TOTAL DEI                                                    | PTH (ft.):                                                            | SCREEN INTERVAL (ft.): 34.5'-39.5 |        |  |  |
| DRILLING EQUIPMEN                          | T: 8 5      | /8" OD HSA Truck Mounded Rig                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              | DEPTH TO WATER ATD: CASING:                                           |                                   |        |  |  |
| SAMPLING METHOD:                           | 5' x 4      | " Core Barrel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LOGGED BY: Daniel B. Haug, P.G.                              |                                                                       |                                   |        |  |  |
| HAMMER WEIGHT:                             | NA          | DROP: NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RESPONS                                                      | IBLE PROFESSIO                                                        |                                   |        |  |  |
| DEPTH (feet) Sample No. Sample Blows/ Foot | OVM         | DESCRIPTION  NAME (USCS): color, moist, % by wt., plast. density, stru cementation, react. w/HCl, geo. inter.  rface Elevation:                                                                                                                                                                                                                                                                                                                                                                      |                                                              | B. Haug, P.G. 1773  WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS |                                   |        |  |  |
| 5-<br>-<br>-<br>10-<br>-<br>15-<br>-<br>-  |             | SANDY CLAY with gravel (CH): brown, moist, firm fine-grained sand, few small gravel, (fill)  SANDY CLAY with gravel (CL): brown and reddish-brown, moist, very stiff, fine-grained sand, small gravel, few clay clasts, 3-4' layers (fill)  SANDY CLAY with gravel (CL): brown mottled, movery stiff, fine-grained sand, trace of small gravel (fine-grained sand)  SILTY SAND (SM): light olive brown, moist, firm, fine-grained sand  SILTY SAND (SM): light olive brown, moist, fine-grained sand | few                                                          |                                                                       | − 2" Diamet                       | er PVC |  |  |
| 20-                                        |             | SILTY SAND (SM): light olive brown, wet, fine-grasand                                                                                                                                                                                                                                                                                                                                                                                                                                                | ined                                                         |                                                                       |                                   |        |  |  |
| 25                                         | eeler Envii |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                                       |                                   | WE     |  |  |

PROJECT: TMPA Gibbons Creek Plant Carlos, Texas Log of Well No. AP-MW-3 (cont'd) SAMPLES OVM Reading WELL CONSTRUCTION DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, structure, cementation, react. w/HCl, geo. inter. DETAILS AND/OR DRILLING REMARKS SILTY SAND (SM): light olive brown, wet, fine-grained sand - siltsone interbedded with loose sand 27.5'-28.75' Siltstone, light olive gray, dry, hard at 28.75' and 29.5' SILTY SAND (SM): light olive brown, moist, 30 fine-grained sand SITLY SAND (SM): light olive brown, wet, fine-grained Bentonite sand 20/40 Grade Silica Sand 35 SILTY SAND (SM): light olive brown, wet, fine-grained sand Schedule 40 PVC 0.010 Slot Screen 6" End Cap 40 Total Depth = 40' 45 50

WELL3

Amec Foster Wheeler Environment & Infrastructure, Inc.

55

Project No. 6706150060.01.006 Page 2 of 2

| Carlos, Texas  BORING LOCATION: East of Ash Ponds |                 |               |                                                                                |                    | Log of Well No. AP MW-4  GROUND SURFACE ELEVATION AND DATUM: |                                 |            |                                        |  |  |  |
|---------------------------------------------------|-----------------|---------------|--------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------|---------------------------------|------------|----------------------------------------|--|--|--|
| BORING LOCATI                                     | ON: Eas         | t of Ash Por  | nds<br>                                                                        |                    |                                                              |                                 | T          |                                        |  |  |  |
| DRILLING CONTRACTOR: Best Drilling                |                 |               |                                                                                |                    |                                                              | RTED:                           | 6/1/16     | NISHED:                                |  |  |  |
| DRILLING METHOD: CME 75 HSA                       |                 |               |                                                                                |                    |                                                              | PTH (ft.):                      | SCREEN     | SCREEN INTERVAL (ft.):                 |  |  |  |
|                                                   |                 |               |                                                                                |                    | 50.0<br>DEPTH TO                                             | WATER ATD:                      |            | 44.5'-49.5'<br>CASING:                 |  |  |  |
| DRILLING EQUIP                                    | /MENT:          | CIVIE 75 8    | 5/8 UD HSA                                                                     |                    | 48                                                           | 2)/.                            |            |                                        |  |  |  |
| SAMPLING METHOD: 5' x 4" Core Barrel              |                 |               |                                                                                |                    |                                                              | LOGGED BY: Daniel B. Haug, P.G. |            |                                        |  |  |  |
| HAMMER WEIGH                                      | ıt: N           | A DROP: NA    |                                                                                |                    |                                                              | IBLE PROFESS<br>. Haug, P.G.    |            | ONAL: REG. NO. 1773                    |  |  |  |
| Cfeet) Sample No. Sample                          | Foot SS Reading | NAME (        | DESCRIPTION (USCS): color, moist, % by wt., plas cementation, react. w/HCl, ge |                    |                                                              | . Haug, 1 .O.                   | WELL<br>DE | CONSTRUCTION FAILS AND/OR LING REMARKS |  |  |  |
| S S                                               |                 |               | evation:<br>Y CLAY (CL): dark yellowish-b                                      | rown brown         |                                                              |                                 |            |                                        |  |  |  |
| -<br>-<br>-                                       |                 | moist,        | stiff, fine-grained sand, sand fil                                             | II to 3.5'         |                                                              |                                 | 2" Diame   | ter PVC                                |  |  |  |
| _                                                 |                 | SAND'<br>sand | Y CLAY (CH): brown, moist, st                                                  | tiff, fine-grained | i                                                            |                                 |            |                                        |  |  |  |
| 5-                                                |                 |               | Y CLAY (CH): brown, mottled, fine-grained sand                                 | moist, firm, cla   | ay                                                           |                                 |            |                                        |  |  |  |
| 10-                                               |                 |               | Y CLAY (CL): yellowish-brown<br>ained sand, few pebbles                        | , moist, firm,     |                                                              |                                 |            |                                        |  |  |  |
| 15-                                               |                 |               | Y CLAY (CL): olive brown and stiff, 3" lignite lense at 14.75'                 | yellowish-brow     | vn,                                                          |                                 |            |                                        |  |  |  |
| -                                                 |                 |               | Y CLAY (CL): yellowish-brown<br>ained sand, bedding planes, ye<br>s            |                    | ζ                                                            |                                 |            |                                        |  |  |  |
| 20-                                               |                 |               | Y CLAY (CL): yellowish-brown<br>ained sand, bedding planes                     | , moist, stiff,    |                                                              |                                 | —— Grout   |                                        |  |  |  |
| 25                                                |                 | Lignite       | , black, moist, firm 23.5'-25'                                                 |                    |                                                              |                                 |            |                                        |  |  |  |

TMPA Gibbons Creek Plant PROJECT: Carlos, Texas Log of Well No. AP MW-4 (cont'd) SAMPLES OVM Reading WELL CONSTRUCTION DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, structure, **DETAILS AND/OR** cementation, react. w/HCl, geo. inter. DRILLING REMARKS SANDY CLAY (CH): yellowish-brown, moist, soft, fine-grained sand, discontinous lignite lenses Lignite, black, moist, firm 26.5'-30' 30 SANDY CLAY (CH): olive-brown, moist, fine-grained sand, stiff Perched water at 32' Lignite, black, dry, stiff 34'-37.5' 35 Interbedded silty sand and sandy clay, thin bedded (1/4" - 1/2"), olive brown, sandy clay, gray silty sand, dry, stiff, fine-grained sand Bentonite Lignite, black, dry, hard, 6" 40 CLAY (CL): black, dry, hard, blocky, some interbedded black lignite 20/40 Grade Silica Sand 45 SANDY CLAY (CL): black, dry, hard, fine-grained sand, platty Schedule 40 PVC 0.010 Slot Screen  $\nabla$ SILTY SAND (SM): dark olive brown, wet, loose, bedding planes, fine-grained sand 6" End Cap 50 Total Depth =50' 55 WELL3

Project No. 6706150060.01.006 Page 2 of 2

Amec Foster Wheeler Environment & Infrastructure, Inc.

| Carlos, Texas  BORING LOCATION: East Center of Ash Ponds |        |                            |                |                                                                                                              | GROUND SURFACE ELEVATION AND DATUM:                                             |                                                                                       |            |                                             |           |        |                     |                             |
|----------------------------------------------------------|--------|----------------------------|----------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------|---------------------------------------------|-----------|--------|---------------------|-----------------------------|
| DURING LUCATION: East Genter Of ASIT POHOS               |        |                            |                |                                                                                                              | NA DATE STARTED: DATE FINISHED:                                                 |                                                                                       |            |                                             |           |        |                     |                             |
| DRILLING CONTRACTOR: Best Drilling                       |        |                            |                |                                                                                                              |                                                                                 | 6/1/16                                                                                | KIED:      |                                             | 6/1/16    | ISHED: |                     |                             |
| וו ו ווסר                                                | NG M   | IETHOD:                    | CI             | //E 75 HS/                                                                                                   |                                                                                 |                                                                                       |            | TOTAL DE                                    | PTH (ft.) | ):     | SCREEN              | INTERVAL (ft.):             |
| DRILLING METHOD: CME 75 HSA                              |        |                            |                |                                                                                                              | 40.0                                                                            |                                                                                       |            | 30.5'-35.5'                                 |           |        |                     |                             |
|                                                          |        |                            |                |                                                                                                              |                                                                                 | DEPTH TO WATER ATD: 0                                                                 |            |                                             | CASING:   |        |                     |                             |
|                                                          | INIC   | METHOD:                    |                | 5' x 4" Core                                                                                                 | Dorrol                                                                          |                                                                                       |            | LOGGED I                                    | BY:       |        |                     |                             |
| SAIVIFL                                                  | LING I | VIETHOD.                   |                | X4 COIE                                                                                                      | Dallel                                                                          |                                                                                       |            | Daniel B                                    | . Haug    | , P.G. | 20.10.1             | DEC 110                     |
| HAMMER WEIGHT: NA                                        |        |                            |                | Ą                                                                                                            | DROP: NA                                                                        |                                                                                       |            | RESPONSIBLE PROFESSION Daniel B. Haug, P.G. |           |        | ONAL: REG. NO. 1773 |                             |
| DEPTH (feet) (feet) No. Sample No. Blows/ Foot OVM       |        |                            | OVM<br>Reading | DESCRIPTION  NAME (USCS): color, moist, % by wt., plast. density, str cementation, react. w/HCl, geo. inter. |                                                                                 |                                                                                       |            |                                             |           | ,,     |                     | CONSTRUCTION<br>AILS AND/OR |
|                                                          | Sar    | Sar<br>Bio<br>Fr           | A M            | Surface Elevation: NA                                                                                        |                                                                                 |                                                                                       |            |                                             |           |        | DRILL               | ING REMARKS                 |
|                                                          |        | Sand and clay fill to 2.5' |                |                                                                                                              |                                                                                 |                                                                                       |            |                                             |           |        |                     |                             |
| _                                                        |        |                            |                |                                                                                                              | DY CLAY (CH): yellowish-brown, moist, firm the fine-grained sand, some mottling |                                                                                       |            | )                                           |           |        | — 2" Diameter PVC   |                             |
| 5-<br>-                                                  |        |                            |                |                                                                                                              |                                                                                 | light yellowish-brown fine-grained sand                                               | , moist, s | tiff,                                       |           |        |                     |                             |
| 10-                                                      |        |                            |                | yellowi                                                                                                      | , ,                                                                             | reddish-brown then li<br>'-15'), moist, stiff, san<br>nnd                             | ~          | ı                                           |           |        | — Grout             |                             |
| 15-<br>-                                                 |        |                            |                |                                                                                                              | Y CLAY (CH):<br>ained sand                                                      | yellowish-brown, mo                                                                   | ist, firm, |                                             |           |        |                     |                             |
| _                                                        |        |                            |                |                                                                                                              | EY SAND (SC<br>ained sand, fe                                                   | ): yellowish-brown, wo<br>w gravel                                                    | et, firm,  |                                             |           |        |                     |                             |
| 20-                                                      |        |                            |                | fine-gra<br>SAND                                                                                             | ained sand, cl<br>Y CLAY (CH):                                                  | yellowish-brown, moi<br>ay clasts<br>reddish-brown mottle<br>r, firm, fine-grained sa | ed with    |                                             |           |        |                     |                             |
| -<br>-<br>25-                                            |        |                            |                |                                                                                                              | n-brown streal                                                                  | brown mottled with force, moist, fine-grained                                         |            | W                                           |           |        |                     |                             |
| 20                                                       |        |                            |                |                                                                                                              |                                                                                 |                                                                                       |            |                                             |           |        |                     | WE                          |

PROJECT: TMPA Gibbons Creek Plant Log of Well No. AP MW-5 (cont'd) Carlos, Texas SAMPLES OVM Reading WELL CONSTRUCTION Sample Blows/ Foot DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, structure, cementation, react. w/HCl, geo. inter. **DETAILS AND/OR** DRILLING REMARKS SANDY CLAY (CH): brown, moist, fine-grained sand to small gravel Bentonite  $\nabla$ 20/40 Grade Silica Sand CLAYEY SAND (SC): brown, wet, firm, fine- to 30 coarse-grained sand SANDY CLAY (CL): light yellowish-brown, moist, stiff, fine-grained sand, ferrous staining Schedule 40 PVC 0.010 Slot Screen 35 SANDY CLAY (CL): light yellowish-brown, very moist to 6" End Cap wet, medium-grained sand CLAYEY SILTY SAND (SC-SM): dark greenish gray, slightly moist, fine-grained sand 40 Total Depth = 40' 45 50 55 WELL3 Amec Foster Wheeler Environment & Infrastructure, Inc. Project No. 6706150060.01.006 Page 2 of 2

|                                                | los, Tex       | ons Creek Plant<br>as                                                                                                                                                                                                      | Log of V                                        | Vell No. AP MW-6                 |
|------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------|
| ORING LOCATION:                                | West           | Side of Ash Ponds                                                                                                                                                                                                          | GROUND SURFACE E                                | ELEVATION AND DATUM:             |
| ORILLING CONTRAC                               | CTOR:          | Tolunay-Wong                                                                                                                                                                                                               | DATE STARTED:<br>5/3/17                         | DATE FINISHED:<br>5/5/17         |
| DRILLING METHOD:                               |                | 6A with Continous Core Barell                                                                                                                                                                                              | TOTAL DEPTH (ft.):<br>50.0<br>DEPTH TO WATER AT | SCREEN INTERVAL (ft.): 41'-46'   |
| PRILLING EQUIPME                               | NI:            | CME 75                                                                                                                                                                                                                     | LOGGED BY:                                      |                                  |
| SAMPLING METHOD                                | ): 5           | ' x 4.25" OD Core Barrel                                                                                                                                                                                                   | Daniel B. Haug, P                               |                                  |
| HAMMER WEIGHT:                                 | N.A            | DROP: NA                                                                                                                                                                                                                   | Daniel B. Haug, P                               | I                                |
| Cample Sample Sample Sample Sample Blows/ East | OVM<br>Reading | DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, s cementation, react. w/HCl, geo. inter.                                                                                                                  | structure,                                      | WELL CONSTRUCTION DETAILS AND/OR |
| Sal Sal                                        | - ~~           | Surface Elevation:                                                                                                                                                                                                         |                                                 | DRILLING REMARKS                 |
| -                                              | 0.3            | Grass at the surface, gravel, sand and clay mat 4.25' (probable fill)                                                                                                                                                      | erial to                                        | 2" Schedule 40 PVC Riser         |
| 5-                                             |                | SANDY CLAY (CL): yellowish-brown, moist, still ferrous nodules, trace of caliche, fine-grained sa                                                                                                                          | and                                             |                                  |
| -<br>-<br>-                                    | 0.1            | SILT (ML) with lignite: reddish-brown, dry, firm, little recovery                                                                                                                                                          | very -                                          |                                  |
| 10-                                            |                | CLAY (CL): reddish-brown, slightly moist, firm<br>Lignite with clay, dark red, slightly moist, firm<br>SANDY CLAY (CL): yellowish-brown, dry, firm,                                                                        | very                                            |                                  |
| 15-                                            | 0.1            | fine-grained sand  2" lignite seam, dark reddish-brown, slightly mo CLAY (CH): yellowish-brown, slightly moist to m stiff, ferrous staining Interbedded CLAY and LIGNITE (0-CL): black to reddish-brown, dry, frim to hard | noist,                                          | Bentonite Grout                  |
| 20-                                            | 1.8            | 1" cemented lenses with gypsum                                                                                                                                                                                             |                                                 |                                  |
| -                                              | 2.1            | LIGNITE (0) with hard lenses of cemented clay with organics: dark brown, dry, hard                                                                                                                                         | and slit                                        |                                  |
|                                                |                | SANDY CLAY (CL): dark brown, dry, stiff, very fine-grained sand, numerous thin very fine-grain sand partings, laminated                                                                                                    | ned                                             |                                  |
| 25                                             |                |                                                                                                                                                                                                                            |                                                 | W                                |

PROJECT: TMPA Gibbons Creek Plant Carlos, Texas

Amec Foster Wheeler Environment & Infrastructure, Inc.

## Log of Well No. AP MW-6 (cont'd)

Project No. 6706150060.01.006 Page 2 of 2

| ا<br>چ             | SAN<br><u>a</u> | MPLES                    | Mil            | DESCRIPTION                                                                                                                                         | WELL CONSTRUCTION                       |
|--------------------|-----------------|--------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| (feet)             | Sample<br>No.   | Sample<br>Blows/<br>Foot | OVM<br>Reading | NAME (USCS): color, moist, % by wt., plast. density, structure, cementation, react. w/HCl, geo. inter.                                              | DETAILS AND/OR<br>DRILLING REMARK       |
| _                  |                 |                          | 2.5            | Interbedded SAND and LIGNITE (SP-0): sand - olive gray, lignite - black, very moist to wet, mostly sand, fine-grained sand                          |                                         |
|                    |                 |                          |                | LIGNITE (0): black, dry, hard - Lignite to 30.25'                                                                                                   |                                         |
| 30-                |                 |                          |                | CLAY (CL): light gray, slighltly moist, hard                                                                                                        | Bentonite Grout                         |
|                    |                 |                          | 4.3            | CLAYEY SAND (SC): very dark grayish-brown, dry, dense, very fine-grained sand, lignite fragments                                                    |                                         |
| -<br>35-<br>-<br>- |                 |                          |                | CLAYEY SAND (SC): olive gray, slightly moist to moist, dense, fine-grained sand, weakly cemented, laminated                                         | Bentonite Chips                         |
| -<br>-<br>-<br>-   |                 |                          | 4.9            | Slightly CLAYEY SAND (SC): olive gray, moist to very moist, 42.5'-43' wet, moist below 43' and silty, medium dense, very fine- to fine grained sand | - 16/30 Grade Silica Sand               |
| -<br>-<br>-<br>15- |                 |                          | 4.4            |                                                                                                                                                     | 2" Schedule 40 PVC<br>Screen 0.010 Slot |
| -                  |                 |                          |                | Very slightly CLAYEY SILTY SAND (SM): olive gray, moist, dense, fine-grained sand, trace of lignite lenses                                          | 5.5" End Cap                            |
| -                  |                 |                          | 0.6            | - Sulfur smell                                                                                                                                      |                                         |
| 50-                |                 |                          |                | Total Depth = 50"                                                                                                                                   |                                         |
| -                  |                 |                          |                | ·                                                                                                                                                   |                                         |
| +                  |                 |                          |                |                                                                                                                                                     |                                         |
| +                  |                 |                          |                |                                                                                                                                                     |                                         |
| 55-                |                 |                          |                |                                                                                                                                                     | -                                       |

| ROJE            | 01.   |      |                   | s, Tex         | ons Creek<br>as | Tiant                                                                        |                   |                       | _         |         | I No. A                     |                          |
|-----------------|-------|------|-------------------|----------------|-----------------|------------------------------------------------------------------------------|-------------------|-----------------------|-----------|---------|-----------------------------|--------------------------|
| BORIN           | G LO  | CAT  | ION:              | West           | t of Limesto    | one Storage Building                                                         |                   | GROUND S              | URFAC     | E ELEVA | TION AND D                  | ATUM:                    |
| RILLII          | NG C  | TNC  | TRACT             | OR:            | Best Drill      | ling                                                                         |                   | DATE STAF             | RTED:     |         | DATE FIN                    | ISHED:                   |
|                 |       |      |                   | 1.16           |                 |                                                                              |                   | 5/24/16<br>TOTAL DEF  | PTH (ft.) | ):      | 5/24/16<br>SCREEN           | INTERVAL (ft.):          |
| RILLII          | NG M  | ETH  | HOD:              | HS             | SA              |                                                                              |                   | 35.0                  |           |         | 21'-26'                     |                          |
| RILLII          | NG E  | QUII | PMEN <sup>-</sup> | Τ:             | 8 5/8" OD       | HSA Truck Mounded Rig                                                        |                   | DEPTH TO              | WATER     | R ATD:  | CASING:                     |                          |
| AMPL            | ING N | /ΕΤ  | HOD:              | 5              | 5' x 4" Core    | Barrel                                                                       |                   | LOGGED B<br>Daniel B. |           | PG      | <u> </u>                    |                          |
| IAMME           | =R W  | FIG  | HT·               | N/             | 1               | DROP: NA                                                                     |                   | RESPONSI              | BLE PR    | OFESSIO | NAL:                        | REG. NO.                 |
| IJ GIVIIVIE     |       |      |                   |                | •               | DESCRIPTION                                                                  |                   | Daniel B.             | Haug      | , P.G.  |                             | 1773                     |
| DEРIН<br>(feet) |       | 41   | Blows/<br>Foot    | OVM<br>Reading | NAME (I         | USCS): color, moist, % by wt., plast. c<br>cementation, react. w/HCl, geo. i |                   | re,                   |           |         | DETA                        | CONSTRUCTION AILS AND/OR |
|                 | Sa    | Sa   | 面上                | <u>~</u>       | Surface Ele     | vation:                                                                      |                   |                       |           |         | DRILL                       | ING REMARKS              |
|                 |       |      |                   | -              | 6" ash          |                                                                              |                   |                       |           |         |                             |                          |
| _               |       |      |                   |                | Sandy           | clay with few small gravel fill to 2"                                        | ,                 |                       |           |         |                             |                          |
| =               |       |      |                   | }              | SANDY           | CLAY (CH): yellowish-brown, m                                                | noist, stiff. fin | e-                    |           |         |                             |                          |
| _               |       |      |                   |                |                 | se-grained sand                                                              | ,,                |                       | -         |         | — 2" Diamete                | er PVC                   |
| _               |       |      |                   |                |                 |                                                                              |                   |                       |           |         |                             |                          |
| _               |       |      |                   |                |                 |                                                                              |                   |                       |           |         |                             |                          |
| 5-              |       |      |                   | ļ              |                 | Y SAND (SC): light yellowish-bro                                             | own, moist, s     | tiff,                 |           |         |                             |                          |
| _               |       |      |                   |                | fine-gra        | ined sand                                                                    |                   |                       |           |         |                             |                          |
| _               |       |      |                   |                |                 |                                                                              |                   |                       |           |         |                             |                          |
|                 |       |      |                   |                |                 |                                                                              |                   |                       |           |         | — Grout                     |                          |
|                 |       |      |                   |                |                 |                                                                              |                   |                       |           |         | Grout                       |                          |
| _               |       |      |                   |                | 0.5" sar        | ndstone lense at 9.25'                                                       |                   |                       |           |         |                             |                          |
| 10-             |       |      |                   |                | CLAYE           | Y SAND (SC): light yellowish-bro                                             | wn sliahtly       |                       | -         |         |                             |                          |
| _               |       |      |                   |                |                 | stiff, fine-grained sand                                                     | wii, oligiidiy    |                       |           |         |                             |                          |
| _               |       |      |                   |                | sandst          | one nodules and 0.5" sand lense                                              | e at 12'-12.5'    |                       |           |         |                             |                          |
| _               |       |      |                   |                | - trace o       | of ferrous staining                                                          |                   |                       |           |         |                             |                          |
| _               |       |      |                   |                |                 |                                                                              |                   |                       |           |         |                             |                          |
| 15-             |       |      |                   | -              | interbe         | edded sand and sandy clay                                                    |                   |                       |           |         |                             |                          |
|                 |       |      |                   |                |                 | Y SAND and SAND (SP, SC) oli                                                 | ive-gray, dry     | to                    |           |         |                             |                          |
|                 |       |      |                   |                | \               | oose to firm                                                                 |                   | /                     |           |         |                             |                          |
| _               |       |      |                   |                |                 | CL): brown, dry, hard, with interb                                           | edded sand        |                       |           |         | <ul><li>Bentonite</li></ul> |                          |
| _               |       |      |                   |                | and cla         |                                                                              | <b>.</b>          | _/                    |           |         |                             |                          |
| =               |       |      |                   |                |                 | SAND (SM): brown, dry, loose to<br>iined sand, clay lenses                   | tirm,             |                       |           |         |                             |                          |
| 20-             |       |      |                   |                |                 | CL): yellowish-brown, dry, hard, ined sand lenses, trace of pebbl            |                   |                       | -         |         | — 20/40 Gra                 | de Silica Sand           |
| _               |       |      |                   | -              |                 | Y SAND with sandstone lenses,                                                |                   | 7                     | <b>피</b>  |         |                             |                          |
| _               |       |      |                   | -              |                 | fine-grained to small gravels size                                           |                   |                       | 1         |         |                             |                          |
| =               |       |      |                   | -              | SANDY sand la   | ∕ CLAY (CL): brown, dry, hard, fii<br>mina                                   | ne-grained        |                       |           |         | — Cobodiila                 | 40 DVC 0 040             |
| _               |       |      |                   |                |                 | SAND (SM): olive gray, moist, loo                                            | ose to firm,      |                       | +         |         | Slot Scree                  | 40 PVC 0.010<br>n        |
|                 |       |      |                   |                |                 | ined sand                                                                    |                   |                       |           | = :: :  |                             |                          |

PROJECT: TMPA Gibbons Creek Plant Carlos, Texas Log of Well No. AP PZ-1 (cont'd) SAMPLES OVM Reading WELL CONSTRUCTION Sample Blows/ Foot DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, structure, cementation, react. w/HCl, geo. inter. **DETAILS AND/OR** DRILLING REMARKS SILTY SAND (SM): light olive gray, wet, hard, fine-grained sand, very thin lignite seams 6" End Cap CLAY (CH): olive, dry, hard, blocky 30 CLAY (CH): olive, dry, hard, blocky 20/40 Grade Silica Sand 35 Total Depth = 35' 40 45 50 55 WELL3 Amec Foster Wheeler Environment & Infrastructure, Inc. Project No. 6706150060.01.006 Page 2 of 2

|                                  |                             | os, Tex        |               |                             |                                                              |                    |                     |           |               | II NO. A          |                                      |
|----------------------------------|-----------------------------|----------------|---------------|-----------------------------|--------------------------------------------------------------|--------------------|---------------------|-----------|---------------|-------------------|--------------------------------------|
| BORING LO                        | CATION:                     | No             | orth of Fly A | sh Silos                    |                                                              |                    |                     |           |               |                   |                                      |
| ORILLING C                       | CONTRACT                    | TOR:           | Best Dril     | ling                        |                                                              |                    | DATE STA<br>5/23/16 | ARTED:    |               | 5/24/16           |                                      |
| DRILLING M                       | /IETHOD:                    | HS             | SA            |                             |                                                              |                    | TOTAL DE            | EPTH (ft. | ):            | SCREEN<br>34'-39' | INTERVAL (ft.):                      |
| DRILLING E                       | QUIPMEN                     | T:             | 8 5/8" OD     | HSA 2" Ro                   | ods                                                          |                    | DEPTH TO            | O WATE    | R ATD:        | CASING:           |                                      |
| SAMPLING                         | METHOD:                     | 5              | ' x 4" Core   | Barrel                      |                                                              |                    | LOGGED<br>Daniel E  |           | n P.G         |                   |                                      |
| HAMMER W                         | /EIGHT:                     | NA             | ١             | DROP:                       | NA                                                           |                    | RESPONS<br>Daniel E | SIBLE PE  | ROFESSI       | ONAL:             | REG. NO.                             |
| DEPTH (feet) Sample Solution No. | Sample Saldws/ Saldws/ Foot | OVM<br>Reading |               | cementat                    | DESCRIPTION<br>moist, % by wt., pla<br>ion, react. w/HCl, ge |                    |                     | J. Haug   | <u>,, rO.</u> | DET               | CONSTRUCTION AILS AND/OR ING REMARKS |
| S                                | υш                          |                | Surface Ele   |                             | dark gray, slightl                                           | v moist. loose.    | fine-               |           |               |                   |                                      |
| _                                |                             | -              |               |                             | and, roots, fly ast                                          | -                  |                     |           |               |                   |                                      |
| _                                |                             |                |               | SANDY CLA<br>grained san    | λΥ (CH): brown, r<br>d                                       | noist, firm, fine  | - to                |           |               |                   |                                      |
| -                                |                             |                | SILTY         | SANDY CLA                   | Y (CL): brown, m<br>d, increasing san                        |                    | to                  |           |               | — 2" Diamet       | er PVC                               |
| 5-                               |                             |                |               | CLAY (CH)                   | ): yellowish-browi                                           | n, moist, soft, fi | ne-                 |           |               |                   |                                      |
| 10                               |                             |                | hard, fir     |                             | NY (CH): yellowish<br>and, ferrous stair                     |                    |                     |           |               |                   |                                      |
| 10                               |                             |                |               |                             | C): light olive brovined sand, wood                          |                    |                     |           |               |                   |                                      |
|                                  |                             |                |               | CLAYEY SA<br>irm, fine-grai | ND (SC): light ye<br>ned sand                                | llowish-brown,     |                     |           |               |                   |                                      |
|                                  |                             |                |               | ` '                         | ): yellowish-browr<br>gnite seam (thin)                      | n, dry, hard,      |                     |           |               |                   |                                      |
| 15-                              |                             |                |               | Y SILTY SA<br>ained sand    | ND (SM): gray, w                                             | et, firm,          |                     |           |               | — Grout           |                                      |
| -                                |                             |                |               | CLAY (CH)                   | ): light yellowish-b<br>d sand                               | rown, dry, har     | d,                  |           |               |                   |                                      |
| 20-                              |                             |                |               | ist intervals,              | Y (CL): light olive<br>hard to very stiff,                   | -                  |                     |           |               |                   |                                      |
| 25                               |                             |                |               |                             |                                                              |                    |                     |           |               |                   |                                      |
|                                  | - 4 10//-                   | l              | nvironmen     | . 4 0 1 - 4 4 -             |                                                              |                    |                     | D : (1    | u - 07004     | 50060.01.00       | WEL                                  |

TMPA Gibbons Creek Plant PROJECT: Carlos, Texas Log of Well No. AP PZ-2 (cont'd) SAMPLES OVM Reading WELL CONSTRUCTION DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, structure, cementation, react. w/HCl, geo. inter. **DETAILS AND/OR** DRILLING REMARKS SILTY SAND (SM): light olive brown, very moist, fine-grained sand, soft Sligthly SANDY CLAY (CH): brown, dry, hard, fine-grained sand lenses - increased sand content with depth SILTY SAND (SM): light olive brown, moist, 30 fine-grained sand, firm Bentonite CLAYEY SILTY SAND (SM): light olive gray, very moist, firm, 1/4" lignite seams, fine-grained sand SANDY CLAY (CL): light olive brown, moist to dry, hard, fine-grained sand, very hard lenses, organics 20/40 Grade Silica Sand (wood) in sandstone 35 SILTY SAND (SM): light olive brown, wet to 39', tan lignite lenses (1/4"), fine-grained sand Schedule 40 PVC 0.010 Slot Screen CLAY (CH): brown, moist, hard 6" End Cap 40 Total Depth = 40' 45 50 55 WELL3 Project No. 6706150060.01.006 Page 2 of 2 Amec Foster Wheeler Environment & Infrastructure, Inc.

|                        | Carlo                    | os, Tex        | as                                                                                                                                                                                    | CDOLL             | ND SURFACE ELEVA                                | II No. AP PZ-3                                    |
|------------------------|--------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------|---------------------------------------------------|
| BORING LOC             | ATION:                   | Nor            | th of Ash Ponds                                                                                                                                                                       | GROU              | ND SURFACE ELEVA                                | ATION AND DATOM:                                  |
| ORILLING CC            | NTRACT                   | OR:            | Best Drilling                                                                                                                                                                         | DATE<br>5/25/     | STARTED:<br>16                                  | DATE FINISHED: 5/25/16                            |
| DRILLING ME            | ETHOD:                   | HS             | SA                                                                                                                                                                                    | TOTAL<br>40.0     | DEPTH (ft.):                                    | SCREEN INTERVAL (ft.): 34.5'-39.5                 |
| ORILLING EQ            | UIPMEN                   | T:             | 8 5/8" OD HSA Truck Mounded Rig                                                                                                                                                       |                   | TO WATER ATD:                                   | CASING:                                           |
| SAMPLING M             | IETHOD:                  | 5              | ' x 4" Core Barrel                                                                                                                                                                    | LOGG              | ED BY:<br>el B. Haug, P.G.                      |                                                   |
| HAMMER WE              | EIGHT:                   | N/             | A DROP: NA                                                                                                                                                                            | RESPO             | onsible profession B. Haug, P.G.  B. Haug, P.G. | ONAL: REG. NO. 1773                               |
|                        | Sample<br>Blows/<br>Foot | OVM<br>Reading | DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density cementation, react. w/HCl, geo. inter.  Surface Elevation:                                                            |                   | ar B. Flaug, F. G.                              | WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS |
| -                      |                          |                | SANDY CLAY with Gravel (CH): yellowish-br<br>moist, very stiff, fine-grained sand, few small<br>probably fill                                                                         |                   |                                                 |                                                   |
| 5-<br>-<br>-<br>-<br>- |                          |                | SANDY CLAY (CL): olive brown, moist, very fine-grained sand  SANDY CLAY (CL): light olive brown, slightly moist at 9', firm, layered, fine-grained sand                               |                   |                                                 | — 2" Diameter PVC                                 |
| 10-                    |                          | _              | SANDY CLAY (CL): light olive brown, moist to above underlying clay, fine-grained sand, loo CLAY (CH): light olive brown, dry, blocky, ha SILTY SAND (SM): light olive brown, wet, fin | se<br>rd, layered |                                                 |                                                   |
| 15-                    |                          |                | sand                                                                                                                                                                                  |                   |                                                 | — Grout                                           |
| 20-                    |                          |                | SILTY SAND (SM): light olive brown, wet, fin sand, layered                                                                                                                            | e-grained         |                                                 |                                                   |
| 25                     |                          |                | - interbedded sand and siltstone                                                                                                                                                      |                   |                                                 |                                                   |
|                        | ( \ \ A / !              |                | Environment & Infrastructure, Inc.                                                                                                                                                    |                   | <b></b>                                         | 50060.01.006 Page 1 of 2                          |

TMPA Gibbons Creek Plant PROJECT: Carlos, Texas Log of Well No. AP PZ-3 (cont'd) SAMPLES OVM Reading WELL CONSTRUCTION DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, structure, **DETAILS AND/OR** cementation, react. w/HCl, geo. inter. DRILLING REMARKS SILTY SAND (SM): light olive brown, wet, fine-grained sand, hard siltstone at 28.75' to 29' and 1" lense at 27.5' ferrous staining around siltstone lenses 30 SILTY SAND (SM): light olive brown, wet, loose, fine-grained sand Bentonite Sandstone, light to olive brown, wet, hard, platy 32.5'-33' SILTY SAND (SM): light olive brown, wet, loose, 20/40 Grade Silica Sand fine-grained sand Sandstone, pale yellow, wet, hard, platy 34'-34.5 35 SILTY SAND (SM): light olive brown, wet, loose, fine-grained sand Siltstone, olive brown, wet, hard, platy 36.5'-36.75' Schedule 40 PVC 0.010 SILTY SAND (SM): light olive brown, wet, loose to firm, Slot Screen fine-grained sand SILTY SAND (SM): olive gray, wet, firm, fine-grained sand, layered 6" End Cap 40 CLAY (CH): olive gray, dry, hard, blocky Total Depth = 40' 45 50 55 WELL3 Amec Foster Wheeler Environment & Infrastructure, Inc. Project No. 6706150060.01.006 Page 2 of 2

| SAMPLING MET HAMMER WEIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NTRACT THOD:  JIPMEN' ETHOD:  GHT: | OR:<br>HS      | 8 5/8" OD HSA Truck Mounded Rig                                                                                                                                                                  | DATE STAF<br>6/2/2016<br>TOTAL DEF<br>45.0<br>DEPTH TO<br>40<br>LOGGED B<br>Daniel B.<br>RESPONSI<br>Daniel B. | PTH (ft.):<br>WATER ATD:                              | DATE FINIS 6/2/2016 SCREEN IN 38.5'-43.5 CASING:  NAL:  WELL CO | SHED:<br>ITERVAL (ft.):<br>5'<br>REG. NO.<br>1773 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------|
| DRILLING METHODRILLING EQUI SAMPLING METHODRICAL SAMPLING METHODRICAL SAMP HAMMER WEIGHT SAMP ON O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | THOD:  JIPMEN  ETHOD:  GHT:  PLES  | HS<br>T: 5     | 8 5/8" OD HSA Truck Mounded Rig  5' x 4" Core Barrel  A DROP: NA  DESCRIPTION  NAME (USCS): color, moist, % by wt., plast. density, s cementation, react. w/HCl, geo. inter.  Surface Elevation: | 6/2/2016 TOTAL DEF 45.0 DEPTH TO 40 LOGGED B Daniel B. RESPONSI Daniel B.                                      | PTH (ft.):  WATER ATD:  Y:  Haug, P.G.  BLE PROFESSIO | 6/2/2016 SCREEN IN 38.5'-43.5 CASING:  NAL:  WELL CO            | REG. NO. 1773  DNSTRUCTION LS AND/OR              |
| DRILLING EQUI SAMPLING MET HAMMER WEIG SAMP Quadrage SAMP SAMP SAMP SAMP SAMP SAMP SAMP SAMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JIPMEN' ETHOD: GHT: PLES           | T:             | 8 5/8" OD HSA Truck Mounded Rig  5' x 4" Core Barrel  A DROP: NA  DESCRIPTION  NAME (USCS): color, moist, % by wt., plast. density, s cementation, react. w/HCl, geo. inter.  Surface Elevation: | 45.0 DEPTH TO 40 LOGGED B Daniel B. RESPONSI Daniel B.                                                         | WATER ATD:  Y:  Haug, P.G.  BLE PROFESSIO             | 38.5'-43.5<br>CASING:<br>NAL:<br>WELL CO                        | REG. NO.<br>1773<br>DINSTRUCTION<br>LS AND/OR     |
| SAMPLING MET HAMMER WEIG SAMP (teet) No. Samble No. Samble                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GHT:                               | NA             | DROP: NA  DESCRIPTION  NAME (USCS): color, moist, % by wt., plast. density, seementation, react. w/HCl, geo. inter.  Surface Elevation:                                                          | 40 LOGGED B Daniel B. RESPONSI Daniel B.                                                                       | Y:<br>Haug, P.G.<br>BLE PROFESSIO                     | NAL: WELL CC                                                    | 1773<br>DNSTRUCTION<br>LS AND/OR                  |
| HAMMER WEIGHAMPIER | GHT:<br>PLES                       | N/             | DROP: NA  DESCRIPTION  NAME (USCS): color, moist, % by wt., plast. density, s cementation, react. w/HCl, geo. inter.  Surface Elevation:                                                         | Daniel B. RESPONSI Daniel B.                                                                                   | Haug, P.G.<br>BLE PROFESSIO                           | WELL CC                                                         | 1773<br>DNSTRUCTION<br>LS AND/OR                  |
| Sample (feet)  No. Sample Samp | PLES                               |                | DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, s cementation, react. w/HCl, geo. inter. Surface Elevation:                                                                     | Daniel B.                                                                                                      |                                                       | WELL CC                                                         | 1773<br>DNSTRUCTION<br>LS AND/OR                  |
| DEPTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    | OVM<br>Reading | NAME (USCS): color, moist, % by wt., plast. density, s cementation, react. w/HCl, geo. inter.  Surface Elevation:                                                                                | structure,                                                                                                     |                                                       | DETAI                                                           | LS AND/OR                                         |
| 5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BIO<br>BIO<br>FG                   | Re             |                                                                                                                                                                                                  |                                                                                                                |                                                       | DRILLIN                                                         | IG REMARKS                                        |
| 10-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |                | Clay and gravel fill to 3'                                                                                                                                                                       |                                                                                                                |                                                       |                                                                 |                                                   |
| 10-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |                | OANDY OLAY (OL) Pala alla dalla da la company                                                                                                                                                    | 1                                                                                                              |                                                       | - 2" Diameter                                                   | PVC                                               |
| 10-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |                | SANDY CLAY (CL): light yellowish-brown, mois fine-grained sand                                                                                                                                   | st, Sun,                                                                                                       |                                                       |                                                                 |                                                   |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                | Interbedded sandstone and SANDY CLAY (CL yellowish-brown, moist, hard, fine-grained sand                                                                                                         |                                                                                                                |                                                       |                                                                 |                                                   |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                | SANDY CLAY (CL): light yellowish-brown, mois fine-grained sand, ferrous partings                                                                                                                 | st, stiff,                                                                                                     |                                                       |                                                                 |                                                   |
| 15-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |                | SANDY CLAY (CL): light yellowish-brown, mois 14.5', hard to 15', fine-grained sand, ferrous stareddish-brown with increased clay content at 14                                                   | aining,                                                                                                        |                                                       |                                                                 |                                                   |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                | SANDY CLAY (CL): olive brown, dry, hard, very fine-grained sand, discontinous silt and sand pa                                                                                                   | · I                                                                                                            |                                                       | - Grout                                                         |                                                   |
| 20-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |                | SANDY CLAY (CL): olive brown, dry, very stiff, fine-grained sand                                                                                                                                 |                                                                                                                |                                                       |                                                                 |                                                   |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    | _              | Lignite, black, dry, hard 23.5'-25' - 2" sand and clay lenses                                                                                                                                    |                                                                                                                |                                                       |                                                                 |                                                   |

TMPA Gibbons Creek Plant PROJECT: Carlos, Texas Log of Well No. AP PZ-4 (cont'd) SAMPLES WELL CONSTRUCTION DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, structure, **DETAILS AND/OR** cementation, react. w/HCl, geo. inter. DRILLING REMARKS Lignite, dark brown and black, dry, stiff, few interbedded ironstone, sand, clay (thin beds-large majority lignite 25'-30') 30 Sandstone: olive brown, moist, hard Lignite, brown to dark brown, dry, stiff 31'-32.75' Interbedded olive brown sand, brown clay and lignite Bentonite Lignite, brown to dark brown, dry, stiff, platy 33'-35' 35 Lignite, brown to dark brown, dry, stiff, blocky 35'-36' Interbedded sandy clay, lignite (thin beds), medium gray sand, fine-grained sand, dark brown clay and 20/40 Grade Silica Sand lignite Lignite, brown to dark brown, dry, stiff, blocky 39'-40'  $\nabla$ 40 Sand interbedded with lighnite, black, wet, loose, fineto medium-grained Schedule 40 PVC 0.010 Lignite, black dry, very stiff 41'-41.75 Slot Screen SANDY SILT (ML): olive gray, slightly moist, stiff, very fine-grained sand 6" End Cap 45 Total Depth = 45' 50 55 WELL3

Project No. 6706150060.01.006 Page 2 of 2

Amec Foster Wheeler Environment & Infrastructure, Inc.

|                   | Carl                                                                   | os, Tex        | as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CDO                 |                   |                             | No. SFL MW-2                                         |
|-------------------|------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------|-----------------------------|------------------------------------------------------|
| ORING LO          | CATION:                                                                | Sc             | outh Side of Landfill F, West of Outfall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 269'                | UND S             | URFACE ELEVA                | TION AND DATUM:                                      |
| RILLING C         | ONTRAC                                                                 | TOR:           | Vortex Drilling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | STAR              | RTED:                       | DATE FINISHED:                                       |
|                   |                                                                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3/16                |                   | PTH (ft.):                  | 3/16/16<br>SCREEN INTERVAL (ft.):                    |
| RILLING M         | METHOD:                                                                | HS             | SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50.0                | )                 | , ,                         | 16'-21'                                              |
| RILLING E         | QUIPMEN                                                                | IT:            | 4 1/4 ID HSA ( 8" Borehole)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DEP <sup>-</sup>    |                   | WATER ATD:                  | CASING:                                              |
| AMPLING I         | METHOD                                                                 | 5              | Split Spoon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LOG                 | GED B             | <sub>Y:</sub><br>Haug, P.G. |                                                      |
|                   | /CICUT:                                                                | N/             | A DROD: NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                   | BLE PROFESSIO               | NAL: REG. NO.                                        |
| IAMMER W          |                                                                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dan                 | iel B.            | Haug, P.G.                  | 1773                                                 |
| (feet) Sample No. | Sample SandW SandW SandW SandW Sand Sand Sand Sand Sand Sand Sand Sand | OVM<br>Reading | DESCRIPTION  NAME (USCS): color, moist, % by wt., plast. cementation, react. w/HCl, geo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                   |                             | WELL CONSTRUCTION DETAILS AND/OR                     |
|                   | Sample<br>Blows/<br>Foot                                               | Re C           | Surface Elevation: NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                   |                             | DRILLING REMARKS                                     |
|                   |                                                                        |                | CLAY CH): dark gray, moist, soft, grad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ling to             |                   |                             |                                                      |
| 4                 | 1/1/4                                                                  | 0.0            | yellowish-brown at 2'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                   |                             | - Concrete                                           |
|                   |                                                                        | 0.0            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                   |                             |                                                      |
|                   |                                                                        |                | CLAVEV SILTV SAND (SM SC). II-L4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | vollowich brown     |                   |                             |                                                      |
| 7                 | 3/7                                                                    |                | CLAYEY SILTY SAND (SM-SC): light dry, hard, platy, fine-grained sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | yellowish-blowil,   |                   |                             | 8" Diameter PVC                                      |
| 4                 | 50/1"                                                                  | 0.0            | J,, F J, G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G |                     |                   | -                           |                                                      |
| 5-                |                                                                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                   |                             |                                                      |
| 3                 |                                                                        |                | SANDY SILT (ML): pale yellow, moist,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | hard, very          |                   |                             |                                                      |
| -                 | 50/1"                                                                  |                | fine-grained sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                   |                             |                                                      |
| 4                 |                                                                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                   |                             |                                                      |
|                   |                                                                        | 3.0            | SILT (ML): pale yellow, moist, hard, ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rv fine-grained     |                   |                             | <ul><li>Bentonite</li></ul>                          |
|                   |                                                                        |                | sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , , ,               |                   |                             | — bentonite                                          |
| -                 | 50/5"                                                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                   |                             |                                                      |
| 10                | 50/5                                                                   | 3.0            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                   | - 4                         |                                                      |
|                   | 04/05                                                                  |                | SILT (ML): pale yellow, moist to wet, has fine-grained sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ard, very           |                   |                             |                                                      |
|                   | 21/35                                                                  | 0.8            | ilite-grained sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                   |                             |                                                      |
| -                 |                                                                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                   |                             |                                                      |
| _                 |                                                                        |                | SANDY SILT (ML): pale yellow, moist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                   |                             |                                                      |
|                   | 11/                                                                    |                | to 13', then very moist, siltier-a trace of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | clay                |                   |                             |                                                      |
|                   | 11/<br>24/<br>3/                                                       | 5.0            | (unconsolidated)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                   |                             |                                                      |
| 15-               |                                                                        |                | SILTY SAND (SM): light yellowish-brow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | wn, moist, hard.    |                   | <del> </del>                | - 12/20 Grade Sand                                   |
| 4                 | 30/                                                                    |                | unconsolidated, very fine- to fine-grain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                   |                             |                                                      |
|                   | 50/2"                                                                  | 4.3            | iron oxide staining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                   |                             |                                                      |
|                   |                                                                        |                | OIL TVOAND (OLD) II VI III VIII VIII VIII VIII VIII VI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                   |                             |                                                      |
| +                 |                                                                        |                | SILTY SAND (SM): light yellowish-brown hard, unconsolidated, very fine- to fine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                   |                             | - 0.010 Slot Sobodulo 40                             |
| 4                 | 19/                                                                    |                | iron oxide staining 19-20'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | granica sana,       |                   |                             | <ul><li>0.010 Slot Schedule 40</li><li>PVC</li></ul> |
| 20-               | 19/<br>31/<br>32                                                       | 3.8            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                   |                             | -                                                    |
| 207               |                                                                        |                | SANDY SILTY (SM): light yellowish-bro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                   |                             |                                                      |
| +                 | 20/<br>50/4"                                                           | 3.9            | unconsolidated, hard, iron oxide stainir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ng                  |                   |                             | — 5.5" End Cap                                       |
| 4                 |                                                                        |                | SILTY CLAY (CL): brown, dry, hard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                   |                             |                                                      |
|                   | ,,,                                                                    |                | at 22.25 SANDY SILTY CLAY (CL): da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ark gray, dry,      | $\overline{\Box}$ |                             |                                                      |
| 7                 | 60/6"                                                                  |                | hard, bedding planes SANDY SILTY CLAY (CL): dark gray,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dry hard            | /                 |                             |                                                      |
| +                 |                                                                        | 2.3            | bedding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ه، پر باندانی,<br>/ | /                 | <del>\</del> ////           |                                                      |
|                   | 1 1                                                                    | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                   | 1/////                      |                                                      |

PROJECT: TMPA Gibbons Creek Plant

Carlos, Texas

Amec Foster Wheeler Environment & Infrastructure, Inc.

## Log of Well No. SFL MW-2 (cont'd)

Project No. 6706150060.01.006 Page 2 of 2

|                         | MPLES                    | ĕiñ            | DESCRIPTION                                                                                                                                                 | WELL CONSTRUCTION                  |
|-------------------------|--------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| (feet)<br>Sample<br>No. | Sample<br>Blows/<br>Foot | OVM<br>Reading | NAME (USCS): color, moist, % by wt., plast. density, structure, cementation, react. w/HCl, geo. inter.                                                      | DETAILS AND/OR<br>DRILLING REMARKS |
|                         | 20/<br>50/5"             | 3.7            | CLAY (CH): dark gray, dry, hard, lenses of sandy clay, fine-grained sand SANDY CLAY (CL): olive gray, moist (clayey interval, dry), hard, fine-grained sand |                                    |
| _                       | 15/<br>21/<br>37         | 3.2            | SANDY CLAY (CL): olive gray, dry, hard, fine-grained sand                                                                                                   |                                    |
| 30-                     | 15/<br>21/<br>21         | 2.0            | Slightly SANDY CLAY (CL): dark gray, dry, hard, fine-grained sand                                                                                           |                                    |
|                         | 12/<br>29/<br>40         | 2.5            | SILTY CLAY (CH): dark gray, dry, hard, thin linear structures in the clay                                                                                   |                                    |
| 35-                     | 20/20<br>60/6"           | 2.0            | SILTY CLAY (CH): olive gray, dry, hard, silt lenses at 35.5', moist                                                                                         | Bentonite                          |
| _                       | 10/<br>17/<br>17         | 1.1            | SILTY CLAY (CH): olive gray, dry, hard, silt lenses <1/4, thin, dry                                                                                         | De norme                           |
| 40-                     | 10/<br>11/<br>15         |                | SILTY CLAY (CH): olive gray, moist, firm to hard, few silt partings                                                                                         |                                    |
| _                       | 8/<br>12/<br>15          |                | SILTY CLAY (CH): olive gray, moist, firm to hard, few silt partings, one pyrite nodule                                                                      |                                    |
| 45 <del>-</del>         | 12/<br>12/<br>17         | 2.1            | CLAY (CH): olive gray, moist, firm to hard, silt partings                                                                                                   |                                    |
| -                       | 10/<br>12/<br>31         | 2.2            | CLAY (CH): olive gray, moist, firm to hard, few silt partings                                                                                               |                                    |
| 50 <del>-</del><br>-    |                          | _              | Total Depth = 50'                                                                                                                                           |                                    |
| -                       |                          |                |                                                                                                                                                             |                                    |
| 55                      |                          |                |                                                                                                                                                             | 1-                                 |

| PROJE              |       |                           | los, Tex | ons Creek Plant<br>as                                                                                                                                                      |                     | og of Well                       |                                                |                       |
|--------------------|-------|---------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------|------------------------------------------------|-----------------------|
| BORIN              | G LO  | CATION:                   | Sout     | heast of Landfill F                                                                                                                                                        | GROUND              | SURFACE ELEVA                    | TION AND D                                     | ATUM:                 |
| DRILLI             | NG C  | ONTRAC                    | TOR:     | Best Drilling                                                                                                                                                              | DATE STA<br>5/31/16 |                                  | DATE FINI<br>5/31/16                           |                       |
| DRILLI             | NG M  | ETHOD:                    | CI       | ME 75 HSA (Buggy Rig)                                                                                                                                                      | 25.0                | EPTH (ft.):                      | 19.5'-24                                       | NTERVAL (ft.):<br>.5' |
| DRILLI             | NG E  | QUIPMEI                   | NT:      | CME 75 8 5/8" OD HSA                                                                                                                                                       | 22                  | O WATER ATD:                     | CASING:                                        |                       |
| SAMPL              | ING N | NETHOD                    | : {      | 5' x 4" Core Barrel                                                                                                                                                        | LOGGED Daniel E     | B. Haug, P.G.                    |                                                |                       |
| HAMMI              |       | EIGHT:                    | N/       | A DROP: NA                                                                                                                                                                 |                     | SIBLE PROFESSIO<br>B. Haug, P.G. | NAL:                                           | REG. NO<br>1773       |
| DEPTH<br>(feet)    |       | Sample Sandle Blows/ Foot | OVM      | DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density cementation, react. w/HCl, geo. inter.                                                                     | , structure,        |                                  |                                                | ONSTRUCTION           |
|                    | San   | San                       | Re C     | Surface Elevation:                                                                                                                                                         |                     | 1                                | DRILLI                                         | NG REMARKS            |
| -<br>-             |       |                           |          | SILTY SAND (SM): light yellowish-brown, mo fine-grained sand, trace ferrous staining                                                                                       | ist, loose,         |                                  | – 2" Diamete                                   | er PVC                |
| 5-<br>-<br>-       | -     |                           |          | SANDY CLAY (CH): brown mottled with blackish-brown, moist, firm, fine-grained sand ferrous staining SANDY CLAY (CH): brown, mottled, moist, fi fine-grained sand           |                     |                                  | – Grout                                        |                       |
| 10-                |       |                           |          | SANDY CLAY (CL): yellowish-brown, slightly fine-grained sand, bedding planes, stiff Slightly SANDY SILTY CLAY (CL): yellowish-slightly moist, very firm, fine-grained sand |                     |                                  |                                                |                       |
| -<br>15-<br>-<br>- |       |                           |          | SANDY SILTY CLAY (CL): yellowish-brown, smoist, stiff, very fine-grained sand, few beddir                                                                                  | • .                 |                                  | <ul><li>Bentonite</li><li>20/40 Grad</li></ul> | de Silica Sand        |
| 20-                | -     |                           |          | Interbedded sandy clay and sandstone, reddinard to very stiff, fine-grained sand                                                                                           | ish-brown,          |                                  |                                                |                       |
| -                  | -     |                           |          | SILTY SAND (SM): light olive brown, wet, loo fine-grained sand                                                                                                             | ose to firm,        |                                  | Slot Screen                                    | 10 PVC 0.010<br>1     |
| 25-                |       |                           |          | CLAY (CL): light to olive green, dry, hard                                                                                                                                 |                     |                                  | − 6" End Cap                                   | )                     |
|                    | -     |                           |          | Total Depth = 25'                                                                                                                                                          |                     |                                  |                                                |                       |
|                    |       |                           |          |                                                                                                                                                                            |                     |                                  |                                                |                       |

| BORIN              | IG LO      | CATION               | - <u></u><br>1: Sn | uth of La  | ndfill F                                 |                                                                                                          |                        | GROUND              | SURFAC    | E ELEVA | TION AND D  | ATUM:                                |
|--------------------|------------|----------------------|--------------------|------------|------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------|---------------------|-----------|---------|-------------|--------------------------------------|
|                    |            |                      |                    |            |                                          |                                                                                                          |                        | DATE STA            | RTED:     |         | DATE FIN    | ISHED:                               |
| DRILLI             | ING C      | ONTRA                | CTOR:              | Best       | Drilling                                 |                                                                                                          |                        | 5/31/16             |           |         | 5/31/16     |                                      |
| DRILLI             | ING M      | ETHOE                | ):                 | CME 75 H   | HSA                                      |                                                                                                          |                        | TOTAL DE 40.0       | PTH (ft.) | :       | 34.5'-39    | INTERVAL (ft.):                      |
| וווחח              | INC E      | QUIPM                | ENIT:              | CME        | 75 8 5/8" OD H                           | ۹۸                                                                                                       |                        | DEPTH TO            | WATER     | R ATD:  | CASING:     |                                      |
| DRILLI             | IING L     | QUIFIVI              | LINI.              | CIVIL 1    | 73 0 3/0 OD 11                           | <u> </u>                                                                                                 |                        | 36<br>LOGGED E      | DV:       |         |             |                                      |
| SAMPL              | LING I     | METHO                | D:                 | 5' x 4" C  | Core Barrel                              |                                                                                                          |                        | Daniel B            |           | , P.G.  |             |                                      |
| HAMM               | IER W      | EIGHT:               | ı                  | NA         | DROP:                                    | NA                                                                                                       |                        | RESPONS<br>Daniel B |           |         | NAL:        | REG. NO. 1773                        |
| DEPTH<br>(feet)    | Sample No. | Sample Malana Blows/ | Foot OVM           | NA         | cementati                                | DESCRIPTION<br>moist, % by wt., plast. de<br>ion, react. w/HCl, geo. in                                  | ensity, struct<br>ter. |                     | . Haug    | , r .O. | DETA        | CONSTRUCTION AILS AND/OR ING REMARKS |
| <u> </u>           | S          | SS                   |                    | Carrao     | e Elevation:                             |                                                                                                          |                        |                     |           | NX.     | DRILL       | ING KEWAKKS                          |
| _                  |            |                      |                    | 1          | .AYEY SAND (SC<br>e-grained sand         | C): medium gray, mois                                                                                    | st, firm,              |                     |           |         |             |                                      |
| _                  |            |                      |                    | Inte       | erbedded silty sa                        | nd and sandstone, mand fine-grained                                                                      | edium gray             | <b>y</b> ,          |           |         |             |                                      |
| -                  |            |                      |                    | CL         | •                                        | ND (SC-SM): mediun                                                                                       | n gray, slig           | hty                 |           |         | – 2" Diamet | er PVC                               |
| _                  |            |                      |                    |            |                                          | : light olive brown, dry                                                                                 | , hard                 |                     |           |         |             |                                      |
| 5-                 |            |                      |                    | 1          | e-grained sand, fe                       |                                                                                                          | , riai a,              |                     |           |         |             |                                      |
| -                  | -          |                      |                    | SA         | NDY SILTY CLA                            | Y (CL): light olive bro                                                                                  | wn, slightly           | ,                   |           |         |             |                                      |
| -                  |            |                      |                    | mc         | oist, very fine-grain                    | ned sand                                                                                                 |                        |                     |           |         |             |                                      |
| 10-<br>-<br>-<br>- |            |                      |                    | 1          |                                          | Y (CL): light olive bro<br>ned sand, minor ferro                                                         |                        |                     |           |         |             |                                      |
| 15-<br>-<br>-      | _          |                      |                    | 1          | NDY SILTY CLA                            | NY (CL): brown, dry, vo<br>e-grained sand                                                                | ery stiff,             |                     |           |         | - Grout     |                                      |
| 20-                |            |                      |                    | bed<br>Lig | dding planes, trac<br>nite lense, dark g | : dark olive brown, dry<br>ce of gypsum, fine-gra<br>gray to balck, loose to<br>light olive gray, slight | ained sand<br>firm     |                     |           |         |             |                                      |
| -<br>-             |            |                      |                    |            |                                          | pedding planes, firm                                                                                     | y most,                |                     |           |         |             |                                      |
| 25-                |            |                      |                    |            |                                          |                                                                                                          |                        |                     | _XX       | XX      |             | WE                                   |

PROJECT: TMPA Gibbons Creek Plant Carlos, Texas Log of Well No. SFL MW-4 (cont'd) SAMPLES OVM Reading WELL CONSTRUCTION DESCRIPTION Blows/ Foot NAME (USCS): color, moist, % by wt., plast. density, structure, cementation, react. w/HCl, geo. inter. **DETAILS AND/OR** DRILLING REMARKS SILTY SAND (SM): light olive gray, dry, very fine-grained sand, 25'-26' interbedded siltstone Grout CLAYEY SANDY SILT (ML): dark gray, dry, fine-grained sand, discontinous thin sand lenses 30 SANDY SILTY CLAY (CL): dark gray, dry, very fine-grained sand, discontinuous thin silt lenses Bentonite 20/40 Grade Silica Sand 35 Interbedded clay and sand; clay, black, dry, hard; sand,  $\nabla$ olive gray, dry, loose, very fine-grained sand SAND (SP): olive gray, wet, loose, very fine-grained Schedule 40 PVC 0.010 sand Slot Screen SILTY SAND (SM): olive gray, dry, firm, fine-grained sand 6" End Cap 40 Total Depth = 40' 45 50 55 WELL3 Amec Foster Wheeler Environment & Infrastructure, Inc. Project No. 6706150060.01.006 Page 2 of 2

| ROJECT: TMPA Gib<br>Carlos, Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | bons Creek Plant<br>exas                                                                                                                | Log of Well                                  | No. SFL MW-5                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------|
| ORING LOCATION: Lan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dfill F                                                                                                                                 | GROUND SURFACE ELEV                          | ATION AND DATUM:               |
| RILLING CONTRACTOR:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Best Drilling                                                                                                                           | DATE STARTED:<br>5/23/16                     | DATE FINISHED: 5/23/16         |
| RILLING METHOD: H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SA                                                                                                                                      | TOTAL DEPTH (ft.): 25.0                      | SCREEN INTERVAL (ft.): 16'-21' |
| RILLING EQUIPMENT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8 5/8" OD HSA 2" Rods                                                                                                                   | DEPTH TO WATER ATD:<br>16                    | CASING:                        |
| AMPLING METHOD:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5' x 4" Core Barrel                                                                                                                     | LOGGED BY: Daniel B. Haug, P.G.              |                                |
| AMMER WEIGHT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A DROP: NA                                                                                                                              | RESPONSIBLE PROFESSI<br>Daniel B. Haug, P.G. | ONAL: REG. NO. 1773            |
| SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DESCRIPTION                                                                                                                             |                                              | WELL CONSTRUCTION              |
| Sample No. Sample Sampl | NAME (USCS): color, moist, % by wt., plast. density, str cementation, react. w/HCl, geo. inter.                                         | ucture,                                      | DETAILS AND/OR                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Surface Elevation:                                                                                                                      |                                              | DRILLING REMARKS               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SILTY SAND (SM): dark grayish-brown, moist, lo fine-grained sand, roots                                                                 | ose,                                         |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SANDY CLAY (CH): dark yellowish-brown, moist                                                                                            | , soft,                                      |                                |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | fine-grained sand, roots                                                                                                                |                                              | — 2" Diameter PVC              |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SILTY SANDY CLAY (CL): yellowish-brown, dark yellowish-brown lenses, moist, fine-grained sand                                           |                                              | <del>-</del>                   |
| 5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SILTY SANDY CLAY (CL): yellowish-brown, dry,                                                                                            |                                              | Grout                          |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | very fine-grained sand, ferrous staining                                                                                                |                                              |                                |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SILTY SAND (SM): light brownish-gray, mottled was brownish-yellow, soft, moist (slightly) increasing content to 8.5', fine-grained sand |                                              |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Slightly CLAYEY SILTY SAND (SM): light olive be                                                                                         | rown,                                        |                                |
| 10-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | loose, moist, fine-grained sand Slightly CLAYEY SILTY SAND (SM): light olive be                                                         | rown.                                        |                                |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | slightly firm, moist, trace of pebbles                                                                                                  |                                              | Doutouite                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                         |                                              | — Bentonite                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                         |                                              |                                |
| 15-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SILTY SAND (SM): light olive brown, wet to very                                                                                         | moist                                        | — 20/40 Grade Silica Sand      |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | firm, faint stratification, fine-grained sand                                                                                           |                                              |                                |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                         |                                              |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                         |                                              | — Schedule 40 PVC 0.010        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SANDSTONE (SS): light yellowish-brown, dry, ha                                                                                          | ard,                                         | Slot Screen                    |
| 20-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ferrous staining along fractures, layered                                                                                               |                                              |                                |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Shale (SILTY CLAY) (CL): gray, dry, hard, very                                                                                          |                                              | — 6" End Cap                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fine-grained sand, silt partings                                                                                                        |                                              |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                         |                                              |                                |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                         |                                              |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total Depth = 25'                                                                                                                       |                                              |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                         |                                              |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                         |                                              | WE                             |

|                                                      | arlos, Tex | ons Creek Plant<br>as                                                                                                                                                                                                                                                     | Log of Well                                 | No. SFL MW-6                          |
|------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------|
| BORING LOCATIO                                       | N: Sou     | thwest Corner of Landfill                                                                                                                                                                                                                                                 | GROUND SURFACE ELEVA                        | TION AND DATUM:                       |
| DRILLING CONTRA                                      | ACTOR:     | Best Drilling                                                                                                                                                                                                                                                             | DATE STARTED: 5/23/16                       | DATE FINISHED: 5/23/16                |
| DRILLING METHO                                       | D: HS      | SA                                                                                                                                                                                                                                                                        | TOTAL DEPTH (ft.):<br>20.0                  | SCREEN INTERVAL (ft.): 14.5'-19.5     |
| DRILLING EQUIPM                                      | MENT:      | 8 5/8" OD HSA Truck Mounded Rig                                                                                                                                                                                                                                           | DEPTH TO WATER ATD:<br>15                   | CASING:                               |
| SAMPLING METHO                                       | OD: 5      | ' x 4" Core Barrel                                                                                                                                                                                                                                                        | LOGGED BY: Daniel B. Haug, P.G.             |                                       |
| HAMMER WEIGHT                                        | T: NA      | A DROP: NA                                                                                                                                                                                                                                                                | RESPONSIBLE PROFESSION Daniel B. Haug, P.G. | DNAL: REG. NO. 1773                   |
| (feet) (feet) sample No. sample Sample Slows/        |            | DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, s cementation, react. w/HCl, geo. inter.                                                                                                                                                                 | structure,                                  | WELL CONSTRUCTION DETAILS AND/OR      |
| DEPTH<br>(feet)<br>Sample<br>No.<br>Sample<br>Blows/ | P. C. S.   | Surface Elevation:                                                                                                                                                                                                                                                        |                                             | DRILLING REMARKS                      |
| -<br>-<br>-<br>-                                     |            | Sandy Clay fill, few gravel fill to 4.5'                                                                                                                                                                                                                                  |                                             | — 2" Diameter PVC<br>— Grout          |
| 5-                                                   |            | SANDY SILTY CLAY (CL): pale brown, dry, ha gray partings, very fine-grained sand                                                                                                                                                                                          | rd, dark                                    |                                       |
| 10-                                                  |            | CLAYEY SAND SILT (ML): pale brown, dry, ve hard, dark gray clay partings, fine-grained sand increased ferrous staining after 8', few sand pa wood fragments in a few partings  SILTY SANDY CLAY (CH): pale brown, dry, ha brown partings to reddish-brown, fine-grained s | rtings,                                     | — Bentonite                           |
| 15-                                                  |            | ferrous staining  Layered SILTY SAND (SM) and SANDY SILTY                                                                                                                                                                                                                 |                                             | — 20/40 Grade Silica Sand             |
|                                                      |            | (CL): pale brown, some brown layers after 17', moist to dry, fine-grained sand                                                                                                                                                                                            | 1 1                                         | Schedule 40 PVC 0.010     Slot Screen |
| 20-                                                  |            | SANDY SILTY CLAY (CL): gray silt and sand, or gray clay, layered, dry, hard, very fine sand                                                                                                                                                                               | dark                                        | ─ 6" End Cap                          |
|                                                      |            | Total Depth = 20'                                                                                                                                                                                                                                                         |                                             |                                       |

| Carl                                       | los, Tex       | ons Creek Plant<br>as                                                                                                                                                                                                                                                                                                                                         | Log of Well                                 | No. SFL MW-7                           |
|--------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------|
| BORING LOCATION:                           | Sou            | theast Side of Landfill F                                                                                                                                                                                                                                                                                                                                     | GROUND SURFACE ELEV                         | ATION AND DATUM:                       |
| DRILLING CONTRAC                           | TOR:           | Tolunay-Wong                                                                                                                                                                                                                                                                                                                                                  | DATE STARTED: 5/2/17                        | DATE FINISHED: 5/3/17                  |
| DRILLING METHOD:                           | Н              | SA with Continous Core Barell                                                                                                                                                                                                                                                                                                                                 | TOTAL DEPTH (ft.): 55.0 DEPTH TO WATER ATD: | SCREEN INTERVAL (ft.): 50'-55' CASING: |
| DRILLING EQUIPMEN                          | NT:            | CME 75                                                                                                                                                                                                                                                                                                                                                        | -                                           | CASING.                                |
| SAMPLING METHOD:                           | : 5            | 5' x 4.25" OD Core Barrel                                                                                                                                                                                                                                                                                                                                     | LOGGED BY: Daniel B. Haug, P.G.             | DEO NO                                 |
| HAMMER WEIGHT:                             | N/             | A DROP: NA                                                                                                                                                                                                                                                                                                                                                    | RESPONSIBLE PROFESSION Daniel B. Haug, P.G. | ONAL: REG. NO<br>1773                  |
| Ceet) Sample No. Sample Sample Blows/ Foot | OVM<br>Reading | DESCRIPTION  NAME (USCS): color, moist, % by wt., plast. density, struct cementation, react. w/HCl, geo. inter.                                                                                                                                                                                                                                               | ure,                                        | WELL CONSTRUCTIO<br>DETAILS AND/OR     |
| Sar Sar Blc                                | . 28           | Surface Elevation:                                                                                                                                                                                                                                                                                                                                            |                                             | DRILLING REMARKS                       |
| -<br>-<br>-<br>-                           | 2.6            | Grass at surface SILTY SAND (SM): yellowish-brown, dry, firm, very fine-grained sand (fill)                                                                                                                                                                                                                                                                   |                                             |                                        |
| 5                                          | 1.1            | SANDY CLAY (CH): gray, slightly moist, firm, very fine-grained sand                                                                                                                                                                                                                                                                                           |                                             | — 8" Diameter PVC                      |
| -<br>-<br>-<br>-<br>15-<br>-               | 0.8            | SANDY CLAY (CH): brown, slightly moist to moist, olive gray mottling and some ferrous staining, very fine-grained sand, fill to approximately 12'  SANDY CLAY (CL): brown, slightly moist, very fine-grained sand, some lammination, couple of thin greenish-gray sand lenses  CLAY (CL): dark brown, slightly moist, very fine-grained sand intervals (thin) |                                             |                                        |
| 20-                                        | 0.4            | SANDY CLAY (CL) with lignite fragments: very dark brown, hard, very fine-grained sand, slightly moist to Layered sand and clay with lignite 19.5'-20', very d brown to light gray, hard, slightly moist, pyrite nodule CLAY (CH): very dark gray, dry, hard, very thin sand lenses, greenish-gray, lignite fragments along beddiplanes, platy                 | o dry<br>Jark<br>es                         | — Bentonite Grout                      |
| 25-                                        |                | CLAY (CH) with interbedded thin sand lenses: very dark gray, dry, hard, very fine-grained sand, lignite                                                                                                                                                                                                                                                       |                                             |                                        |
| 30                                         | 0.4            | fragments along bedding planes in the clay, clay bre along horizontal laminae, platy                                                                                                                                                                                                                                                                          | eaks                                        |                                        |

PROJECT: TMPA Gibbons Creek Plant Carlos, Texas

Log of Well No. SFL MW-7 (cont'd)

| (feet)             | Sample M | Foot Sa | OVM<br>Reading | DESCRIPTION  NAME (USCS): color, moist, % by wt., plast. density, structure, cementation, react. w/HCl, geo. inter.                                                                                            | WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS |
|--------------------|----------|---------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| -                  |          |         | 0.3            | CLAY (CL): with numerous thin sand lenses interbedded with clay: very dark gray clay, greenish-gray sand, dry, hard, lignite fragments along bedding planes in the clay, very fine-grained sand, platy         | 2" Schedule 40 PVC Riser                          |
| 35-                |          |         | 0.3            | CLAY (CH): with sand partings: very dark gray, dry, hard, very fine-grained sand, lignite fragments along bedding planes in the clay, platy, sand greenish-gray                                                |                                                   |
| 40-                |          |         | 0.2            | CLAY (CH) with SAND partings: very dark gray, dry, hard, very fine-grained sand, lignite fragmenst along bedding planes in the clay, platy, sand greenish-gray                                                 | Bentonite Chips                                   |
| 45-                |          |         | 0.2            | SAND (SP): olive gray, wet, loose, fine- to very fine-grained sand  CLAY (CH): dark greenish-gray, dry to hard at 46'  CLAY (CH): very dark gray, dry, hard, platy                                             | 16/30 Grade Sand                                  |
| 50-                |          |         | 0.2            | SILTY SAND (SM): dark gray, wet, loose, very fine- to fine-grained sand Interbedded SAND (SP) and lignite: olive gray, wet, loost to firm 2" lignite seam SAND (SP) with thin lignite lenses, olive gray, wet, | 2" Schedule 40 PVC<br>Screen 0.010 Slot           |
| 55 –<br>–          |          |         |                | loose to firm  Total Depth = 55'                                                                                                                                                                               | 5.5" End Cap                                      |
| -<br>60-<br>-      |          |         |                |                                                                                                                                                                                                                |                                                   |
| -<br>-<br>-<br>65- |          |         |                |                                                                                                                                                                                                                |                                                   |
| 1                  |          |         |                |                                                                                                                                                                                                                | -                                                 |

|                                            | . Gibbons Creek<br>s, Texas | Plant                                                                                                       | Lo                 | g of Well N                       | o. SSP/A              | AP MW-1                                |
|--------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------|-----------------------|----------------------------------------|
|                                            | North of Sludge             | Pond                                                                                                        | GROUN              | D SURFACE ELEVA                   | TION AND DA           | TUM:                                   |
| DRILLING CONTRACTO                         | PR: Best Dril               | ling                                                                                                        | DATE S'<br>5/25/10 | TARTED:                           | DATE FINIS<br>5/26/16 | SHED:                                  |
| DRILLING METHOD:                           | HSA                         |                                                                                                             | TOTAL (<br>40.0    | DEPTH (ft.):                      |                       | ITERVAL (ft.):<br>5'                   |
| DRILLING EQUIPMENT:                        | 8 5/8" OD                   | HSA Truck Mounded Rig                                                                                       | 30                 | TO WATER ATD:                     | CASING:               |                                        |
| SAMPLING METHOD:                           | 5' x 4" Core                | Barrel                                                                                                      | LOGGEI<br>Daniel   | B. Haug, P.G.                     |                       |                                        |
| HAMMER WEIGHT:                             | NA                          | DROP: NA                                                                                                    |                    | NSIBLE PROFESSIO<br>B. Haug, P.G. | NAL:                  | REG. NO.<br>1773                       |
| DEPTH (feet) Sample No. Sample Blows/ Foot |                             | DESCRIPTION USCS): color, moist, % by wt., plast. densementation, react. w/HCl, geo. inter                  | sity, structure,   |                                   | DETAI                 | ONSTRUCTION<br>LS AND/OR<br>IG REMARKS |
| _ w w m                                    | 00.1000 2.0                 | vation:<br>nd, fly ash and sandy clay, fill to 3.5'                                                         |                    |                                   | DIVILLIA              | O I (LIVI) II II (O                    |
| -<br>-<br>-<br>-                           | I                           | CLAY (CL): light yellowish-brown, e-grained sand                                                            | moist, very        |                                   | — 2" Diameter         | PVC                                    |
| 5-                                         | SILT (N                     | AL): yellowish-red, moist, firm to hard<br>to clay, yellowish-red, moist, hard                              | d, after 3"        |                                   |                       |                                        |
| -                                          |                             | CLAY (CL): reddish-brown, moist, ined sand                                                                  | very stiff,        |                                   |                       |                                        |
| 10-                                        | 1 -                         | SANDY CLAY (CH): reddish-browr<br>ry fine-grained sand                                                      | n, moist, very     |                                   |                       |                                        |
| 15-                                        | Lignite,                    | black, dry, hard 12'-16'                                                                                    |                    |                                   | — Grout               |                                        |
| -<br>-<br>-<br>-                           | 1 -                         | SANDY CLAY (CH): dark grayish-bery fine-grained sand                                                        | orown, dry,        |                                   |                       |                                        |
| 20-                                        | fine-gra                    | CLAY (CL): dark grayish-brown, mained sand, lithofied sandy lenses frondier and softer toward 25', platy wh | om 20.5' to        |                                   |                       |                                        |
| 25                                         |                             |                                                                                                             |                    |                                   |                       | WELL3                                  |
| Amec Foster Whe                            | eler Environmer             | nt & Infrastructure, Inc.                                                                                   |                    | Project No. 67061                 | 50060.01.006          | Page 1 of 2                            |

PROJECT: TMPA Gibbons Creek Plant Carlos, Texas Log of Well No. SSP/AP MW-1 (cont'd) SAMPLES OVM Reading WELL CONSTRUCTION DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, structure, cementation, react. w/HCl, geo. inter. **DETAILS AND/OR** DRILLING REMARKS SILTY SAND (SM): dark olive brown, slightly moist, hard, platy when hard, fine-grained sand Bentonite 20/40 Grade Silica Sand  $\nabla$ 30 Slightly SILTY SAND (SM): dark olive brown, wet, loose, fine-grained sand Schedule 40 PVC 0.010 35 Slot Screen CLAYEY SILTY SAND (SM-SC): dark olive brown, dry to moist, fine-grained sand, firm 6" End Cap 40 Total Depth = 40' 45 50 55 WELL3 Amec Foster Wheeler Environment & Infrastructure, Inc. Project No. 6706150060.01.006 Page 2 of 2

|                                     | . Gibbons Creek<br>s, Texas | Plant                                                                                                                         |                                  | Log                 | g of Well                   | No. SSP       | MW-2                                  |
|-------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------|-----------------------------|---------------|---------------------------------------|
| BORING LOCATION:                    | West of Center              | of Scrubber Sludge Pone                                                                                                       |                                  | GROUND S            | URFACE ELEVA                | TION AND DA   | TUM:                                  |
| DRILLING CONTRACTO                  | DR: Best Dril               | ling                                                                                                                          |                                  | DATE STAR<br>6/2/06 | RTED:                       | DATE FINIS    | SHED:                                 |
| DRILLING METHOD:                    | CME 75 HSA                  |                                                                                                                               |                                  | TOTAL DEP           | PTH (ft.):                  |               | TERVAL (ft.):                         |
| DRILLING EQUIPMENT:                 | CME 75 8                    | 5/8" OD HSA                                                                                                                   |                                  |                     | WATER ATD:                  | CASING:       |                                       |
| SAMPLING METHOD:                    | 5' x 4" Core                | Barrel                                                                                                                        |                                  | LOGGED B            | <sub>Y:</sub><br>Haug, P.G. | -             |                                       |
| HAMMER WEIGHT:                      | NA                          | DROP: NA                                                                                                                      |                                  | RESPONSIE           | BLE PROFESSIO<br>Haug, P.G. | NAL:          | REG. NO.<br>1773                      |
| Ceet) Sample No. Sample Blows/ Foot | NAME (                      | DESCRIPTION USCS): color, moist, % by wt., pla- cementation, react. w/HCl, ge- vation:                                        | st. density, struct<br>o. inter. |                     | <b>J</b>                    | DETAI         | INSTRUCTION<br>LS AND/OR<br>G REMARKS |
| 0, 0,                               |                             | black, loose                                                                                                                  |                                  |                     |                             |               |                                       |
| -<br>-<br>-                         |                             | CLAY (CL): yellowish-brown ined sand, few pebbles                                                                             | , moist, firm,                   |                     |                             | – 2" Diameter | PVC                                   |
| 5-<br>-<br>-<br>-                   | fine-gra                    | CLAY (CL): medium gray, mined sand, few pebbles CLAY (CL): brown, moist, firew small gravel                                   |                                  | ı                   |                             |               |                                       |
| 10-                                 | firm to gravel,             | CLAY (CH) with small gravel<br>stiff, fine-grained sand with pe<br>clay clasts, some red and gre-<br>ng, trace yellow nodules | bbles and sma                    | I                   |                             |               |                                       |
| 15-<br>-<br>-<br>-                  |                             | 'SILTY CLAY (CL): brown, m<br>ined sand, trace roots, few be                                                                  |                                  |                     |                             | – Grout       |                                       |
| 20-                                 | fine-gra                    | SAND (SM): light olive brown,<br>ined sand, bedding planes, b<br>very thin                                                    |                                  |                     |                             |               |                                       |
|                                     |                             |                                                                                                                               |                                  |                     |                             |               |                                       |
| Amac Foster Whee                    | olor Environmer             | at & Infractructure Inc                                                                                                       |                                  |                     | roiget No. 670645           | 50060 01 006  | WELL3                                 |
| Amec Foster Whe                     | eiei Environiner            | t & Infrastructure, Inc.                                                                                                      |                                  |                     | roject No. 670615           | 0000.07.006 1 | rage 1 of 2                           |

PROJECT: TMPA Gibbons Creek Plant Carlos, Texas Log of Well No. SSP MW-2 (cont'd) SAMPLES OVM Reading WELL CONSTRUCTION Sample Blows/ Foot DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, structure, cementation, react. w/HCl, geo. inter. **DETAILS AND/OR** DRILLING REMARKS CLAYEY SILTY SAND (SC-SM): light olive brown, moist, firm, fine-grained sand 30 Grout SILTY SAND (SM): light olive brown, wet, 30'-33', sandstone at 33', fine-grained sand Slightly SILTY SAND (SM): light olive brown, slightly moist, firm, fine-grained sand Bentonite 35 20/40 Grade Silica Sand T 40 SANDY CLAY (CH) with few gravel: reddish-brown, wet, firm Schedule 40 PVC 0.010 Slot Screen SANDY CLAY (CH): dark olive brown, moist, stiff, fine-grained sand 6" End Cap CLAYEY SILTY SAND (SM-SC): dark olive brown, dry, 45 dense, fine-grained sand Total Depth = 45' 50 55 WELL3 Project No. 6706150060.01.006 Page 2 of 2 Amec Foster Wheeler Environment & Infrastructure, Inc.

| PROJE             |       |                      | los, Tex | oons Creek Plant<br>xas                                                                                     | <u> </u> L        | og of Well                        | NO. 551                            | P IMW-3     |  |
|-------------------|-------|----------------------|----------|-------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------|------------------------------------|-------------|--|
| BORIN             | G LO  | CATION:              | Sout     | hwest Corner of Scrubber Sludge Pond                                                                        | GROUNI            | D SURFACE ELEVA                   | TION AND D                         | ATUM:       |  |
| DRILLI            | NG C  | ONTRAC               | CTOR:    | Best Drilling                                                                                               | DATE ST<br>6/3/16 | ΓARTED:                           | DATE FINI<br>6/3/16                | SHED:       |  |
| DRILLI            | NG MI | ETHOD:               | CI       | ME 75 HSA                                                                                                   | 45.0              | DEPTH (ft.):                      | SCREEN INTERVAL (ft.): 39.5'-44.5' |             |  |
| DRILLI            | NG E  | QUIPME               | NT:      | CME 75 8 5/8" OD HSA                                                                                        | DEPTH 1           | TO WATER ATD:                     | CASING:                            |             |  |
| SAMPL             | ING N | METHOD               | ): {     | 5' x 4" Core Barrel                                                                                         | LOGGED Daniel     | B. Haug, P.G.                     |                                    |             |  |
| HAMM              | ER WI | EIGHT:               | N/       | DROP: NA                                                                                                    |                   | ISIBLE PROFESSIO<br>B. Haug, P.G. | NAL:                               | REG. NO.    |  |
| DEPTH<br>(feet)   |       | Sample Sandle Blows/ | OVM      | DESCRIPTION<br>NAME (USCS): color, moist, % by wt., plast. densit<br>cementation, react. w/HCl, geo. inter. | y, structure,     |                                   |                                    | ONSTRUCTION |  |
|                   | San   | San                  |          | Surface Elevation:                                                                                          |                   |                                   | DRILLI                             | NG REMARKS  |  |
| -<br>-<br>-       |       |                      |          | Gravelly sandy clay at surface to 1.5'  SANDY CLAY (CL): yellowish-brown, moist, fine-grained sand          | stiff,            |                                   | − 2" Diamete                       | er PVC      |  |
| 5-<br>-<br>-<br>- |       |                      |          | SANDY CLAY (CL) with gravel: yellowish-broatiff, fine-grained sand                                          | own, moist,       |                                   |                                    |             |  |
| 10-<br>-<br>-     |       |                      |          | CLAY and SANDY CLAY (CL-CH): yellowish reddish-brown, reddish-gray layers (fill), mois fine-grained sand    |                   |                                   |                                    |             |  |
| _                 |       |                      |          | Probably fill above 14'                                                                                     |                   |                                   |                                    |             |  |
| 15-<br>-<br>-     |       |                      |          | Slightly SANDY CLAY (CH): olive gray to 17 stiff, fine-grained sand                                         | .5', moist,       |                                   | - Grout                            |             |  |
| -                 | _     |                      |          | SANDY CLAY (CL): reddish-yellow, moist, s fine-grained sand                                                 | tiff,             |                                   |                                    |             |  |
| 20-               | -     |                      |          | SANDY CLAY (CL): light reddish-brown, dry fine-grained sand                                                 | , stiff,          |                                   |                                    |             |  |
| 25-               |       |                      |          |                                                                                                             |                   |                                   |                                    |             |  |
| _5                |       |                      | heeler I |                                                                                                             |                   |                                   |                                    | WE          |  |

PROJECT: TMPA Gibbons Creek Plant Carlos, Texas Log of Well No. SSP MW-3 (cont'd) SAMPLES OVM Reading WELL CONSTRUCTION DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, structure, cementation, react. w/HCl, geo. inter. **DETAILS AND/OR** DRILLING REMARKS SANDY CLAY (CL): light brown, dry, hard Grout Sandstone, light brown, dry, hard 29.5'-30' 30 1" of sandstone in core barrel, loose, fine-grained wet sand washed out of core barrel Bentonite 35 SILTY SAND (SM): light olive brown, wet, soft, fine-grained sand 20/40 Grade Silica Sand 40 SILTY SAND (SM): light olive brown, wet, soft, fine-grained sand Schedule 40 PVC 0.010 1" lignite seam, brown, wet, soft at 41.75, very thin Slot Screen lignite lenses at 42' and 43.5' 6" End Cap SILTY SAND (SM): light olive brown, wet, stiff, 45 fine-grained sand Total Depth = 45' 50 55 WELL3 Amec Foster Wheeler Environment & Infrastructure, Inc. Project No. 6706150060.01.006 Page 2 of 2

| PROJE                   |        |                          |      | s, Tex         | ons Creek Plant<br>as                                                                                                                           |                  |                                   | Log of Well No. SSP MW-4 |                |  |  |  |  |  |
|-------------------------|--------|--------------------------|------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------|--------------------------|----------------|--|--|--|--|--|
| BORIN                   | IG LO  | CATIO                    | N:   | Soutl          | heast Corner of Scrubber Sludge Pond                                                                                                            | GROUNE           | SURFACE ELEVA                     | TION AND DA              | ATUM:          |  |  |  |  |  |
| DRILLI                  | NG C   | ONTRA                    | ACTO | DR:            | Best Drilling                                                                                                                                   | DATE ST 6/3/16   | ARTED:                            | DATE FINI<br>6/3/16      | SHED:          |  |  |  |  |  |
| DRILLI                  | NG M   | ETHO                     | D:   | CN             | NE 75 HSA                                                                                                                                       | 50.0             | DEPTH (ft.):                      | 43'-48'                  | NTERVAL (ft.): |  |  |  |  |  |
| DRILLI                  | NG E   | QUIPM                    | ENT  | :              | CME 75 8 5/8" OD HSA                                                                                                                            | DEPTH T<br>44.75 | O WATER ATD:                      | CASING:                  |                |  |  |  |  |  |
| SAMPL                   | _ING N | METHC                    | D:   | 5              | 5' x 4" Core Barrel                                                                                                                             | LOGGED<br>Daniel | B. Haug, P.G.                     |                          |                |  |  |  |  |  |
| HAMM                    | ER W   | EIGHT                    | :    | NA             | A DROP: NA                                                                                                                                      |                  | ISIBLE PROFESSIC<br>B. Haug, P.G. | NAL:                     | REG. NO. 1773  |  |  |  |  |  |
| DEPTH<br>(feet)         |        | Sample Management Blows/ |      | OVM<br>Reading | DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density cementation, react. w/HCl, geo. inter.                                          | y, structure,    |                                   |                          | ONSTRUCTION    |  |  |  |  |  |
|                         | San    | Sar                      | 요    | - % O          | Surface Elevation:                                                                                                                              |                  |                                   | DRILLI                   | NG REMARKS     |  |  |  |  |  |
| -<br>-<br>-<br>-<br>5-  |        |                          |      |                | Sand, gravel, clay fill  SANDY CLAY (CH): layered yellowish-brown stiff, fine-grained sand, probable fill  SANDY CLAY - CLAYEY SAND (CH-SC): bi |                  |                                   | – 2" Diamete             | er PVC         |  |  |  |  |  |
| -<br>-<br>-<br>10-<br>- | -      |                          |      |                | moist, firm, fine-grained sand, probable fill  SANDY CLAY (CH): brown and olive brown (fill); moist, stiff, fine-grained sand                   |                  |                                   |                          |                |  |  |  |  |  |
| -                       | -      |                          |      |                | Probably fill above 14'                                                                                                                         |                  |                                   |                          |                |  |  |  |  |  |
| 15-<br>-<br>-<br>-      | -      |                          |      |                | SANDY CLAY (CL): yellowish-brown, moist, fine-grained sand, black organic streaks                                                               | firm,            |                                   | – Grout                  |                |  |  |  |  |  |
| 20-                     |        |                          |      |                | SANDY CLAY (CH): yellowish-red, very mois fine-grained sand, soft                                                                               | t,               |                                   |                          |                |  |  |  |  |  |
| _                       |        |                          |      |                | CLAY (CH): dark reddish-brown, moist, firm                                                                                                      |                  |                                   |                          |                |  |  |  |  |  |
| _                       |        |                          |      |                | Lignite, black, moist, firm 22.5'-23'                                                                                                           |                  |                                   |                          |                |  |  |  |  |  |
| _                       | -      |                          |      |                | SANDY CLAY (CL): light yellowish-brown, mine-grained sand                                                                                       | oist, stiff,     |                                   |                          |                |  |  |  |  |  |
| 25-                     |        |                          |      |                |                                                                                                                                                 |                  |                                   |                          | WE             |  |  |  |  |  |

TMPA Gibbons Creek Plant PROJECT: Carlos, Texas Log of Well No. SSP MW-4 (cont'd) SAMPLES OVM Reading WELL CONSTRUCTION DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, structure, **DETAILS AND/OR** cementation, react. w/HCl, geo. inter. DRILLING REMARKS SANDY CLAY (CL): light yellowish-brown, moist, very stiff, fine-grained sand, ferrous streaks 30 Grout SANDY CLAY (CL): light yellowish-brown, moist, vey stiff, fine-grained sand, ferrous streaks 35 Lignite, black, moist, firm 34.75'-35.25' SANDY CLAY (CL): dark grayish-brown, dry, hard, fine-grained sand Lignite, dark brown, dry, hard 38.25'-38.75 Bentonite SANDY CLAY (CL): dark grayish-brown, dry, hard, fine-grained sand, interbedded black clay lenses 40 Interbedded sand and clay to 44.75'; CLAY (CH): black, dry, hard and; SAND (SP): olive gray, dry, dense 20/40 Grade Silica Sand SAND (SP): olive gray, moist, dense, fine-grained sand,  $\nabla$ wet 45 Schedule 40 PVC 0.010 Slot Screen SANDY CLAY (CL): dark gray, moist, wet at 45'-46' (sandier interval), moist to dry below 46', hard, fine-grained sand 6" End Cap 50 Total Depth = 50' 55

WELL3

Amec Foster Wheeler Environment & Infrastructure, Inc.

Project No. 6706150060.01.006 Page 2 of 2

PIEZOMETER NO. B-11



Boring drilled to completion; set riser pipe and screen; placed filter and seal; grouted to surface; poured surface pad

pellets for seal but only 9" arrived at 35'- rest hung up-didn't have any more bentonite developed well on 2-27-88 by flushing w/clean water for 3 minutes and blowing it out w/air

| clie<br>Texa | 3.77  | unic  | ipal           | Powe                     | er Ag | gency | 7                               |     |                                          |                                | PROJECT<br>Gibbons Creek                                                                                                 |                |                 | PROJECT NO.<br>14578      |  |  |
|--------------|-------|-------|----------------|--------------------------|-------|-------|---------------------------------|-----|------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|---------------------------|--|--|
|              |       | OCATI |                |                          |       | c     | N3783                           |     | 339148                                   |                                | elevation (DATUM) 266.7'                                                                                                 | 50'            | DEPTH DATE STAF |                           |  |  |
|              | 175   | ONDIT |                | is                       |       |       |                                 |     |                                          | INSPECTOR K. M. Blevins-McCosh |                                                                                                                          |                |                 | DATE FINISH<br>2-26-88    |  |  |
| SAMP         | SAMP  | S     | AMPLI<br>  2ND | NG<br>  3RD              | N     | SAMP  | CHECKE<br>M. C.                 |     | uter                                     |                                | APPROVED BY<br>L. J. Almaleh                                                                                             |                |                 |                           |  |  |
| TYPE         | 1000  |       | 6"             | 1                        | VAL   | RECV  | DEPTH                           |     | E TYPE                                   | CT.                            | ASSIFICATION OF MATE                                                                                                     | PDTAT          |                 | REMARKS                   |  |  |
| CORE         |       | RUN   | RUN            | RQD                      | RECV  |       | FEET                            | LOG |                                          |                                |                                                                                                                          |                | 1,              |                           |  |  |
| rw<br>rw     | 2     |       |                |                          |       | 0.8   | 1 -<br>2 -<br>3 -<br>4 -<br>5 - |     | plasti<br>staini<br>Grad<br>belo<br>Grad | city; mong (Top                | eddish-brown; stiff;<br>dist; organics; root<br>soil)<br>on w/some sand; trac<br>me sandstone seams<br>de roots below 4' | es; iron       |                 | ced boring /2" rotary .75 |  |  |
| rw           | 7 pla |       |                |                          |       |       | 7 -                             |     | plasti                                   | CLAY; ta                       | .ow<br>w/trace                                                                                                           |                |                 |                           |  |  |
| .w           | 5     |       |                |                          |       | 1.4   | 9 -                             |     | plasti<br>staini                         | city; mo                       | an to buff; hard; h<br>ist; some sand; iro<br>ially on joints; jo<br>rizontal                                            | n              |                 |                           |  |  |
| W            | 6     |       |                |                          |       | 1.2   | 1 -                             |     |                                          |                                | with silty sand bel                                                                                                      | .ow 10'        |                 |                           |  |  |
| w            | 7     |       |                |                          |       | 1.5   | 3 -                             |     | and :                                    | few ceme<br>w 12'              | to brown with iron<br>nted sand fragments                                                                                | nodules; platy |                 |                           |  |  |
| w            | 8     |       |                |                          |       | 1.3   | 15 -                            |     | Block<br>Cemer                           | ky struc<br>nted sam           | ture below 14'<br>d grades out below                                                                                     | 14';           |                 |                           |  |  |
| rw           | 9     |       |                |                          |       | 1.5   | 7 -                             |     |                                          |                                |                                                                                                                          |                |                 |                           |  |  |
| rw           | 10    |       |                |                          |       | 1.5   | 8 -<br>9 -                      |     | CLAY;                                    | reenish                        | d layer at 18' -grey; hard; high ist w/silt filled j                                                                     | ointe and      |                 |                           |  |  |
| w            | 11    |       |                |                          |       | 1.8   | 20 -                            |     |                                          | ilt; tra                       | ce sand; trace ligh                                                                                                      |                |                 |                           |  |  |
| .w           | 12    |       |                | 1.9 2 - Grading banded b |       |       |                                 |     | Grad<br>bande                            | ing gree<br>ed below           | nish-grey and dark                                                                                                       | grey           |                 |                           |  |  |
| W            | 13    |       |                |                          |       | 1.9   | 25 -                            |     |                                          |                                |                                                                                                                          |                |                 |                           |  |  |
| W            | 14    |       |                |                          |       | 1.7   | 6 -                             |     | Slicker                                  | nsided b                       | elow 26'                                                                                                                 |                |                 |                           |  |  |
| W            | 15    |       |                |                          |       | 2.0   | 8 -                             |     |                                          |                                |                                                                                                                          |                |                 |                           |  |  |

| CLI                  |                                              | unic           | ipal                 | . Pow                | er A   | genc                                   | у                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                                                  | PROJECT<br>Gibbons Cree                                                   | ek Si     | ES      |                                                                               | PROJECT NO. 14578                                                                |
|----------------------|----------------------------------------------|----------------|----------------------|----------------------|--------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------|---------------------------------------------------------------------------|-----------|---------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| -                    |                                              | Tex            |                      |                      |        |                                        | N3783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 333914               | 8                                                | ELEVATION (DATU<br>266.7'                                                 | м)        | TOTAL 1 | DEPTH                                                                         | DATE START<br>2-26-88                                                            |
|                      |                                              | condition g in |                      |                      |        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                                                  | INSPECTOR K. M. Blevin                                                    | s-Mo      | Cosh    |                                                                               | DATE FINISH<br>2-26-88                                                           |
|                      | SAME                                         | SET 6"         | AMPL:                | ING<br>  3RD<br>  6" | N      | SAME                                   | CHECKE<br>M. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | luter                |                                                  | APPROVED BY<br>L. J. Almale                                               | h         |         |                                                                               |                                                                                  |
|                      | RUN<br>NO.                                   | RUN            | CORII<br>RUN<br>RECV | NG<br>RQD<br>RECV    | * RECV | 7 RQD                                  | DEPTH<br>IN<br>FEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | APHICS               | CLA                                              | SSIFICATION OF N                                                          | MATER:    | IAL     |                                                                               | REMARKS                                                                          |
| ew<br>ew<br>ew<br>ew | 16<br>17<br>18<br>19<br>20<br>21<br>22<br>23 |                |                      |                      |        | 1.8<br>1.9<br>1.9<br>2.0<br>1.7<br>1.9 | 1 - 2 - 3 - 4 - 35 - 6 - 3 - 4 - 40 - 1 - 2 - 3 - 4 - 45 - 6 - 45 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Trac<br>Grad<br>seam | ds gradin<br>te lignit<br>ling dark<br>a at 42.3 | below 32'  g out below 34'  a below 41'  grey below 42';  k grey; hard; h | igh       |         | pp. 4-                                                                        | no sample                                                                        |
| н                    | 1                                            |                | 48'<br>1.3           | 0.3                  | 65     | 17                                     | 7 - 8 - 9 - 50 - 1 - 2 3 3 4 55 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | graine               | d; slight                                        | llaceous; grey; ly weathered; w, ontal joints                             | fine/trac | е       | Bottom 49.8'. Ground unknow 0-3' w Reamed 1/2" b Instal section pipe; section | of boring water level n. Reamed /6 7/8" bit 3-50' w/4 it. led 2-20' ns of 2" PVC |

## BLACK & VEATCH FOR CONSULTING ENGINEERS

## PIEZOMETER INSTALLATION LOG

PIEZOMETER NO. 8-15



well on 2-27-88 by flushing well with clean water for 6 min. blew out water from well with

air compressor water level recorded at 23'-10" from TOC

-ST-021

| _    |             | OCATI | _                  | rowe        | T A       | gency | OORDINA         |        | W.FS.   |          | Gibbons Creek S<br>ELEVATION (DATUM)                       | TOTAL DE         | PTH                                      | 14578<br>DATE START                                           |
|------|-------------|-------|--------------------|-------------|-----------|-------|-----------------|--------|---------|----------|------------------------------------------------------------|------------------|------------------------------------------|---------------------------------------------------------------|
| Carl | os,         | Texa  | 15                 |             |           |       | N3782           | 00 E3  | 342496  |          | 261.5'                                                     | 35.0'            |                                          | 2-23-88                                                       |
|      |             | ONDIT |                    |             |           |       |                 |        |         |          | INSPECTOR K. M. Blevins-M                                  | cCosh            |                                          | 2-23-88                                                       |
| SAMP | SAMP<br>NO. |       | AMPLI<br>2ND<br>6" |             | N         | SAMP  | CHECKE<br>M. C. | Sch1   |         |          | APPROVED BY<br>L. J. Almaleh                               |                  |                                          |                                                               |
| -    |             |       | CORIN              | G           | -         |       | DEPTH           | SAMPLI | E TYPE  |          |                                                            |                  |                                          |                                                               |
| CORE |             | RUN   | RUN                | RQD<br>RECV | %<br>RECV | RQD   | IN<br>FEET      | GRAI   | PHICS   | CLA      | SSIFICATION OF MATER                                       | RIAL             | 1                                        | REMARKS                                                       |
|      |             |       |                    |             |           |       | 1 -             |        | Undiffe | erentiat | ed overburden                                              |                  | Advance<br>using<br>rotary               |                                                               |
| TW   | 1           |       |                    |             |           | 1.2   | 3 -             |        | hard; 1 | ow plas  | own; medium dense; ticity; moist; some ore silt at 3'-3.5' | stiff to<br>sand |                                          |                                                               |
| TW   | 2           |       |                    |             |           | 0.8   | 5 -             |        |         |          |                                                            |                  |                                          |                                                               |
| TW   | 3           |       |                    |             |           | 0.5   | 7 -             |        |         |          | n to brown; hard; lo<br>ist; trace silt                    |                  | pp. 4+                                   | . :                                                           |
| TW   | 4           |       | 10'                |             |           | 0.8   | 9 -             |        |         |          | an to brown; poorly<br>some silt; iron sta                 |                  | Tried !                                  | to push TW<br>SPT - cored<br>so reamed                        |
| 3"   | 1           | 2     | 0                  | 0           | 0         | 0     | 1 -             |        | fine to | medium   | illaceous; yellowish<br>grained; iron stair                | n-tan;           | looked<br>Sample                         | ry wash<br>at cutting<br>recovery                             |
| 3"   | 2           | 2     | 1.3                | 0           | 65        | 0     | 3 -             |        |         | weather  | ed<br>grading out below 14                                 | 4.               | below :                                  | 12' in 1-3"                                                   |
| 3"   | 3           | 2     | 1.2                | 0           | 60        | 0     | 15 -            |        |         |          | 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1                        |                  |                                          |                                                               |
| 3"   | 4           | 2     | 0                  | 0           | 0         | 0     | 7 -             |        | Gradi   | ing grey | below 16'                                                  |                  | Wi                                       |                                                               |
| 3"   | 5           | 2     | 18'                | 0           | 0         | 0     | 9 -             |        | Iron    | stainin  | g on joints below 20                                       |                  | 18-20'<br>washed<br>drilling<br>diameter | sample at<br>rotary<br>. Continue<br>ng with 3"<br>er 5' core |
|      |             |       |                    |             |           |       | 1 -             |        | Lign    | ite part | ings starting at 21                                        | .7'              | parrel                                   | below 20'.                                                    |
| 3"   | 6           | 5     | 4.5                | 0.33        | 90        | /     | 3 -             |        |         |          | nish-grey below 23'<br>illaceous                           | and              |                                          |                                                               |
| 3"   | 7           | 5     | 25'                | 0.83        | 80        | 12    | 6 -             |        |         |          |                                                            |                  |                                          |                                                               |
|      |             |       |                    |             |           |       | 8 -             |        | Lign    | ite part | ings grading out be                                        | low 27.5'        |                                          |                                                               |

| CLIENT<br>Texas M | unic   | ipal               | Powe | er A     | gency | у                                                                                                                           |         |                                  | PROJECT<br>Gibbons Creek S                      | ES    |                                                                             | PROJECT NO. 14578                                                                                                             |
|-------------------|--------|--------------------|------|----------|-------|-----------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------|-------------------------------------------------|-------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| PROJECT :         | LOCATI | ON                 |      |          |       | OORDINA                                                                                                                     | 3342496 |                                  | ELEVATION (DATUM) 261.5'                        | 35.0' | EPTH                                                                        | DATE START<br>2-23-88                                                                                                         |
| ourface (         | CONDIT | IONS               |      |          |       |                                                                                                                             |         |                                  | INSPECTOR K. M. Blevins-M                       | cCosh |                                                                             | DATE FINISH<br>2-23-88                                                                                                        |
| AMP   SAM         | PISET  | AMPLI<br>2ND<br>6" |      | N<br>VAL | SAMP  | CHECKE<br>M. C.                                                                                                             | Luter   |                                  | APPROVED BY<br>L. J. Almaleh                    |       |                                                                             |                                                                                                                               |
| ORE RUN           | RUN    | CORIN              |      | 1 8      |       | DEPTH<br>IN<br>FEET                                                                                                         | APHICS  | CL                               | SSIFICATION OF MATER                            | IAL   |                                                                             | REMARKS                                                                                                                       |
|                   | 5      | 30.                | 0    | 44       | 0     | 1 - 2 - 3 - 4 - 35 - 6 - 7 - 8 - 9 - 40 - 1 - 2 - 3 - 4 - 45 - 6 - 7 - 8 - 9 - 50 - 1 - 2 - 3 - 4 - 55 - 6 - 7 - 8 - 9 - 60 | from    | zontal fi<br>1-3" ag<br>ings bel | ractures spaced generat; numerous lignitous 30' | rally | 35'.<br>level<br>Reame<br>4 1/2<br>cutti<br>hole<br>1-20'<br>1-11'<br>2" PV | m of boring Ground water unknown. d hole using "bit. Flush ngs out of instafled section and section of C and 5' on of screen. |

BLACK & VEATCH CONSULTING ENGINEERS

PIEZOMETER NO. 8-16



EMARKS Cuttings washed from hole; piezometer installed in fluid-filled hole; well developed on 2-27-88 by flushing hole w/clean water for 8 min. and pumping until dry. Water level recorded at 38.2' from TOC.

and seal; grouted to surface; poured surface pad

| Cexa     |     | unic      | ipal   | Powe | er Ag | genc | У                   |       |                                          |               | PROJECT<br>Gibbons Creek S                                        | ES        |       | PROJECT NO. 14578     |  |
|----------|-----|-----------|--------|------|-------|------|---------------------|-------|------------------------------------------|---------------|-------------------------------------------------------------------|-----------|-------|-----------------------|--|
|          |     | OCATI     |        |      |       | C    | 00RD INA<br>N3795   |       | 339416                                   |               | ELEVATION (DATUM) 261.7'                                          | 39.0'     | EPTH  | DATE START<br>2-25-88 |  |
|          |     | ONDIT     | IONS   | is   |       |      |                     |       |                                          |               | DATE FINISH<br>2-25-88                                            |           |       |                       |  |
|          |     | s         | AMPLI  | NG   |       |      | CHECKE              |       |                                          |               | APPROVED BY                                                       |           |       |                       |  |
|          | NO. | SET<br>6" |        |      |       |      |                     |       |                                          | L. J. Almaleh |                                                                   |           |       |                       |  |
|          | RUN | RUN       | CORING | ROD  | 8     |      | DEPTH<br>IN<br>FEET |       | E TYPE<br>PHICS                          | CLA           | SSIFICATION OF MATE                                               | RIAL      |       | REMARKS               |  |
| IZE<br>W | NO. | LENG      | RECV   | RECV | RECV  | 0.7  | 1001                | 1//   |                                          | LAY; da       | rk brown; medium der                                              | nse; high |       | g advanced            |  |
|          | -   |           |        |      |       |      | 2 -                 |       | plastic<br>soil)                         | ity; mo       | ist; organics; roots                                              | Top       |       | 6 7/8"<br>y wash      |  |
| W        | 2   |           |        |      |       | 1.5  | 3 -                 | - /// | moist;                                   |               |                                                                   | ererey,   |       |                       |  |
|          |     |           |        |      | 4     |      | 4 -                 |       | Trace                                    | gravel        | and iron staining b                                               | pelow 4'  | pp. 1 |                       |  |
| M        | 3   |           |        |      |       | 1.1  | 5 -                 |       | Trace graver and from Statisting Serow V |               |                                                                   |           |       | 5                     |  |
| N        | 4   |           |        |      |       | 1.8  | 6 -                 | 1//   |                                          |               |                                                                   | pp. 2     | .0    |                       |  |
|          |     |           |        |      |       |      | 7 -                 |       | moist;                                   | iron st       | own; stiff; high planining; jointed                               | sticity;  |       | . =                   |  |
| W        | 5   |           |        |      |       | 1.7  | 9 -                 |       |                                          |               | at 7.5' and 9';<br>below 7'                                       |           |       |                       |  |
| W        | 6   |           |        |      |       | 1.8  | 10 -                |       |                                          |               | nd 45° to vertical i                                              |           | pp. 2 | .5                    |  |
|          |     |           |        |      |       | 200  | 1 -                 |       | iron                                     | stainin       |                                                                   |           | pp. 2 |                       |  |
| W        | 7   |           |        |      |       | 1.5  | 3 -                 |       |                                          |               |                                                                   |           |       |                       |  |
| W        | 8   |           |        |      |       | 1.7  | 4 -                 |       | joint                                    | is 4"         | I vertical joint at<br>long; banded brown a<br>.4'. Gypsum filled | ind dark  |       |                       |  |
| W        | 8   |           |        |      |       | 1.7  | 15 -                |       |                                          |               | ally 8"-1.5'                                                      | Joine     | pp. 2 | .75 pp. 3.5           |  |
| w        | 9   |           |        |      |       | 1.7  | 6 -                 |       |                                          |               |                                                                   | 1         | nn 2  | 0                     |  |
|          |     |           |        |      |       |      |                     | 1     |                                          |               |                                                                   |           | pp. 3 |                       |  |
| W        | 10  |           |        |      |       | 1.7  | 9 -                 |       | plastic                                  | ity; mo       | ey to dark grey; har<br>lst; with silt seams                      | on        |       |                       |  |
|          |     |           |        |      |       | 2    | 20 -                | - /// | trace sa                                 | and in        | )'; trace iron stain<br>joints; occasional s                      | ilty      | pp. 4 | +                     |  |
| W        | 11  |           |        |      |       | 1.6  | 1 -                 |       | sand poo                                 | ckets b       | elow 16'; thinly bed                                              | ded       |       |                       |  |
| W        | 12  |           |        |      |       | 1.3  | 2 -                 |       |                                          |               |                                                                   |           | pp. 4 | +                     |  |
|          |     |           |        |      |       |      | 3 -                 | - /// |                                          |               |                                                                   |           |       |                       |  |
| W        | 13  |           |        |      | X     | 1.3  | 25 -                |       |                                          |               |                                                                   |           | pp. 4 |                       |  |
| w        | 14  |           |        |      |       | 1.2  | 6 -                 |       |                                          |               |                                                                   |           |       |                       |  |
| "        | 1.4 |           |        |      |       | 1.2  | 7 -                 |       |                                          |               |                                                                   |           |       |                       |  |
|          | 15  |           |        |      |       | 0.4  | 9 -                 |       | Lignit                                   | ic bel        | ow 29' - lignite sea                                              | ms up to  |       |                       |  |

| CLIEN |                                                                                                                    | unici       | pal   | Powe      | er Ag    | gency           | 4               |      |                                                                                               | PROJECT<br>Gibbons Creek                                                                                                                                                       | SES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PROJECT NO. 14578                                                                                                                         |
|-------|--------------------------------------------------------------------------------------------------------------------|-------------|-------|-----------|----------|-----------------|-----------------|------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| PROJE | ECT L                                                                                                              | OCATI       | ON    |           |          |                 | OORDINA         |      | 339416                                                                                        | ELEVATION (DATUM) 261.7'                                                                                                                                                       | TOTAL DEPTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DATE START<br>2-25-88                                                                                                                     |
| URFA  | ACE C                                                                                                              | ONDIT       | IONS  | is        |          |                 |                 |      | *                                                                                             | INSPECTOR K. M. Blevins-N                                                                                                                                                      | McCosh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DATE FINISH<br>2-25-88                                                                                                                    |
| AMP   | SAMP                                                                                                               |             | AMPLI | NG<br>3RD | N<br>VAL | SAMP            | CHECKE<br>M. C. |      | uter                                                                                          | APPROVED BY L. J. Almaleh                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           |
| ORE   | CORING  CORING  RE RUN RUN RUN RQD %  RE RUN RUN RUN RQD %  TEET  GRAPHICS  LOG  LOG  LOG  LOG  RECV RECV RECV RQD |             |       |           |          |                 |                 | GRAI | PHICS                                                                                         | CLASSIFICATION OF MATE                                                                                                                                                         | ERIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | REMARKS                                                                                                                                   |
| SIZE  |                                                                                                                    | RUN<br>LENG | RECV  | 0         |          | RQD<br>0<br>0.5 |                 |      | SANDSTONE; fine graine Clayey SAND cemented; f some silt ( sandstone)  SANDSTONE; fine graine | argillaceous; greenish d; weathered  ; greenish-grey; parti ine grained; poorly gr maybe extremely weathe  argillaceous; greenish d; weathered; w/lignit and vertical joints - | ally aded; ered  a-grey; e seams;  Bot at Grounk hol Ins sect and 4" sect and | tom of boring 39'. undwater level nown. Reamed e w/6 7/8" bit. talled 3-10' tions 4" PVC 1-5.8' section PVC; set 1-5' tion .01" slot een. |

# BLACK & VEATCH CONSULTING ENGINEERS

### PIEZOMETER INSTALLATION LOG

PIEZOMETER NO. B-17



| CLIE   |            | unic  | ipal                 | Powe      | er Ag            | genc | у                   |                  |                     | PROJECT<br>Gibbons Creek S                                              | SES                |        | PROJECT NO. 14578      |
|--------|------------|-------|----------------------|-----------|------------------|------|---------------------|------------------|---------------------|-------------------------------------------------------------------------|--------------------|--------|------------------------|
| PROJ   | ECT L      | OCATI | ON                   |           |                  |      | CORDINA             | 3340991          |                     | ELEVATION (DATUM) 292.3'                                                | TOTAL D            | EPTH   | DATE START<br>2-17-88  |
|        | 7          | ONDIT | IONS<br>past         | ture      |                  |      |                     | ^                |                     | INSPECTOR K. M. Blevins-N                                               | icCosh             |        | DATE FINISH<br>2-17-88 |
| SAMP   | SAMP       | SET   | AMPLI<br>  2ND       | NG<br>3RD |                  | SAMP | CHECKE<br>M. C.     | <br>uter         |                     | APPROVED BY<br>L. J. Almaleh                                            |                    |        |                        |
| ORE    | RUN<br>NO. | RUN   | CORIN<br>RUN<br>RECV | ROD       | VAL<br>%<br>RECV | RECV | DEPTH<br>IN<br>FEET | E TYPE           | CLA                 | SSIFICATION OF MATE                                                     | RIAL               |        | REMARKS                |
| w<br>w | 1          |       |                      |           |                  | 1.5  | 1 -<br>2 -<br>3 -   | Silty<br>very m  | CLAY; br            | own; stiff; med. pl<br>some roots<br>out below 3'<br>below 2.5 with tra |                    | pp. 1  |                        |
| w      | 3          |       |                      |           |                  | 1.1  | 5 -                 |                  |                     | r at 4.25'                                                              |                    | pp. 4- |                        |
| W      | 4          |       |                      |           |                  | 0.9  | 8 -                 |                  | ; moist;            | rown to tan; hard;<br>with sand; trace 1                                |                    |        | : <del>!-</del>        |
| w      | 6          |       |                      |           |                  | 0.9  | 10 -                |                  |                     |                                                                         |                    |        |                        |
| w      | 7          |       |                      |           |                  | 0.7  | 3 -                 | with c           | emented             | d; high plasticity;<br>sand stringers; pla<br>n staining at plate       | ty in              | pp. 4  |                        |
| w      | 8          |       |                      |           |                  | 1.3  | 15 -                | appr             | ing silt            | y with 2" sandy sil<br>y 15.7'                                          | t seam at          |        |                        |
| w      | 9          |       |                      |           |                  | 1.5  | 7 -                 | Clayey<br>plasti |                     | an to buff; hard; l<br>ist; with some sand<br>ates                      |                    |        |                        |
| w      | 10         |       |                      |           |                  | 0.9  | 9 -                 | Sandy<br>moist   | SILT; ta            | n to buff; poorly g<br>e clay; trace iron                               | raded;<br>staining |        |                        |
| .w     | 11         |       |                      |           |                  | 0.8  | 1 -                 | plasti           |                     | own/tan mottled; ha<br>ist; with trace san<br>platy                     |                    |        |                        |
| w      | 12         |       |                      |           |                  | 1.2  | 3 -                 |                  | andy sil            | t layer at 22.5'; g<br>23                                               | rading             |        |                        |
| w      | 13         |       |                      |           |                  | 1.8  | 25 -                | iron s<br>crysta | taining<br>1s at 25 |                                                                         | s; gypsum          | pp. 4  | ő                      |
| w      | 14         |       |                      |           |                  | 1.2  | 7 -                 | moist;           | iron st             | rown; nign plastici<br>aining                                           | ty;                |        |                        |
| rw     | 15         |       |                      |           |                  | 1.4  | 9 -                 |                  |                     | -grey; high plastic<br>ith trace silt; tra                              |                    |        |                        |

| arlos                                      | LOCATI |        |      |          |                          | OORDINA                                                           | res<br>83 E334099         | 1                  | ELEVATION (DATUM) 292.3'                                                  | TOTAL DEPT                                     | TH DATE START 2-17-88                                                                                                                                                 |
|--------------------------------------------|--------|--------|------|----------|--------------------------|-------------------------------------------------------------------|---------------------------|--------------------|---------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| URFACE<br>leari                            | CONDIT | IONS   | ure  |          |                          |                                                                   |                           |                    | INSPECTOR K. M. Blevins-Mo                                                | Cosh                                           | DATE FINISH<br>2-17-88                                                                                                                                                |
|                                            |        | AMPLI  | NG   | N        | SAMP                     | CHECKE                                                            | Schluter                  |                    | APPROVED BY L. J. Almaleh                                                 |                                                |                                                                                                                                                                       |
| ORE RUI                                    | 6"     | CORING | RQD  | VAL<br>% | RECV                     | DEPTH<br>IN<br>FEET                                               | SAMPLE TYPE  GRAPHICS LOG | CL                 | ASSIFICATION OF MATER                                                     | IAL                                            | REMARKS                                                                                                                                                               |
| IZE   NO   NO   NO   NO   NO   NO   NO   N |        | RECV   | RECV | RECV     | 2.0<br>1.8<br>1.8<br>1.7 | 1 — 2 — 3 — 4 — 7 — 8 — 9 — 1 — 2 — 2 — 2 — 2 — 2 — 2 — 2 — 2 — 2 | Gra<br>(qr                | ding to leenish-gr | crace silt below 35'  aminated banded  ey and grey) below 3  ce at 39.8'; | 8' with                                        |                                                                                                                                                                       |
| W 23                                       |        |        |      |          | 2.0                      | 4 - 45 - 6 - 7 -                                                  |                           | ding grad          | ding out below 44'                                                        | p                                              | p. 4+                                                                                                                                                                 |
| W 25                                       | 3      |        |      |          | 1.6                      | 8 - 9 - 50 - 1 - 2 - 3 - 4 - 55 - 55 - 5                          |                           |                    | -1-1                                                                      | a<br>G<br>u<br>r<br>6<br>a<br>S<br>1<br>4<br>s | ottom of boring t 50'. roundwater level nknown. Hole eamed using 1/2" diameter uger bit. et 4-10' and -4.6' section of " diameter chedule 40 hreaded lush-jointed PVC |

# BLACK & VEATCH CONSULTING ENGINEERS

#### PIEZOMETER INSTALLATION LOG

PIEZOMETER NO. B-18



-ST-021B

Water level 50' from TOC.

| CLIE |                  | unic   | ipal               | Powe                | er Ag     | gency | 4                   |    |                  |                                | PROJECT<br>Gibbons Creek S                                                                  | ES      |        | PROJECT NO. 14578      |
|------|------------------|--------|--------------------|---------------------|-----------|-------|---------------------|----|------------------|--------------------------------|---------------------------------------------------------------------------------------------|---------|--------|------------------------|
|      |                  | OCATI  |                    |                     |           | С     | OORDINA<br>N3815    |    | E3342922         |                                | ELEVATION (DATUM) 269.1                                                                     | TOTAL D | EPTH   | DATE START<br>2-17-88  |
| 2000 |                  | ONDIT  |                    | ture                |           |       |                     |    |                  |                                | INSPECTOR K. M. Blevins-M                                                                   | cCosh   |        | DATE FINISH<br>2-17-88 |
| 2    | SAMP             | SET 6" | AMPLI<br>2ND<br>6" | NG<br>  3RD<br>  6" | N         | SAMP  | CHECKE<br>M. C.     |    | nluter           |                                | APPROVED BY<br>L. J. Almaleh                                                                |         |        |                        |
| ORE  | RUN<br>NO.       | RUN    | CORIN              | G<br>RQD            | §<br>RECV |       | DEPTH<br>IN<br>FEET | GI | RAPHICS          | CL                             | ASSIFICATION OF MATER                                                                       | RIAL    |        | REMARKS                |
|      | Undifferentiated |        |                    |                     |           |       | ed overburden       |    | using            | g advanced<br>4 1/2"<br>y wash |                                                                                             |         |        |                        |
| N    | 1                |        |                    |                     |           | 0.6   | 3 -                 |    |                  | emented                        | nn; poorly graded; mo<br>sand stringers; some                                               |         |        |                        |
| 1    | 2                |        |                    |                     |           | 1.5   | 5 <del>-</del>      |    | plasti           | city; mo                       | eddish-brown; hard;<br>ist; trace sand; iro<br>ling some sand below                         | n       |        |                        |
| 4    | 3                |        |                    |                     |           | 1.3   | 8 -                 |    |                  |                                |                                                                                             |         | pp. 4  | · ‡                    |
| 1    | 4                |        |                    |                     | £         | 1.7   | 10 -                |    | moist;<br>gradin | with cl<br>g to sil            | ddish-brown; poorly<br>ay and iron staining<br>ty clay; interbeddin<br>below 10'; few gypsu | g with  | e      | ž.                     |
| 1    | 5                |        |                    |                     |           | 1.3   | 2 -                 |    | crysta           | ls                             |                                                                                             |         |        |                        |
| V    | 6                |        |                    |                     |           | 1.5   | 4 -                 |    | highly           | plastic                        | rk brown to black; he; moist; lignitic; i trace sand below 16                               | ron     | pp. 4+ |                        |
| ٩    | 7                |        |                    |                     |           | 0.9   | 6 -                 |    |                  |                                | 9.6                                                                                         |         |        |                        |
| ı    | 8                |        |                    |                     |           | 0.9   | 7 <del>-</del>      | K  | Silen            | CAMP. ba                       | n; poorly graded; mo                                                                        | ier.    | pp. 4+ |                        |
| 7    | 9                |        |                    |                     |           | 0.7   | 9 -                 |    | Clayey           | clay; ir                       | on staining reenish-grey; highly; with trace thin si                                        |         | pp. 4+ |                        |
| i    | 10               |        |                    |                     |           | 1.4   | 2 -                 |    |                  |                                | iron staining                                                                               | 1 Jana  |        |                        |
| ı    | 11               |        |                    |                     | ,         | 1.8   | 3 -                 |    | Candu            | CTI.m. ~-                      | eenish-grey; poorly                                                                         | graded. |        |                        |
| 1    | 12               |        |                    |                     |           | 0.8   | 25 -                |    | moist;           | with tr                        | ace to some clay                                                                            | 714464) |        |                        |
| 1    | 13               |        |                    |                     |           | 1.2   | 7 <del>-</del>      |    | plastic          | city; mo                       | eenish-grey; high<br>ist; with some sandy                                                   | silt    |        |                        |
| N    | 14               |        |                    |                     |           | 1.3   | 9 -                 |    |                  |                                |                                                                                             |         |        |                        |

| CLIE                                    |                                  | unici         | pal                | Powe | er Ag     | gency                                  | ,                                                                       |             |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PROJECT<br>Gibbons                                                                                                          | Creek S                                               | ES      |                                                                      | PROJECT NO. 14578                                                                                               |
|-----------------------------------------|----------------------------------|---------------|--------------------|------|-----------|----------------------------------------|-------------------------------------------------------------------------|-------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                                         |                                  | OCATI         |                    |      |           | С                                      | OORDINA<br>N3815                                                        |             | 342922                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ELEVATION 269.1                                                                                                             | (DATUM)                                               | TOTAL D | EPTH                                                                 | DATE START<br>2-17-88                                                                                           |
|                                         |                                  | ONDIT<br>g in |                    | ure  |           |                                        |                                                                         |             |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INSPECTOR K. M. B1                                                                                                          | evins-M                                               | cCosh   |                                                                      | DATE FINISH<br>2-17-88                                                                                          |
|                                         | SAMP                             | SET 6"        | AMPLI<br>2ND<br>6" |      | N         | SAMP                                   | CHECKE<br>M. C.                                                         |             | uter                                                        | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | APPROVED B                                                                                                                  |                                                       |         |                                                                      |                                                                                                                 |
| ORE                                     | RUN<br>NO.                       |               |                    | RQD  | %<br>RECV | RQD                                    | DEPTH<br>IN<br>FEET                                                     | GRAI<br>LOG | PHICS                                                       | CLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SSIFICATION                                                                                                                 | OF MATER                                              | IIAL    |                                                                      | REMARKS                                                                                                         |
| w w w                                   | 15<br>16<br>17<br>18<br>19<br>20 |               |                    |      |           | 1.4<br>1.4<br>1.5<br>0.9<br>2.0<br>2.1 | 1 - 2 - 3 - 4 - 2 - 3 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4               |             | Gradi<br>green<br>trace<br>2" sa<br>Gradi<br>Gradi<br>green | ing to in instance of the comment of | seam at 32; sandy siling about 4 nterbedded y silty cla ed sand  t seam at 3 nish-grey b igh plastic eam grading y and grey | t filled " in samp green and y below 3 7.8' below 38' | 40';    |                                                                      |                                                                                                                 |
| and | 22 23 24                         |               |                    | ,    |           | 1.7                                    | 45 - 6 - 7 - 8 - 50 - 7 - 6 - 7 - 8 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 |             | Slick                                                       | ensides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | at 44.5'                                                                                                                    |                                                       |         | at 50<br>Groun<br>unknot<br>hole<br>6 3/4<br>Insta<br>and 1<br>of 4" | m of boring '. dwater level wn. Reamed twice using "auger bit. lled 4-10' -5.5' section PVC, 1-5' on of screen. |



### APPENDIX B

Field Data Forms



| Sample Sample Project Project Date: Sample Method | Depth:            | W-4 Du<br>49.5<br>No.: 67<br>↑ M P<br>1/201<br>1/201<br>1/201<br>Submer | 10615 (<br>A<br>14<br>15M | 0060          |               |                                       | Depth to W Total Depth Well Diame 1 Casing/Be (Circle one) 4 Casing/Be (Circle one) | orehole Volu                                 | mpling:<br>5/, 5 s<br>In Ch<br>ime: | 46.83                                         |
|---------------------------------------------------|-------------------|-------------------------------------------------------------------------|---------------------------|---------------|---------------|---------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------|-----------------------------------------------|
| Time                                              | Depth to<br>Water | Rate<br>(ml/min)                                                        | Cum.<br>Vol. (gal.)       | Temp.<br>(°C) | pH<br>(units) | Specific<br>Electrical<br>Conductance | Dissolved<br>Oxygen<br>(mg/L)                                                       | Oxidation-<br>Reduction<br>Potential<br>(mV) | Turbidity                           | Remarks<br>(recharge, color,<br>and sediment) |
| 830                                               | 57                | ART                                                                     | TI                        | ۸E            |               | 1                                     |                                                                                     | Ø                                            |                                     |                                               |
| 332                                               |                   | 1000                                                                    | 2                         | 24.48         | 6,36          | 5.60                                  | 0,55                                                                                | 61                                           | 15.5                                | Clear                                         |
| 35                                                | 37,50             | BLAD                                                                    | 2,5                       | 24.62         | 6.38          | 5.59                                  | 0.53                                                                                | 63                                           | 6.8                                 | clarislavela                                  |
| 240                                               |                   |                                                                         | 3.5                       | 2609          | 6,38          | 5,60                                  | 1.17                                                                                | 63                                           | 21.6                                |                                               |
| X45                                               | 39,50             | 1000                                                                    | 4.5                       | 25.70         | 6.37          | 5.59                                  | 1.20                                                                                | 61                                           | 26,6                                |                                               |
| 850                                               | 41.79             | 1000                                                                    | 5.25                      | 25,67         | 6.34          | 5,55                                  | 0.81                                                                                | 60                                           | 0.0                                 |                                               |
| 355                                               |                   | 750                                                                     | 6                         | 2625          | 6,38          | 5,55                                  | 0.92                                                                                | 63                                           | 00                                  |                                               |
| 20                                                | 44.44             | 375                                                                     | 6.5                       | 25,83         | 637           | 5,55                                  | 1.66                                                                                | 62                                           | 0.0                                 |                                               |
| 915                                               | 46,50             | 375                                                                     | 6.75                      | 26,09         | 6.38          | 5.55                                  | 012                                                                                 | 68                                           | 9.0                                 |                                               |
| 210                                               | 46.83             | 375                                                                     | 70                        | 2673          | (3)           | 553                                   | 1/3                                                                                 | G-7                                          | 0.0                                 | Sampled                                       |
| (                                                 | lecto             | ) =                                                                     | amples                    | 4             | 1911          |                                       | 4,60                                                                                | -01                                          | C'EC'                               | 200 Pica                                      |
|                                                   |                   |                                                                         |                           | (1)           | 110           |                                       |                                                                                     |                                              |                                     |                                               |
|                                                   |                   |                                                                         | 9 gal                     | an 5          | otal          | Renaved                               |                                                                                     |                                              |                                     |                                               |
|                                                   |                   | •                                                                       | 1                         |               |               | 1/21/4100                             |                                                                                     |                                              |                                     |                                               |
| 1/2                                               | 20110             | n N                                                                     | itric                     |               |               | -                                     |                                                                                     |                                              |                                     |                                               |
| 110                                               | 07                | No                                                                      | DIPER                     | rvative       | ,             |                                       |                                                                                     |                                              |                                     |                                               |
| 1                                                 | iter              | Λ                                                                       | 17:0                      | 1001100       |               |                                       |                                                                                     |                                              |                                     |                                               |
| 4                                                 |                   | ——/\                                                                    | ,,,                       |               |               |                                       |                                                                                     |                                              |                                     |                                               |
|                                                   |                   |                                                                         |                           |               |               |                                       |                                                                                     |                                              |                                     |                                               |
|                                                   |                   |                                                                         |                           |               |               |                                       |                                                                                     |                                              |                                     |                                               |
|                                                   |                   |                                                                         |                           |               |               |                                       |                                                                                     |                                              |                                     |                                               |
| -                                                 |                   |                                                                         |                           |               | _             |                                       |                                                                                     |                                              |                                     |                                               |
|                                                   |                   | _                                                                       |                           |               |               |                                       |                                                                                     |                                              |                                     |                                               |
| OTES:                                             | 51. 5             | 5 - à                                                                   | 4.11                      | = 27          | 44            | X OIT                                 | 1 = 4                                                                               | 17                                           | / 2 ~                               | 12 60                                         |
| 5                                                 | 01100             | <u> </u>                                                                | 7                         | R /           | 7.7           | $\wedge$ $\cup \square$               | - 7.                                                                                | 6'/ >                                        | <u> </u>                            | 12.77                                         |
| ud                                                | allon             | 1                                                                       | Rochara                   | pd 51         | and in        |                                       |                                                                                     |                                              | <del></del> .                       | -                                             |
| <u> </u>                                          | ()                |                                                                         | 1                         |               | )             |                                       |                                                                                     |                                              |                                     |                                               |
|                                                   | Total             |                                                                         |                           |               |               |                                       |                                                                                     |                                              |                                     |                                               |



| Well ID: |                   | 55P              | MW                  | -3            |               |                                       | Initial Dept                  | h to Water: _                                | 26        | <i>CC</i>                                    |
|----------|-------------------|------------------|---------------------|---------------|---------------|---------------------------------------|-------------------------------|----------------------------------------------|-----------|----------------------------------------------|
|          | ID:55P M          | 13 DI            | uplicate ID:        |               |               |                                       |                               | ater after Sa                                |           |                                              |
| 1        | Depth:            | 46,1             | 7                   |               | <del></del>   |                                       |                               | n to Well:                                   |           |                                              |
| Project  | and Phase         | No.: 6           | 706 15              | 0060          |               |                                       |                               | eter: 2                                      |           |                                              |
|          | Name:             |                  |                     |               |               |                                       |                               | orehole Volu                                 |           |                                              |
|          | 6/2               | 1.1.7            |                     |               |               |                                       | (Circle one                   | )                                            |           |                                              |
| Sample   | d By:             | DBH              | 15M                 |               |               |                                       | 4 Casing/B                    | orehole Volu                                 | mes:      |                                              |
| Method   | of Purging        | : Subme          | rsible              |               |               |                                       | (Circle one                   | •                                            |           |                                              |
| Method   | of Samplin        | ng: Low f        | low                 |               |               |                                       | Total Casir<br>Volumes R      | ig/Borehole<br>emoved:                       |           |                                              |
| Time     | Depth to<br>Water | Rate<br>(ml/min) | Cum.<br>Vol. (gal.) | Temp.<br>(°C) | pH<br>(units) | Specific<br>Electrical<br>Conductance | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | Turbidity | Remarks<br>(recharge, color<br>and sediment) |
| 1000     | Sta               | erted            | to                  | Pum 1         | we            | 11                                    |                               |                                              |           |                                              |
| 1005     | 33,02             | 21000            | 25                  | 24.52         | 4,64          | 8.05                                  | 0.0                           | 229                                          | 860       | -landy                                       |
| 1010     | 34,26             | 400              | 5,0                 | 24.63         | 4,56          | 8.01                                  | 0.0                           | <b>33</b> 0                                  | 210       | clearing                                     |
| 1015     | 35,20             | 400              | 7.C                 | 24,59         | 4.51          | 8,00                                  | 0,0                           | 240                                          | 80.6      | Citating                                     |
| 1030     | 34,88             | 500              | 910                 | 24.66         | 4.39          | 8.04                                  | 0.0                           | 247                                          | 134       |                                              |
| 1025     | 34.65             | 650              | 10                  | 24.96         | 4.44          | 7.94                                  | 0.0                           | 251                                          | 84.5      |                                              |
| 1030     | 35.62             | 650              | 12                  | 24.56         | 4,44          | 8,30                                  | 0.0                           | 245                                          | A48,3     |                                              |
| 1035     | 35.64             | 500              | 13                  | 24.67         | 4,40          | 2.06                                  | 0,0                           | 249                                          | 24.8      |                                              |
| 1038     | Col               | lecte            | 1 5                 | AMPLE         | 5             |                                       |                               |                                              |           |                                              |
|          |                   |                  |                     | ,             |               |                                       |                               |                                              |           |                                              |
|          |                   |                  |                     |               |               |                                       |                               |                                              |           |                                              |
|          |                   |                  |                     |               |               |                                       |                               |                                              |           |                                              |
|          |                   |                  |                     |               |               |                                       |                               |                                              |           |                                              |
|          |                   |                  |                     |               |               |                                       |                               |                                              |           |                                              |
|          |                   |                  |                     |               |               |                                       |                               |                                              |           |                                              |
|          |                   |                  |                     |               |               |                                       |                               |                                              |           |                                              |
|          |                   |                  |                     |               |               |                                       |                               |                                              |           |                                              |
|          |                   |                  |                     |               |               |                                       |                               |                                              |           |                                              |
|          |                   |                  |                     |               |               |                                       |                               |                                              |           |                                              |
|          |                   |                  |                     |               |               |                                       |                               |                                              |           |                                              |
|          |                   |                  |                     |               |               |                                       |                               |                                              |           |                                              |
|          |                   |                  |                     |               |               | _                                     |                               |                                              |           |                                              |
|          |                   |                  |                     |               |               | _                                     |                               |                                              |           | -                                            |
| NOTES:   | 48.1              | 1-26             | 155 =               | 21.62         | LXAI          | 1=3.6                                 | 8 x 3                         | = 11.0                                       | 3         |                                              |
| 5        | onl               | - A              | fler                | Sandin A      | SIACU         | ed 1                                  | Dima                          | 20 01                                        | 1         | -                                            |
| +5       | <i>J</i>          | 1                | ald' K'             |               | 5             | dos                                   | - Junip G                     | 01 00                                        |           |                                              |
| +4       |                   |                  |                     | UN UI         | ~ 9           | a lini-                               |                               |                                              |           | <del></del> -                                |
| 711      | Taket             |                  |                     |               |               |                                       |                               |                                              |           |                                              |



| Sample Sample Project Project Date: Sample Method | Depth:<br>and Phase<br>Name:   | No:<br>No:<br>No:<br>No:<br>No:<br>No:<br>No:<br>No:<br>No:<br>No: | 188<br>670<br>4     | -<br>61500 e                                      |                                      |                                       | Depth to W<br>Total Depth<br>Well Diame<br>1 Casing/B<br>(Circle one<br>4 Casing/B<br>(Circle one | orehole Volu<br>)<br>ig/Borehole             | ampling:<br>46,88<br>ACh  |                                               |
|---------------------------------------------------|--------------------------------|--------------------------------------------------------------------|---------------------|---------------------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------|-----------------------------------------------|
| Time                                              | Depth to<br>Water              | Rate<br>(ml/min)                                                   | Cum.<br>Vol. (gal.) | Temp.                                             | pH<br>(units)                        | Specific<br>Electrical<br>Conductance | Dissolved<br>Oxygen<br>(mg/L)                                                                     | Oxidation-<br>Reduction<br>Potential<br>(mV) | Turbidity NTU             | Remarks<br>(recharge, color,<br>and sediment) |
|                                                   | Beg<br>31,60<br>34.78<br>37.32 | 600<br>600<br>350<br>350<br>100                                    | 2.5<br>3<br>4<br>5  | Well<br>24.80<br>25.66<br>25.65<br>26.65<br>26.13 | 5.54<br>5.53<br>5.55<br>5.66<br>5.65 | 8.63<br>8.50<br>8.30<br>7.75<br>7.72  | 0.0<br>0.0<br>0.0                                                                                 | -54<br>-42<br>-25<br>4                       | 341<br>185<br>122<br>1.17 | Water below                                   |
| 1150                                              | 38.91<br>41.32<br>Sam<br>Final | 150<br>ledi                                                        | 9 1                 | 28,95<br>40,43<br>33,14<br>320<br>elov            | 5.67<br>5.86<br>5.68                 | 8.01<br>2.007<br>8.45                 | 0.00<br>5.19<br>0.00                                                                              | 4<br>-5a<br>41                               | 0.0<br>147<br>815         | PUMP                                          |
| NOTES:                                            | 46.88                          |                                                                    |                     | 34,5                                              |                                      | 17 = 3                                | 5.87                                                                                              | × 3 =                                        | 17,60                     |                                               |



| Sample Sample Project Project Date: Sample Method                    | Depth:and Phase Name: / d By: of Purging of Samplin                           | No.: To A A A A A A A A A A A A A A A A A A | MPA  Morsible                                                    | 679619                                                               |                                                                      |                                                                      | Depth to W Total Depth Well Diame 1 Casing/B (Circle one 4 Casing/B (Circle one | orehole Volu<br>)<br>g/Borehole                   | mpling:<br>43,16<br>a C h<br>ume:                                     |                                               |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------|
| Time                                                                 | Depth to<br>Water                                                             | Rate<br>(ml/min)                            | Cum.<br>Vol. (gal.)                                              | Temp.<br>(°C)                                                        | pH<br>(units)                                                        | Specific<br>Electrical<br>Conductance                                | Dissolved<br>Oxygen<br>(mg/L)                                                   | Oxidation-<br>Reduction<br>Potential<br>(mV)      | Turbidity                                                             | Remarks<br>(recharge, color,<br>and sediment) |
| 1530<br>1535<br>1540<br>1545<br>1545<br>1555<br>1600<br>1615<br>1620 | 32.65<br>33.63<br>33.59<br>31.95<br>31.61<br>31.82<br>32.12<br>32.19<br>32.30 | 300<br>250<br>250<br>250<br>250<br>250      | 4<br>67<br>7.5<br>9<br>9,5<br>10<br>10,5<br>11,5<br>12<br>Sompli | 24.08<br>24.07<br>25.88<br>26.03<br>25.76<br>25.73<br>25.75<br>26.11 | 6.11<br>6.11<br>6.07<br>6.07<br>5.97<br>5.91<br>5.92<br>5.90<br>5.89 | 7.46<br>7.46<br>7.54<br>7.10<br>7.88<br>2.01<br>8.19<br>8.29<br>8.39 | Q.Q<br>Q.Q<br>Q.Q<br>Q.Q<br>Q.Q<br>Q.Q<br>Q.Q<br>Q.Q                            | -20<br>-20<br>-19<br>-19<br>-19<br>-5<br>-5<br>-5 | 6.0<br>0.0<br>370.0<br>321<br>279<br>168<br>106<br>93.9<br>102<br>938 |                                               |
| NOTES:                                                               | 43.16                                                                         | - 6.                                        | 68 = .<br>Ge                                                     | 36.48                                                                | × Q.1                                                                | 7-00<br>PC                                                           | 6,20                                                                            | 1 * 3                                             | - 10                                                                  | 8.6                                           |



| Well ID. | ΔPI                 | n. IL                               |               |               |                       |                                      |                               |                                              |           | D/                                            |
|----------|---------------------|-------------------------------------|---------------|---------------|-----------------------|--------------------------------------|-------------------------------|----------------------------------------------|-----------|-----------------------------------------------|
| 3        | APM<br>PM           | 197                                 |               |               |                       | X                                    |                               | h to Water: _                                |           | 26                                            |
|          | ID: <u></u>         |                                     | iplicate ID:  |               |                       | (                                    |                               | later after Sa                               |           | 79                                            |
|          |                     | No.:                                | Agn           | 706/900       | 260                   |                                      |                               | n to Well:                                   |           |                                               |
| 1        |                     | , A                                 | I boms        | 1             | W/M                   |                                      |                               | eter:                                        |           |                                               |
| 1 -      | 6-22                |                                     | 24 ( 18 ( M.) | 1.1001        | / · (10 )             |                                      | 1 Casing/B<br>(Circle one     | orehole Volu<br>)                            | ime; ——   |                                               |
| 1        | ву: <u>D (</u>      | / \                                 |               |               |                       |                                      | 4 Casing/B<br>(Circle one     | orehole Volu<br>)                            | ımes:     |                                               |
| 1        |                     | : <u>´Subme</u><br>ig: <u>Low f</u> |               |               |                       |                                      |                               | ng/Borehole<br>emoved:                       |           |                                               |
|          |                     |                                     | Cum.          |               |                       | Specific                             |                               |                                              |           |                                               |
| Time     | Depth to<br>Water p | Rate<br>(ml/min)                    | Vol. (gal.)   | Temp.<br>(°C) | pH<br>(units)<br>5,84 | Electrical<br>Conductance<br>(uS/em) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | Turbidity | Remarks<br>(recharge, color,<br>and sediment) |
| 1952     | 13.18               | 590                                 |               | 32,95         | (ILD)                 | 4,25                                 | 1.88                          | -30                                          | 24,6      | Clark                                         |
| 0957     | 15.58               |                                     | п             | 23.85         | 5,88                  | 4.90                                 | 0.0                           | =27                                          | 544       | Logy                                          |
| 1002     | 16.11               | 400                                 | 2,5           | 23,78         | 5,89                  | 4.89                                 | 00                            | -39                                          | 601       |                                               |
| 1007     | 16.17               |                                     | 4             | 2347          | 5.87                  | 4.91                                 | 0,0                           | -39                                          | 26 1      | Clearing                                      |
| 1012     | 17.30               | 400                                 | 5.5           | 2354          | 585                   | 492                                  | 010                           | -35                                          | 2,3       | Very Near                                     |
| 1017     | 16.37               |                                     | 6.5           | 23,41         | 5.83                  | 4.93                                 | 0.0                           | -35                                          | 0.0       | J. C.C.                                       |
| 1039     | 16.41               |                                     | 7.5           | 23.55         | 5.82                  | 4.94                                 | 0.0                           | - 28                                         | 0.0       |                                               |
| 1021     | 1649                | 350                                 | 9             | 23.66         | 581                   | 4,91                                 | 0.0                           | -25                                          | 0.0       |                                               |
| 1032     | 16.54               | 250                                 | 10            | 23.56         | 5.79                  | 4.93                                 | 0.0                           | -22                                          | a. c      |                                               |
|          | - Porne             | 7A 6                                | malia         | 10.30         |                       |                                      |                               |                                              |           |                                               |
|          | V 6209              | "                                   | A GITTS       | C 101) 0      |                       |                                      |                               |                                              |           |                                               |
| -        |                     |                                     |               |               |                       |                                      |                               |                                              |           |                                               |
|          |                     |                                     |               |               |                       |                                      |                               |                                              |           |                                               |
|          |                     |                                     |               |               |                       |                                      |                               |                                              |           |                                               |
|          |                     | _                                   |               |               |                       |                                      |                               |                                              |           |                                               |
|          |                     | _                                   |               | -             |                       |                                      |                               |                                              |           |                                               |
|          |                     |                                     |               |               |                       |                                      |                               |                                              |           |                                               |
|          |                     |                                     |               |               |                       |                                      |                               |                                              |           |                                               |
|          |                     |                                     |               |               |                       |                                      |                               |                                              |           |                                               |
|          |                     |                                     |               |               |                       |                                      |                               |                                              |           |                                               |
|          |                     |                                     |               |               |                       |                                      |                               |                                              |           |                                               |
|          |                     |                                     |               |               |                       |                                      |                               |                                              |           |                                               |
|          | 5:0 1 (             |                                     |               |               | ~                     |                                      |                               |                                              |           |                                               |
| NOTES:   | 52,1                | 1-13                                | 7,86 =        | = 39.         | 93 x                  | 0.17 -                               | = 6, 7                        | 9 × 3                                        | = 20,     | 36                                            |
| _5_      |                     |                                     |               |               |                       | +                                    |                               |                                              |           |                                               |
| +5       | 1                   | N                                   | Pech          | rge 5         | of vict               | 1/4                                  |                               |                                              |           |                                               |
| 751      | urged               | ther 5                              | apling        |               | ν                     |                                      |                               |                                              |           |                                               |
| +5P      | Mgeo                | 1 afte                              | 50            | inges         |                       |                                      |                               |                                              |           |                                               |
| DA       | T                   | 1.7                                 | P             | .01           |                       |                                      |                               |                                              |           |                                               |



|      | Sample Project Project Date: _/ Sample Method                        | ID:<br>Depth:<br>and Phase                                           | MW 41,00 No.: 6 BH/SM : Subme                 | 5<br>uplicate ID:<br>796 150<br>A |                                                             |                                              | NI RECOI                                     | Initial Depti<br>Depth to W<br>Total Depti<br>Well Diame<br>1 Casing/B<br>(Circle one<br>4 Casing/B<br>(Circle one<br>Total Casir | orehole Volu                                           | impling:                                      | 14.54                                         |
|------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------|-----------------------------------|-------------------------------------------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|
|      | Time                                                                 | Depth to<br>Water                                                    | Rate<br>(ml/min)                              | Cum.<br>Vol. (gal.)               | Temp.<br>(°C)                                               | pH<br>(units)                                | Specific<br>Electrical<br>Conductance        | Dissolved<br>Oxygen<br>(mg/L)                                                                                                     | Oxidation-<br>Reduction<br>Potential<br>(mV)           | Turbidity                                     | Remarks<br>(recharge, color,<br>and sediment) |
| 5901 | 11:25<br>11:30<br>11:35<br>11:40<br>11:45<br>12:00<br>12:05<br>12:10 | Began<br>15.31<br>14.64<br>13.11<br>14.80<br>14.82<br>13.68<br>13.48 | 250<br>250<br>250<br>250<br>350<br>350<br>350 | 8,5<br>9,5<br>10,0<br>50,         | 24,25<br>24,34<br>25,87<br>24,32<br>24,62<br>24,99<br>24,73 | 3.69<br>3.63<br>3.55<br>3.63<br>3.55<br>3.58 | 5.30<br>5.64<br>5.69<br>5.69<br>5.64<br>5.47 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                     | 34 1<br>34 5<br>3 4 7<br>3 18<br>3 15<br>3 17<br>3 1 2 | 323<br>6.2<br>6.1<br>0.0<br>0.0<br>0.0<br>0.0 | Cleang<br>Very Clean                          |
| 0    | +5<br>+5                                                             | 43.14  uged after                                                    | r Sampli                                      | 15 = 3                            |                                                             |                                              | = 5,47<br>rechar                             |                                                                                                                                   | = 16.4                                                 | 2                                             |                                               |



|          | ΛP                | MILE             | D                   |               |                |                                                  |                               |                                              | 12-6      | > 0                           |        |
|----------|-------------------|------------------|---------------------|---------------|----------------|--------------------------------------------------|-------------------------------|----------------------------------------------|-----------|-------------------------------|--------|
| Well ID: |                   | /'W - 1          | <u> </u>            | 0 1           | <del></del>    |                                                  | _                             | h to Water: _                                |           |                               |        |
| 1        | ID: AP M          |                  | ıplicate ID:<br>า   | 14p-1         | <del></del>    |                                                  | Depth to W                    | ater after Sa                                | mpling:   | 14.34                         |        |
| 1 .      | Depth:            | 41.00            | 701.500             | / A           |                |                                                  |                               | n to Well:                                   |           | <u> </u>                      |        |
| 1        | and Phase         |                  | 1011544             | 60            |                |                                                  | Well Diame                    | eter:                                        |           |                               |        |
| 1 -      | ,                 | IMPA             | <del>.</del>        |               |                |                                                  | 1 Casing/B                    | orehole Volu                                 | ıme:      |                               |        |
| _        | b-2               | 2. 16.           |                     |               |                |                                                  | (Circle one                   |                                              |           |                               |        |
| 1        |                   | /BH/SM           | <del></del>         |               |                |                                                  | (Circle one                   | orehole Volu<br>)                            | ımes:     |                               |        |
|          | of Purging        |                  |                     |               |                |                                                  | Total Casin                   | g/Borehole                                   |           |                               |        |
| Method   | of Samplin        | ig: <u>Low f</u> | low                 |               |                |                                                  | Volumes R                     | emoved:                                      |           |                               |        |
| Time     | Depth to<br>Water | Rate<br>(ml/min) | Cum.<br>Vol. (gal.) | Temp.<br>(°C) | pH<br>(units)  | Specific<br>Electrical<br>Conductance<br>(µS/em) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | Turbidity | Rema<br>(recharge<br>and sedi | color, |
| 1408     | Stay              | ted              | PIMP                | 100           | Je 11          |                                                  |                               |                                              |           |                               |        |
| 1418     | 13.88             |                  | 1 -                 | 2692          | 5.50           | 2.10                                             | 0,0                           | 87                                           | 681       |                               |        |
| 1423     | 14.81             | 350              | 2,25                | 2577          | 5.43           | 2.14                                             | 0.0                           | 96                                           | 117       | Pretty o                      | Je ar  |
| 1428     | 14,49             | 350              | 3                   | 2614          | 5.38           | 2.13                                             | 0.0                           | 103                                          | 56.1      | 1 -                           | 10 1   |
| 1433     | 14.31             | 350              | 4                   | 2650          | 5,39           | 2.14                                             | 0.0                           | 107                                          | 40,2      |                               |        |
| 1428     | 14,22             | 350              | 4.5                 | 26.61         | 5,40           | 2, 14                                            | 0.0                           | 108                                          | 33        |                               | _      |
| 1440     | Bear              | n Sam            | pling               | Well          |                |                                                  |                               |                                              | 3,3       | _                             |        |
|          |                   |                  |                     | <b>V</b>      |                | _                                                |                               |                                              |           |                               |        |
|          | A4134             |                  |                     |               |                |                                                  |                               |                                              |           |                               |        |
|          | 4                 |                  |                     |               |                |                                                  |                               |                                              |           |                               |        |
|          |                   |                  |                     |               | _              |                                                  |                               |                                              |           | _                             |        |
|          |                   |                  |                     |               | -              |                                                  |                               | _                                            |           | _                             |        |
|          |                   |                  |                     |               |                |                                                  |                               |                                              |           |                               |        |
|          |                   |                  |                     |               |                | -                                                |                               | _                                            |           |                               |        |
|          |                   |                  |                     |               |                |                                                  |                               |                                              |           |                               |        |
|          |                   |                  |                     |               |                | -                                                |                               |                                              |           |                               |        |
|          |                   |                  |                     |               |                |                                                  |                               |                                              |           |                               |        |
|          |                   |                  |                     |               |                |                                                  |                               |                                              |           | _                             |        |
|          |                   |                  |                     |               |                |                                                  |                               |                                              |           |                               |        |
|          |                   |                  |                     |               |                |                                                  |                               |                                              |           |                               |        |
|          |                   |                  |                     |               |                |                                                  |                               |                                              |           |                               |        |
|          |                   |                  |                     |               |                |                                                  |                               |                                              |           |                               |        |
|          |                   |                  |                     |               |                |                                                  |                               |                                              |           |                               |        |
| NOTES:   | 42.98             | -13.5            | 28 =                | 29.1          | $\lambda \cap$ | 17/=                                             | 4.95                          | ·¥3-                                         | 14.8      | 24                            |        |
|          |                   |                  |                     |               | - <del> </del> |                                                  |                               |                                              |           |                               |        |
| 5        | 991               |                  |                     |               |                |                                                  |                               |                                              |           |                               |        |
| +10      | 991               |                  |                     |               |                |                                                  |                               |                                              |           |                               |        |



|            | 1                 | Ax 1 - 2         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |                                                  |                               |                                              | 11.24     |                                               |
|------------|-------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|--------------------------------------------------|-------------------------------|----------------------------------------------|-----------|-----------------------------------------------|
| Well ID:   | AP                | 113 -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |                                                  | Initial Depth                 |                                              |           | 12,43                                         |
|            | ID: APM           | רא Du ביע        | plicate ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |               |                                                  |                               | ater after Sa                                |           |                                               |
| · ·        | Depth:            | <u> </u>         | 20(1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2010          |               |                                                  |                               | to Well:                                     |           |                                               |
|            | and Phase         |                  | 706 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 1/1           |                                                  |                               | ter:                                         |           |                                               |
| Project i  | 10                | M/A<br>2-16      | Colblan ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (rec)         | 1 M. Ne       |                                                  | 1 Casing/Bo<br>(Circle one)   | orehole Volu                                 | me:       |                                               |
| Sample     | -                 | A DE             | 14/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Μ             |               |                                                  | 4 Casing/Bo<br>(Circle one)   | orehole Volu                                 | mes:      |                                               |
| Method     | of Purging        | : Subme          | rsible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |               |                                                  | Total Casin                   | g/Borehole                                   |           |                                               |
| Method     | of Samplin        | g: Low f         | ow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | 20 11 20 20   | 03                                               | Volumes Re                    | emoved:                                      |           |                                               |
| Time       | Depth to<br>Water | Rate<br>(ml/min) | Cum.<br>Vol. (gal.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Temp.<br>(°C) | pH<br>(units) | Specific<br>Electrical<br>Conductance<br>(#5/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | Turbidity | Remarks<br>(recharge, color,<br>and sediment) |
| 1530       | Bo                | Can              | Pumin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | 7 (           | ected                                            | FOR                           | Jank -                                       | 1 pria    | r & DIAMONA                                   |
| 1535       | 10,34             | 350              | 1 ON PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2496          | 537           | 1.84                                             | 00                            | 40                                           | 0.0       | 100500                                        |
| 1540       | 1238              |                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24 78         | 517           | 1.24                                             | 7.0                           | 66                                           | 00        | very crea                                     |
| 1545       | 1227              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2507          | 549           | 1.82                                             | 00                            | as 71                                        | 00        |                                               |
| 1550       | 1216              | 350              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24 91         | 5,49          | 1.83                                             | 00                            | 79                                           | 70        |                                               |
| 1655       | 1201              | 2)4              | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25.05         | 5,45          | 183                                              | 0.0                           | 70                                           | 0.0       |                                               |
| 1000       | 10,01             | 250              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2518          | 5.38          | 187                                              | 00                            | 71                                           | 00        |                                               |
| 1600       | 11,10             | 220              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20,10         | 2120          | 1100                                             | VO                            | / /                                          | V.U       |                                               |
| <b>100</b> | 1 1               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |                                                  |                               |                                              | 1         |                                               |
| Calle      | ted               | Sounda           | 5 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T 160         | 2             |                                                  |                               |                                              |           |                                               |
| <u> </u>   |                   | '                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |                                                  |                               |                                              |           |                                               |
| -          |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |                                                  |                               |                                              | 3         |                                               |
| -          | :                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |                                                  |                               |                                              |           |                                               |
|            |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |                                                  |                               |                                              |           |                                               |
|            |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |                                                  |                               |                                              |           |                                               |
|            |                   |                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |               |                                                  |                               |                                              |           |                                               |
|            |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |                                                  |                               |                                              |           |                                               |
|            |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |                                                  |                               |                                              |           |                                               |
|            |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |                                                  |                               |                                              |           |                                               |
|            |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |                                                  |                               |                                              |           |                                               |
|            |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |                                                  |                               |                                              |           |                                               |
|            |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |                                                  |                               |                                              |           |                                               |
|            |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |                                                  |                               |                                              |           |                                               |
|            |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |                                                  |                               |                                              |           |                                               |
| NOTES:     | 43.3              | 9-10.            | 34 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33,05         | X Q.I         | 7 = 1                                            | 5,62                          | X3                                           | = 16.     | 86                                            |
| 1          | 1                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               | PI                                               |                               |                                              |           |                                               |
|            | A                 | +\$              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vez           | Good          | Vect                                             | 10196                         | ,                                            |           |                                               |
|            | 119/              | 45               | Mas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | atte          | er c          | no les                                           | Well                          | take                                         | $\sqrt{}$ |                                               |
|            | ATTAGE            | 1/12             | THE STATE OF THE S |               | 7             | 1                                                | VV T                          | 10,1                                         |           |                                               |



|   | Wall ID | 511                                                                                                                                                  | - MW/2           |                     |                   |               |                                       |                               |                                              | 17        |                                               |
|---|---------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------|-------------------|---------------|---------------------------------------|-------------------------------|----------------------------------------------|-----------|-----------------------------------------------|
|   | Sample  | 10: <d -<="" th=""><th>- My 3 D</th><th>unlineta ID.</th><th>Dup-</th><th>7</th><th></th><th></th><th>h to Water: _</th><th>,</th><th>19.36</th></d> | - My 3 D         | unlineta ID.        | Dup-              | 7             |                                       |                               | h to Water: _                                | ,         | 19.36                                         |
|   | Sample  | Depth:                                                                                                                                               | ~ C              | uplicate iD:        | - Vap             | _             |                                       |                               | ater after Sa                                |           |                                               |
|   |         |                                                                                                                                                      |                  |                     |                   |               |                                       | Total Depti                   | n to Well:                                   | dill      | ·                                             |
|   | Project | Mama:                                                                                                                                                | TAMPA            | Ch                  | 5 Creek           |               |                                       |                               |                                              |           |                                               |
|   | Project | hame: _                                                                                                                                              | 3-1/             | OTHOR               | Creen             |               |                                       | 1 Casing/B<br>(Circle one     | orehole Volu                                 | ıme:      |                                               |
|   |         | <br>d By:                                                                                                                                            |                  | 74                  |                   |               |                                       |                               | ΄<br>orehole Volu                            | ımes.     |                                               |
|   |         |                                                                                                                                                      | 7                |                     |                   |               |                                       | (Circle one                   | )                                            |           |                                               |
|   |         | of Samplir                                                                                                                                           |                  |                     |                   | <del></del>   |                                       |                               | g/Borehole                                   |           |                                               |
| , | Method  | OI Sampin                                                                                                                                            | ig. <u>Low i</u> | TOW                 |                   |               |                                       | Volumes R                     | emoved:                                      | -         |                                               |
|   | Time    | Depth to<br>Water                                                                                                                                    | Rate<br>(ml/min) | Cum.<br>Vol. (gal.) | Temp.<br>(°C)     | pH<br>(units) | Specific<br>Electrical<br>Conductance | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | Turbidity | Remarks<br>(recharge, color,<br>and sediment) |
|   | 1049    | Bega                                                                                                                                                 | n Pi             | implina             | Well              |               |                                       |                               |                                              |           |                                               |
|   | 1054    | 18.53                                                                                                                                                | 390              | 1                   | 24,99             | 3.87          | 7.49                                  | 00                            | 382                                          | 759       | Dict                                          |
|   | 1059    | 18.77                                                                                                                                                | 300              | 1.75                | 24.37             | 3 X3          | 7,49                                  | G.O                           | 364                                          | 192       | Cleanain                                      |
|   | 1104    | 18.44                                                                                                                                                | 390              | 4                   | 14.52             | 3.84          | 7.51                                  | 0,0                           | 350                                          | 5,3       | Clearly of                                    |
|   | 1109    | 18.84                                                                                                                                                | 300              | 5.5                 | 74.79             | 3.76          | 7.5%                                  | 0.0                           | 242                                          | n. 0      |                                               |
|   | MMI     | <b>B</b>                                                                                                                                             |                  |                     | <del>~ 1///</del> |               |                                       |                               | 710                                          |           |                                               |
|   | VI 113  |                                                                                                                                                      |                  |                     |                   |               |                                       |                               |                                              |           |                                               |
|   | 1110    | (-0                                                                                                                                                  | pole             | Sample              | 2                 |               |                                       |                               |                                              |           |                                               |
|   |         |                                                                                                                                                      | 1000             | 1                   | -                 |               |                                       |                               |                                              |           |                                               |
|   |         |                                                                                                                                                      |                  |                     | _                 |               |                                       |                               |                                              |           |                                               |
| 1 | -       |                                                                                                                                                      |                  |                     |                   |               |                                       |                               |                                              |           |                                               |
|   |         |                                                                                                                                                      |                  |                     |                   |               |                                       |                               |                                              |           |                                               |
|   |         |                                                                                                                                                      |                  |                     |                   |               |                                       |                               |                                              |           |                                               |
|   |         |                                                                                                                                                      |                  |                     |                   |               |                                       |                               |                                              |           |                                               |
|   |         |                                                                                                                                                      |                  |                     |                   |               |                                       |                               |                                              |           |                                               |
|   |         |                                                                                                                                                      |                  | -                   |                   |               |                                       |                               |                                              |           |                                               |
|   |         |                                                                                                                                                      |                  |                     |                   |               |                                       |                               |                                              |           |                                               |
|   |         |                                                                                                                                                      |                  |                     |                   |               |                                       |                               |                                              |           |                                               |
|   |         |                                                                                                                                                      |                  |                     | -                 |               |                                       |                               |                                              |           |                                               |
|   | _       |                                                                                                                                                      |                  |                     |                   |               |                                       |                               |                                              |           |                                               |
|   |         |                                                                                                                                                      |                  |                     |                   |               | <u> </u>                              |                               |                                              |           |                                               |
|   |         |                                                                                                                                                      |                  |                     |                   |               |                                       |                               |                                              |           |                                               |
| 1 |         |                                                                                                                                                      | *                |                     |                   |               |                                       |                               | 100                                          |           |                                               |
| h | NOTES:  | 28.17                                                                                                                                                | 7 - 1            | 7,55                | = 10              | /a ×          | 0.17                                  | = 1.8                         | 1 × 3                                        | - 51      | 12                                            |
| - | /**     | 9011                                                                                                                                                 |                  | 117)                | - 1011            | 600           | Q.17                                  | 1+0                           | 1 X 3                                        | = 5,4     | 17                                            |
|   | 55      |                                                                                                                                                      |                  | 1                   | 600               | ad V          | echaras                               | <del></del>                   |                                              |           |                                               |
|   | F5      | Afthor                                                                                                                                               | Jano             | 0/1                 |                   |               |                                       |                               | -                                            |           |                                               |
|   |         | MEr                                                                                                                                                  | -                | 7                   | 10                | _             |                                       |                               |                                              |           |                                               |
|   | 110     | Tota                                                                                                                                                 |                  |                     |                   |               |                                       |                               |                                              |           |                                               |
|   | 111)    | 107a                                                                                                                                                 | /                |                     |                   |               |                                       |                               |                                              |           |                                               |
|   |         |                                                                                                                                                      |                  |                     |                   |               |                                       |                               |                                              |           |                                               |



|                                                      | 4                                 |               |                                                  |                               |                                              |           |                                               |
|------------------------------------------------------|-----------------------------------|---------------|--------------------------------------------------|-------------------------------|----------------------------------------------|-----------|-----------------------------------------------|
| Well ID:                                             | <b>/</b>                          |               |                                                  | Initial Dept                  | h to Water: _                                | 14,7      | 7                                             |
| Sample ID: SFL MWH Du                                |                                   |               |                                                  |                               | ater after Sa                                | 14.0      | 19.41                                         |
| Sample Depth:                                        |                                   |               |                                                  | -                             | to Well:                                     |           |                                               |
| A T                                                  | 706 150 060                       |               |                                                  |                               | eter: 🕰 📉                                    |           |                                               |
| Project Name: TMP4                                   | Gillons C1                        | cex(          |                                                  | 1 Casing/B<br>(Circle one     | orehole Volu                                 | ıme:      |                                               |
| Date: 6-23-16                                        | < An                              | <del></del>   |                                                  | ·                             | <i>,</i><br>orehole Volu                     | ımaaı     |                                               |
| Sampled By:                                          | <u> </u>                          |               |                                                  | (Circle one                   |                                              | es        |                                               |
| Method of Purging: Subme  Method of Sampling: Low fi |                                   |               |                                                  | Total Casin                   |                                              |           |                                               |
|                                                      |                                   |               | Cassifie                                         | Volumes R                     | emovea:                                      |           |                                               |
| Time Depth to Water Rate (ml/min)                    | Cum.<br>Vol. (gal.) Temp.<br>(°C) | pH<br>(units) | Specific<br>Electrical<br>Conductance<br>(+8/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | Turbidity | Remarks<br>(recharge, color,<br>and sediment) |
| 1158 @ Began                                         | Pumping In                        | 1011          | 21                                               |                               |                                              |           |                                               |
| 1203 1813 350                                        | 3419                              | 6.41          | 7.88                                             | 00                            | - 52                                         | 478       |                                               |
| 1208 1803 1 350                                      | 1.75 26.65                        | 6.39          | 7.88                                             | 0.0                           | - 56                                         | 134       | Clearing                                      |
| 1213 17.99 350                                       | 2.5 26.72                         | 6.39          | 787                                              | 20                            | - 57                                         | 37.4      |                                               |
| 1218 18.73 350                                       | 3,5 2641                          | 6.39          | 7.85                                             | 00                            | -56                                          | 4.0       |                                               |
| 1223 18.41 350                                       | 4.5 26.5                          | 6.31          | 7.82                                             | 0.0                           | -56                                          | 0.0       |                                               |
| 1228 18.63                                           | 5,5 26.2                          | 5 6.38        | 7.82                                             | 00                            | -55                                          | 00        |                                               |
|                                                      |                                   |               | , ,                                              | ,                             |                                              |           |                                               |
| 1229 Began                                           | Danplina                          |               |                                                  |                               |                                              |           |                                               |
|                                                      |                                   |               |                                                  |                               |                                              |           |                                               |
|                                                      |                                   |               |                                                  |                               |                                              |           |                                               |
|                                                      |                                   |               |                                                  |                               |                                              |           |                                               |
|                                                      |                                   |               |                                                  |                               |                                              |           |                                               |
|                                                      |                                   |               |                                                  |                               |                                              |           |                                               |
|                                                      |                                   |               |                                                  |                               |                                              |           |                                               |
|                                                      |                                   |               |                                                  |                               |                                              |           |                                               |
|                                                      |                                   |               |                                                  |                               |                                              |           |                                               |
|                                                      |                                   |               |                                                  |                               |                                              |           |                                               |
|                                                      |                                   |               |                                                  |                               |                                              |           |                                               |
|                                                      |                                   |               |                                                  |                               |                                              |           |                                               |
|                                                      |                                   |               |                                                  |                               |                                              |           |                                               |
|                                                      |                                   |               |                                                  |                               |                                              |           |                                               |
| NOTES: 110 20                                        |                                   | 72 03         |                                                  |                               |                                              |           | 1) 1                                          |
| NOTES: 42,72 -                                       | 14,79=                            | 27.73         | × 0.17                                           | = 4,                          | 75 X                                         | 3=1       | 7.24                                          |
|                                                      |                                   |               |                                                  |                               |                                              |           |                                               |
| +5 After s                                           |                                   | 6000          | Hech                                             | rarge                         | -                                            |           |                                               |
| 1) After 5                                           | 2 ampling                         |               |                                                  |                               |                                              | -         |                                               |
| 10.5 Tatal                                           | # <b>5</b>                        |               |                                                  |                               |                                              |           |                                               |



| Well ID: | SFL               | - Mh             | 1-2                 |               |               |                                       | Initial Depti                 | n to Water:                                  |           | 3                                             |
|----------|-------------------|------------------|---------------------|---------------|---------------|---------------------------------------|-------------------------------|----------------------------------------------|-----------|-----------------------------------------------|
|          |                   | MW2bu            | plicate ID:         |               |               |                                       | •                             | ater after Sa                                | mpling:   | 16.40                                         |
|          | Depth:            | 21/1             | į                   |               |               |                                       | Total Depth                   |                                              | 23,6      |                                               |
| Project  | and Phase         | No.: 6           | 706 15              | 0060          |               |                                       | Well Diame                    | ter: <u> </u>                                | inch      |                                               |
| Project  | Name:             | IMPA             | Gibbar              | 5 Creen       | 4             |                                       |                               | orehole Volu                                 | me:       |                                               |
| Date:    |                   | 3-16             |                     |               |               |                                       | (Circle one                   |                                              |           |                                               |
| Sample   | d By:             | DBH/             | 574                 |               |               |                                       | 4 Casing/Be<br>(Circle one)   | orehole Volu<br>)                            | mes:      | <u></u>                                       |
| Method   | of Purging        | : Subme          | rsible              |               |               |                                       | Total Casin                   | g/Borehole                                   |           |                                               |
| Method   | of Samplin        | g: Low f         | low                 |               |               |                                       | Volumes R                     | emoved:                                      |           |                                               |
| Time     | Depth to<br>Water | Rate<br>(ml/min) | Cum.<br>Vol. (gal.) | Temp.<br>(°C) | pH<br>(units) | Specific<br>Electrical<br>Conductance | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | Turbidity | Remarks<br>(recharge, color,<br>and sediment) |
|          |                   |                  | _                   | (1            |               |                                       |                               |                                              |           |                                               |
| 1333     | Begar             | 1 1 1 1 1 1 1    | ng We               | 2             |               |                                       |                               |                                              |           |                                               |
| 1338     | 13,22             | 390'             | 10.5                | 26.25         | 6.37          | 11.8                                  | 0.0                           | 111                                          | 151       | Klearing                                      |
| 1343     | 19 81             | 300              | 1=                  | 276.00        | 636           | 11.9                                  | ac.                           | 110                                          | 110       |                                               |
| 1348     | 13,22             | 300              | 1.5                 | 25,12         | 6,38          | 11,7                                  | 4.0                           | 110                                          | 27.1      | Clear                                         |
| 1353     | 17/12             | 300              | 3,25                | 25.27         | 6.70          | 120                                   | 0.0                           | 109                                          | 0.0       | Clear                                         |
| 1358     | 15,71             | 300              | 3.75                | 24,35         | 6.38<br>/ 34  | 12.0                                  | a.0                           | 128                                          | 0,0       |                                               |
| 1408     | 16.40             | 300<br>300       | 8                   | 2440          | 6,32          | 120                                   | 1.0                           | 129                                          | 0.0       |                                               |
| 100      | 1014              |                  | 9                   | 01110         | 0,15          | 100                                   | U/C                           | 10/                                          | CiC       |                                               |
| 1412     | Began             | 510              | pling               |               |               |                                       |                               |                                              |           |                                               |
| 7        | 9                 |                  |                     |               |               |                                       |                               |                                              |           |                                               |
|          |                   |                  |                     |               |               |                                       |                               |                                              |           |                                               |
|          |                   |                  |                     |               |               |                                       |                               |                                              |           |                                               |
|          |                   |                  |                     |               |               |                                       |                               |                                              |           |                                               |
|          |                   |                  |                     |               |               |                                       |                               |                                              | -         |                                               |
| -        |                   |                  |                     |               |               |                                       |                               |                                              | -         |                                               |
| -        |                   |                  |                     |               |               |                                       |                               |                                              |           |                                               |
| 2        |                   |                  |                     |               |               |                                       |                               |                                              |           |                                               |
|          |                   |                  |                     |               |               |                                       |                               |                                              |           |                                               |
|          |                   |                  |                     |               |               |                                       |                               |                                              |           |                                               |
|          | -                 |                  | -                   |               |               |                                       |                               |                                              |           |                                               |
| NOTES:   | 2364              | -11              | 13 -                | 125           | 1 7           | ).17 =                                | 213                           | V2                                           | - F       | 30 ,                                          |
| 1        |                   |                  |                     |               |               |                                       |                               |                                              |           | JA 59                                         |
| 39       | 77=               |                  |                     |               | (2)           | od Re                                 | chara                         | e                                            |           |                                               |
|          | +2 <b>5</b>       | After            | Somp line           | )             |               | 110                                   | - ing                         |                                              |           |                                               |
| _        | 1-87              |                  |                     |               |               |                                       |                               |                                              |           |                                               |

10 Total



| <b></b>  | SE                | 1 10              | R                   |               |               |                                       |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|-------------------|-------------------|---------------------|---------------|---------------|---------------------------------------|-------------------------------|----------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Well ID: |                   | /V\W              | <u>ر</u>            |               |               |                                       |                               | h to Water: _                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1        | ID: SFLA          |                   | uplicate ID:        |               |               |                                       | Depth to W                    | ater after Sa                                | mpling:   | 21:13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sample   |                   | majo              | <u> </u>            | 0-10          |               |                                       |                               | n to Well:                                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1        | and Phase         | A                 | 706.15              |               |               |                                       | Well Diame                    | eter:                                        | ·A        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _        | Name:             |                   | Gib                 | cont (        | reck          |                                       | 1 Casing/B<br>(Circle one     | orehole Volu<br>)                            | ıme:      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | d By:             |                   | DRH                 | 15M           | <del></del> - |                                       | 4 Casing/B                    | orehole Volu                                 | ımes:     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | of Purging        |                   | rsible              |               |               | }                                     | (Circle one                   | )                                            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1        | of Samplir        |                   |                     |               |               |                                       | Total Casin<br>Volumes R      | g/Borehole<br>emoved:                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Time     | Depth to<br>Water | Rate<br>(ml/min)  | Cum.<br>Vol. (gal.) | Temp.<br>(°C) | pH<br>(units) | Specific<br>Electrical<br>Conductance | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | Turbidity | Remarks<br>(recharge, color,<br>and sediment)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |                   |                   | DUMAD               | ind           |               | 7.5/0-1                               |                               |                                              |           | the state of the s |
| 1449     | Bee               | 2m 2              |                     |               | rell          |                                       |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1454     | 19.98             | # 400             | 2,5                 | 24,52         | 4.99          | 12.2                                  | 0.0                           | 287                                          | 204       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1459.    | 19.56             | 250               | 3                   | 26.33         | 4.28          | 13.3                                  | 0,0                           | 272                                          | 70 /      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1504     | 19.71             | 250               | 3.5                 | 26.46         | 4 96          | 172                                   | 0.0                           | 2/1/                                         | 5/15      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1509     | 20.49             | 250               | 175                 | 244           | 505           | 12,3                                  | 0.0                           | 263                                          | 0.0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                   |                   |                     |               | -1115         | 12,0                                  | <u> </u>                      |                                              | (1/0.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1511     | Color             | cled              | Samel               | 0             | · _           |                                       |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ,        |                   | <u>, 0   00 \</u> | JAMES               |               | -             |                                       |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                   |                   |                     |               |               |                                       |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                   |                   |                     |               |               |                                       |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                   |                   |                     |               |               |                                       |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                   |                   |                     |               |               |                                       |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                   |                   |                     |               |               |                                       |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                   |                   |                     | -             |               |                                       |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                   |                   |                     |               |               |                                       |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                   |                   |                     |               |               |                                       |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                   |                   |                     |               |               |                                       |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                   |                   |                     |               |               |                                       |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                   |                   |                     |               |               |                                       |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                   |                   |                     |               |               |                                       |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                   |                   |                     |               |               |                                       |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                   |                   |                     |               |               |                                       |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NOTES:   | ) 11 2 5          | 150               | 7 -                 | 0 11 7        | \ \ \         | 17 -                                  | 1 47                          | \ \ \ \ \                                    | 11 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                   | - 17.0            | <u> </u>            | 0.70          | (XV)          | 17=                                   | CTI                           | X 3                                          | = 410     | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4        | 75                |                   |                     |               |               | Decent                                | Radi                          | P                                            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| \        | 1                 | Ftor              | Gamal.              | NØ            | 6-            | Decent<br>1 for L                     | 14                            | 779                                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1        | 10                | 16                | 100                 | 1,5           | 900           | 0 100 1                               | -OW III                       | IW                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



|        | 5=1                       |                  | <u> </u>            |               |               |              |                                                   |                               |                                              | 1 -7 -    | 11                                            |
|--------|---------------------------|------------------|---------------------|---------------|---------------|--------------|---------------------------------------------------|-------------------------------|----------------------------------------------|-----------|-----------------------------------------------|
|        | SFL                       |                  |                     |               |               | -            |                                                   | Initial Depth                 | n to Water: _                                | 1/0       | 0170                                          |
| 1      |                           |                  | plicate ID:         |               |               |              |                                                   | Depth to Wa                   | ater after Sa                                | mpling:   | 01117                                         |
| Sample | Depth: <u></u>            | <u>d1.11</u>     | 20/150              | -/^           |               |              |                                                   | Total Depth                   | to Well:                                     | ×2,11     |                                               |
|        | and Phase                 |                  |                     |               | V AI          |              |                                                   |                               | ter:                                         |           |                                               |
|        |                           |                  | 6,660               | ns Clee       | 1/1/1/ C      |              |                                                   | 1 Casing/Bo<br>(Circle one)   | orehole Volu                                 | me:       |                                               |
|        | 6-23-                     |                  |                     |               |               |              |                                                   | •                             | orehole Volu                                 | mes:      |                                               |
|        | d By:                     | . /              | 1                   |               |               |              |                                                   | (Circle one)                  |                                              |           |                                               |
|        | of Purging                |                  |                     |               |               |              |                                                   | Total Casin                   |                                              |           |                                               |
| Method | of Samplin                | g: Low f         | low                 |               |               |              |                                                   | Volumes Re                    | emoved:                                      |           |                                               |
| Time   | Depth to<br>Water         | Rate<br>(ml/min) | Cum.<br>Vol. (gal.) | Temp.<br>(°C) | pH<br>(units) | Elec         | cific<br>trical<br>ctance<br>(dm)                 | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | Turbidity | Remarks<br>(recharge, color,<br>and sediment) |
| 1541   | Bea                       | an P             | umping              | Well          |               | , ,          |                                                   |                               |                                              |           |                                               |
| 1546   | 19.65                     | 250              | 17                  | 24 95         | 4.84          | 12           | .7                                                | 0.0                           | 214                                          | 162       |                                               |
| 1551   | 20.10                     | 250              | 2,25                | 25.99         | 4.63          | 12           | . X                                               | 00                            | 1/1                                          | 560       |                                               |
| 1556   | 20.93                     |                  | .3                  | 26,09         | 4,40          | 12           | .9                                                | 0.0                           | 254                                          | 152       |                                               |
| 1.3-0  |                           | 7.7.             |                     |               |               |              | <del>' /                                   </del> | 0.0                           |                                              |           |                                               |
| 1558   | Call                      | octec            |                     | amp e         | 5             |              |                                                   |                               |                                              | }         |                                               |
|        |                           | <u> </u>         |                     | 1             |               |              |                                                   |                               |                                              |           |                                               |
|        |                           |                  |                     |               |               |              |                                                   |                               |                                              |           |                                               |
|        |                           |                  | -                   |               |               |              |                                                   |                               |                                              |           |                                               |
|        |                           |                  |                     |               |               |              |                                                   |                               |                                              |           |                                               |
|        |                           |                  |                     |               |               |              |                                                   |                               |                                              |           |                                               |
|        |                           |                  |                     |               |               |              |                                                   |                               |                                              |           |                                               |
|        |                           |                  |                     |               |               |              |                                                   |                               |                                              |           |                                               |
|        |                           |                  |                     |               |               |              |                                                   |                               |                                              |           |                                               |
|        |                           |                  |                     |               |               |              |                                                   |                               |                                              |           |                                               |
|        |                           |                  |                     |               |               |              |                                                   |                               |                                              |           |                                               |
|        |                           |                  |                     |               |               |              |                                                   |                               |                                              |           |                                               |
|        |                           |                  |                     |               |               |              |                                                   |                               |                                              |           |                                               |
|        |                           |                  |                     |               |               |              |                                                   |                               |                                              |           |                                               |
|        |                           |                  |                     |               |               |              |                                                   |                               |                                              |           |                                               |
|        |                           |                  |                     |               |               |              |                                                   |                               |                                              |           |                                               |
|        |                           |                  |                     |               |               |              |                                                   |                               |                                              |           |                                               |
|        |                           |                  |                     |               |               |              |                                                   |                               |                                              |           |                                               |
| NOTES: | 231                       | 1-1              | 7.41 :              | 57            | 0 ×           | 0.1          | 7 -                                               | = 0,91                        | 69 X                                         | 3 =       | 291                                           |
|        | <i>∽</i> J <sub>0</sub> / | ,                |                     | ~ · · ·       | 1 D           | 1            | ,                                                 |                               |                                              |           |                                               |
| _      | /1 <                      |                  |                     | Ba            | d R           | EC/v         | 219                                               | P                             |                                              |           |                                               |
|        | 301/0                     | in 5             |                     |               | •             | <del>-</del> |                                                   |                               |                                              |           |                                               |
|        | 1                         |                  |                     |               |               |              |                                                   |                               |                                              |           |                                               |



|                                        |                  |                  | 1                   |                                        |                 |                                                  |                               |                                              | foster<br>wheeler                           |  |  |
|----------------------------------------|------------------|------------------|---------------------|----------------------------------------|-----------------|--------------------------------------------------|-------------------------------|----------------------------------------------|---------------------------------------------|--|--|
|                                        | SSP/             |                  |                     |                                        |                 | Initial D                                        | epth to Wa                    | er: 6.9                                      | <u>o'</u>                                   |  |  |
| Sample II                              | D:               | Dup              | licate ID: _        |                                        |                 | Depth to                                         | o Water afte                  | er Sampling                                  | 1: 15.28'                                   |  |  |
| 1                                      |                  |                  |                     |                                        |                 | Total De                                         | epth to Well                  | : 43.8                                       |                                             |  |  |
|                                        |                  |                  | 150060              |                                        |                 | Well Dia                                         | meter:                        | <u>u</u>                                     |                                             |  |  |
| I                                      |                  |                  | bons Cr             | rek                                    |                 |                                                  |                               | Volume: _                                    |                                             |  |  |
|                                        | August           | • -              | 16                  |                                        |                 | (Circle o                                        | •                             |                                              |                                             |  |  |
|                                        | ву: _ <b>В</b> У |                  | . 1                 | 4 Casing/Borehole Volumes:(Circle one) |                 |                                                  |                               |                                              |                                             |  |  |
|                                        |                  |                  | rsible pu           | up                                     |                 |                                                  | ising/Boreh                   |                                              |                                             |  |  |
| Method o                               | f Sampling       | : <u>low +</u>   | ow                  |                                        |                 | Volume                                           | s Removed                     |                                              |                                             |  |  |
| Time                                   | Intake<br>Depth  | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.                                  | pH<br>(units)   | Specific<br>Electrical<br>Conductance<br>(us/om) | Dissoived<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potentiai<br>(mV) | Remarks<br>(color, turbidity, and sediment) |  |  |
| Low                                    | Flow Stabi       | lization Cri     | teria               | +/- 3%                                 | +/- 0.1         | +/- 3%                                           | +/- 10%                       | +/- 10%                                      |                                             |  |  |
| 1018                                   | 38'              | 150              |                     | 25.9                                   | 3 5.82          | 8.37                                             | Ø,58                          | -5                                           | NTU: 676 /t. gray/brown;                    |  |  |
| 1023                                   |                  | 175              |                     | 26,00                                  | 5.91            | 8.33                                             | Ø.48                          | -13                                          | NTU:651 " "                                 |  |  |
| 1028                                   | V                | 11               | n 2.5               | 26.3                                   |                 | 8,30                                             | 0.44                          | -15                                          | NTU: 504 beginning to clear                 |  |  |
|                                        | - 6              |                  | 1                   | 1                                      | - 1             |                                                  |                               |                                              | Salaming to cital                           |  |  |
|                                        | 0                | $\alpha m p$     | 195                 | 7                                      | ake             |                                                  |                               |                                              |                                             |  |  |
| ,                                      |                  | /                |                     |                                        |                 |                                                  |                               |                                              |                                             |  |  |
|                                        |                  |                  |                     | _                                      |                 |                                                  |                               |                                              |                                             |  |  |
|                                        |                  |                  |                     | _                                      |                 |                                                  |                               |                                              |                                             |  |  |
|                                        |                  |                  |                     |                                        |                 |                                                  |                               |                                              |                                             |  |  |
|                                        | ·                |                  |                     |                                        |                 |                                                  |                               |                                              |                                             |  |  |
|                                        |                  |                  |                     |                                        |                 |                                                  |                               |                                              |                                             |  |  |
|                                        |                  |                  |                     |                                        |                 |                                                  |                               |                                              |                                             |  |  |
|                                        | 65337165         | and the same     | pH CALIBR           | RATION (                               | (choose two)    |                                                  |                               | М                                            | odel or Unit No.:                           |  |  |
| Buffer Solu                            | ution            |                  |                     | pH 4.0                                 | pH 7.0          | pH 10.0                                          |                               |                                              |                                             |  |  |
| Field Temp                             | perature °C      |                  |                     |                                        |                 |                                                  |                               |                                              | 7.0                                         |  |  |
| Instrument                             | Reading          |                  |                     |                                        |                 |                                                  |                               |                                              |                                             |  |  |
|                                        |                  | IFIC ELEC        | TRICAL CO           | NDUCT                                  | ANCE (SEC)      | - CALIBRATIC                                     | )N                            | M                                            | odel or Unit No.:                           |  |  |
| KCI Solutio                            | n (μS/cm=μ       |                  |                     | 1.12.0017                              | 1413 at 25°C    | 12880 at 25°0                                    |                               | IVII                                         | ouel of Officials.                          |  |  |
| Field Temp                             | erature °C       |                  | _                   |                                        |                 |                                                  |                               |                                              |                                             |  |  |
| Instrument                             | Reading          |                  |                     |                                        |                 |                                                  |                               |                                              | 1                                           |  |  |
| MAN AND                                | ORP/REDC         | X CALIBR         | ATION               | Tental I                               | DISSOLV         | ED OXYGEN (                                      | CALIBRATIO                    | ON No                                        | otes:                                       |  |  |
|                                        | Solution (mV     |                  |                     | -                                      | Altitude / Sali |                                                  |                               | 140                                          | 7.00.                                       |  |  |
| Field Temp                             |                  | -                |                     |                                        | Field Temper    |                                                  |                               |                                              |                                             |  |  |
|                                        | Reading (m       | <br>1V)          |                     |                                        | Instrument Re   |                                                  |                               |                                              |                                             |  |  |
| Model or Unit No.:  Model or Unit No.: |                  |                  |                     |                                        |                 |                                                  |                               |                                              |                                             |  |  |



|                                 |                 | 2.00                |                     |              |                      |                                                  |                               |                                              |              | wheele                  | er         |
|---------------------------------|-----------------|---------------------|---------------------|--------------|----------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|--------------|-------------------------|------------|
|                                 | SSP M           |                     |                     |              |                      | Initial D                                        | epth to Wat                   | er: 21.3                                     | 6'           |                         |            |
| Sample II                       | D:              | Dup                 | licate ID: _        |              | <del></del>          | Depth to                                         | o Water afte                  | er Sampling                                  | : 34.86      |                         |            |
| ı                               |                 |                     |                     |              |                      | Total De                                         | epth to Well                  | : 46.                                        | 70'          |                         |            |
| l .                             |                 | o.: <u>6706</u>     |                     | -            |                      | Well Dia                                         | ımeter:                       | Ju                                           |              | ····                    |            |
|                                 |                 | MPA GI              |                     |              |                      |                                                  | g/Borehole                    | Volume: _                                    |              |                         |            |
|                                 |                 | 23,2016             | <u>-</u>            |              |                      | (Circle o                                        | •                             |                                              |              |                         |            |
|                                 | By:             |                     | 1.1                 |              |                      | 4 Casing<br>(Circle o                            | g/Borehole<br>one)            | Volumes: _                                   |              |                         |            |
| 1                               |                 | <u>Subme</u>        | /1/                 | Sung         |                      | Total Ca                                         | sing/Boreh                    | ole                                          |              |                         |            |
| Method o                        | f Sampling      | 1: <u>    OZN  </u> | Joan)               |              |                      | Volume                                           | s Removed                     |                                              |              |                         |            |
| Time                            | Intake<br>Depth | Rate<br>(ml/min)    | Cum. Vol.<br>(gal.) | Temp<br>(°C) | . pH<br>(units)      | Specific<br>Electrical<br>Conductance<br>(µS/om) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color, turb | Remarks<br>Idity, and s | sediment)  |
| Low                             | Flow Stab       | ilization Cr        | iteria              | +/- 3%       | +/- 0.1              | +/- 3%                                           | +/- 10%                       | +/- 10%                                      |              |                         |            |
| 1110                            | 44'             | 175                 |                     | 25.3         | 6 5.44               | 9.88                                             | Ø.44                          | 47                                           | NTu: 904     | lt.tan:sli              | ight sulfu |
| 1115                            |                 |                     |                     | 25.3         | 7 5.40               | 10.2                                             | Ø.41                          | 45                                           | NTU: 781     | _                       |            |
| 1120                            |                 |                     |                     | 24.99        | 5.40                 | 10.2                                             | 6.40                          | 43                                           | NTU:308      | beginning               | to clear   |
| 1125                            |                 | 1                   | x2.5                | 25.12        | 5.39                 | 10.1                                             | Ø.39                          | 42                                           | NTU: 112     |                         |            |
|                                 |                 |                     |                     | 1            |                      | _                                                |                               |                                              |              |                         |            |
|                                 |                 | Dam                 | ple5                | /            | ake                  | n                                                |                               |                                              |              |                         |            |
|                                 |                 |                     | 1                   |              |                      |                                                  |                               |                                              |              |                         |            |
|                                 |                 |                     |                     |              |                      |                                                  |                               |                                              |              |                         |            |
|                                 |                 |                     |                     |              |                      |                                                  |                               |                                              |              |                         |            |
|                                 | -               |                     |                     |              |                      |                                                  |                               |                                              |              |                         |            |
|                                 |                 |                     |                     |              |                      |                                                  |                               |                                              |              |                         |            |
|                                 |                 |                     |                     |              |                      |                                                  |                               |                                              |              |                         |            |
|                                 |                 |                     | pH CALIBI           | RATION       | (choose two)         |                                                  |                               | M                                            | odel or Unit | No.:                    |            |
| Buffer Solu                     | ution           |                     |                     | pH 4.0       | pH 7.0               | pH 10.0                                          |                               |                                              |              |                         |            |
| Field Temp                      | perature °C     |                     |                     |              |                      |                                                  |                               |                                              |              |                         | - 1        |
| Instrument                      | Reading         |                     |                     |              |                      |                                                  |                               |                                              |              |                         |            |
|                                 | SPEC            | CIFIC ELEC          | TRICAL CO           | ONDUCT       | ANCE (SEC)           | - CALIBRATIO                                     | ON                            | М                                            | odel or Unit | No.:                    |            |
| KCI Solutio                     | n (μS/cm=μ      | ımhos/cm)           |                     |              | 1413 at 25°C         | 12880 at 25°                                     | С                             |                                              |              |                         |            |
| Field Temp                      | erature °C      |                     |                     |              |                      |                                                  |                               |                                              |              |                         |            |
| Instrument                      | Reading         |                     |                     |              |                      |                                                  |                               |                                              |              |                         |            |
|                                 | ORP/RED         | OX CALIBR           | ATION               |              | DISSOLV              | ED OXYGEN (                                      | ON N                          | otes:                                        |              |                         |            |
| Standard S                      | Solution (m     | V) .                |                     |              | Altitude / Sali      | nity %                                           |                               |                                              |              |                         |            |
| Field Temperature °C Field      |                 |                     |                     |              | Field Temperature °C |                                                  |                               |                                              |              |                         |            |
| Instrument Reading (mV) Instrum |                 |                     |                     |              |                      | eading (mg/L)                                    |                               |                                              |              |                         |            |
| Model or Unit No.:              |                 |                     |                     |              | Model or Unit        | No.:                                             |                               |                                              |              |                         |            |



|                                              |                  |                  |                     |                           |                                     |                                                  |                               |                                           |                  | wheeler                         |
|----------------------------------------------|------------------|------------------|---------------------|---------------------------|-------------------------------------|--------------------------------------------------|-------------------------------|-------------------------------------------|------------------|---------------------------------|
| Well ID: _                                   | SSP              | MW-3             |                     |                           |                                     | Initial D                                        | epth to Wat                   | ter: <u>2</u>                             | 7.11             |                                 |
|                                              |                  |                  | licate ID: _        |                           |                                     |                                                  |                               |                                           | ng: <u>31.30</u> |                                 |
| Sample D                                     | epth: 💢 🟄        | 16'              |                     |                           |                                     |                                                  | epth to Wel                   |                                           | 2'               |                                 |
|                                              |                  |                  | 150060              |                           |                                     | Well Dia                                         | ameter:                       | 2"                                        |                  |                                 |
| Project Na                                   | ame: <u> </u>    | APA GI           | hoons Cr            | reek                      | <del></del>                         |                                                  |                               | Volume:                                   |                  |                                 |
|                                              |                  |                  | 6                   |                           |                                     | (Circle                                          | •                             | Valumas                                   |                  |                                 |
|                                              | Ву: <u>78-</u> 4 |                  |                     |                           |                                     | (Circle                                          |                               | volumes                                   |                  |                                 |
|                                              |                  |                  | rsible pur          | MP                        |                                     |                                                  | asing/Boreh                   |                                           |                  |                                 |
| Method of                                    | Sampling         | j: <u>/øw</u>    | flow_               |                           |                                     | Volume                                           | s Removed                     | :                                         |                  |                                 |
| Time                                         | Intake<br>Depth  | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp<br>(°C)              | . pH<br>(units)                     | Specific<br>Electrical<br>Conductance<br>(ps/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation<br>Reductio<br>Potentia<br>(mV) | n (color turb    | Remarks<br>idity, and sediment) |
| Low                                          | Flow Stabi       | ilization Cr     | iteria              | +/- 3%                    | +/- 0.1                             | +/- 3%                                           | +/- 10%                       | +/- 10%                                   |                  |                                 |
| 1205                                         | 46'              | 175              |                     | 24,9                      | 4 4.35                              | 8.21                                             | Ø.41                          | 248                                       | NTU: Ø.Ø         | Tan; no odor                    |
| 1210                                         | ſ                | f                |                     | 25,2                      |                                     | 8,15                                             | Ø.35                          | 261                                       | NTU: Ø. Ø        |                                 |
| 1215                                         |                  |                  |                     | 25.34                     | 1 4,31                              | 8,17                                             | Ø.31                          | 272                                       |                  | Hitan jus ador                  |
| 1220                                         | V                | V                | 33.5                | 25.10                     |                                     | 8.18                                             | Ø,30                          | 276                                       |                  | 11 11                           |
|                                              |                  |                  | _                   | 1                         | -                                   | -1                                               | -                             |                                           |                  |                                 |
|                                              |                  |                  | amb                 | 1.05                      |                                     | aker                                             | 1                             |                                           |                  |                                 |
|                                              |                  |                  |                     |                           |                                     |                                                  |                               |                                           |                  |                                 |
|                                              |                  |                  |                     |                           |                                     |                                                  |                               |                                           |                  |                                 |
|                                              |                  |                  |                     |                           |                                     |                                                  |                               |                                           |                  |                                 |
|                                              |                  |                  |                     |                           |                                     |                                                  |                               |                                           |                  |                                 |
|                                              |                  | -                |                     |                           |                                     |                                                  |                               |                                           |                  |                                 |
|                                              |                  |                  |                     |                           |                                     |                                                  |                               |                                           |                  |                                 |
| SHEET TO                                     |                  | lu vale          | pH CALIBI           | RATION                    | (choose two)                        |                                                  |                               | STEET A                                   | Model or Unit    | No.:                            |
| Buffer Solu                                  | ıtion            |                  |                     | pH 4.0                    | pH 7.0                              | pH 10.0                                          |                               |                                           |                  |                                 |
| Field Temp                                   | erature °C       | -                |                     | -                         |                                     |                                                  |                               |                                           |                  |                                 |
| Instrument                                   |                  |                  |                     |                           |                                     | +                                                |                               |                                           |                  |                                 |
|                                              |                  | CIEIC EL EC      | TRICAL CO           | ONDUCT                    | ANCE (SEC)                          | - CALIBRATION                                    | ON                            |                                           | Model or Unit    | No.*                            |
| KCI Solution                                 |                  |                  | THIOAL GO           |                           | 1413 at 25°C                        | 12880 at 25°                                     |                               |                                           | woder or offic   | 110                             |
|                                              |                  |                  |                     |                           | 1413 at 23 0                        | 12000 at 25                                      |                               |                                           |                  |                                 |
| Field Temperature °C                         |                  |                  |                     |                           | <del></del>                         |                                                  |                               |                                           |                  |                                 |
| Instrument Reading                           |                  |                  |                     |                           |                                     |                                                  |                               |                                           |                  |                                 |
| ORP/REDOX CALIBRATION Standard Solution (mV) |                  |                  |                     |                           | DISSOLVED OXYGEN CALIBRATION Notes: |                                                  |                               |                                           |                  |                                 |
| Standard Solution (mV)                       |                  |                  |                     | Altitude / Salinity %     |                                     |                                                  |                               |                                           |                  |                                 |
|                                              |                  |                  |                     | Field Temperature °C      |                                     |                                                  |                               |                                           |                  |                                 |
|                                              |                  |                  |                     | Instrument Reading (mg/L) |                                     |                                                  |                               |                                           |                  |                                 |
| Model or Unit No.:                           |                  |                  |                     |                           | Model or Unit                       | No.:                                             |                               | -                                         |                  |                                 |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000             |               |                     |               |                                                             |                                                            |                               |                                              |                 | wheeler                      |     |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|---------------------|---------------|-------------------------------------------------------------|------------------------------------------------------------|-------------------------------|----------------------------------------------|-----------------|------------------------------|-----|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | MW-4          |                     |               |                                                             |                                                            | epth to Wat                   |                                              |                 |                              |     |  |
| Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ):              | Dup           | licate ID: _        | DUP-          | L                                                           | Depth to                                                   | o Water afte                  | er Sampling                                  | 40,63           | /                            |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | epth: 🖔         | 111           |                     |               |                                                             | Total De                                                   | epth to Well                  | : <u>51.5</u>                                | 1               |                              |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _               | - Carl        | 150060              | 4             |                                                             | Well Dia                                                   | meter:                        | 2"                                           |                 |                              |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |               | ons Cre             |               |                                                             | 1 Casin                                                    | g/Borehole                    | Volume: _                                    |                 |                              |     |  |
| Date: _A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ugust 2         | 3,2016        | >                   |               | -                                                           | (Circle d                                                  | -                             |                                              |                 |                              |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | By: _ 🔼         |               | -                   |               |                                                             | 4 Casing<br>(Circle o                                      | g/Borehole                    | Volumes:                                     |                 |                              |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |               | rsible pu           | Lmp .         |                                                             | •                                                          | sing/Boreh                    | ole                                          |                 |                              |     |  |
| Method of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f Sampling      | : low.        | flow                |               |                                                             | Volume                                                     | s Removed                     | :                                            |                 |                              |     |  |
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Intake<br>Depth | Rate (ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)                                               | Specific<br>Electrical<br>Conductance<br>(us/om)<br>m.S.cm | Dissoived<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | l He            | emarks<br>ity, and sediment) |     |  |
| Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Flow Stabi      | lization Cr   | iteria              | +/- 3%        | +/- 0.1                                                     | +/- 3%                                                     | +/- 10%                       | +/- 10%                                      |                 |                              |     |  |
| 1312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 49'             | 175           |                     | 25.5          | 0 5.99                                                      | 5.60                                                       | 0,47                          | 126                                          | NTU: 163        | Stained brown no             | الم |  |
| 1317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |               |                     | 25,59         |                                                             | 5,59                                                       | 0.41                          | /15                                          | NTU: 109        | It. tan; no odor             |     |  |
| 1322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |               |                     | 25.81         | 6.11                                                        | 5,57                                                       | Ø,36                          | 108                                          | NTU: 56.3       | clearing up                  |     |  |
| 1327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>V</b>        | V             | i Hgal              | 25.79         |                                                             | 5.59                                                       | ø.35                          | 106                                          | NTu: 33.6       |                              |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | - <           | ٠, ١                | 1             |                                                             | 1                                                          |                               |                                              |                 |                              |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |               | amp                 | les           | Va                                                          | ren                                                        |                               |                                              |                 |                              |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |               |                     |               | •                                                           |                                                            |                               |                                              |                 |                              |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |               |                     |               |                                                             |                                                            |                               |                                              |                 |                              |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |               |                     |               |                                                             |                                                            |                               |                                              |                 |                              |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |               |                     |               |                                                             |                                                            |                               |                                              |                 |                              |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |               |                     |               |                                                             |                                                            |                               |                                              |                 |                              |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |               |                     |               |                                                             |                                                            |                               |                                              |                 |                              |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |               | pH CALIBI           | RATION (      | choose two)                                                 |                                                            |                               | N                                            | odel or Unit N  | lo.:                         |     |  |
| Buffer Solu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ution           |               |                     | pH 4.0        | pH 7.0                                                      | pH 10.0                                                    |                               |                                              |                 |                              |     |  |
| Field Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | perature °C     |               |                     |               |                                                             |                                                            |                               |                                              |                 |                              |     |  |
| Instrument                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Reading         |               | -                   |               |                                                             |                                                            |                               |                                              |                 |                              | .00 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SPEC            | CIFIC ELEC    | TRICAL CO           | ONDUCT        | ANCE (SEC)                                                  | - CALIBRATIO                                               | ON                            | N                                            | lodel or Unit N | lo.:                         |     |  |
| KCI Solutio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |               | -                   |               | 1413 at 25°C                                                | 12880 at 25°                                               |                               |                                              |                 | 7.50                         |     |  |
| Field Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |               |                     |               |                                                             |                                                            |                               |                                              |                 |                              |     |  |
| Instrument                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |               |                     |               |                                                             |                                                            |                               |                                              |                 |                              |     |  |
| Laboratoria de la companya de la com |                 | OX CALIBF     | RATION              |               | DISSOLV                                                     | ED OXYGEN                                                  | CALIBRATI                     | ON N                                         | otes:           |                              |     |  |
| Standard S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |               |                     |               |                                                             |                                                            |                               |                                              |                 | - los 11                     |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |               |                     |               | Altitude / Salinity %  Field Temperature °C  True - Samples |                                                            |                               |                                              | Samples take    | n                            |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |               |                     |               | Instrument Reading (mg/L)                                   |                                                            |                               |                                              |                 |                              |     |  |
| Model or U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |               |                     |               | Model or Unit No.:                                          |                                                            |                               |                                              |                 |                              |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |               |                     |               |                                                             |                                                            |                               |                                              |                 |                              |     |  |



|             | 45.44           |                              |                     |          |                           | 200                                   |                               |                                                |                     | wheeler                            |
|-------------|-----------------|------------------------------|---------------------|----------|---------------------------|---------------------------------------|-------------------------------|------------------------------------------------|---------------------|------------------------------------|
|             | APM             |                              |                     |          |                           | Initial D                             | epth to Wa                    | ter: <u>/ / /</u>                              |                     |                                    |
| Sample II   | D:              | Dupl                         | icate ID: _         |          |                           |                                       | o Water afte                  |                                                |                     | 1.21'                              |
|             | epth:           |                              |                     | <u> </u> |                           |                                       | epth to Well                  |                                                |                     |                                    |
|             |                 | o.: 6706                     |                     |          |                           | Well Dia                              | ameter:                       | <u>2"                                     </u> |                     |                                    |
| Project N   | ame:/           | MPA GI                       | blooms C            | teek     |                           | 1 Casin<br>(Circle o                  |                               | Volume:                                        | <del></del>         |                                    |
|             |                 | 24,20                        | 6                   |          |                           | ,                                     | g/Borehole                    | Volumes                                        | _                   |                                    |
|             | By:             |                              |                     |          |                           | (Circle                               |                               | volumes                                        | ·                   |                                    |
|             |                 | <u> 5 ubmer</u><br>1: low fl |                     | amp      | · <del></del>             |                                       | asing/Boreh<br>s Removed      |                                                |                     |                                    |
| Time        | Intake<br>Depth |                              | Cum. Vol.<br>(gal.) | Temp.    | pH<br>(units)             | Specific<br>Electrical<br>Conductance | Dissoived<br>Oxygen<br>(mg/L) | Oxidation<br>Reduction<br>Potentia             | n-<br>in (color, tu | Remarks<br>irbidity, and sediment) |
| Low         | Flow Stabi      | liization Crit               | oria                | +/- 3%   | ./ 0.1                    | MS/CM                                 | ./ 400/                       | (mV)                                           | NTU                 |                                    |
| LOW         | H1              |                              | ena                 | +/- 3%   | +/- 0.1                   | +/- 3%                                | +/- 10%                       | +/- 10%                                        |                     | 11 - 41                            |
| 0030        |                 | ×175                         |                     | 04 8°    | 7 501                     | 1 -9-7                                | 0 -0                          | 70                                             | DUTU                | r smell mostly                     |
| -925        |                 |                              |                     | 27.0     | 1 5.06                    | 1.77                                  | 0,50                          | 78                                             | 151                 | clearing of                        |
| 940         |                 | ×175                         |                     | 2110     | 5 5 10                    | 11/7                                  | CATT                          | 76                                             | 136                 | Mearly clear                       |
| 0945        |                 | -175                         | ~3.5                | 21.10    | 5,10                      | 1 80                                  | 0,43                          | 76                                             | 46.3                | Masly dea                          |
| 094/        | 1/              |                              | VIFC                | 24,8     | ) 5 <sub>1</sub> (1)      | 1.80                                  | 0,42                          | 76                                             | 22,6                | Cka                                |
| 116         | V               |                              | LLS                 | 1        | 7 16                      | <b>V</b>                              |                               |                                                |                     |                                    |
|             |                 |                              |                     |          |                           |                                       |                               |                                                |                     |                                    |
|             |                 |                              | _                   |          |                           |                                       |                               |                                                |                     |                                    |
|             |                 |                              |                     |          | -                         | ,                                     |                               |                                                |                     |                                    |
|             |                 |                              |                     |          |                           |                                       |                               |                                                |                     |                                    |
|             |                 |                              |                     |          | . 0                       |                                       |                               |                                                | -                   |                                    |
|             | Menanta (1997)  |                              |                     |          |                           |                                       |                               | 1                                              |                     |                                    |
|             |                 |                              | PH CALIBI           |          | choose two)               |                                       |                               |                                                | Model or U          | nit No.:                           |
| Buffer Solu |                 |                              |                     | pH 4.0   | pH 7.0                    | pH 10.0                               |                               |                                                |                     |                                    |
| Field Temp  | perature °C     |                              |                     |          |                           |                                       |                               |                                                |                     |                                    |
| Instrument  | Reading         |                              |                     |          |                           |                                       |                               |                                                |                     |                                    |
|             | SPEC            | CIFIC ELECT                  | TRICAL CO           | NDUCTA   | ANCE (SEC)                | - CALIBRATIO                          | ON                            |                                                | Model or U          | nit No.:                           |
| KCI Solutio | n (μS/cm=μ      | ımhos/cm)                    |                     |          | 1413 at 25°C              | 12880 at 25°                          | С                             |                                                |                     | 1                                  |
| Field Temp  | erature °C      |                              |                     |          |                           |                                       |                               |                                                |                     | j                                  |
| Instrument  |                 | <u>.</u>                     |                     |          |                           |                                       |                               |                                                |                     |                                    |
|             | ORP/REDO        | OX CALIBRA                   | ATION               |          | DISSOLV                   | ED OXYGEN                             | CALIBRATI                     | ON                                             | Notes:              |                                    |
|             | Solution (m\    |                              |                     | 1,       | Altitude / Salir          |                                       |                               |                                                |                     |                                    |
|             |                 |                              |                     |          | Field Tempera             |                                       | 1                             | -+                                             |                     |                                    |
|             |                 |                              |                     |          | Instrument Reading (mg/L) |                                       |                               |                                                |                     |                                    |
|             |                 |                              |                     |          | Model or Unit             |                                       | 1                             |                                                |                     |                                    |
|             |                 |                              |                     |          |                           |                                       |                               |                                                |                     |                                    |



| Well ID:               | APMU                | -10              |                     |                          |                           | Initial D                                        | epth to Wa                    | ter: 13.                                     | 72             | 570                                 |
|------------------------|---------------------|------------------|---------------------|--------------------------|---------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|----------------|-------------------------------------|
|                        | D:                  |                  | licate ID: 👤        | DUP-                     | 2                         | Depth to                                         | ·<br>o Water afte             | er Sampling                                  | : 14.          | 27'                                 |
| Sample 1               | Depth: <del>¾</del> | 40.5             |                     |                          |                           | Total De                                         | epth to Wel                   | 1: 43°                                       |                |                                     |
| Project a              | ınd Task No         | .: 6706          | 150060              |                          |                           | Well Dia                                         | ·<br>ameter:                  | 211                                          |                |                                     |
| Project N              | Name: TA            | 11A G            | iblans              | Creel                    | Mine                      |                                                  | g/Borehole                    | Volume: _                                    |                |                                     |
|                        | By:                 |                  |                     |                          |                           | •                                                | •                             | Volumes:                                     |                |                                     |
|                        | of Purging:         |                  | Kille P             | чиР                      |                           | (Circle                                          |                               |                                              |                |                                     |
|                        | of Sampling         |                  | Flow                | 4MP                      |                           |                                                  | asing/Borel<br>s Removed      | nole<br>I:                                   |                |                                     |
| Time                   | Intake<br>Depth     | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.                    | pH<br>(units)             | Specific<br>Electrical<br>Conductance<br>(ps/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | 15 M. S. S. S. | Remarks<br>turbidity, and sediment) |
| Low                    | Flow Stab           | lization Cr      | iteria              | +/- 3%                   | +/- 0.1                   | +/- 3%                                           | +/- 10%                       | +/- 10%                                      |                |                                     |
| 1158                   | 240,5               | 175              |                     | 27.50                    | 5.72                      | 2.02                                             | Ø,65                          | 10                                           | 693            | It. tan; strong egg/sulfa           |
| 1203                   | 1                   |                  |                     | 27.7                     |                           | 2.05                                             | Ø.49                          | 17                                           | 827            | 11 11 11 11                         |
| 1208                   |                     |                  |                     | 27.19                    | 5.70                      | 2.08                                             | 0.40                          | 27                                           | 304            | elearing up; 11 11 11               |
| 1213                   | W_                  | V                | W. 7.0              | 27.2                     | 5 5.69                    | 2,09                                             | Ø.38                          | 36                                           | 114            |                                     |
| -                      |                     | _                |                     |                          | -                         |                                                  |                               |                                              |                |                                     |
|                        |                     |                  | empl                | es_                      | 1 at                      | cen                                              |                               |                                              |                |                                     |
|                        |                     |                  |                     |                          |                           |                                                  |                               |                                              |                |                                     |
| D.#. 0.                |                     |                  | PH CALIBI           |                          | (choose two)              |                                                  |                               | M                                            | odel or        | Unit No.:                           |
| Buffer So              |                     |                  |                     | pH 4.0                   | pH 7.0                    | pH 10.0                                          |                               |                                              |                |                                     |
| <u> </u>               | perature °C         |                  |                     |                          |                           |                                                  |                               |                                              |                |                                     |
| Instrumer              | nt Reading          |                  |                     | Secretary and the second |                           |                                                  |                               |                                              |                |                                     |
|                        | SPEC                | CIFIC ELEC       | TRICAL CO           | ONDUCT                   | ANCE (SEC)                | - CALIBRATIO                                     | ON                            | M                                            | odel or        | Unit No.:                           |
| KCI Soluti             | on (μS/cm=μ         | ımhos/cm)        |                     |                          | 1413 at 25°C              | 12880 at 25°                                     | С                             |                                              |                |                                     |
| Field Tem              | perature °C         |                  |                     |                          |                           |                                                  |                               |                                              |                |                                     |
| Instrumen              | t Reading           |                  |                     |                          |                           |                                                  |                               |                                              |                |                                     |
|                        | ORP/RED             | OX CALIBF        | RATION              | 445.49                   | DISSOL                    | ED OXYGEN                                        | CALIBRATI                     | ON N                                         | otes:          |                                     |
| Standard Solution (mV) |                     |                  |                     |                          | Altitude / Sal            |                                                  |                               | D                                            | UP-            | -2 taken                            |
|                        |                     |                  |                     |                          | Field Temperature °C      |                                                  |                               |                                              |                |                                     |
| Instrumer              | nt Reading (r       | mV)              |                     |                          | Instrument Reading (mg/L) |                                                  |                               |                                              |                |                                     |
| Model or               | Unit No.:           |                  |                     |                          | Model or Uni              | t No.:                                           |                               |                                              |                |                                     |

| 1                       | SAMPI<br>OR DEV | LING<br>ELOPM    | IENT R            | ECOF       | RD                        |                    |                                       |                        |      |                                 |              |          | amec<br>foster                      |
|-------------------------|-----------------|------------------|-------------------|------------|---------------------------|--------------------|---------------------------------------|------------------------|------|---------------------------------|--------------|----------|-------------------------------------|
| Well ID:                | APMI            | N-5              |                   |            |                           |                    | Initial D                             | epth to                | Wat  | er:                             | 10.          | 61       | wheeler                             |
| Sample I                | D:              | Du               | plicate ID:       |            |                           |                    | Depth to Water after Sampling:        |                        |      |                                 |              |          |                                     |
| 1 .                     | Depth:          | 41               |                   |            |                           | -                  | Total Depth to Well: 43.1             |                        |      |                                 |              |          |                                     |
|                         |                 | o.: <u>670</u>   |                   |            |                           |                    | Well Diameter:                        |                        |      |                                 |              |          |                                     |
|                         | lame: 1         |                  | Sibbons           | 5 (1       | cci                       | K Mine             | 1 Casing<br>(Circle o                 | g/Bore<br>one)         | hole | Volum                           | e:           |          |                                     |
| Sampled                 | ву: <u>В</u>    | 5/5M             |                   |            |                           |                    | 4 Casing                              | g/Bore                 | hole | Volum                           | es:          |          |                                     |
| Method o                | of Purging:     | _Sub             | narsi ble         | 1          | VM                        | P                  | (Circle o                             | •                      |      | ماء                             |              |          |                                     |
| Method o                | of Sampling     | : Law            | flow              |            |                           |                    | Volume                                | s Remo                 | oved | oie<br>:                        |              | <u> </u> |                                     |
| Time                    | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vo<br>(gal.) | Ten<br>(°C |                           | pH<br>(units)      | Specific<br>Electrical<br>Conductance | Dissoi<br>Oxyg<br>(mg/ | en   | Oxidat<br>Reduc<br>Poten<br>(mV | tion<br>tiai | color,   | Remarks<br>turbidity, and sediment) |
| Low                     | Flow Stab       | ilization Cr     | iteria            | +/- 3      | 3%                        | +/- 0.1            | +/- 3%                                | +/- 10                 | 0%   | +/- 10                          |              | VIV      |                                     |
| 1402                    | 41'             | 900              |                   | 24,8       | 5                         | 3.77               | 551                                   | 1,4.                   | 3    | 301                             | 5            | 18       | 1114 1                              |
| 1407                    |                 | 200              |                   | 24.6       | 4                         | 3.67               | 5,49                                  | 0.5                    |      | 319                             |              | 80       | 11 /                                |
| 1412                    | V               | a00              | 3.5               | 24,        | 16                        |                    | 5.54                                  | 0,4                    | , 7  | 33                              |              | 72,3     | COLING UA                           |
| 1412                    |                 | DAMPL            | LD5               |            |                           | lecto              |                                       | <del></del>            |      |                                 |              |          | J. Ting op                          |
|                         |                 | ' V V            |                   |            |                           | 110010             |                                       |                        |      |                                 |              |          |                                     |
|                         |                 |                  |                   |            |                           |                    |                                       |                        |      |                                 |              |          |                                     |
|                         |                 |                  |                   |            |                           |                    |                                       |                        |      |                                 |              |          |                                     |
|                         |                 |                  |                   |            |                           |                    |                                       |                        |      |                                 |              |          |                                     |
|                         |                 |                  |                   |            |                           |                    |                                       |                        |      |                                 |              |          |                                     |
|                         |                 |                  |                   |            | _                         |                    |                                       |                        |      |                                 |              |          |                                     |
|                         |                 |                  | *                 |            |                           |                    |                                       |                        |      |                                 |              |          |                                     |
|                         |                 |                  |                   |            |                           |                    |                                       |                        |      |                                 |              |          |                                     |
|                         |                 |                  | pH CALIB          | RATIO      | V (ct                     | noose two)         |                                       |                        | NA.  |                                 | Mod          | el or l  | Init No.:                           |
| Buffer Solu             | ıtion           |                  |                   | pH 4.      | .0                        | pH 7.0             | pH 10.0                               |                        |      |                                 | 1            |          |                                     |
| Field Temp              | erature °C      |                  |                   |            |                           |                    |                                       |                        |      |                                 | 1            |          |                                     |
| Instrument              | Reading         |                  |                   |            |                           |                    |                                       |                        |      |                                 | 1            |          |                                     |
|                         | SPEC            | IFIC ELEC        | TRICAL C          | ONDUC      | TAN                       | ICE (SEC) -        | CALIBRATIO                            | N                      | 1819 |                                 | Mode         | el or I  | nit No.:                            |
| KCI Solution            |                 |                  |                   |            | _                         | 413 at 25°C        | 12880 at 25°C                         | _                      |      |                                 | 10.000       | J. O. O  | THE NO.:                            |
| Field Tempe             | erature °C      |                  |                   | -          | +                         |                    |                                       | -                      |      |                                 | 1            |          |                                     |
| nstrument F             |                 |                  |                   |            | +-                        |                    |                                       | +                      |      |                                 |              |          |                                     |
|                         |                 | X CALIBR         | ATION             |            |                           | DISSOLVE           | D OXYGEN C                            | AI IRD                 | ATIC | AF                              | Note         |          |                                     |
| Standard Solution (mV)  |                 |                  |                   |            |                           | titude / Salin     |                                       | ALIDN.                 | AIR  |                                 | Note         | s:<br>   |                                     |
| Field Temperature °C    |                 |                  |                   |            | Field Temperature °C      |                    |                                       |                        |      |                                 |              |          |                                     |
| Instrument Reading (mV) |                 |                  |                   |            | Instrument Reading (mg/L) |                    |                                       |                        |      |                                 |              |          |                                     |
| Model or Unit No.:      |                 |                  |                   |            |                           | Model or Unit No.: |                                       |                        |      |                                 |              |          |                                     |
|                         |                 |                  |                   |            |                           |                    |                                       |                        |      |                                 |              |          |                                     |





|                        |                                                  |                  |                     |               |                    |                                       |                               |                                                 |               | foster<br>wheeler              |  |  |  |  |
|------------------------|--------------------------------------------------|------------------|---------------------|---------------|--------------------|---------------------------------------|-------------------------------|-------------------------------------------------|---------------|--------------------------------|--|--|--|--|
| Well ID: _             | Well ID: AP MW - H Initial Depth to Water: 12.56 |                  |                     |               |                    |                                       |                               |                                                 |               |                                |  |  |  |  |
| Sample ID              | ):                                               | Dup              | licate ID: _        |               |                    | Depth to                              | o Water afte                  | er Samplin                                      | g: <b>4</b> 5 | 14.68                          |  |  |  |  |
| Sample D               |                                                  | )                |                     |               |                    | Total De                              | epth to Wel                   | l: <u>      5                              </u> | 3.81          |                                |  |  |  |  |
|                        |                                                  |                  | 6150                |               |                    | t .                                   | ameter: 📿                     | "                                               |               |                                |  |  |  |  |
| Project Na             |                                                  | MPA              | Gibban              | 5             | Treek M            |                                       | g/Borehole                    | Volume: _                                       |               |                                |  |  |  |  |
| Date: <u>&amp;</u>     |                                                  | 6                |                     |               |                    | (Circle                               | •                             |                                                 |               |                                |  |  |  |  |
| Sampled I              | Ву: <u>К<i>6</i></u>                             | -                | VIII                |               |                    | 4 Casın<br>(Circle d                  | g/Borehole<br>one)            | Volumes:                                        |               |                                |  |  |  |  |
| Method of              |                                                  | 1                | esible              | - Pum         | <u> </u>           |                                       | asing/Borel                   |                                                 |               |                                |  |  |  |  |
| Method of              | Sampling                                         | · Law            | - Flaw              |               | <del></del>        | Volume<br>                            | s Removed                     | •                                               | ***           |                                |  |  |  |  |
| Time                   | Intake<br>Depth                                  | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)      | Specific<br>Electrical<br>Conductance | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV)    |               | Remarks rbidity, and sediment) |  |  |  |  |
| Low                    | Flow Stabi                                       | lization Cr      | Iteria              | +/- 3%        | +/- 0.1            | +/- 3%                                | +/- 10%                       | +/- 10%                                         |               | Light all 5                    |  |  |  |  |
| 1442                   | 1472 50' 200                                     |                  |                     | 24.6          | 15.46              | 4.81                                  | 0.52                          | 54                                              | 752           | Dark From                      |  |  |  |  |
| 1447                   |                                                  | 200              |                     | 25.9          | 4 5.49             | 4.83                                  | 0.41                          | 54                                              | 684           | U.                             |  |  |  |  |
| 1452                   |                                                  | 300              |                     | 27.14         | 5.48               | 4.85                                  | 0.41                          | 54                                              | 568           | cleaning 5/                    |  |  |  |  |
| 1457                   | ***                                              | 200              | 2,5                 | Q7.30         | 5.49               | 7.86                                  | 0.38                          | _54                                             | 254           |                                |  |  |  |  |
| 1457                   | ' 4                                              | ample            | 25 (                |               | locto              |                                       |                               |                                                 |               |                                |  |  |  |  |
|                        |                                                  |                  |                     |               | 14                 | 1                                     |                               |                                                 |               |                                |  |  |  |  |
|                        |                                                  |                  |                     |               |                    |                                       |                               |                                                 |               |                                |  |  |  |  |
|                        |                                                  |                  |                     |               |                    |                                       |                               |                                                 |               |                                |  |  |  |  |
|                        |                                                  |                  |                     |               | -                  |                                       |                               |                                                 | ,             |                                |  |  |  |  |
|                        |                                                  |                  |                     |               |                    |                                       |                               |                                                 |               |                                |  |  |  |  |
|                        |                                                  |                  |                     |               |                    |                                       |                               |                                                 |               |                                |  |  |  |  |
|                        |                                                  |                  |                     |               |                    | White and the second                  |                               |                                                 |               |                                |  |  |  |  |
|                        |                                                  |                  | pH CALIBI           |               | (choose two)       |                                       |                               | V                                               | Model or Ur   | ni No.:                        |  |  |  |  |
| Buffer Solu            |                                                  |                  |                     | pH 4.0        | pH 7.0             | pH 10.0                               |                               |                                                 |               |                                |  |  |  |  |
| Field Temp             | erature °C                                       |                  |                     |               |                    |                                       |                               |                                                 |               | - 1                            |  |  |  |  |
| Instrument             | Reading                                          |                  |                     |               |                    |                                       |                               |                                                 |               |                                |  |  |  |  |
|                        | SPEC                                             | IFIC ELEC        | TRICAL CO           | ONDUCT        | ANCE (SEC)         | - CALIBRATIO                          | ON                            | N                                               | lodel or Ur   | nit No.:                       |  |  |  |  |
| KCl Solution           | n (μS/cm=μ                                       | ımhos/cm)        |                     |               | .1413 at 25°C      | 12880 at 25°                          | C                             |                                                 |               |                                |  |  |  |  |
| Field Temp             | erature °C                                       |                  | _                   |               |                    |                                       |                               |                                                 |               |                                |  |  |  |  |
| Instrument             | Reading                                          | _                |                     |               |                    |                                       |                               |                                                 |               |                                |  |  |  |  |
|                        | ORP/REDO                                         | OX CALIBF        | RATION              |               | DISSOLV            | ED OXYGEN                             | CALIBRATI                     | ON N                                            | lotes:        |                                |  |  |  |  |
| Standard Solution (mV) |                                                  |                  |                     |               | Altitude / Sali    | nity %                                |                               | E                                               | QBK '         | 8-24 collected                 |  |  |  |  |
| Field Temperature °C   |                                                  |                  |                     |               | Field Temper       | ature °C                              |                               |                                                 | @ 1518        |                                |  |  |  |  |
| Instrument             | Reading (r                                       | nV)              |                     |               | Instrument R       | eading (mg/L)                         |                               |                                                 |               |                                |  |  |  |  |
| Model or U             | nit No.:                                         |                  |                     |               | Model or Unit No.: |                                       |                               |                                                 |               |                                |  |  |  |  |



|                            |                        |              |                     |               |                           |                                                  |                                        |         |                                          | wheeler         |  |  |  |
|----------------------------|------------------------|--------------|---------------------|---------------|---------------------------|--------------------------------------------------|----------------------------------------|---------|------------------------------------------|-----------------|--|--|--|
|                            | SFLI                   |              | ····                |               |                           | Initial D                                        | Initial Depth to Water:                |         |                                          |                 |  |  |  |
|                            |                        | Dup          | licate ID: _        |               |                           | Depth to                                         | Depth to Water after Sampling: 21.23   |         |                                          |                 |  |  |  |
|                            | epth: <del>%</del>     |              |                     |               |                           |                                                  | Total Depth to Well: 23.//             |         |                                          |                 |  |  |  |
|                            |                        | 6706         |                     |               | <del></del>               | Well Dia                                         | Well Diameter: 2 4                     |         |                                          |                 |  |  |  |
|                            |                        | 4PA Gu       |                     |               |                           | 1 Casing<br>(Circle o                            | 1 Casing/Borehole Volume:(Circle one)  |         |                                          |                 |  |  |  |
| Sampled                    | By: <u> <b>5</b> /</u> | 1            |                     |               |                           | 4 Casing<br>(Circle o                            | 4 Casing/Borehole Volumes:(Circle one) |         |                                          |                 |  |  |  |
|                            |                        | Subme        |                     | ump           |                           |                                                  | asing/Borel                            | ole     |                                          |                 |  |  |  |
| Method o                   | f Sampling             | :_/ow        | flow                |               |                           |                                                  | s Removed                              |         |                                          |                 |  |  |  |
| Time Depth (mi/min) (gal.) |                        |              | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)             | Specific<br>Electrical<br>Conductance<br>(µS/cm) | ectrical ductance (mg/L)               |         | Remarks (color, turbidity, and sediment) |                 |  |  |  |
|                            | Flow Stabl             | lization Cri | teria               | +/- 3%        | +/- 0.1                   | +/- 3%                                           | +/- 10%                                | +/- 10% | NTU                                      |                 |  |  |  |
| 8:40                       | \$20                   | 200          |                     | 24.3          | 3 4.09                    | 12.9                                             | 1.11                                   | 351     | 98.3                                     | H. tan; no odor |  |  |  |
| 8:45                       |                        |              |                     | 24.4          |                           | 13.0                                             | Ø.88                                   | 334     | 29.3                                     | clearing up     |  |  |  |
| 8,50                       |                        |              |                     | 24.4          |                           | 13.0                                             | Ø.98                                   | 335     | 11.0                                     | clear           |  |  |  |
| 8:55                       |                        |              |                     | 24.5          | 4 3.93                    | 12.9                                             | 1.27                                   | 344     | 53.3                                     |                 |  |  |  |
| 9:00                       | V                      | V            |                     | 24.7          | 0 3.88                    | 12.9                                             | 1,40                                   | 350     | 112                                      |                 |  |  |  |
|                            |                        | 4            |                     | X             | A                         | 1                                                | h ->                                   |         |                                          |                 |  |  |  |
| - 4                        |                        | 9            | any                 | ses           | 1/9                       | nen                                              |                                        |         | 1                                        |                 |  |  |  |
| 1.0                        |                        | 1 4          | <b>/</b>            |               | 1                         | , ,                                              | 1                                      |         | ļ.,.,.                                   |                 |  |  |  |
| A Very                     | o Stopp                | ed pull      | ing wa              | ter,          | wing 50                   | emple col                                        | ection                                 | (WIL h  | ad dra                                   | wn down).       |  |  |  |
| NOT                        | enough                 | Volume       | recha               | ige in        | well to                   | collect san                                      | nples - 1                              | Will re | turn le                                  | ater            |  |  |  |
| 70 M                       | are an                 | other s      | ample d             | ttemp         | 7                         |                                                  |                                        |         | ļ                                        |                 |  |  |  |
|                            | DATE OF STREET         |              | - L CALIDI          | PATION        | Shoose two                |                                                  |                                        |         |                                          |                 |  |  |  |
| Buffer Solu                | rtion.                 |              | PH CALIBI           |               | choose two)               |                                                  |                                        | N       | lodel or U                               | nit No.:        |  |  |  |
|                            |                        |              |                     | pH 4.0        | pH 7.0                    | pH 10.0                                          |                                        |         |                                          | V               |  |  |  |
| Field Temp                 |                        |              |                     |               |                           |                                                  |                                        |         |                                          |                 |  |  |  |
| Instrument                 |                        |              |                     |               |                           |                                                  |                                        |         |                                          |                 |  |  |  |
|                            |                        |              | TRICAL CO           | ONDUCT        | ANCE (SEC)                | - CALIBRATIC                                     | N                                      | M       | lodel or U                               | nit No.:        |  |  |  |
| KCI Solution               |                        | mhos/cm)     |                     |               | 1413 at 25°C              | 12880 at 25°                                     | С                                      |         |                                          |                 |  |  |  |
| Field Temp                 | erature °C             |              |                     |               |                           |                                                  |                                        |         |                                          |                 |  |  |  |
| Instrument I               | Reading                |              |                     |               |                           |                                                  |                                        |         |                                          |                 |  |  |  |
|                            | ORP/REDO               | X CALIBR     | ATION               |               | DISSOLV                   | ED OXYGEN (                                      | CALIBRATI                              | ON N    | lotes: ///                               | 6-WL=19.66      |  |  |  |
|                            | Standard Solution (mV) |              |                     |               |                           | nity %                                           |                                        |         |                                          |                 |  |  |  |
| Field Temp                 |                        |              |                     |               | Field Temperature °C      |                                                  |                                        |         |                                          |                 |  |  |  |
| Instrument                 |                        | nV)          |                     | 100           | Instrument Reading (mg/L) |                                                  |                                        |         |                                          |                 |  |  |  |
| Model or U                 | nit No.:               |              |                     |               | Model or Unit No.:        |                                                  |                                        |         |                                          |                 |  |  |  |
|                            |                        |              |                     |               |                           |                                                  |                                        |         |                                          |                 |  |  |  |

| 1              | SAMPL<br>OR DEV        |               | IENT RE       | COR    | D                         |                 |                                                   |             |                    |                                             |               | amec<br>foster                     |  |
|----------------|------------------------|---------------|---------------|--------|---------------------------|-----------------|---------------------------------------------------|-------------|--------------------|---------------------------------------------|---------------|------------------------------------|--|
| Well ID:       | SFL                    | MW-           | 5             |        |                           |                 | Initial [                                         | )ent        | th to Wa           | ter:                                        |               | wheeler 15.96'                     |  |
| Sample II      | D:                     | Dup           | plicate ID: _ |        |                           |                 |                                                   |             |                    | er Samplir                                  | ad:           | 19.181                             |  |
| Sample D       | Depth:                 | <u>22'</u>    |               |        |                           |                 | Total D                                           | enti        | h to Wel           | lı Janıpı                                   | 1g:<br>24.3 ' | 11.10                              |  |
|                | nd Task No             | o.: <u>67</u> | 70615         | 006    | 0                         |                 | Total Depth to Well: 24,3  Well Diameter:         |             |                    |                                             |               |                                    |  |
|                | lame: <u>7</u><br>8-25 | MPA G         | Siblms        |        |                           |                 | 1 Casing/Borehole Volume:(Circle one)             |             |                    |                                             |               |                                    |  |
|                | By: _ \$ 6             |               |               |        | _                         |                 | -                                                 |             | •                  | Volumes:                                    |               |                                    |  |
| 1              |                        | Submers       | able P        | NMP    |                           |                 | (Circle (                                         | one         | ·)                 |                                             |               |                                    |  |
|                |                        |               | Flaw          | /      | _                         |                 | Total Ca<br>Volume                                | asin<br>s R | ng/Boreh<br>emoved | nole<br> :                                  |               |                                    |  |
| Time           | Intelle Bot Cum. Vol.  |               |               |        | np. pH                    |                 | Specific<br>Electrical<br>Conductance<br>(p3/ent) | Dissolved   |                    | Oxidation<br>Reduction<br>Potential<br>(mV) | n (oolor (    | Remarks<br>turbidity, and sediment |  |
| Low            | Flow Stabi             | ilization Cri | iteria        | +/- 3% | %                         | +/- 0.1         | +/- 3%                                            | +           | /- 10%             | +/- 10%                                     | APTI          |                                    |  |
| 0942           | 22'                    | 300           |               | 24.8   | (2                        |                 | 11.8                                              | +           | 78                 | 320                                         | NTU 43.6      | M +                                |  |
| 947            | İ                      | 150           |               | 25,4   |                           | 4.34            | 11.8                                              |             | 51                 | 301                                         | 40,1          | 1                                  |  |
| 0952           | V                      | 150           | 3.0           | 25.8   | _                         | 4.34            | 11.8                                              | 1           | 3.5c               | 213                                         | 10.6          | NO Odac                            |  |
| 0952           | -5                     | AMP           | e5            |        | <u>∍</u>   ¢              | 20 10           |                                                   |             |                    |                                             |               |                                    |  |
|                |                        | 7.            |               |        |                           |                 |                                                   |             |                    |                                             |               |                                    |  |
| STAR SE        |                        |               | pH CALIBR     | RATION | (ch                       | nose two)       |                                                   |             |                    |                                             | Model or L    | 1.00 N I = 1                       |  |
| Buffer Solu    | ition                  |               |               | pH 4.0 | T                         | pH 7.0          | pH 10.0                                           |             |                    |                                             | /louer or c   | Jnit No.:                          |  |
| Field Temp     |                        |               |               |        |                           | P               | pi                                                |             |                    |                                             |               |                                    |  |
| Instrument     |                        |               |               |        | +                         |                 | +                                                 |             |                    |                                             |               |                                    |  |
| NO DESCRIPTION |                        | IFIC ELEC     | TRICAL CC     | NDUCT  | TAN                       | CE (SEC) -      | CALIBRATIC                                        | N           | 25.23              | N.                                          | Model or L    | late Nia i                         |  |
| KCl Solution   |                        |               |               | 1      |                           | 413 at 25°C     | 12880 at 25°0                                     |             |                    | 14                                          | TOUGH OF C    | mit ivo.;                          |  |
| Field Tempe    |                        | ,             |               |        |                           | 10 41 25        | 12000 4, 22                                       | +           |                    |                                             |               |                                    |  |
| Instrument F   |                        |               |               |        |                           |                 |                                                   | +           |                    |                                             |               |                                    |  |
|                |                        | OX CALIBRA    | ATION         |        | 100                       | DISSOLVI        | ED OXYGEN (                                       | CAL         | IRRATIO            | ON N                                        | lotes:        |                                    |  |
| Standard Sc    |                        |               | T             |        | Alt                       | titude / Salini |                                                   | 7           | IDIIA              | )N                                          | Oles.         |                                    |  |
| Field Tempe    |                        | <u>-</u>      | +             |        | Field Temperature °C      |                 |                                                   |             |                    |                                             |               |                                    |  |
| Instrument I   | Reading (m             | 1V)           |               |        | Instrument Reading (mg/L) |                 |                                                   |             |                    |                                             |               |                                    |  |
| Model or Ur    | nit No.:               |               |               |        | Model or Unit No.:        |                 |                                                   |             |                    |                                             |               |                                    |  |



| Well ID:                 | SFL                                             | MW-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                          |                           | initial D                                        | epth to Wa                              | ter: 10   | .521                           | wheeler        |  |
|--------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------|---------------------------|--------------------------------------------------|-----------------------------------------|-----------|--------------------------------|----------------|--|
| Sample II                | D:                                              | Dun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                          |                           |                                                  | o Water afte                            |           |                                | 681            |  |
| Sample D                 | epth:                                           | 21'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                          |                           |                                                  | onth to Wal                             | າ. ລິຊ    |                                |                |  |
| Project a                | nd Task No                                      | .: <u>6</u> 706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15006      | 0                        |                           |                                                  | ameter:                                 | à"        |                                |                |  |
| Project N                | ame: <u>71</u>                                  | UPA G;<br>25, 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | bbons C    | reek                     | ·                         | 1 Casin<br>(Circle                               | g/Borehole<br>one)                      | Volume: _ |                                |                |  |
| Sampled                  | By: <u>5</u> 1                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                          |                           | 4 Casin<br>(Circle                               | g/Borehole<br>one)                      | Volumes:  |                                | 4              |  |
|                          |                                                 | 5 ubme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | namo                     |                           | ,                                                | asing/Borel                             | nole      |                                |                |  |
| Method o                 | f Sampling                                      | : 10w f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | low        |                          |                           |                                                  | s Removed                               |           |                                |                |  |
| Time                     | Time Intake Depth Rate (ml/mln) Cum. Vol (gal.) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Temp<br>(°C)             | pH<br>(units)             | Specific<br>Electrical<br>Conductance<br>(µS/ym) | Dissolved Oxidatic Reducti Potenti (mV) |           | n (color turbidity and codimen |                |  |
|                          | -                                               | The State of |            | +/- 3%                   |                           | +/- 3%                                           | +/- 10%                                 | +/- 10%   | NTU                            |                |  |
| 1030                     | 21'                                             | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 925/24     | 25,3                     | 1 5.49                    | 11,0                                             | 0.83                                    | 230       | 429                            | NO ODE         |  |
| 1035                     |                                                 | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 247                      |                           | 11.0                                             | 054                                     | 219       | 419                            | Clearing up sl |  |
| 1040                     |                                                 | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 26.9                     | 1 111                     | 11.0                                             | 0.47                                    | 210       | 418                            | ,              |  |
| 1045                     |                                                 | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ×3,5       | 27                       | 06 5,61                   | 11.0                                             | 0.44                                    | 196       | 288                            | Clearing up 5  |  |
| 1045                     | */                                              | imple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 57         | 1                        | 21                        |                                                  |                                         |           |                                |                |  |
|                          |                                                 | ar pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | an                       | (4)                       |                                                  |                                         |           |                                |                |  |
|                          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                          |                           |                                                  |                                         |           |                                |                |  |
|                          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | ,                        |                           |                                                  |                                         |           |                                |                |  |
|                          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                          |                           |                                                  |                                         |           |                                |                |  |
|                          | _                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                          | -                         |                                                  |                                         | -         |                                |                |  |
|                          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                          |                           |                                                  |                                         |           |                                |                |  |
|                          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NH CALIBI  | MOITAC                   | (choose two)              |                                                  |                                         |           |                                |                |  |
| Buffer Solu              | ution                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PH CALIBI  | and the said of the last |                           |                                                  |                                         | M         | odel or L                      | Init No.:      |  |
|                          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | pH 4.0                   | pH 7.0                    | pH 10.0                                          |                                         |           |                                |                |  |
| Field Temp               |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                          |                           |                                                  |                                         |           |                                |                |  |
| Instrument               |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                          |                           |                                                  |                                         |           |                                |                |  |
| VOLO 1 "                 |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I RICAL CO | DNDUCT                   |                           | CALIBRATIO                                       | 70                                      | M         | odel or U                      | Init No.:      |  |
| KCI Solution             |                                                 | mhos/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                          | 1413 at 25°C              | 12880 at 25°                                     | С                                       |           |                                |                |  |
| Field Temp               |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                          |                           |                                                  |                                         |           |                                |                |  |
| Instrument               |                                                 | all gray areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                          |                           |                                                  |                                         |           |                                |                |  |
|                          |                                                 | X CALIBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ATION      |                          |                           | ED OXYGEN                                        | CALIBRATIO                              | ON N      | otes:                          |                |  |
|                          | olution (mV                                     | ')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | $\longrightarrow$        | Altitude / Sali           |                                                  | <u> </u>                                |           |                                |                |  |
| Field Temp               |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          |                          | Field Tempera             |                                                  |                                         |           |                                |                |  |
| Instrument<br>Model or U |                                                 | IV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                          | Instrument Reading (mg/L) |                                                  |                                         |           |                                |                |  |
| Model or U               | NO.:                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                          | Model or Unit No.:        |                                                  |                                         |           |                                |                |  |



|                         | CTI             |                  | 1                   |               |                           |                                               |                                       | 151                                          | 1          |                                    |  |  |  |
|-------------------------|-----------------|------------------|---------------------|---------------|---------------------------|-----------------------------------------------|---------------------------------------|----------------------------------------------|------------|------------------------------------|--|--|--|
|                         |                 | MW-L             |                     |               |                           | Initial De                                    | Initial Depth to Water: 14,30         |                                              |            |                                    |  |  |  |
| Sample ID               | D:              | Dup              | licate ID: _        |               |                           | Depth to                                      | Depth to Water after Sampling: 18,38  |                                              |            |                                    |  |  |  |
| Sample D                | epth: 4         | 170              | 1150-1              |               |                           | Total De                                      | Total Depth to Well: 42.7             |                                              |            |                                    |  |  |  |
|                         |                 |                  | 615006              |               | -                         | Well Dia                                      | Well Diameter:                        |                                              |            |                                    |  |  |  |
|                         |                 |                  | bbons Cr            |               |                           |                                               | 1 Casing/Borehole Volume:(Circle one) |                                              |            |                                    |  |  |  |
|                         |                 |                  | 16                  |               | -                         | •                                             | 4 Casing/Borehole Volumes:            |                                              |            |                                    |  |  |  |
|                         | By: <u>5</u>    |                  | : 10                |               | -                         | (Circle o                                     |                                       |                                              |            |                                    |  |  |  |
| 1                       |                 |                  | Misible p           | amp           |                           |                                               | sing/Bore                             |                                              |            |                                    |  |  |  |
| Method o                | f Sampling      | low_             | TION                |               |                           |                                               | s Removed                             | :                                            | ,          |                                    |  |  |  |
| Time                    | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)             | Specific Electrical Conductance (µS/om) MS/cm | Dissoived<br>Oxygen<br>(mg/L)         | Oxidation-<br>Reduction<br>Potential<br>(mV) |            | Remarks<br>urbidity, and sediment) |  |  |  |
| Low                     | Flow Stab       | llization Cr     | iteria              | +/- 3%        | +/- 0.1                   | +/- 3%                                        | +/- 10%                               | +/- 10%                                      | NTU        |                                    |  |  |  |
| 1218                    | 40              | 175              |                     | 27.11         | 5.98                      | 7.85                                          | Ø,53                                  | -12                                          | 403        | H. tan; nooder                     |  |  |  |
| 1223                    |                 |                  |                     | 27.26         | 5.95                      | 7.91                                          | 0,42                                  | -9                                           | 230        |                                    |  |  |  |
| 1228                    | V               | V                | \$3,0               | 27.3          | 9 5.94                    | 7,90                                          | Ø,39                                  | -8                                           | 111        |                                    |  |  |  |
|                         |                 | -5               |                     | -             | Th                        |                                               |                                       |                                              |            |                                    |  |  |  |
|                         |                 | 0                | cimp!               | 25            | Jak                       | en                                            |                                       |                                              |            |                                    |  |  |  |
|                         |                 |                  | 4                   |               |                           |                                               |                                       |                                              |            |                                    |  |  |  |
|                         |                 |                  |                     |               |                           |                                               |                                       |                                              |            |                                    |  |  |  |
|                         |                 |                  |                     |               |                           |                                               |                                       |                                              |            |                                    |  |  |  |
|                         |                 |                  |                     |               |                           |                                               |                                       |                                              |            |                                    |  |  |  |
|                         |                 |                  |                     |               |                           |                                               |                                       |                                              |            |                                    |  |  |  |
|                         |                 |                  |                     |               |                           |                                               |                                       |                                              |            |                                    |  |  |  |
|                         |                 |                  |                     |               |                           |                                               |                                       |                                              |            |                                    |  |  |  |
|                         |                 |                  | pH CALIB            | RATION (      | choose two                | )                                             |                                       | N                                            | lodel or l | Jnit No.:                          |  |  |  |
| Buffer Sol              | lution          |                  |                     | pH 4.0        | pH 7.0                    | pH 10.0                                       |                                       |                                              |            |                                    |  |  |  |
| Field Tem               | perature °C     | )                |                     |               |                           |                                               |                                       |                                              |            |                                    |  |  |  |
| Instrumen               | nt Reading      |                  |                     |               |                           |                                               |                                       |                                              |            |                                    |  |  |  |
|                         | SPE             | CIFIC ELEC       | CTRICAL C           | ONDUCTA       | ANCE (SEC)                | - CALIBRATIO                                  | ON                                    | N                                            | fodel or l | Jnit No.:                          |  |  |  |
| KCI Solution            | on (μS/cm=      | μmhos/cm)        | <u> </u>            | -             | 1413 at 25°C              | 12880 at 25°                                  | С                                     |                                              |            |                                    |  |  |  |
| Field Tem               | perature °C     |                  |                     |               |                           |                                               |                                       |                                              |            |                                    |  |  |  |
| Instrument              | t Reading       |                  |                     |               |                           |                                               |                                       |                                              |            |                                    |  |  |  |
|                         | ORP/RED         | OX CALIB         | RATION              | alena e       | DISSOL                    | VED OXYGEN                                    | CALIBRAT                              | ION N                                        | lotes:     |                                    |  |  |  |
| Standard                | Solution (m     | ıV)              |                     |               | Altitude / Sal            | linity %                                      |                                       |                                              |            |                                    |  |  |  |
| Field Temperature °C    |                 |                  |                     |               | Field Temperature °C      |                                               |                                       |                                              |            |                                    |  |  |  |
| Instrument Reading (mV) |                 |                  |                     |               | Instrument Reading (mg/L) |                                               |                                       |                                              |            |                                    |  |  |  |
| Model or                | Unit No.:       |                  |                     |               | Model or Unit No.:        |                                               |                                       |                                              |            |                                    |  |  |  |
|                         |                 |                  |                     |               |                           |                                               |                                       |                                              |            |                                    |  |  |  |



|                         |                 | 0                |                     |               |                    |                                                           |                                                                           |           |             | wheeler         |  |  |  |
|-------------------------|-----------------|------------------|---------------------|---------------|--------------------|-----------------------------------------------------------|---------------------------------------------------------------------------|-----------|-------------|-----------------|--|--|--|
|                         | SFL N           |                  |                     |               |                    | Initial De                                                | epth to Wat                                                               | ter:      | 7.33        |                 |  |  |  |
| -                       |                 |                  | licate ID: _        |               |                    |                                                           | o Water afte                                                              | A         |             | 06'             |  |  |  |
|                         | epth: 💥 🗸       |                  |                     |               |                    |                                                           | epth to Well                                                              |           | <u> </u>    |                 |  |  |  |
|                         |                 |                  | 150060              |               |                    | Well Dia                                                  | ameter: <u>2</u>                                                          | H         |             |                 |  |  |  |
| Project N               | ame:            | MPA Gi           | bbons C             | reek          |                    |                                                           |                                                                           | Volume: _ |             |                 |  |  |  |
|                         |                 |                  | 16                  |               |                    | (Circle o                                                 | one)<br>g/Borehole                                                        | Volumes   |             |                 |  |  |  |
| Sampled                 | By:             | 1                | .17                 |               |                    | (Circle o                                                 |                                                                           | Volumes.  |             |                 |  |  |  |
|                         |                 | , n              | ersible pu          | imp           | <del></del>        |                                                           | asing/Boreh                                                               |           |             |                 |  |  |  |
| Method o                | f Sampling      | 1: 10w +1        | 000)                |               |                    | Volume                                                    | Volumes Removed:                                                          |           |             |                 |  |  |  |
| Time                    | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)      | Specific<br>Electrical<br>Conductance<br>(µS/cm)<br>mS/cm | iectrical nductance (mg/L) Dissolved Oxidation Reduction (mg/L) Potential |           |             | RAMARKS         |  |  |  |
| Low                     | Flow Stabi      | iiization Cr     | iteria              | +/- 3%        | +/- 0.1            | +/- 3%                                                    | +/- 10%                                                                   | +/- 10%   | NTU         | ,               |  |  |  |
| 1314                    | ₹25.5           | 200              |                     | 26.50         | 3.52               | 7.29                                                      | 6.45                                                                      | 348       | Ø.Ø         | opaque ino eder |  |  |  |
| 1319                    |                 |                  |                     |               | 3.50               | 7.29                                                      | Ø.37                                                                      | 351       | 1000        | 11 11           |  |  |  |
| 1324                    | <u> </u>        | <u>V</u>         | 0.E%                | 26.50         | 3.50               | 7.29                                                      | 0.34                                                                      | 353       | 430         | clearing up     |  |  |  |
|                         |                 | 5                |                     | -             | -                  |                                                           |                                                                           |           |             | 3               |  |  |  |
|                         |                 |                  | eny                 | <b>C</b> S    | 10                 | iker                                                      | 1                                                                         |           |             |                 |  |  |  |
|                         | L               |                  | V                   |               |                    |                                                           |                                                                           |           |             |                 |  |  |  |
|                         |                 |                  |                     |               |                    |                                                           |                                                                           |           |             |                 |  |  |  |
|                         |                 |                  |                     |               |                    |                                                           |                                                                           |           |             |                 |  |  |  |
|                         |                 |                  |                     |               |                    |                                                           |                                                                           |           |             |                 |  |  |  |
|                         |                 |                  |                     |               |                    |                                                           |                                                                           |           |             |                 |  |  |  |
|                         |                 |                  |                     |               |                    |                                                           |                                                                           | erili .   |             |                 |  |  |  |
|                         |                 |                  |                     |               |                    |                                                           |                                                                           | ,         |             |                 |  |  |  |
|                         | Park II.        |                  | pH CALIBF           | RATION (c     | hoose two)         |                                                           | 9886                                                                      | N         | lodel or U  | nit No.:        |  |  |  |
| Buffer Sol              | ution           |                  |                     | pH 4.0        | pH 7.0             | pH 10.0                                                   |                                                                           |           |             |                 |  |  |  |
| Field Tem               | perature °C     | ,                |                     |               |                    |                                                           |                                                                           |           |             |                 |  |  |  |
| Instrumen               | t Reading       |                  |                     |               |                    |                                                           | ٠                                                                         |           |             | <b>4</b>        |  |  |  |
|                         | SPEC            | CIFIC ELEC       | TRICAL CO           | ONDUCTAI      | NCE (SEC)          | - CALIBRATIO                                              | ON                                                                        | N         | Model or Ur | nit No.:        |  |  |  |
| KCl Solutio             | on (μS/cm=μ     |                  |                     |               | 413 at 25°C        | 12880 at 25°                                              |                                                                           |           |             | 1200-7          |  |  |  |
| Field Temp              | erature °C      |                  |                     |               |                    |                                                           |                                                                           | 100       |             |                 |  |  |  |
| Instrument              | Reading         |                  |                     |               |                    |                                                           | 1                                                                         | 1600      | 400         | 100             |  |  |  |
|                         | ORP/RED         | OX CALIBF        | ATION               |               | DISSOLV            | /ED OXYGEN (                                              | CALIBRATI                                                                 | ON N      | lotes.      |                 |  |  |  |
| Standard Solution (mV)  |                 |                  |                     |               | ltitude / Sali     | inity %                                                   |                                                                           | 1         |             | 3               |  |  |  |
| Field Temperature °C    |                 |                  |                     |               | ield Temper        | rature °C                                                 |                                                                           |           |             |                 |  |  |  |
| Instrument Reading (mV) |                 |                  |                     |               | strument R         | eading (mg/L)                                             |                                                                           |           |             |                 |  |  |  |
| Model or l              | Jnit No.:       |                  |                     | М             | Model or Unit No.: |                                                           |                                                                           |           |             |                 |  |  |  |



|     |                                            |              |             | -            | _              |                                                  |                               |                                    |             |         |                                    | toster<br>wheeler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----|--------------------------------------------|--------------|-------------|--------------|----------------|--------------------------------------------------|-------------------------------|------------------------------------|-------------|---------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Well ID: _                                 | SFL          | MW-         | 6            |                |                                                  | Initial D                     | epth to Wa                         | ter:        | 8.8     | 9 1                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | Sample ID                                  |              |             | licate ID: _ |                |                                                  | Depth t                       | o Water afte                       | er Samp     | ing;_   | 22                                 | .96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | Sample D                                   |              |             |              |                |                                                  | Total D                       |                                    |             |         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                                            |              |             | 06/150       |                |                                                  | Well Dia                      |                                    |             |         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                                            |              |             | Gi box       | 15             | reek                                             | 1 Casin                       | Volume                             | e:          |         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | -                                          | 5-2 <u>5</u> | _           |              |                |                                                  | (Circle                       | Valuma                             |             |         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | Sampled I                                  |              |             | 7/1 6        | 44.            | <del></del>                                      | (Circle                       |                                    | volume      | es:     |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | Method of<br>Method of                     |              |             | sible P      | - AND          |                                                  | Total Ca<br>Volume            | iole<br>:                          |             |         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | Time Intake Rate (ml/min) Cum. Vol. (gal.) |              |             | Temp.        | pH (units)     | Specific<br>Electrical<br>Conductance<br>(µS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation Reduction Potential (mV) | on<br>ai (c | olor, t | Remarks<br>urbidity, and sediment) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -   | ISIA Low                                   | Flow Stabl   | lization Cr | iteria       | +/- 3%         | +/- 0.1                                          | +/- 3%                        | +/- 10%                            | +/- 10      | % A     | Tu 1                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4   |                                            | 1220         | 175         |              | 27.0           | 5 3.90                                           | 12,8                          | 3.17                               | 346         |         | 171                                | Light tan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | 1517                                       | 22,0         | 1           |              | 27,4           | 2 3,89                                           | 12.7                          | 3.92                               | 350         |         | 73                                 | 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 522 | Wallson St.                                | 22.0         | V           | a.5          | 26.7           | 6 3.84                                           | 12.8                          | 4.50                               | 366         | -       | 67                                 | Clearing up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | <u>1527</u>                                | 23,00        | Dample      | 5            | Tak            | /                                                |                               |                                    |             |         |                                    | 3 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     |                                            |              | <u> </u>    |              | IMA            |                                                  |                               |                                    |             |         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                                            |              |             |              |                |                                                  |                               |                                    |             |         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -   |                                            |              |             |              |                |                                                  |                               |                                    |             |         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -   |                                            |              |             |              |                |                                                  |                               |                                    |             |         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -   |                                            |              | ·           |              |                |                                                  |                               |                                    |             | $\perp$ |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -   |                                            |              |             |              |                |                                                  |                               |                                    |             | _       |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -   |                                            |              |             |              |                |                                                  |                               |                                    |             |         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                                            |              |             |              | 30/00 Back 100 |                                                  |                               |                                    |             |         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                                            |              |             | pH CALIB     | RATION         | (choose two)                                     |                               |                                    |             | Mod     | el or U                            | Init No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | Buffer Solu                                |              |             |              | pH 4.0         | pH 7.0                                           | pH 10.0                       |                                    | _           |         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ļ   | Field Temp                                 | erature °C   |             |              |                |                                                  |                               |                                    |             |         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | Instrument                                 | Reading      |             |              |                |                                                  |                               |                                    |             |         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                                            | SPEC         | IFIC ELEC   | CTRICAL C    | ONDUCT         | ANCE (SEC)                                       | - CALIBRATIO                  | ON                                 |             | Mode    | el or U                            | Init No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | KCI Solution                               | n (μS/cm=μ   | mhos/cm)    |              |                | 1413 at 25°C                                     | 12880 at 25°                  | c                                  |             |         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | Field Temp                                 | erature °C   |             |              |                |                                                  |                               |                                    |             |         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | Instrument i                               | Reading      |             |              |                |                                                  |                               |                                    |             |         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ī   | Errinse (                                  | ORP/REDO     | X CALIBR    | RATION       | Jan 19         | DISSOLV                                          | ED OXYGEN                     | CALIBRATI                          | ON          | Note    | s: 🕌                               | a Pulled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | Standard Solution (mV)                     |              |             |              |                | Altitude / Salii                                 | nity %                        |                                    |             | Pum     |                                    | 1 of f billion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | Field Temperature °C                       |              |             |              |                | Field Temperature °C                             |                               |                                    |             |         |                                    | The state of the s |
|     | Instrument Reading (mV)                    |              |             |              |                | Instrument Reading (mg/L)                        |                               |                                    |             | Fin     | -1                                 | 2 liter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | Model or U                                 | nit No.:     |             |              |                | Model or Unit No.:                               |                               |                                    |             |         | 1 1<br>On                          | ly /3 full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

A EQBK 8-25 taken @ 1615



|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | . 4                 |               |                           |                                                  |                         |            |         | wheeler                                |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------|---------------|---------------------------|--------------------------------------------------|-------------------------|------------|---------|----------------------------------------|
| Well ID: _  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SP/AP        |                     |               |                           |                                                  |                         | er:        | -       |                                        |
| Sample ID   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | licate ID: _        |               |                           |                                                  |                         | r Sampling |         | 0.10'                                  |
| Sample D    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                     |               |                           |                                                  |                         | : 43.a     |         |                                        |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | //           | 150006              |               |                           | Well Dia                                         | meter:                  | U          |         |                                        |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | ibbons C            | reck          |                           |                                                  |                         | Volume: _  |         |                                        |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17, 201      | 16                  |               |                           | (Circle o                                        |                         |            |         |                                        |
| Sampled     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                     |               |                           | (Circle o                                        |                         | Volumes: _ |         |                                        |
| Method o    | f Purging:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _ Subm       | ersible             |               |                           |                                                  | sing/Boreh              | ole        |         |                                        |
| Method o    | f Sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | g: /ow       | flow                |               |                           |                                                  | s Removed               |            |         |                                        |
| Time        | Time Depth (ml/min) (gal.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)             | Specific<br>Electrical<br>Conductance<br>(mS/cm) | trical Dissolved Oxygen |            | (colo   | Remarks<br>r, turbidity, and sediment) |
| Low         | Flow Stab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ilization Cr | iteria              | +/- 3%        | +/- 0.1                   | +/- 3%                                           | +/- 10%                 | +/- 10%    | NTU     |                                        |
| 1712        | 38'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 175          |                     | 25.52         | 6.06                      | 8,09                                             | 1.15                    | 1          | 1000 :  | slightly cloudy, no dor                |
| 1717        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                     | 25.69         | 6.07                      | 8.12                                             | 1.03                    | -2         | 894     | 11 11 11                               |
| 1722        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                     | 25,24         | 6.06                      | 8.11                                             | Ø.80                    | Ø          | 494     | beginning to clear up                  |
| 1727        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                     | 24.53         | 6.05                      | 8.14                                             | 0.82                    | 2          | 362     |                                        |
| 1732        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                     | 25.10         | 6.03                      | 8.14                                             | Ø.47                    | 2          | 261     | 11                                     |
| 1737        | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V            | 3,5                 | 25.34         | 6.03                      | 8.13                                             | Ø.43                    | 2          | 258     | 11                                     |
| -           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <            | 1                   | /             | 11.                       | 4.1                                              |                         |            |         |                                        |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00           | uple:               | 5 6           | ollec                     | Ted                                              |                         |            |         |                                        |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 4                   |               |                           |                                                  |                         |            |         |                                        |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                     |               |                           |                                                  |                         |            |         |                                        |
|             | VI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                     |               |                           |                                                  |                         |            |         |                                        |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                     |               |                           |                                                  |                         |            |         |                                        |
|             | 3-46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 774          | pH CALIB            | RATION (d     | hoose two                 | )                                                |                         | N          | lodel c | or Unit No.:                           |
| Buffer Sol  | ution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                     | pH 4.0        | pH 7.0                    | pH 10.0                                          |                         |            |         |                                        |
| Field Tem   | perature °0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2            |                     |               |                           |                                                  |                         |            |         |                                        |
| Instrumen   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                     |               |                           |                                                  |                         |            |         |                                        |
| inotramon   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CIEIC EI E   | CTPICAL C           | ONDUCTA       | NCE (SEC)                 | – CALIBRATI                                      | ON                      |            | Andal ( | or Unit No.:                           |
| VCI Calutia |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | μmhos/cm)    |                     |               | 1413 at 25°C              |                                                  |                         | N.         | lodel c | or Unit No.:                           |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                     |               | 1413 at 25 C              | 12880 at 25                                      |                         |            |         |                                        |
| Field Temp  | 1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                     |               |                           |                                                  |                         |            |         |                                        |
| Instrument  | C. W. C. W. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 000 000 100  | DATION              |               | 510001                    |                                                  |                         |            |         |                                        |
| 04          | The state of the s | OX CALIB     | RATION              |               |                           | VED OXYGEN                                       | CALIBRAT                | ION N      | lotes:  |                                        |
|             | Solution (m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                     |               | Altitude / Sa             |                                                  |                         |            |         |                                        |
|             | perature °(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                     |               | Field Tempe               |                                                  |                         |            |         |                                        |
|             | t Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (mV)         |                     |               | Instrument Reading (mg/L) |                                                  |                         |            |         |                                        |
| Model or I  | Unit No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                     | ı             | Model or Un               | it No.:                                          |                         |            |         |                                        |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                     |               |                           |                                                  |                         |            |         |                                        |



|                         |                 |                    |                     |               |                                                 | Wi leetel                                        |                               |                                              |          |                                     |  |  |
|-------------------------|-----------------|--------------------|---------------------|---------------|-------------------------------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|----------|-------------------------------------|--|--|
| Well ID: _              | SSP /           | 1W-2               |                     |               | Initial Depth to Water: 21.27                   |                                                  |                               |                                              |          |                                     |  |  |
| Sample ID               | ):              | Dup                | licate ID:          |               |                                                 | Depth to                                         | Water after                   | r Sampling                                   | : 33     | .45                                 |  |  |
| Sample D                | epth: 54        | 4.5'               |                     |               |                                                 |                                                  |                               | : 46,9                                       |          |                                     |  |  |
|                         |                 | 67061              |                     |               |                                                 | Well Dia                                         | meter:                        | 2"                                           |          |                                     |  |  |
| Project Na              | ame: TA         | MPA-G              | ibbons Cr           | eek           |                                                 |                                                  |                               | Volume:                                      |          |                                     |  |  |
| Date:                   | ctober )        | 18,2016            |                     |               |                                                 | (Circle o                                        |                               |                                              |          |                                     |  |  |
| Sampled                 | By:             | 4                  |                     |               | 4 Casing/Borehole Volumes:<br>(Circle one)      |                                                  |                               |                                              |          |                                     |  |  |
|                         |                 |                    | ersible pu          | imp           |                                                 |                                                  | asing/Boreh                   |                                              |          | 1                                   |  |  |
| Method o                | f Sampling      | : low              | tlow                |               |                                                 | Volume                                           | s Removed                     | :                                            |          |                                     |  |  |
| Time                    | Intake<br>Depth | Rate<br>(ml/min)   | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)                                   | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color,  | Remarks<br>turbidity, and sediment) |  |  |
| Low                     | Flow Stab       | ilization Cr       | iteria              | +/- 3%        | +/- 0.1                                         | +/- 3%                                           | +/- 10%                       | +/- 10%                                      | NTU      |                                     |  |  |
| 9:02                    | 44.5            | 175                |                     | 23.43         | 5.21                                            | 9.92                                             | Ø.28                          | 104                                          | 1000     | Cloudy no odor                      |  |  |
| 9:07                    |                 | 1                  |                     | 23.85         |                                                 |                                                  | Ø. 25                         | 97                                           | 744      | 11 11                               |  |  |
| 9:12                    | V               | V                  | ≈1.0                | 23.89         |                                                 |                                                  | Ø.24                          | 92                                           | 521      | clearing up                         |  |  |
|                         |                 | -                  |                     |               | 11                                              |                                                  |                               |                                              |          | 7                                   |  |  |
|                         |                 |                    | mples               |               | o/le                                            | Creq                                             |                               |                                              |          |                                     |  |  |
| Buffer So               | lution          |                    | pH CALIB            | RATION (      | choose two                                      |                                                  |                               | N                                            | lodel or | r Unit No.:                         |  |  |
|                         |                 | 2                  |                     | pi14.0        | pi 17.0                                         | pri 10.0                                         |                               |                                              |          |                                     |  |  |
|                         | nperature °(    |                    |                     |               | +                                               |                                                  |                               | -                                            |          |                                     |  |  |
| Instrumer               | nt Reading      | e a surficience de | LE SKATOR RE        |               |                                                 |                                                  |                               |                                              |          |                                     |  |  |
|                         |                 |                    |                     | ONDUCTA       | Service of the service of                       | ) – CALIBRATI                                    |                               | Λ                                            | Model o  | r Unit No.:                         |  |  |
| KCI Soluti              | on (μS/cm=      | μmhos/cm)          |                     |               | 1413 at 25°C                                    | 12880 at 25                                      | i°C                           |                                              |          |                                     |  |  |
| Field Temperature °C    |                 |                    |                     |               |                                                 |                                                  |                               |                                              |          |                                     |  |  |
| Instrument Reading      |                 |                    |                     |               |                                                 |                                                  |                               |                                              |          |                                     |  |  |
| ORP/REDOX CALIBRATION   |                 |                    |                     |               | DISSOL                                          | VED OXYGEN                                       | CALIBRAT                      | TION N                                       | lotes:   |                                     |  |  |
| Standard Solution (mV)  |                 |                    |                     |               | Altitude / Sa                                   | alinity %                                        |                               |                                              |          |                                     |  |  |
| Field Temperature °C    |                 |                    |                     |               | Field Tempe                                     | erature °C                                       |                               |                                              |          |                                     |  |  |
| Instrument Reading (mV) |                 |                    |                     |               | Field Temperature °C  Instrument Reading (mg/L) |                                                  |                               |                                              |          |                                     |  |  |
| Model or Unit No.:      |                 |                    |                     |               | Model or Unit No.:                              |                                                  |                               |                                              |          |                                     |  |  |
|                         |                 |                    |                     |               |                                                 |                                                  |                               |                                              |          |                                     |  |  |



|                                          |                    |                  |                                         |               | wneeler                                |                                                  |                               |                                              |          |                                        |  |  |
|------------------------------------------|--------------------|------------------|-----------------------------------------|---------------|----------------------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|----------|----------------------------------------|--|--|
|                                          | SSP MU             |                  |                                         |               | Initial Depth to Water: 27,30          |                                                  |                               |                                              |          |                                        |  |  |
|                                          |                    |                  | licate ID:                              |               |                                        |                                                  |                               | r Sampling                                   |          | .78'                                   |  |  |
|                                          | epth: <u>¾45</u>   |                  |                                         |               |                                        |                                                  |                               | : 48,2                                       |          |                                        |  |  |
| 7                                        |                    |                  | 150060                                  |               |                                        | Well Dia                                         | meter:                        | 2"                                           |          |                                        |  |  |
| Project Na                               | ame: TN            | IPA - Gil        | bbons Cr                                | eek           |                                        |                                                  |                               | Volume: _                                    |          |                                        |  |  |
| Date:                                    | october 1          | 18,2016          | ,                                       |               |                                        | (Circle o                                        |                               | AM COL                                       |          |                                        |  |  |
| Sampled                                  | By: <i>5/</i> ^    | 4                |                                         |               | 4 Casing/Borehole Volumes:(Circle one) |                                                  |                               |                                              |          |                                        |  |  |
| Method o                                 | f Purging:         | subme            | rsible                                  |               |                                        |                                                  | sing/Boreh                    | ole                                          |          |                                        |  |  |
| Method o                                 | f Sampling         | : 10w f          | low                                     |               |                                        |                                                  | s Removed                     |                                              |          |                                        |  |  |
| Time                                     | Intake<br>Depth    | Rate<br>(ml/min) | Cum. Vol.<br>(gal.)                     | Temp.<br>(°C) | pH<br>(units)                          | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color,  | Remarks<br>r, turbidity, and sediment) |  |  |
| Low                                      | Flow Stab          | ilization Cr     | iteria                                  | +/- 3%        | +/- 0.1                                | +/- 3%                                           | +/- 10%                       | +/- 10%                                      | NTU      |                                        |  |  |
| 1008                                     | 45.5               | 2200             |                                         | 24.50         | 4.32                                   | 8.73                                             | Ø.24                          | 268                                          | 1000     | Cloudy ino ador                        |  |  |
| 1013                                     | 1                  | 1                |                                         | 24.78         |                                        | 8.68                                             | Ø.25                          | 271                                          | 743      |                                        |  |  |
| 1018                                     |                    |                  |                                         | 24.89         |                                        | 8.64                                             | Ø.84                          | 274                                          | 451      |                                        |  |  |
| 1023                                     | V                  |                  | 2.5                                     | 24.72         |                                        | 8.66                                             | Ø.76                          | 274                                          | 266      | Crearing ap                            |  |  |
| 7000                                     | -                  |                  | 4.5                                     |               |                                        |                                                  | 7.70                          |                                              | 000      |                                        |  |  |
| •                                        |                    | Da               | mules                                   | ('0           | Hect                                   | ed -                                             |                               |                                              |          |                                        |  |  |
|                                          |                    |                  | PI                                      |               | ,                                      |                                                  |                               |                                              |          |                                        |  |  |
|                                          |                    |                  |                                         |               |                                        |                                                  |                               |                                              |          |                                        |  |  |
|                                          |                    |                  |                                         |               |                                        |                                                  |                               |                                              |          | -                                      |  |  |
|                                          |                    |                  |                                         |               |                                        |                                                  |                               |                                              | -        |                                        |  |  |
|                                          |                    |                  |                                         | /             |                                        |                                                  |                               |                                              |          |                                        |  |  |
|                                          |                    |                  |                                         |               |                                        |                                                  |                               |                                              |          |                                        |  |  |
|                                          |                    | 4                |                                         |               |                                        |                                                  |                               |                                              |          |                                        |  |  |
|                                          |                    |                  | pH CALIB                                | RATION (      | choose two                             | )                                                | The second second             | Λ                                            | lodel or | r Unit No.:                            |  |  |
| Buffer So                                | lution             |                  |                                         | pH 4.0        | pH 7.0                                 | pH 10.0                                          |                               |                                              |          | - " - " - 0 0 0                        |  |  |
| Field Ten                                | nperature °(       | С                |                                         |               |                                        |                                                  |                               |                                              |          |                                        |  |  |
| Instrumer                                | nt Reading         |                  |                                         |               |                                        |                                                  |                               |                                              |          |                                        |  |  |
|                                          | SPE                | CIFIC ELE        | CTRICAL C                               | ONDUCTA       | NCE (SEC                               | ) – CALIBRATI                                    | ON                            | N                                            | Model or | r Unit No.:                            |  |  |
| KCI Soluti                               |                    |                  | 2 0 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |               | 1413 at 25°C                           |                                                  |                               |                                              |          | 210011200                              |  |  |
| KCI Solution (μS/cm=μmhos/cm)            |                    |                  |                                         |               |                                        |                                                  | 2                             |                                              |          |                                        |  |  |
| Field Temperature °C  Instrument Reading |                    |                  |                                         |               |                                        |                                                  |                               |                                              |          |                                        |  |  |
|                                          |                    |                  |                                         |               | DISCOL                                 | VED OVVCEN                                       | CALIBRAT                      | TION I                                       | latani   |                                        |  |  |
| ORP/REDOX CALIBRATION                    |                    |                  |                                         |               |                                        | VED OXYGEN                                       | CALIBRA                       | IION I                                       | Notes:   |                                        |  |  |
| Standard Solution (mV)                   |                    |                  |                                         |               | Altitude / Sa                          |                                                  | -                             |                                              |          |                                        |  |  |
| Field Temperature °C                     |                    |                  |                                         |               | Field Temperature °C                   |                                                  |                               |                                              |          |                                        |  |  |
| Instrument Reading (mV)                  |                    |                  |                                         |               | Instrument Reading (mg/L)              |                                                  |                               |                                              |          |                                        |  |  |
| Model or                                 | Model or Unit No.: |                  |                                         |               | Model or Unit No.:                     |                                                  |                               |                                              |          |                                        |  |  |
|                                          |                    |                  |                                         |               |                                        |                                                  |                               |                                              |          |                                        |  |  |



| Well ID:                                    | SSP             | MW-4             |                     |               | Initial Depth to Water: 24,15 |                                                  |                               |                                              |                                                                  |                  |  |
|---------------------------------------------|-----------------|------------------|---------------------|---------------|-------------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|------------------------------------------------------------------|------------------|--|
|                                             |                 | Dupl             | licate ID:          | SUP-1         |                               |                                                  |                               | r Sampling                                   |                                                                  | 2,21'            |  |
|                                             | epth:           |                  |                     |               |                               |                                                  |                               | : 51.5'                                      |                                                                  |                  |  |
| Project ar                                  | nd Task No      | 6706             | 150060              |               |                               | Well Dia                                         | meter:                        | 2 "                                          |                                                                  |                  |  |
| Project N                                   | ame: _T/V       | PA-Gib           | bons Crea           | ek            |                               |                                                  |                               | Volume: _                                    |                                                                  |                  |  |
| Date:                                       | October         | 18,2016          |                     |               |                               | (Circle o                                        |                               |                                              |                                                                  |                  |  |
| Sampled                                     | By: <u>51</u>   | M                |                     |               |                               | 4 Casing (Circle of                              |                               | Volumes: _                                   |                                                                  |                  |  |
|                                             |                 | submer           | A                   |               |                               | Total Ca                                         | nole                          |                                              |                                                                  |                  |  |
| Method o                                    | f Sampling      | : lowf           | low                 |               |                               |                                                  | s Removed                     |                                              |                                                                  |                  |  |
| Time                                        | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)                 | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | ation-<br>action<br>central Remarks<br>(color, turbidity, and se |                  |  |
| Low                                         | Flow Stab       | ilization Cr     | iteria              | +/- 3%        | +/- 0.1                       | +/- 3%                                           | +/- 10%                       | +/- 10%                                      | NTU                                                              | 1                |  |
| 101                                         | 49              | 175              |                     | 24.98         | 6.24                          | 5,67                                             | Ø.18                          | 85                                           | 180                                                              | Stained; no odor |  |
| 1116                                        |                 |                  |                     | 25,14         |                               | 5.66                                             | Ø.15                          | 82                                           | 62.9                                                             | Stained; no odor |  |
| 1121                                        | V               | *                | 22                  | 25,09         | 6.26                          | 5,66                                             | Ø.15                          | 79                                           | 36.8                                                             | J                |  |
|                                             |                 | 7                |                     | 7 11          | . 1                           |                                                  |                               |                                              |                                                                  |                  |  |
|                                             | Jamples (       |                  |                     |               | cted                          |                                                  |                               |                                              |                                                                  |                  |  |
|                                             |                 |                  |                     |               |                               |                                                  |                               |                                              |                                                                  |                  |  |
|                                             |                 |                  |                     |               |                               |                                                  |                               |                                              |                                                                  |                  |  |
|                                             |                 |                  | pH CALIB            |               | hoose two                     | Samuel A. P. T.                                  |                               | N N                                          | lodel o                                                          | r Unit No.:      |  |
| Buffer So                                   | lution          |                  |                     | pH 4.0        | pH 7.0                        | pH 10.0                                          |                               |                                              |                                                                  |                  |  |
| Field Ten                                   | nperature °     | 0                |                     |               |                               |                                                  |                               |                                              |                                                                  |                  |  |
| Instrumer                                   | nt Reading      |                  |                     |               |                               |                                                  |                               |                                              |                                                                  |                  |  |
| SPECIFIC ELECTRICAL COND                    |                 |                  |                     |               | NCE (SEC)                     | - CALIBRATI                                      | ON +                          | N                                            | /lodel c                                                         | or Unit No.:     |  |
| KCl Solution (μS/cm=μmhos/cm)               |                 |                  |                     |               | 1413 at 25°C                  | 12880 at 25                                      | o°C                           |                                              |                                                                  |                  |  |
| Field Temperature °C                        |                 |                  |                     |               |                               |                                                  |                               |                                              |                                                                  |                  |  |
| Instrument Reading                          |                 |                  |                     |               |                               |                                                  |                               |                                              |                                                                  |                  |  |
| ORP/REDOX CALIBRATION                       |                 |                  |                     |               | DISSOL                        | VED OXYGEN                                       | CALIBRAT                      | TION I                                       | lotes:                                                           |                  |  |
| Standard Solution (mV)                      |                 |                  |                     | 1             | Altitude / Sa                 | linity %                                         |                               | 1                                            | Suplic                                                           | ate samples      |  |
| Field Temperature °C                        |                 |                  |                     | ı             | Field Temperature °C          |                                                  |                               |                                              | take                                                             | /9               |  |
| Instrume                                    | nt Reading      | (mV)             |                     | 1             | Instrument Reading (mg/L)     |                                                  |                               |                                              |                                                                  | 1/               |  |
| Instrument Reading (mV)  Model or Unit No.: |                 |                  |                     | I             | Model or Unit No.:            |                                                  |                               |                                              | EQBK-101816 taken                                                |                  |  |



| Well ID: _              | APM             | 10-4             |                     |          | Initial Depth to Water:                |                                                                                             |             |             |               |                                       |  |  |
|-------------------------|-----------------|------------------|---------------------|----------|----------------------------------------|---------------------------------------------------------------------------------------------|-------------|-------------|---------------|---------------------------------------|--|--|
| Sample II               | D:              | Dup              | licate ID: _        |          |                                        | Depth to                                                                                    | Water after | r Samplin   | g: <u>/3.</u> | 91'                                   |  |  |
|                         | epth: 💢         |                  |                     |          |                                        | Total De                                                                                    | pth to Well | : 52.       | 8'            |                                       |  |  |
| Project a               | nd Task No      | 6706             | 150060              |          |                                        | Well Dia                                                                                    | meter: 2    | 11          |               |                                       |  |  |
| Project N               | ame: Th         | 1PA - Gibb       | ons Cree            | k        |                                        | 1 Casing                                                                                    | g/Borehole  | Volume: _   |               |                                       |  |  |
| Date:                   | October         | 18,201           | 6                   |          | (Circle one)                           |                                                                                             |             |             |               |                                       |  |  |
|                         | By:5            |                  |                     |          | 4 Casing/Borehole Volumes:(Circle one) |                                                                                             |             |             |               |                                       |  |  |
| Method o                | f Purging:      | Subme            | ersible pu          | imp      | Total Casing/Borehole                  |                                                                                             |             |             |               |                                       |  |  |
| Method o                | of Sampling     | : lowf           | on                  |          | Volumes Removed:                       |                                                                                             |             |             |               |                                       |  |  |
| Time                    | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.    | pH<br>(units)                          | Specific Electrical Conductance (mS/cm) Dissolved Oxidation-Reduction Potential (mV) (color |             |             | (color        | Remarks<br>, turbidity, and sediment) |  |  |
| Low                     | Flow Stab       | ilization Cr     | iteria              | +/- 3%   | +/- 0.1                                | +/- 3%                                                                                      | +/- 10%     | +/- 10% NTU |               |                                       |  |  |
| 1344                    | ×50'            | \$200            |                     | 26.37    | 5.70                                   | 4.80                                                                                        | Ø.13        | 84          |               | Cloudy/brown; sulfur as               |  |  |
| 1349                    | i               | 1                |                     | 26.44    |                                        | 4.83                                                                                        | 0,12        | 86          |               | 11 11 11                              |  |  |
| 1354                    | V               | V                | \$2,0               | 26.68    |                                        | 4.74                                                                                        | Ø.11        | 85          | 178           |                                       |  |  |
|                         |                 |                  | 0                   | ,        | 1                                      | 11                                                                                          | 1           | -           |               | 3.7                                   |  |  |
|                         |                 |                  | Dam                 | ples     | Co                                     | leet                                                                                        | ed          |             |               |                                       |  |  |
|                         |                 |                  |                     |          |                                        |                                                                                             |             |             |               |                                       |  |  |
|                         |                 |                  |                     |          |                                        |                                                                                             |             |             |               |                                       |  |  |
|                         |                 |                  |                     |          |                                        |                                                                                             |             |             |               |                                       |  |  |
|                         |                 |                  |                     |          |                                        |                                                                                             |             |             |               |                                       |  |  |
|                         |                 |                  |                     |          |                                        |                                                                                             |             |             |               |                                       |  |  |
|                         |                 |                  |                     |          |                                        |                                                                                             |             |             |               |                                       |  |  |
|                         |                 |                  |                     |          |                                        |                                                                                             |             | 1           |               |                                       |  |  |
|                         | 1               | 4                | nH CALIB            | RATION ( | choose two                             |                                                                                             |             | -           | Model o       | r Unit No.:                           |  |  |
| Buffer So               | Jution          |                  | pri GALID           |          | -                                      |                                                                                             |             |             | woder o       | Official.                             |  |  |
|                         |                 |                  |                     | pH 4.0   | pH 7.0                                 | pH 10.0                                                                                     |             |             |               |                                       |  |  |
|                         | nperature °     | C                |                     |          |                                        |                                                                                             |             |             |               |                                       |  |  |
| Instrumer               | nt Reading      |                  |                     |          |                                        |                                                                                             |             |             |               |                                       |  |  |
|                         | SPE             | CIFIC ELE        | CTRICAL C           | ONDUCTA  | NCE (SEC                               | - CALIBRATI                                                                                 | ON          |             | Model o       | r Unit No.:                           |  |  |
| KCI Soluti              | ion (μS/cm=     | -μmhos/cm)       |                     |          | 1413 at 25°C                           | 12880 at 25                                                                                 | i°C         |             |               |                                       |  |  |
| Field Tem               | perature °C     |                  |                     |          |                                        |                                                                                             |             |             |               |                                       |  |  |
| Instrument Reading      |                 |                  |                     |          |                                        |                                                                                             |             |             |               |                                       |  |  |
| ORP/REDOX CALIBRATION   |                 |                  |                     |          | DISSOL                                 | VED OXYGEN                                                                                  | CALIBRAT    | TION        | Notes:        |                                       |  |  |
| Standard Solution (mV)  |                 |                  |                     |          | Altitude / Sa                          | linity %                                                                                    |             |             |               |                                       |  |  |
| Field Temperature °C    |                 |                  |                     |          | Field Tempe                            | erature °C                                                                                  |             |             |               |                                       |  |  |
| Instrument Reading (mV) |                 |                  |                     |          | Instrument Reading (mg/L)              |                                                                                             |             |             |               |                                       |  |  |
| Model or Unit No.:      |                 |                  |                     |          | Model or Unit No.:                     |                                                                                             |             |             |               |                                       |  |  |
|                         |                 |                  |                     |          |                                        |                                                                                             |             |             |               |                                       |  |  |



| Well ID: _                                   | APN             | 1W-5             |                     |               | Initial Depth to Water: _/0,86                |                                                  |                               |                                              |          |                                      |  |  |
|----------------------------------------------|-----------------|------------------|---------------------|---------------|-----------------------------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|----------|--------------------------------------|--|--|
|                                              |                 |                  | licate ID:          |               | Depth to Water after Sampling: 11.76          |                                                  |                               |                                              |          |                                      |  |  |
| Sample De                                    | epth: 💥         | 40.5'            |                     |               |                                               |                                                  |                               | : 43.                                        |          |                                      |  |  |
| Project an                                   | d Task No       | .: 670E          | 150060              |               |                                               |                                                  |                               | 2"                                           |          |                                      |  |  |
| Project Na                                   | ame: TA         | nPA-Gi           | bbons Cr            | reek          |                                               | 1 Casin                                          | g/Borehole                    | Volume: _                                    |          |                                      |  |  |
| Date:                                        | October         | 18,2016          | 5                   |               |                                               | (Circle o                                        |                               |                                              |          |                                      |  |  |
| Sampled I                                    | By: <u>5</u> N  | ١                |                     |               |                                               | 4 Casing (Circle of                              |                               | Volumes: _                                   |          |                                      |  |  |
| Method of                                    | Purging:        | Subme            | ersible p           | ump           |                                               | Total Ca                                         | nole                          |                                              |          |                                      |  |  |
| Method of                                    | Sampling        | : low f          | low                 |               |                                               | Volume                                           | s Removed                     | :                                            |          |                                      |  |  |
| Time                                         | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)                                 | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color,  | Remarks<br>turbidity, and sediment)  |  |  |
| Low                                          | Flow Stab       | ilization Cr     | iteria              | +/- 3%        | +/- 0.1                                       | +/- 3%                                           | +/- 10%                       | +/- 10%                                      | NTu      | 1. 11.                               |  |  |
| 1438                                         | ≈40.5           | 175              |                     | 25.31         | 3.70                                          | 5.65                                             | Ø.18                          | 299                                          | 272      | cloudy/It. tan<br>Slight Sulfur odor |  |  |
| 1443                                         |                 | 1                |                     | 25.16         | 3.68                                          | 5,70                                             | Ø.14                          | 294                                          | 642      | 11 4                                 |  |  |
| 1448                                         | V               | V                | 42,0                | 25.11         | 3,64                                          | 5.69                                             | Ø.13                          | 311                                          | 126      | clearing up                          |  |  |
|                                              | - 5             | ample            | 1                   | lec           | 11                                            |                                                  |                               |                                              |          |                                      |  |  |
|                                              |                 |                  | nH CALIB            | RATION        | Choose two                                    |                                                  |                               |                                              | Andal or | Lisit Mo.                            |  |  |
| Buffer Sol                                   | ution           | 4                | pri CALID           | pH 4.0        | pH 7.0                                        | pH 10.0                                          |                               | N                                            | nodel or | Unit No.:                            |  |  |
|                                              | perature °(     | 2                |                     | p114.0        | p117.0                                        | pi 110.0                                         |                               |                                              |          |                                      |  |  |
| Instrumen                                    |                 |                  |                     |               |                                               |                                                  |                               |                                              |          |                                      |  |  |
| instrumen                                    |                 | CIEIC ELE        | CTRICAL C           | ONDUCT        | ANCE (SEC)                                    | CALIDRATI                                        | ON                            |                                              | Andel s- | Linit No.                            |  |  |
| KCI Solutio                                  |                 |                  |                     | CNDUCT        | 1413 at 25°C                                  | - CALIBRATI                                      | 2000                          |                                              | nouel or | Unit No.:                            |  |  |
| KCI Solution (μS/cm=μmhos/cm)                |                 |                  |                     |               | 1413 at 25 C                                  | 12000 at 25                                      |                               |                                              |          |                                      |  |  |
| Field Temperature °C                         |                 |                  |                     |               |                                               |                                                  |                               |                                              |          |                                      |  |  |
| Instrument Reading                           |                 |                  |                     | 1             | DISSOL                                        | VED OVVCEN                                       | CALIBBAT                      | TION .                                       | late -   |                                      |  |  |
| ORP/REDOX CALIBRATION Standard Solution (mV) |                 |                  |                     |               | Altitude / Sa                                 | VED OXYGEN                                       | CALIBRA                       | ION I                                        | Notes:   |                                      |  |  |
| Standard Solution (mV) Field Temperature °C  |                 |                  |                     |               |                                               |                                                  |                               |                                              |          |                                      |  |  |
|                                              |                 |                  |                     |               | Field Temperature °C                          |                                                  |                               |                                              |          |                                      |  |  |
| Instrument Reading (mV)  Model or Unit No.:  |                 |                  |                     |               | Instrument Reading (mg/L)  Model or Unit No.: |                                                  |                               |                                              |          |                                      |  |  |



| Depth   (ml/min)   (°C)   (units)   Conductance (ms/cm)   Oxygen (mg/L)   Color, turbid (mv)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Total Depth to Well:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | emarks<br>dity, and sediment)<br>dy/tan; sulfur of  |
| Project and Task No.: 6706150060   Well Diameter: 2   Casing/Borehole Volume: (Circle one)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | emarks<br>dity, and sediment)<br>dy/tan', sulfur of |
| Project Name:   TMPA - Gibbons Creek   1 Casing/Borehole Volume:   (Circle one)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | emarks<br>dity, and sediment)<br>dy/tan', sulfur of |
| Date:   October 18, 2016   Sampled By:   BN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | emarks<br>dity, and sediment)<br>dy/tan; sulfur of  |
| Sampled By:   Swb mersible pump   Total Casing/Borehole Volumes:   Circle one)   Total Casing/Borehole Volumes Removed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | emarks<br>dity, and sediment)<br>dy/tan; sulfur of  |
| Method of Purging: Submersible pump Method of Sampling: Jow How  Time Intake Depth (ml/min)  Low Flow Stabilization Criteria +/-3% +/-0.1 +/-3% +/-10% +/-10% NTU  1528   1528   26.13 5.91 2.00 \$\frac{1.99}{2.03} \frac{4.95}{2.13} \frac{1.99}{2.03} \frac{4.13}{2.03} \frac{6.96}{2.13} \frac{1.99}{2.03} \frac{4.13}{2.13} \frac{6.96}{2.04} \frac{6.96}{2.04} \frac{1.99}{2.03} \frac{6.96}{2.13} \frac{6.96}{2.04} \frac{6.96}{2.04                                                                                                                                                                                                                                                                                                 | emarks<br>dity, and sediment)<br>dy/tan; sulfur of  |
| Method of Purging:         Submers ble pump         Total Casing/Borehole Volumes Removed:           Time         Intake Depth         Rate (ml/min)         Cum. Vol. (gal.)         Temp. (°C)         pH (units)         Specific Electrical Conductance (mS/cm)         Dissolved (oxygen (mg/L))         Oxidation-Reduction (oxygen (mg/L))         Reduction (my/L)         NTU           1593         40.5         150         25.98         5.90         1.99         \$\phi.33\$         37         \$\phi.00\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dity, and sediment)  dy/tan; sulfur of              |
| Nethod of Sampling:   10 to 1/0 to                                                                                                                                                                                                                                                                                                     | dity, and sediment)  dy/tan; sulfur of              |
| Time Intake Depth (ml/min) (gal.) (°C) (mints) (oc) (mints) (color, turbid) (color, turbid) (mg/L) (mg/L) (color, turbid) (mg/L) (mg/L) (color, turbid) (mg/L) (mg/L) (color, turbid) (mg/L) (color, turbid) (mg/L) (mg/L) (mg/L) (color, turbid) (mg/L) (mg/                                                                                                                                                                                                                                                                                                  | dity, and sediment)  dy/tan; sulfur of              |
| 1523 40.5 150 25.98 5.90 1.99 \$1.33 37 \$1.50 \$1528 \$1 \$26.13 5.91 \$2.00 \$1.99 \$1.770 \$1.533 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$1.538 \$ | 11 11 11                                            |
| 1523 40.5 150 25.98 5.90 1.99 Ø.33 37 Ø.Ø elou 1528 26.13 5.91 2.00 Ø.19 41 770 1 1533 26.22 5.90 2.03 Ø.14 54 233 beg 1538 V 2.0 26.26 5.89 2.03 Ø.13 60 69.6  Damples Collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11 11 11                                            |
| 1528   26.13 5.91 2.00 \$.19 41 770 1<br>1533   26.22 5.90 2.03 \$.14 54 2.33 be<br>1538 V 2.0 26.26 5.89 2.03 \$.13 60 69.6<br>Samples Collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11 11 11                                            |
| 1533   26.22 5.90 2.03 Ø.14 54 233 be<br>1538 V 2.0 26,26 5.89 2.03 Ø.13 60 69.6   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00                                                                                                                                                                                                                                                                                                 |                                                     |
| 1538 V V 2.0 26,26 5.89 2.03 Ø.13 60 69.6  Samples Collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ginning to elect                                    |
| Samples Collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |
| pH CALIBRATION (choose two)  Model or Unit I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| pH CALIBRATION (choose two)  Model or Unit I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| pH CALIBRATION (choose two)  Model or Unit I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| pH CALIBRATION (choose two)  Model or Unit I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| pH CALIBRATION (choose two)  Model or Unit I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| pH CALIBRATION (choose two)  Model or Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |
| New Assets I and Assets I and Assets I are a second as the                                                                                                                                                                                                                                                                                                  | No.:                                                |
| Buffer Solution pH 4.0 pH 7.0 pH 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |
| Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |
| Instrument Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |
| SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION Model or Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No.                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INU.:                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |
| Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |
| Instrument Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |
| ORP/REDOX CALIBRATION DISSOLVED OXYGEN CALIBRATION Notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |
| Standard Solution (mV)  Altitude / Salinity %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |
| Field Temperature °C Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |
| Instrument Reading (mV)  Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |
| Model or Unit No.:  Model or Unit No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |



| Sample   Depth   Duplicate   Dr.   Depth to Water after Sampling:   Total Depth to Well:   13, 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Well ID: _ | APM                             | IW-3                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Initial Depth to Water:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                                        |             |                                             |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------|-------------|---------------------------------------------|--|--|
| Total Depth to Well   H3.4'   Well Diameter: 2''   Sampled By:   Casing/Borehole Volumes   Circle one   A Casing/Borehole Volumes   Color, turbidity, and sedimer   Circle one   A Casing/Borehole Volumes   Color, turbidity, and sedimer   Circle one   A Casing/Borehole Volumes   Circle one   Circle   |            |                                 |                                    | licate ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Depth to               | Water after                            | er Sampling | :                                           |  |  |
| Project And Task No.: 6706/50060 Project Name: MPA - G/bons Creek Date: October /9, 2016 Sampled By: Method of Purging: Method of Sampling:  Time Intake Depth (milrinin) Low Flow Stabilization Criteria  Approx.  The Acaing/Borehole Volumes:  To Classing/Borehole Volumes:  The Acaing/Borehole Volumes Record.  The Ac |            |                                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total De               | epth to Wel                            | : 43.4      | 1                                           |  |  |
| Date: October 19, 2016 Sampled By: Method of Purging: Total Casing/Borehole Volumes: (Circle one)  Method of Sampling: Total Casing/Borehole Volumes Removed: Total Casing/Borehole Volumes Removed Total Casing/Borehole Volumes Removed: Total Casing/Bore | Project ar | nd Task No                      | 6706                               | 615006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |             |                                             |  |  |
| Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Project Na | ame:                            | MPA-                               | Gibbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15 Cre   | rek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                        | Volume: _   |                                             |  |  |
| Method of Purging:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Date:      | October                         | 19,20                              | 016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |             |                                             |  |  |
| Method of Purging:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sampled    | Ву:                             |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        | Volumes:    |                                             |  |  |
| Method of Sampling:  Time Intake Depth Rate Depth (mil/min) (mil/m | Method o   | f Purging:                      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        | nole        |                                             |  |  |
| Time lintake Depth (ml/min) (al.) (c) Temp. (units) Conductance (ms/cm) Ph (units) Conductance (ms/cm) Potential (my/color) Potential P | Method o   | f Sampling                      | g:                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Volume                 | s Removed                              | i           |                                             |  |  |
| Model or Unit No.:  PECIFIC ELECTRICAL CONDUCTANCE (SEC) - CALIBRATION  KCI Solution (µS/cm=µmhos/cm)  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) - CALIBRATION  Model or Unit No.:  Model or Unit No.:  Model or Unit No.:  Model or Unit No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Time       | The second second second second | N. J. China In The Manufacture Co. | THE RESIDENCE OF THE PARTY OF T |          | The state of the s | Electrical Conductance | e Oxygen Reduction (mg/L) Potenti (mV) |             | Remarks<br>(color, turbidity, and sediment) |  |  |
| # Unable to sample well asing is warped at  approx. H below TOC. Pump gets  Stuck.  Stuck.  PH CALIBRATION (choose two)  Buffer Solution pH 4.0 pH 7.0 pH 10.0  Field Temperature °C  Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) - CALIBRATION  KCI Solution (µS/cm=µmhos/cm) 1413 at 25°C 12880 at 25°C  Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Low        | Flow Stab                       | ilization Cr                       | iteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +/- 3%   | +/- 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +/- 3%                 | +/- 10%                                | +/- 10%     |                                             |  |  |
| Aprox. Holaw Toc. Rump gets  Stack.  pH CALIBRATION (choose two)  Buffer Solution  pH 4.0 pH 7.0 pH 10.0  Field Temperature °C  Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) - CALIBRATION  KCI Solution (µS/cm=µmhos/cm)  1413 at 25°C  12880 at 25°C  Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0815       | , ,                             | . /                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                      |                                        |             |                                             |  |  |
| Aprox. Holaw Toc. Rump gets  Stack.  pH CALIBRATION (choose two)  Buffer Solution  pH 4.0 pH 7.0 pH 10.0  Field Temperature °C  Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) - CALIBRATION  KCI Solution (µS/cm=µmhos/cm)  1413 at 25°C  12880 at 25°C  Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A          | Un                              | able                               | 10 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ample    | well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · Cas                  | ing is                                 | Wa          | ped at                                      |  |  |
| pH CALIBRATION (choose two)  Buffer Solution Field Temperature °C  Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (µS/cm=µmhos/cm)  1413 at 25°C  12880 at 25°C  Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.         |                                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , ,      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | J                                      |             |                                             |  |  |
| Buffer Solution pH 4.0 pH 7.0 pH 10.0  Field Temperature °C  Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (μS/cm=μmhos/cm)  1413 at 25°C  12880 at 25°C  Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | appr                            | ox.                                | 4'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | bela     | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70C                    | 0                                      | ump         | gets                                        |  |  |
| Buffer Solution pH 4.0 pH 7.0 pH 10.0  Field Temperature °C  Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (μS/cm=μmhos/cm)  1413 at 25°C  Field Temperature °C  Model or Unit No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | <i>c</i> 1                      | 1                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |             |                                             |  |  |
| Buffer Solution pH 4.0 pH 7.0 pH 10.0  Field Temperature °C  Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (μS/cm=μmhos/cm)  1413 at 25°C  12880 at 25°C  Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 37                              | uck.                               | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |             |                                             |  |  |
| Buffer Solution pH 4.0 pH 7.0 pH 10.0  Field Temperature °C  Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (μS/cm=μmhos/cm)  1413 at 25°C  12880 at 25°C  Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |             |                                             |  |  |
| Buffer Solution pH 4.0 pH 7.0 pH 10.0  Field Temperature °C  Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (μS/cm=μmhos/cm)  1413 at 25°C  12880 at 25°C  Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |             |                                             |  |  |
| Buffer Solution pH 4.0 pH 7.0 pH 10.0  Field Temperature °C  Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (μS/cm=μmhos/cm)  1413 at 25°C  12880 at 25°C  Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |             |                                             |  |  |
| Buffer Solution pH 4.0 pH 7.0 pH 10.0  Field Temperature °C  Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (μS/cm=μmhos/cm)  1413 at 25°C  12880 at 25°C  Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |             |                                             |  |  |
| Buffer Solution pH 4.0 pH 7.0 pH 10.0  Field Temperature °C  Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (μS/cm=μmhos/cm)  1413 at 25°C  12880 at 25°C  Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |             |                                             |  |  |
| Buffer Solution pH 4.0 pH 7.0 pH 10.0  Field Temperature °C  Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (μS/cm=μmhos/cm)  1413 at 25°C  12880 at 25°C  Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                                 | 155.96                             | pH CALIB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RATION ( | choose two                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )                      | -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | ı           | Model or Unit No.:                          |  |  |
| Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (μS/cm=μmhos/cm)  1413 at 25°C  12880 at 25°C  Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Buffer So  | lution                          |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pH 4.0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |             |                                             |  |  |
| Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (μS/cm=μmhos/cm)  1413 at 25°C  12880 at 25°C  Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Field Tem  | nperature °(                    | 0                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |             |                                             |  |  |
| SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (μS/cm=μmhos/cm)  1413 at 25°C  12880 at 25°C  Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |             |                                             |  |  |
| KCI Solution (μS/cm=μmhos/cm)  1413 at 25°C  12880 at 25°C  Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                 | CIFIC ELE                          | CTRICAL C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ONDUCT   | ANCE (SEC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | – CALIBRAT             | ION                                    |             | Model or Unit No.:                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KCI Soluti |                                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |             |                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |             |                                             |  |  |
| Instrument Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |             |                                             |  |  |
| ORP/REDOX CALIBRATION DISSOLVED OXYGEN CALIBRATION Notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | DISSOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VED OXYGEN             | CALIBRA                                | TION        | Notes:                                      |  |  |
| Standard Solution (mV)  Altitude / Salinity %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |             |                                             |  |  |
| Field Temperature °C Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |             |                                             |  |  |
| Instrument Reading (mV)  Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |             |                                             |  |  |
| Model or Unit No.: Model or Unit No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                                 |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |             |                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Model of Other No               |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |             |                                             |  |  |



|                                             |                 | MW-              |                     |                       | Initial Depth to Water: 14,99'                |                                                  |                               |                                              |         |                                     |  |  |
|---------------------------------------------|-----------------|------------------|---------------------|-----------------------|-----------------------------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|---------|-------------------------------------|--|--|
| Sample ID                                   | :               | Dup              | licate ID: _        | DUP-2                 | 2                                             | Depth to                                         | Water after                   | r Sampling                                   | 16      | .95'                                |  |  |
| Sample D                                    | epth: 🌋         | 40'              |                     |                       |                                               | Total De                                         | pth to Well                   | : 42.                                        | 7'      |                                     |  |  |
| Project an                                  | d Task No       | o.: 67061.       | 50060               |                       |                                               | Well Dia                                         | meter:                        | 2"                                           |         |                                     |  |  |
|                                             |                 |                  | bons Cre            |                       |                                               |                                                  |                               | Volume: _                                    |         |                                     |  |  |
| Date:                                       | ctober          | 19,2016          |                     |                       |                                               | (Circle o                                        |                               |                                              |         |                                     |  |  |
|                                             |                 |                  |                     |                       | 4 Casing/Borehole Volumes:(Circle one)        |                                                  |                               |                                              |         |                                     |  |  |
| Method of                                   | Purging:        | <u>Submer</u>    | sible pun           | Total Casing/Borehole |                                               |                                                  |                               |                                              |         |                                     |  |  |
| Method of                                   | Sampling        | 1: _/on          | flow                |                       |                                               | Volumes                                          | Removed                       | :                                            |         |                                     |  |  |
| Time                                        | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C)         | pH<br>(units)                                 | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color, | Remarks<br>turbidity, and sediment) |  |  |
| Low                                         | Flow Stab       | ilization Cr     | iteria              | +/- 3%                | +/- 0.1                                       | +/- 3%                                           | +/- 10%                       | +/- 10%                                      | NTU     |                                     |  |  |
| 0853                                        | 40              | \$250            |                     | 23,33                 | 6.20                                          | 8.05                                             | 0,26                          | -14                                          |         | It. tan; slight sulfar od           |  |  |
| 0858                                        | 1               | 1                |                     | 23,38                 |                                               | 8.10                                             | Ø.15                          | -7                                           | 48      | clearing up                         |  |  |
| 0903                                        |                 |                  |                     | 23.42                 |                                               | 8.12                                             | 9.11                          | -4                                           | 22.5    | clear                               |  |  |
| 0908                                        |                 |                  |                     | 23.46                 |                                               | 8.13                                             | 9.08                          | -3                                           | 6.5     |                                     |  |  |
| 0913                                        | V               | V                | 23,5                | 23.48                 | 6.18                                          | 8.14                                             | \$.08                         | -1                                           | Ø.Ø     |                                     |  |  |
|                                             |                 | 6                | 1                   |                       | TL                                            | -                                                |                               |                                              |         |                                     |  |  |
|                                             |                 | ) a              | mple.               | 5 ,                   | ak                                            | en                                               |                               |                                              |         |                                     |  |  |
| 1                                           |                 |                  |                     |                       |                                               |                                                  |                               |                                              |         |                                     |  |  |
|                                             |                 |                  |                     |                       | 1                                             |                                                  |                               |                                              |         |                                     |  |  |
|                                             |                 |                  |                     |                       |                                               |                                                  |                               |                                              |         |                                     |  |  |
|                                             |                 |                  |                     |                       |                                               |                                                  |                               |                                              |         |                                     |  |  |
|                                             |                 |                  |                     |                       |                                               |                                                  |                               |                                              |         |                                     |  |  |
|                                             |                 |                  | pH CALIB            | RATION (c             | hoose two                                     | )                                                |                               | N                                            | lodel o | r Unit No.:                         |  |  |
| Buffer Sol                                  | ution           |                  |                     | pH 4.0                | pH 7.0                                        | pH 10.0                                          |                               |                                              |         |                                     |  |  |
| Field Tem                                   | perature °0     | 0                |                     |                       |                                               |                                                  |                               |                                              |         |                                     |  |  |
| Instrumen                                   | t Reading       |                  |                     |                       |                                               |                                                  |                               |                                              |         | - 4                                 |  |  |
|                                             |                 | CIFIC ELE        | CTRICAL C           | ONDUCTA               | NCE (SEC)                                     | - CALIBRATI                                      | ON                            |                                              | Model o | r Unit No.:                         |  |  |
| KCI Solutio                                 |                 | μmhos/cm)        |                     |                       | 1413 at 25°C                                  |                                                  |                               |                                              | 7777    |                                     |  |  |
| Field Temp                                  |                 |                  |                     |                       |                                               |                                                  |                               |                                              |         |                                     |  |  |
|                                             | Water Control   |                  |                     | +                     |                                               |                                                  |                               |                                              |         |                                     |  |  |
| Instrument Reading  ORP/REDOX CALIBRATION   |                 |                  |                     |                       | DISSOL                                        | VED OXYGEN                                       | CALIBRAT                      | TON A                                        | lotes:  |                                     |  |  |
| Standard Solution (mV)                      |                 |                  |                     |                       | Altitude / Sa                                 |                                                  | JALIDIAI                      | 27. 27. 20. 20.                              |         | 2 +1-                               |  |  |
| Field Temperature °C                        |                 |                  |                     |                       |                                               |                                                  |                               |                                              | DUT-    | -2 taken                            |  |  |
|                                             |                 |                  |                     |                       | Field Temperature °C                          |                                                  |                               |                                              |         |                                     |  |  |
| Instrument Reading (mV)  Model or Unit No.: |                 |                  |                     |                       | Instrument Reading (mg/L)  Model or Unit No.: |                                                  |                               |                                              |         |                                     |  |  |
| Model of Unit No.:                          |                 |                  |                     | Model of Official.    |                                               |                                                  |                               |                                              |         |                                     |  |  |



|                         |                 |                  |                     |               |                                        |                           |              |         |                                  | AALIGETEI            |  |  |  |
|-------------------------|-----------------|------------------|---------------------|---------------|----------------------------------------|---------------------------|--------------|---------|----------------------------------|----------------------|--|--|--|
| Well ID: _              | SFLI            | MW-3             |                     |               | Initial Depth to Water:                |                           |              |         |                                  |                      |  |  |  |
| Sample ID               | ):              | Dup              | licate ID:          |               |                                        |                           |              |         |                                  |                      |  |  |  |
| Sample D                | epth:           | 25.5'            |                     |               |                                        | Total De                  | pth to Well  | : 28.   | 2'                               |                      |  |  |  |
| Project ar              | nd Task No      | D.: 670 6        | 150060              |               |                                        | Well Dia                  | meter:       | 24      |                                  |                      |  |  |  |
| Project Na              | ame: TN         | NPA-G            | ibbons Cr           | reek          |                                        | 1 Casing/Borehole Volume: |              |         |                                  |                      |  |  |  |
| Date:                   | ctober          | 19,2016          |                     |               |                                        | (Circle o                 |              |         |                                  |                      |  |  |  |
|                         | By: _ 5M        |                  |                     |               | 4 Casing/Borehole Volumes:(Circle one) |                           |              |         |                                  |                      |  |  |  |
| Method o                | f Purging:      | Subme            | rsible pun          | up.           | Total Casing/Borehole                  |                           |              |         |                                  |                      |  |  |  |
| Method o                | f Sampling      | g: low f         | low                 |               |                                        | Volumes Removed:          |              |         |                                  |                      |  |  |  |
| Time                    | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)                          |                           |              |         | n (color turbidity and codiment) |                      |  |  |  |
| Low                     | Flow Stab       | ilization Cr     | iteria              | +/- 3%        | +/- 0.1                                | +/- 3%                    | +/- 10%      | +/- 10% | NTU                              |                      |  |  |  |
| 10/2                    | ₹25.5           | 175              |                     | 24.28         | 3.68                                   | 7.52                      | 1.52         | 327     |                                  | Redish-brown in odor |  |  |  |
| 1017                    |                 |                  |                     | 24.35         |                                        | 7.47                      | Ø.28         | 337     | 1000                             | 11 11 M              |  |  |  |
| 1022                    |                 |                  |                     | 24.69         |                                        | 7.46                      | Ø.14         | 341     | 410                              | clearing up          |  |  |  |
| 1027                    |                 |                  |                     | 24.66         |                                        | 7.43                      | \$.08        | 357     | 262                              | 11 11                |  |  |  |
| 1032                    |                 |                  |                     | 24.61         |                                        | 7.43                      | Ø.Ø5         |         | 77                               | 11 11                |  |  |  |
| 1037                    | <b>V</b>        | V                | 22.75               | 24.66         |                                        | 7.44                      | 9.04         |         | 34                               | clear                |  |  |  |
|                         |                 | 6                | 1                   | ,             | -                                      | 1                         |              |         |                                  |                      |  |  |  |
| Dample                  |                 |                  |                     | 5             | Va                                     | Ken                       |              |         |                                  |                      |  |  |  |
|                         |                 |                  | 1                   |               |                                        |                           |              |         |                                  |                      |  |  |  |
|                         |                 |                  |                     |               |                                        |                           |              |         |                                  |                      |  |  |  |
|                         |                 |                  |                     |               |                                        |                           |              |         |                                  |                      |  |  |  |
|                         |                 |                  |                     |               |                                        |                           |              |         |                                  |                      |  |  |  |
|                         | ATOM TO BE      |                  | pH CALIB            | RATION (c     | hoose two                              | )                         |              | N       | Nodel or                         | Unit No.:            |  |  |  |
| Buffer So               | lution          |                  |                     | pH 4.0        | pH 7.0                                 | pH 10.0                   |              |         |                                  |                      |  |  |  |
| Field Tem               | nperature °(    | C                |                     |               |                                        |                           |              |         |                                  |                      |  |  |  |
|                         | nt Reading      | <u> </u>         |                     |               |                                        |                           |              |         |                                  |                      |  |  |  |
|                         |                 | CIEIC ELE        | CTRICAL C           | ONDUCTA       | NCE (SEC                               | ) – CALIBRATI             | ON           | 1       | Andel or                         | Unit No.:            |  |  |  |
| VCI Soluti              |                 | -μmhos/cm)       | Hard Colors, By     |               | 1413 at 25°C                           | No. 50 Access 2015, 5     | 2 December 2 |         |                                  | Silit No.            |  |  |  |
|                         |                 |                  |                     |               | 1710 at 20 C                           | , 12000 at 25             |              |         |                                  |                      |  |  |  |
|                         | perature °C     | )                |                     |               |                                        |                           |              |         |                                  |                      |  |  |  |
| Instrument Reading      |                 |                  |                     |               |                                        |                           |              | 34.26   |                                  |                      |  |  |  |
| ORP/REDOX CALIBRATION   |                 |                  |                     |               |                                        | VED OXYGEN                | CALIBRAT     | IION I  | Notes:                           |                      |  |  |  |
| Standard Solution (mV)  |                 |                  |                     |               | Altitude / Sa                          |                           |              |         |                                  |                      |  |  |  |
| Field Temperature °C    |                 |                  |                     |               | Field Temperature °C                   |                           |              |         |                                  |                      |  |  |  |
| Instrument Reading (mV) |                 |                  |                     |               | Instrument Reading (mg/L)              |                           |              |         |                                  |                      |  |  |  |
| Model or Unit No.:      |                 |                  |                     |               | Model or Unit No.:                     |                           |              |         |                                  |                      |  |  |  |
|                         |                 |                  |                     |               |                                        |                           |              |         |                                  |                      |  |  |  |



|                         | 4 - 44          |                  |                     |               |                           |                                                                 |              |            |                                |                  |  |
|-------------------------|-----------------|------------------|---------------------|---------------|---------------------------|-----------------------------------------------------------------|--------------|------------|--------------------------------|------------------|--|
| Well ID:                | SFLI            | MW-2             |                     |               | Initial Depth to Water:   |                                                                 |              |            |                                |                  |  |
| Sample ID               | :               | Dup              | licate ID: _        |               |                           | Depth to                                                        | Water after  | r Sampling | : 13,                          | 69'              |  |
| Sample De               | epth: 🔌         | 21'              |                     |               |                           | Total De                                                        | epth to Well | : 23.6     |                                |                  |  |
| Project an              | d Task No       | 6706             | 150060              |               |                           | Well Dia                                                        | meter:       | 2 44       |                                |                  |  |
|                         |                 |                  | bons Cr             | eek           |                           |                                                                 |              | Volume:    |                                |                  |  |
| Date:                   | )ctober         | 19,2016          |                     |               |                           | (Circle o                                                       | 01.          | a.         |                                |                  |  |
| Sampled B               |                 |                  |                     |               |                           | 4 Casing (Circle of                                             |              | Volumes: _ |                                |                  |  |
|                         |                 |                  | sible pu            | mp            | -                         | Total Ca                                                        | nole         |            |                                |                  |  |
| Method of               | Sampling        | j: 10w t         | low                 |               |                           | Volume                                                          | s Removed    | ·          |                                |                  |  |
| Time                    | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)             | s) Conductance (mg/L) Reducti<br>(mS/cm) (mg/L) Potenti<br>(mV) |              |            | (color turbidity and sediment) |                  |  |
| Low                     | Flow Stab       | ilization Cr     | iteria              | +/- 3%        | +/- 0.1                   | +/- 3%                                                          | +/- 10%      | +/- 10%    | NTU                            |                  |  |
| 1335                    | wa1'            | 175              |                     | 26.97         | 6,00                      | 11.2                                                            | 0,57         | 217        |                                | It. tan; no odor |  |
| 1340                    | 1               | 1                |                     | 27,26         |                           | 11.3                                                            | Ø.31         | 206        | 242                            |                  |  |
| 1345                    |                 |                  |                     | 27.34         |                           | 11.4                                                            | Ø. 21        | 198        | 120                            | clear            |  |
| 1350                    | V               | V                | 21,5                | 27,37         | 6.11                      | 11.4                                                            | 0.19         | 189        | 68                             | u                |  |
| _                       |                 | -0               | 1                   |               | -1                        |                                                                 |              |            |                                |                  |  |
|                         |                 | 00               | emple               | 5             | ak                        | en                                                              |              |            |                                |                  |  |
|                         |                 |                  | 1                   |               |                           |                                                                 |              |            |                                |                  |  |
|                         |                 |                  |                     |               |                           |                                                                 |              |            |                                |                  |  |
|                         |                 |                  |                     |               |                           |                                                                 |              |            |                                |                  |  |
|                         |                 |                  |                     |               |                           |                                                                 |              |            |                                |                  |  |
|                         |                 |                  |                     |               |                           |                                                                 |              |            | -                              |                  |  |
|                         |                 |                  |                     |               |                           |                                                                 |              |            |                                |                  |  |
|                         |                 |                  | pH CALIB            | RATION (c     | hoose two                 |                                                                 |              | N          | lodel or                       | Unit No.:        |  |
| Buffer Sol              | ution           |                  |                     | pH 4.0        | pH 7.0                    | pH 10.0                                                         |              |            |                                |                  |  |
| Field Tem               | perature °(     | 2                |                     |               |                           |                                                                 |              |            |                                |                  |  |
| Instrumen               | 177 1011        |                  |                     |               |                           |                                                                 |              |            |                                |                  |  |
| modulien                |                 | CIEIC ELE        | CTRICAL C           | ONDUCTA       | NCE (SEC)                 | – CALIBRATI                                                     | ION          |            | Andal or                       | Unit No.:        |  |
|                         |                 | N.C. ESLANDS     |                     | 2.00          |                           |                                                                 |              | I.         | nouel of                       | Offic No         |  |
|                         |                 | μmhos/cm)        |                     |               | 1413 at 25°C              | 12880 at 25                                                     | , C          |            |                                |                  |  |
| Field Temp              | perature °C     | )                |                     |               |                           |                                                                 |              |            |                                |                  |  |
| Instrument Reading      |                 |                  |                     |               |                           |                                                                 |              |            |                                |                  |  |
| ORP/REDOX CALIBRATION   |                 |                  |                     |               | DISSOL                    | VED OXYGEN                                                      | CALIBRAT     | TION N     | Notes:                         |                  |  |
| Standard Solution (mV)  |                 |                  |                     | /             | Altitude / Sa             | linity %                                                        |              |            |                                |                  |  |
| Field Temperature °C    |                 |                  |                     | F             | Field Tempe               | erature °C                                                      |              |            |                                |                  |  |
| Instrument Reading (mV) |                 |                  |                     | 1             | Instrument Reading (mg/L) |                                                                 |              |            |                                |                  |  |
| Model or Unit No.:      |                 |                  |                     | 1             | Model or Unit No.:        |                                                                 |              |            |                                |                  |  |
|                         |                 |                  |                     |               |                           |                                                                 |              |            |                                |                  |  |



|                                                                     |                                        |             |          | miccici                             |  |  |  |  |
|---------------------------------------------------------------------|----------------------------------------|-------------|----------|-------------------------------------|--|--|--|--|
| Well ID: SFL MW-5                                                   | Initial Depth to Water: 16,22          |             |          |                                     |  |  |  |  |
| Sample ID: Duplicate ID:                                            | Depth to Water after                   | er Sampling | : 20     | .24°                                |  |  |  |  |
| Sample Depth: <u>♣ 22</u>                                           | Total Depth to Well Well Diameter:     | : 24.3      | /        |                                     |  |  |  |  |
| Project and Task No.: 6706150060                                    | Well Diameter:                         | 2"          |          |                                     |  |  |  |  |
| Project Name: TMPA - Gibbons Creek                                  | 1 Casing/Borehole                      | Volume: _   |          |                                     |  |  |  |  |
| Date: October 19, 2016                                              | (Circle one)                           |             |          |                                     |  |  |  |  |
| Sampled By: 5M                                                      | 4 Casing/Borehole Volumes:(Circle one) |             |          |                                     |  |  |  |  |
| Method of Purging: <u>Submersible pump</u>                          | Total Casing/Borel                     | nole        |          |                                     |  |  |  |  |
| Method of Sampling:low How                                          | Volumes Removed                        |             |          |                                     |  |  |  |  |
| Time Intake Depth Rate (ml/min) Cum. Vol. (gal.) Temp. (°C) (units) | (mS/cm) (mS/L) Potential (mV)          |             |          | Remarks<br>turbidity, and sediment) |  |  |  |  |
| Low Flow Stabilization Criteria +/- 3% +/- 0.1                      | +/- 3% +/- 10%                         | +/- 10%     | NTU      |                                     |  |  |  |  |
| 1420 \$22 200 25.79 4.79                                            | 12.4 0.56                              | 249         | 101      | M. straw Stain;                     |  |  |  |  |
| 1425   25.87 4.71                                                   | 12.4 0.43                              |             | 12.5     | clear                               |  |  |  |  |
| 1430 V V X2.0 25,94 4.70                                            | 12.4 0.39                              | 272         | Ø.9      |                                     |  |  |  |  |
|                                                                     |                                        |             |          |                                     |  |  |  |  |
| Damples lake                                                        | n                                      |             |          |                                     |  |  |  |  |
|                                                                     |                                        |             |          |                                     |  |  |  |  |
|                                                                     |                                        |             |          |                                     |  |  |  |  |
|                                                                     |                                        |             |          |                                     |  |  |  |  |
|                                                                     |                                        |             |          |                                     |  |  |  |  |
|                                                                     |                                        |             |          |                                     |  |  |  |  |
| pH CALIBRATION (choose tw                                           |                                        | N           | Nodel or | Unit No.:                           |  |  |  |  |
| Buffer Solution pH 4.0 pH 7.0                                       | pH 10.0                                |             |          |                                     |  |  |  |  |
| Field Temperature °C                                                |                                        |             |          |                                     |  |  |  |  |
| Instrument Reading                                                  |                                        |             |          |                                     |  |  |  |  |
| SPECIFIC ELECTRICAL CONDUCTANCE (SEC                                | ) – CALIBRATION                        | 1           | Model or | Unit No.:                           |  |  |  |  |
| KCI Solution (μS/cm=μmhos/cm) 1413 at 25°                           | 12880 at 25°C                          |             |          |                                     |  |  |  |  |
| Field Temperature °C                                                |                                        |             |          |                                     |  |  |  |  |
| Instrument Reading                                                  |                                        |             |          |                                     |  |  |  |  |
| ORP/REDOX CALIBRATION DISSO                                         | VED OXYGEN CALIBRAT                    | TION I      | Notes:   |                                     |  |  |  |  |
| Standard Solution (mV)  Altitude / S                                | alinity %                              |             |          |                                     |  |  |  |  |
| Field Temperature °C Field Temp                                     | erature °C                             |             |          |                                     |  |  |  |  |
| Instrument Reading (mV) Instrument                                  | Instrument Reading (mg/L)              |             |          |                                     |  |  |  |  |
| Model or Unit No.: Model or U                                       | nit No.:                               |             |          |                                     |  |  |  |  |
|                                                                     |                                        |             |          |                                     |  |  |  |  |



|                                             |                 |                  |                     |               |                         | 3 1 1                                            |                                             |            |                        |                                                |  |  |
|---------------------------------------------|-----------------|------------------|---------------------|---------------|-------------------------|--------------------------------------------------|---------------------------------------------|------------|------------------------|------------------------------------------------|--|--|
| Well ID: _                                  | SFL             | MW-              | 6                   |               | Initial Depth to Water: |                                                  |                                             |            |                        |                                                |  |  |
|                                             |                 |                  | licate ID: _        |               |                         | Depth to                                         | Water after                                 | r Sampling | 20                     | .65                                            |  |  |
| Sample De                                   | epth: 🌉         | 22               | (                   |               |                         |                                                  |                                             | : 23.      | /                      |                                                |  |  |
| Project an                                  | d Task No       | 6706             | 150060              |               |                         | Well Dia                                         | meter:                                      | 2"         |                        |                                                |  |  |
| Project Na                                  | ame: TN         | APA - Gil        | bons Co             | eek           |                         |                                                  |                                             | Volume:    |                        |                                                |  |  |
| Date:                                       | Octobe          | r 19,20          | 16                  |               |                         | (Circle o                                        |                                             |            |                        |                                                |  |  |
| Sampled B                                   | Ву:В            | 4                |                     |               |                         | 4 Casing (Circle of                              |                                             | Volumes: _ |                        |                                                |  |  |
|                                             |                 |                  | sible pu            | unp           |                         |                                                  | asing/Boreh                                 |            |                        | - 4                                            |  |  |
| Method of                                   | Sampling        | : low 7          | You                 |               |                         | Volume                                           | s Removed                                   | :          |                        |                                                |  |  |
| Time                                        | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)           | Specific<br>Electrical<br>Conductance<br>(mS/cm) | lectrical Dissolved Oxidat Oxygen Reduction |            |                        | n (color turbidity and sedimont)               |  |  |
| Low                                         | Flow Stab       | ilization Cr     | iteria              | +/- 3%        | +/- 0.1                 | +/- 3%                                           | +/- 10%                                     | +/- 10%    | NTu                    | 1                                              |  |  |
| 1502                                        | 22'             | 150              |                     | 26.39         | 4.12                    | 13.7                                             | 1.66                                        | 360        | Ø.0                    | cloudy/brown;                                  |  |  |
| 1507                                        |                 | 1                |                     | 27.03         |                         | 13.7                                             | 1.41                                        | 364        | 961                    | u u                                            |  |  |
| 1512                                        |                 |                  |                     | 27.36         |                         | 13.8                                             | 1,27                                        | 372        | 505                    | clearing up                                    |  |  |
| 1517                                        | V               | V                | 1.0                 | 27.66         |                         | 13.8                                             | 1.27                                        | 378        | 227                    | 11                                             |  |  |
|                                             |                 | -3               | 1                   |               | 11                      | 1 /                                              |                                             |            |                        |                                                |  |  |
|                                             |                 | Sam              | oles                |               |                         |                                                  |                                             |            |                        |                                                |  |  |
| Duffer Cal                                  |                 |                  | pH CALIB            |               | choose two              |                                                  |                                             | N          | lodel or               | Unit No.:                                      |  |  |
| Buffer Sol                                  |                 |                  |                     | pH 4.0        | pH 7.0                  | pH 10.0                                          |                                             |            |                        |                                                |  |  |
|                                             | perature °      | C                |                     |               |                         |                                                  |                                             |            |                        |                                                |  |  |
| Instrumen                                   | t Reading       | ****             |                     |               |                         |                                                  |                                             |            |                        |                                                |  |  |
|                                             | SPE             | CIFIC ELE        | CTRICAL C           | ONDUCT        | ANCE (SEC               | ) - CALIBRAT                                     | ION                                         | N          | lodel or               | Unit No.:                                      |  |  |
| KCI Solution                                | on (μS/cm=      | -μmhos/cm        | )                   |               | 1413 at 25°0            | 12880 at 25                                      | 5°C                                         |            |                        |                                                |  |  |
| Field Tem                                   | perature °C     |                  |                     |               |                         |                                                  |                                             |            |                        |                                                |  |  |
| Instrument                                  | t Reading       |                  |                     |               |                         |                                                  |                                             |            |                        |                                                |  |  |
| ORP/REDOX CALIBRATION                       |                 |                  |                     |               | DISSOL                  | VED OXYGEN                                       | CALIBRAT                                    | TION N     | lotes:                 |                                                |  |  |
| Standard Solution (mV)                      |                 |                  |                     |               | Altitude / Sa           | alinity %                                        |                                             | -          | jet pu                 | imp at one (1) foot                            |  |  |
| Field Temperature °C                        |                 |                  |                     |               | Field Temp              | erature °C                                       |                                             | A          | bove to                | imp at one (1) feet<br>ote ( depth due to last |  |  |
| Instrumer                                   | nt Reading      | (mV)             |                     |               | Instrument              | Reading (mg/L)                                   | )                                           |            |                        |                                                |  |  |
| Instrument Reading (mV)  Model or Unit No.: |                 |                  |                     |               | Model or Unit No.:      |                                                  |                                             |            | of volume and drawdown |                                                |  |  |



| Well ID:     | SSP/X           | P.Mu          | -1                  |               | Initial Depth to Water: 7.04 |                                                  |                               |                                              |                                             |
|--------------|-----------------|---------------|---------------------|---------------|------------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|---------------------------------------------|
| Sample ID    | ):              | Dupl          | icate ID: _         |               | -                            |                                                  |                               |                                              | :11.92'                                     |
| Sample D     | epth: 5         | B'            |                     |               |                              |                                                  | pth <b>®</b> Well             |                                              |                                             |
| Project an   | nd Task No      | : 6700        | 15.00               | 060           |                              | Well Dia                                         | meter: 2                      |                                              |                                             |
| Project Na   | ame: Tr         | 1PA           |                     |               |                              |                                                  |                               |                                              |                                             |
| Date: 12     | .20.2           | 16            |                     |               |                              | (Circle o                                        |                               |                                              |                                             |
| Sampled I    | Ву: 1.5         | STEVE         | 45                  |               |                              | 4 Casing (Circle of                              | g/Borehole                    | Volumes: _                                   |                                             |
| Method of    | Purging:        | SUR 3         | BMP                 |               |                              |                                                  | nsing/Boreh                   | ole                                          |                                             |
|              |                 | LOW F         |                     |               |                              |                                                  | s Removed                     |                                              |                                             |
| Time         | Intake<br>Depth | Rate (ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)                | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | Remarks<br>(color, turbidity, and sediment) |
| Low          | Flow Stabi      | lization Cri  | teria               | +/- 3%        | +/- 0.1                      | +/- 3%                                           | +/- 10%                       | +/- 10%                                      | ATU/                                        |
| 1351         | 38              | 150           |                     | 19.59         | 6.51                         | 8.83                                             | 28.5                          | 4                                            | 104/crowsy/ eviatto                         |
| 1356         | 38              | 150           | -                   | 20.43         | 6.05                         | 8.76                                             | 3.8                           | -14                                          | 583/CLANDY/UNSTABLE                         |
| 1401         | 38              | 150           | _                   | 20.84         | 6.01                         | 8.68                                             | 2.5                           | -20                                          | >1000 CLONDY (UP & DOWN)                    |
| 1406         | 38              | 150           |                     | 20.89         | 6.01                         | 8.70                                             | 0.0                           | -22                                          | 882/CLOUDY                                  |
| 1411         | 38              | 150           |                     | 2144          | 6.01                         | 8.56                                             | 0.0                           | -21                                          | 794/cc004                                   |
| 1416         | 38              | 150           | 1/2                 | 21.89         | 6.01                         | 8.54                                             | 0.0                           | -21                                          | 908/62004                                   |
| 1417         | BEC             | and co        | DUECTI              | الم عمل       | MPLE                         | 5                                                |                               |                                              |                                             |
|              |                 |               |                     |               |                              |                                                  |                               |                                              |                                             |
| - " - "      |                 |               | pH CALIB            |               | choose two)                  |                                                  | ,                             | N                                            | lodel or Unit No.:                          |
| Buffer Soli  |                 |               |                     | pH 4.0        | pH 7.0                       | pH 10.0                                          |                               |                                              |                                             |
| Field Tem    | perature °C     |               |                     |               |                              |                                                  |                               |                                              | 11                                          |
| Instrumen    | t Reading       |               |                     |               |                              |                                                  |                               |                                              |                                             |
|              | SPE             | CIFIC ELEC    | TRICAL CO           | ONDUCTA       | NCE (SEC)                    | - CALIBRATIO                                     | NC                            | N                                            | lodel or Unit No.:                          |
| KCI Solution | on (μS/cm=μ     | umhos/cm)     |                     |               | 1413 at 25°C                 | 12880 at 25°                                     | C                             |                                              |                                             |
| Field Temp   | erature °C      |               |                     |               |                              |                                                  |                               |                                              |                                             |
| Instrument   | Reading         |               |                     |               |                              |                                                  |                               |                                              |                                             |
|              | ORP/RED         | OX CALIBR     | RATION              |               | DISSOL                       | /ED OXYGEN                                       | CALIBRAT                      | ION N                                        | lotes:                                      |
| Standard     | Solution (m     | V)            |                     | P             | Altitude / Sal               | inity %                                          |                               | T                                            | SPENDITY LEVER                              |
| Field Tem    | perature °C     |               |                     | F             | ield Tempe                   | rature °C                                        |                               |                                              | EVELED OFF.                                 |
| Instrumen    | t Reading (     | mV)           |                     | 1             | Instrument Reading (mg/L)    |                                                  |                               | le                                           | HEER METER OF.                              |
| Model or U   | Jnit No.:       |               |                     | N             | Model or Uni                 | t No.:                                           |                               |                                              |                                             |



| Well ID:    | SP.Y            | 1W.Z          |                  |               |                           | Initial De                                       | epth to Wat                   | er: 22.                                      | 04                                       |
|-------------|-----------------|---------------|------------------|---------------|---------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|------------------------------------------|
|             |                 |               |                  |               |                           |                                                  |                               |                                              |                                          |
| Sample D    | epth: ~ 4       | 4.5           | licate ID: _     |               |                           |                                                  | epth <b>®</b> Well            |                                              |                                          |
|             |                 |               | 15.00            |               |                           |                                                  | meter: 2                      |                                              |                                          |
| Project Na  | ame: TT         | PA            |                  |               |                           | 1 Casing                                         | g/Borehole                    |                                              |                                          |
| Date: \     | .20.2           | 016           |                  | Sec           |                           | (Circle o                                        | one)                          |                                              |                                          |
| Sampled     | Ву:             | STEVE         | = als            |               |                           | 4 Casing (Circle of                              | g/Borehole                    | Volumes: _                                   |                                          |
| Method o    | f Purging:      | SUBT          | SMP              |               |                           |                                                  | nsing/Boreh                   | ole                                          |                                          |
| Method o    | f Sampling      | LOW :         | FLOW             |               |                           |                                                  | s Removed                     |                                              |                                          |
| Time        | Intake<br>Depth | Rate (ml/min) | Cum. Vol. (gal.) | Temp.<br>(°C) | pH<br>(units)             | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | Remarks (color, turbidity, and sediment) |
| Low         | Flow Stabi      | lization Cr   | iteria           | +/- 3%        | +/- 0.1                   | +/- 3%                                           | +/- 10%                       | +/- 10%                                      |                                          |
| 1548        | 44.5            | 150           |                  | 21.24         | 5.45                      | 9.88                                             | 1.83                          | 30                                           | 4000/ EULODOR KLOUDY                     |
| 1553        | 44.5            | 150           | _                | 21.47         | 5.00                      | 9.94                                             | 0.04                          | 76                                           | ×1000/CL0004                             |
| 1558        | 44.5            | 150           |                  | 21.52         | - 5.02                    | 9.93                                             | 0.00                          | 73                                           | 872/c2000y                               |
| 1603        | 44.5            | 150           |                  | 21.55         | 5.03                      | 9.92                                             | 0.00                          | 72                                           | 704/c0004                                |
| 1608        | 44.5            | 150           | 11/2             | 21.50         | 9.03                      | 9.90                                             | 0.00                          | 72                                           | 648/crowdy                               |
|             |                 |               |                  |               |                           |                                                  |                               |                                              |                                          |
| 1610        | BEG             | and co        | clear            | Not :         | SAMPL                     | <b>E</b> S                                       |                               |                                              |                                          |
|             |                 |               |                  |               |                           |                                                  |                               |                                              |                                          |
|             |                 |               |                  |               |                           |                                                  |                               |                                              |                                          |
|             |                 |               |                  |               |                           |                                                  |                               |                                              |                                          |
|             |                 |               |                  |               |                           |                                                  |                               |                                              |                                          |
|             |                 |               |                  |               |                           |                                                  |                               |                                              |                                          |
|             |                 |               | pH CALIB         | RATION (      | choose two)               |                                                  |                               | N                                            | lodel or Unit No.:                       |
| Buffer Sol  | ution           |               |                  | pH 4.0        | pH 7.0                    | pH 10.0                                          |                               |                                              |                                          |
| Field Tem   | perature °C     |               |                  |               |                           |                                                  | 7                             |                                              |                                          |
| Instrumen   | t Reading       |               |                  |               |                           |                                                  |                               |                                              |                                          |
|             | SPE             | CIFIC ELEC    | TRICAL C         | ONDUCTA       | ANCE (SEC)                | - CALIBRATION                                    | ON                            | N                                            | lodel or Unit No.:                       |
| KCI Solutio | on (μS/cm=μ     | umhos/cm)     |                  |               | 1413 at 25°C              | 12880 at 25°                                     | °C                            |                                              |                                          |
| Field Temp  | perature °C     |               |                  |               |                           |                                                  |                               |                                              |                                          |
| Instrument  | Reading         |               |                  |               |                           |                                                  |                               |                                              |                                          |
|             | ORP/RED         | OX CALIBR     | RATION           |               | DISSOLV                   | /ED OXYGEN                                       | CALIBRAT                      | ION N                                        | otes:                                    |
| Standard    | Solution (m     | V)            |                  |               | Altitude / Sali           | inity %                                          |                               |                                              |                                          |
| Field Tem   | perature °C     |               |                  |               | Field Temper              |                                                  |                               |                                              |                                          |
| Instrumen   | t Reading (ı    | mV)           |                  |               | Instrument Reading (mg/L) |                                                  |                               |                                              |                                          |
| Model or l  | Jnit No.:       |               |                  |               | Model or Unit No.:        |                                                  |                               |                                              |                                          |



| Well ID:     | SSP.Y           | W. 3          |                     |          | Initial Depth to Water: 27.63 |                                                  |                               |                                              |                                          |  |  |  |
|--------------|-----------------|---------------|---------------------|----------|-------------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|------------------------------------------|--|--|--|
| Sample II    | ):              | Dup           | licate ID: _        |          |                               |                                                  |                               |                                              |                                          |  |  |  |
|              | epth: ~ 4       |               |                     |          |                               | Total De                                         | epth <b>do</b> Well           | 48.2                                         |                                          |  |  |  |
| Project a    | nd Task No      | 6700          | 15.00               | 260      |                               | Well Dia                                         | ameter: 🔼                     |                                              |                                          |  |  |  |
| Project N    | ame: T          | PA            |                     |          |                               |                                                  |                               | Volume: _                                    |                                          |  |  |  |
| Date: 12     | -20.2           | 016           |                     |          |                               | (Circle o                                        |                               |                                              |                                          |  |  |  |
| Sampled      | Ву: 📉 🤾         | STEVE         | = Ls                |          |                               | 4 Casing/Borehole Volumes:<br>(Circle one)       |                               |                                              |                                          |  |  |  |
| Method o     | f Purging:      | SUB           | +OM+                | >        |                               | Total Casing/Borehole                            |                               |                                              |                                          |  |  |  |
| Method o     | f Sampling      | Low!          | FLOW                |          |                               |                                                  | s Removed                     |                                              |                                          |  |  |  |
| Time         | Intake<br>Depth | Rate (ml/min) | Cum. Vol.<br>(gal.) | Temp.    | pH<br>(units)                 | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | Remarks (color, tyrbidity, and sediment) |  |  |  |
| Low          | Flow Stabi      | lization Cr   | iteria              | +/- 3%   | +/- 0.1                       | +/- 3%                                           | +/- 10%                       | +/- 10%                                      |                                          |  |  |  |
| 1703         | 45.5            | 150           |                     | 21.38    | 3 4.56                        | 8.49                                             | 1.21                          | 184                                          | 0.0/a004/No                              |  |  |  |
| 1708         | 45.5            | 150           |                     | 21.00    | 4.27                          | 8.44                                             | D.08                          | 239                                          | 0.0/ SUGHTLY                             |  |  |  |
| 1713         | 45.5            | 150           |                     | 21.21    | 4.17                          | 8.41                                             | 0.00                          | 263                                          | 0.0 SUGHTLY                              |  |  |  |
| 1718         | 45.5            | 150           | 13/4                | 21.20    | 24.16                         | 8.39                                             | 0.00                          | 266                                          | 0.0/ GLIGHTLY                            |  |  |  |
|              |                 |               |                     |          |                               |                                                  |                               |                                              |                                          |  |  |  |
| 1720         | BEE             | real c        | OUEZ                | TINC     | SAT                           | 1PLES                                            |                               |                                              |                                          |  |  |  |
| 1750         | Cod             | ECTE          | DEO                 | DIPM     | ENT P                         | KAOK                                             |                               |                                              |                                          |  |  |  |
|              |                 | EQE           | SK.M.               | PS-1     | 22016                         |                                                  |                               |                                              |                                          |  |  |  |
|              |                 |               |                     |          |                               |                                                  |                               |                                              |                                          |  |  |  |
|              |                 |               |                     |          |                               |                                                  |                               |                                              | ~                                        |  |  |  |
|              |                 |               |                     |          |                               |                                                  |                               |                                              |                                          |  |  |  |
|              |                 |               | pH CALIB            | RATION ( | choose two                    |                                                  |                               | N                                            | lodel or Unit No.:                       |  |  |  |
| Buffer Sol   | ution           |               |                     | pH 4.0   | pH 7.0                        | pH 10.0                                          |                               |                                              | 1 - 4 - 5 - 7 - 7 - 7                    |  |  |  |
| Field Tem    | perature °C     |               |                     |          |                               |                                                  |                               |                                              |                                          |  |  |  |
| Instrumen    | t Reading       |               |                     |          |                               |                                                  |                               |                                              |                                          |  |  |  |
|              | SPEC            | CIFIC ELEC    | CTRICAL C           | ONDUCTA  | ANCE (SEC)                    | - CALIBRATI                                      | ON                            | N                                            | lodel or Unit No.:                       |  |  |  |
| KCI Solution | on (μS/cm=μ     | ımhos/cm)     |                     |          | 1413 at 25°C                  | 12880 at 25                                      | °C                            |                                              |                                          |  |  |  |
| Field Tem    | perature °C     |               |                     |          |                               |                                                  |                               |                                              |                                          |  |  |  |
| Instrument   | Reading         |               |                     |          |                               |                                                  |                               |                                              |                                          |  |  |  |
|              | ORP/RED         | OX CALIBI     | RATION              |          | DISSOLV                       | /ED OXYGEN                                       | CALIBRAT                      | ION N                                        | lotes:                                   |  |  |  |
| Standard     | Solution (m     | V)            |                     |          | Altitude / Sal                | inity %                                          |                               | ~                                            | COLITER READING                          |  |  |  |
| Field Tem    | perature °C     |               |                     |          | Field Tempe                   | rature °C                                        | 0                             | CONTU-WATER                                  |                                          |  |  |  |
| Instrumer    | it Reading (i   | mV)           |                     |          | Instrument Reading (mg/L)     |                                                  |                               |                                              |                                          |  |  |  |
| Model or     | Unit No.:       |               |                     |          | Model or Unit No.:            |                                                  |                               |                                              |                                          |  |  |  |
|              |                 |               |                     |          |                               |                                                  |                               |                                              |                                          |  |  |  |



| Well ID:                                      | KP. 174         | 1.3           |                     |               |                           | Initial De                                       | epth to Wat                   | or: 10 5                                     | 12                                       |
|-----------------------------------------------|-----------------|---------------|---------------------|---------------|---------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|------------------------------------------|
| Sample ID                                     | ):              | — Dup         | licate ID:          | JP. Z         |                           |                                                  |                               |                                              | :11.02                                   |
| Sample D                                      | epth: ~ 4       | -l`           |                     |               |                           | Total De                                         | pthate-Well                   | 43.4                                         | 3.4.                                     |
| Project an                                    | d Task No       | :67d          | 2.15.               | 0060          |                           |                                                  | meter: 2                      |                                              |                                          |
| Project Na                                    | ame: 1          | TP4           |                     |               |                           | 1 Casing                                         | g/Borehole                    | Volume:                                      |                                          |
| Date: 12                                      | :21.20          | 16            |                     |               |                           | (Circle o                                        |                               |                                              |                                          |
| Sampled I                                     | Ву: 11.         | STEVE         | علد                 |               |                           | 4 Casing (Circle of                              | g/Borehole                    | Volumes: _                                   |                                          |
| Method of                                     | Purging:        | PERI          | PUM                 | 2             |                           |                                                  | using/Boreh                   | ole                                          |                                          |
| Method of                                     | Sampling        | how!          | FLOW                |               |                           |                                                  | s Removed                     |                                              |                                          |
| Time                                          | Intake<br>Depth | Rate (ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)             | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | Remarks (color, turbidity, and sediment) |
| Low                                           | Flow Stabi      | lization Cr   | iteria              | +/- 3%        | +/- 0.1                   | +/- 3%                                           | +/- 10%                       | +/- 10%                                      |                                          |
| 0859                                          | 41              | 150           | _                   | 19.79         | 5.0b                      | 1.81                                             | 0.80                          | 108                                          | 4.2 kiane 0000                           |
| 0904                                          | 41              | 150           | _                   | 20.30         | 5.11                      | 1.79                                             | 0.11                          | 131                                          | 34/CLEAR                                 |
| 0909                                          | 41              | 150           |                     | 20.38         | 5.13                      | 1.77                                             | 0.00                          | 112                                          | 27/CLEAR                                 |
| 0914                                          | 41              | 150           | 1/2                 | 20.71         | 5.11                      | 1.76                                             | 0.00                          | 107                                          | 2.8/CLELL                                |
|                                               |                 |               |                     |               |                           |                                                  |                               |                                              |                                          |
| 0916                                          | BEC             | não (         | COULEC              | TING.         | SAMI                      | RES                                              |                               |                                              |                                          |
|                                               |                 |               |                     |               |                           |                                                  |                               |                                              |                                          |
| 0950                                          | 00              | P. 2          | code                | ECPE          |                           |                                                  |                               |                                              |                                          |
|                                               |                 | _             |                     |               |                           |                                                  |                               |                                              |                                          |
|                                               |                 |               |                     |               |                           |                                                  |                               |                                              |                                          |
|                                               |                 |               |                     |               |                           |                                                  |                               |                                              |                                          |
|                                               |                 |               | nH CALIB            | PATION (c)    | hoose two)                |                                                  |                               | 1                                            | ladal an Half Ma                         |
| Buffer Solu                                   | ıtion           |               | PHOALID             | pH 4.0        |                           | pH 10.0                                          |                               | IV                                           | lodel or Unit No.:                       |
|                                               | perature °C     |               |                     | pi 1 4.0      | pi17.0                    | pri 10.0                                         |                               |                                              | 0.114                                    |
| Instrument                                    |                 |               |                     |               |                           |                                                  |                               |                                              |                                          |
| mstrumen                                      |                 | CIEIC EL EC   | STRICAL CO          | ONDUCTAL      | ICE (CEC)                 | CALIDDATI                                        | 211                           |                                              | Cartesian                                |
| KOLO-listia                                   |                 |               | I RICAL CO          |               |                           | - CALIBRATIO                                     |                               | IV                                           | lodel or Unit No.:                       |
| KCI Solutio                                   |                 | umnos/cm)     |                     | 1             | 413 at 25°C               | 12880 at 25°                                     | C                             |                                              |                                          |
| Field Temp                                    | 7 2 2 2 2 2     |               |                     |               |                           |                                                  |                               |                                              |                                          |
| Instrument                                    |                 |               |                     |               |                           |                                                  |                               |                                              |                                          |
| 0                                             |                 | OX CALIBR     | RATION              |               |                           | ED OXYGEN                                        | CALIBRATI                     | ION N                                        | otes:                                    |
|                                               | Solution (m     |               |                     |               | Ititude / Sali            |                                                  |                               |                                              |                                          |
| Field Temperature °C  Instrument Reading (mV) |                 |               |                     |               | ield Temper               |                                                  |                               |                                              |                                          |
|                                               |                 | mV)           | A                   |               | Instrument Reading (mg/L) |                                                  |                               |                                              |                                          |
| Model or U                                    | unit No.:       |               |                     | M             | Model or Unit No.:        |                                                  |                               |                                              |                                          |



|              |                 |               |                     |          |                               |                                                  |                               |                                              | ANTICCICI                                   |  |  |
|--------------|-----------------|---------------|---------------------|----------|-------------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|---------------------------------------------|--|--|
| Well ID:     | SPL.T           | 7W.6          |                     |          | Initial Depth to Water: 17.41 |                                                  |                               |                                              |                                             |  |  |
| Sample II    | D:              | Dup           | licate ID: _        |          |                               |                                                  |                               |                                              | 1: <del>24</del> .09                        |  |  |
| Sample D     | epth: 2         | 23'           |                     |          |                               | Total De                                         | epth to Well                  | 25.0                                         | 08                                          |  |  |
| Project ar   | nd Task No      | .:670         | 6-15-               | 000      |                               | Well Dia                                         | meter: Z                      | -                                            |                                             |  |  |
| Project N    | ame: T          | PS            |                     |          |                               |                                                  | g/Borehole                    | Volume: _                                    |                                             |  |  |
|              | -21.2           |               | 1                   |          |                               | (Circle o                                        |                               |                                              |                                             |  |  |
|              |                 | Stev6         |                     |          |                               | 4 Casing/Borehole Volumes:<br>(Circle one)       |                               |                                              |                                             |  |  |
| Method o     | f Purging:      | REPL          | FOMP                |          |                               |                                                  | sing/Borel                    | ole                                          |                                             |  |  |
| Method o     | f Sampling      | : Low F       | Tow                 |          |                               |                                                  | s Removed                     |                                              |                                             |  |  |
| Time         | Intake<br>Depth | Rate (ml/min) | Cum. Vol.<br>(gal.) | Temp.    | pH<br>(units)                 | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | Remarks<br>(color, turbidity, and sediment) |  |  |
| Low          | Flow Stab       | ilization Cr  | iteria              | +/- 3%   | +/- 0.1                       | +/- 3%                                           | +/- 10%                       | +/- 10%                                      |                                             |  |  |
| 1215         | 23              | 150           |                     | 24.44    | 4.00                          | 12.3                                             | 1.57                          | 327                                          | 79.4 CLEMP DOOR                             |  |  |
| 1220         | 23              | 150           | _                   | 24.10    | 3.93                          | 12.4                                             | 0.59                          | 390                                          | 54/CLEAR                                    |  |  |
| 1225         | 23              | 150           | _                   | 24.02    | 3.92                          | 12.5                                             | 0.52                          | 396                                          | 3.9/CLEAR                                   |  |  |
| 1230         | 23              | 150           | 1                   | 23.98    | 3.92                          | 12.5                                             | 0.48                          | 397                                          | 2.9/CLEAR                                   |  |  |
|              |                 |               |                     |          |                               |                                                  |                               |                                              |                                             |  |  |
| 1232         | Pac             | Lac           | code                | ZTIN     | TAC P                         | 1000                                             |                               |                                              |                                             |  |  |
|              | -               |               |                     |          |                               |                                                  |                               |                                              |                                             |  |  |
| 1315         | Ea              | DATE          | FR                  | Ant (    | COLEC                         | FED                                              |                               |                                              |                                             |  |  |
|              | ta              | BK.T          | 1PS.12              | 22116    |                               |                                                  |                               |                                              |                                             |  |  |
|              |                 |               |                     |          |                               |                                                  |                               |                                              |                                             |  |  |
|              |                 |               |                     |          |                               |                                                  |                               |                                              |                                             |  |  |
|              |                 |               |                     |          |                               |                                                  |                               |                                              |                                             |  |  |
|              |                 |               | pH CALIB            | RATION ( | choose two)                   |                                                  |                               |                                              | lodel or Unit No.:                          |  |  |
| Buffer Sol   | ution           |               |                     | pH 4.0   | pH 7.0                        | pH 10.0                                          |                               | 5                                            | LE STUMWS                                   |  |  |
| Field Tem    | perature °C     |               | -                   |          |                               |                                                  |                               | S                                            | AN CONTRACT                                 |  |  |
| Instrumen    | t Reading       |               |                     |          |                               |                                                  |                               |                                              | * ECOLO                                     |  |  |
|              | SPE             | CIFIC ELEC    | TRICAL C            | ONDUCTA  | NCE (SEC)                     | - CALIBRATI                                      | ON                            | N                                            | lodel or Unit No.:                          |  |  |
| KCI Solution | on (μS/cm=      | μmhos/cm)     |                     |          | 1413 at 25°C                  | 12880 at 25                                      | °C                            |                                              |                                             |  |  |
| Field Temp   | perature °C     |               |                     |          |                               |                                                  |                               |                                              |                                             |  |  |
| Instrument   | Reading         |               |                     |          |                               |                                                  |                               |                                              |                                             |  |  |
|              | ORP/RED         | OX CALIBR     | RATION              |          | DISSOLV                       | /ED OXYGEN                                       | CALIBRAT                      | ION N                                        | lotes:                                      |  |  |
| Standard     | Solution (m     | iV)           |                     | 1        | Altitude / Sal                | inity %                                          |                               |                                              |                                             |  |  |
| Field Tem    | perature °C     | )             |                     | F        | Field Temperature °C          |                                                  |                               |                                              |                                             |  |  |
| Instrumen    | it Reading (    | mV)           |                     | 1        | Instrument Reading (mg/L)     |                                                  |                               |                                              |                                             |  |  |
| Model or I   | Unit No.:       |               |                     | ı        | Model or Unit No.:            |                                                  |                               |                                              |                                             |  |  |
|              |                 |               |                     | -        |                               |                                                  |                               |                                              |                                             |  |  |



|                  |                 | 44               | 1                   |        |                           |                                                  |                                                                | 24          | -39          | wheeler                        |  |  |
|------------------|-----------------|------------------|---------------------|--------|---------------------------|--------------------------------------------------|----------------------------------------------------------------|-------------|--------------|--------------------------------|--|--|
|                  | -               | MWL              |                     |        |                           |                                                  |                                                                | er:         |              | 24,30                          |  |  |
| Sample ID        | :               | Dup              | licate ID: _        |        |                           | Depth to                                         | Water after                                                    | er Sampling | j: <u>46</u> | 167                            |  |  |
| Sample De        | epth:           | 0-0              |                     | / ^    |                           | Total De                                         | pth to Well                                                    | :           |              |                                |  |  |
| Project an       | d Task No       | .: 6700          | 6 15006             | 14     | A. (                      | Well Dia                                         | meter:                                                         | 2           |              |                                |  |  |
| Project Na Date: |                 |                  | bbans C             | reck i | MINE                      | 1 Casing/Borehole Volume:(Circle one)            |                                                                |             |              |                                |  |  |
| Sampled I        | Ву: <u></u>     | M                |                     |        |                           | 4 Casing/Borehole Volumes:(Circle one)           |                                                                |             |              |                                |  |  |
| Method of        | Purging:        | Man:             | 590n                |        |                           | Total Casing/Borehole                            |                                                                |             |              |                                |  |  |
| Method of        | Sampling        | : Low            | low                 |        |                           | Volumes Removed:                                 |                                                                |             |              |                                |  |  |
| Time             | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.  | pH<br>(units)             | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Electrical Conductance Oxygen (mg/L) Potential Color turbidity |             |              | Remarks urbidity and sediment) |  |  |
| Low              | Flow Stabi      | ilization Cr     | iteria              | +/- 3% | +/- 0.1                   | +/- 3%                                           | +/- 10%                                                        | +/- 10%     |              |                                |  |  |
| 1627             |                 | -250             |                     | 22,46  | 5.70                      | 11.2                                             | 0,92                                                           | 105         | 234          | Light yellow/Na ad             |  |  |
| 1632             |                 |                  |                     | 22,41  | 5,73                      | 11,2                                             | 0,70                                                           | 89          | 101          |                                |  |  |
| 1637             |                 |                  |                     | 2260   | 2 5,74                    | 11.1                                             | 0,54                                                           | 77          | 46.8         | Clearing Up                    |  |  |
| 1642             |                 |                  |                     | 23,32  | 2 5,76                    | 11.1                                             | 0.52                                                           | 70          | 15.1         | Cleaning                       |  |  |
| 1647             |                 | -1               |                     | 23.2   | 5.76                      | 11,1                                             | 0.43                                                           | 69          | 16,3         | Adjusted rump rate             |  |  |
| 1652             |                 |                  | 5                   | 23,40  | 5.78                      | 11.0                                             | 0,40                                                           | 66          | 16,5         | 1 /                            |  |  |
|                  |                 |                  |                     |        |                           |                                                  |                                                                |             |              |                                |  |  |
|                  | D <             | San              | 11=                 | 1      | 1                         |                                                  |                                                                |             |              |                                |  |  |
|                  | V -             | 911              | ples                | 4      | YEN (                     |                                                  | 3431                                                           | 1           |              |                                |  |  |
|                  |                 |                  |                     |        |                           | 16                                               | 52                                                             |             | -            |                                |  |  |
|                  |                 |                  |                     |        |                           | . 0                                              | - ~                                                            |             |              |                                |  |  |
|                  |                 |                  |                     |        |                           |                                                  |                                                                |             |              |                                |  |  |
|                  |                 |                  | ph CALIB            |        | choose two                |                                                  |                                                                | N           | Model or U   | Jnit No.:                      |  |  |
| Buffer Sol       |                 |                  |                     | pH 4.0 | pH 7.0                    | pH 10.0                                          |                                                                |             |              |                                |  |  |
|                  | perature °C     |                  |                     |        |                           |                                                  |                                                                |             |              |                                |  |  |
| Instrumen        |                 |                  |                     |        |                           |                                                  |                                                                |             |              |                                |  |  |
|                  | SPE             | CIFIC ELE        | CTRICAL C           | ONDUCT | ANCE (SEC)                | - CALIBRATI                                      | ON                                                             | N           | Model or U   | Jnit No.:                      |  |  |
| KCI Solution     | on (μS/cm=      | μmhos/cm)        |                     |        | 1413 at 25°C              | 12880 at 25                                      | °C                                                             |             |              |                                |  |  |
| Field Temp       | oerature °C     |                  |                     |        |                           |                                                  |                                                                |             |              |                                |  |  |
| Instrument       | Reading         |                  |                     |        |                           |                                                  |                                                                |             |              |                                |  |  |
|                  | ORP/RED         | OX CALIB         | RATION              |        | DISSOL                    | VED OXYGEN                                       | CALIBRAT                                                       | TON         | Notes:       |                                |  |  |
| Standard         | Solution (m     | ıV)              |                     |        | Altitude / Sa             | linity %                                         |                                                                |             |              |                                |  |  |
| Field Tem        | perature °C     |                  |                     |        | Field Temperature °C      |                                                  |                                                                |             |              |                                |  |  |
|                  | t Reading (     | (mV)             |                     |        | Instrument Reading (mg/L) |                                                  |                                                                |             |              |                                |  |  |
| Model or l       | Unit No.:       |                  |                     |        | Model or Unit No.:        |                                                  |                                                                |             |              |                                |  |  |
|                  |                 |                  |                     | - 1    |                           |                                                  |                                                                |             |              |                                |  |  |



| Well ID:                               | AP-M                    | .15              |                     |           |                | 1-141-1 D                                                                                                                             |              | - 11    | 00            | wheeler          |  |  |
|----------------------------------------|-------------------------|------------------|---------------------|-----------|----------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|---------------|------------------|--|--|
|                                        |                         |                  | licate ID: _        | Dun-      | 1              | Initial Depth to Water: Depth to Water after Sampling: 1 27 after                                                                     |              |         |               |                  |  |  |
|                                        | epth:                   |                  | ilicate ID: _       | V OF      | <del>-</del>   |                                                                                                                                       |              |         | g:            | Dup 1            |  |  |
| Project a                              | nd Tack No              | . 6101           | 6 150060            | 1         |                | Wall Dia                                                                                                                              | epth to Well | 711     |               | 15m 100          |  |  |
| Project N                              | ame. JW                 | PAC              | bhans (             | - ren K   | Mine           |                                                                                                                                       |              |         |               | ( MW O           |  |  |
|                                        | 2-21-16                 |                  | Dhew?               | 70-71     |                | 1 Casing/Borehole Volume:(Circle one)                                                                                                 |              |         |               |                  |  |  |
|                                        | By: <u>50</u>           |                  |                     |           |                | 4 Casing/Borehole Volumes:                                                                                                            |              |         |               |                  |  |  |
|                                        |                         | 3 Marso          | POA                 |           |                | (Circle one)                                                                                                                          |              |         |               |                  |  |  |
|                                        |                         | j:               |                     | flow      |                | Total Casing/Borehole Volumes Removed:                                                                                                |              |         |               |                  |  |  |
| Time                                   | Intake<br>Depth         | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.     | pH<br>(units)  | Specific Electrical Conductance (mS/cm)  Dissolved Oxygen (mg/L)  Oxidation- Reduction Potential (mV)  Remarks (color, turbidity, and |              |         |               |                  |  |  |
| Low                                    | Flow Stab               | ilization Cr     | iteria              | +/- 3%    | +/- 0.1        | +/- 3%                                                                                                                                | +/- 10%      | +/- 10% | NTV           | Caladodar        |  |  |
| 0846                                   |                         | ~ 250            |                     | 21,53     | 3.42           | 5,51                                                                                                                                  | 0.74         | 346     | 443           | Light ton/Na ado |  |  |
| 2851                                   |                         |                  |                     | 2169      | 3.42           | 5,51                                                                                                                                  | 0.56         | 360     | 36.3          |                  |  |  |
| 2856                                   |                         |                  |                     | 21,75     | 3,43           | 5,51                                                                                                                                  | 0,47         | 363     | 0,0           | Mostly dear      |  |  |
| 0901                                   |                         |                  |                     | 21,60     | 3,43           | 5,52                                                                                                                                  | 0,46         | 364     | 0.0           | Very clear       |  |  |
| 0906                                   |                         |                  | 5                   | 21.60     | 3.43           | 5,50                                                                                                                                  | 0.45         | 363     | 0.0           |                  |  |  |
|                                        |                         |                  |                     |           |                |                                                                                                                                       |              |         |               |                  |  |  |
|                                        | -                       | 5                | - 1                 |           | 1              | 1/                                                                                                                                    | 20           | 90      |               |                  |  |  |
|                                        |                         |                  | ANPI                | e5        | 10             | ther (                                                                                                                                | WU           | 106     | 2             |                  |  |  |
|                                        |                         |                  | ,                   |           |                |                                                                                                                                       |              |         |               |                  |  |  |
|                                        |                         |                  |                     |           |                |                                                                                                                                       |              |         |               |                  |  |  |
|                                        |                         |                  |                     |           |                |                                                                                                                                       |              |         |               |                  |  |  |
|                                        |                         |                  | »U CALID            | DATION (- |                |                                                                                                                                       |              |         |               | ļ                |  |  |
| Buffer Soli                            | ution                   |                  | ph CALIB            |           | choose two     |                                                                                                                                       |              | IV      | lodel or Ur   | nit No.:         |  |  |
|                                        |                         |                  |                     | pH 4.0    | pH 7.0         | pH 10.0                                                                                                                               |              |         |               |                  |  |  |
|                                        | perature °C             |                  |                     |           |                |                                                                                                                                       |              |         |               |                  |  |  |
| Instrumen                              |                         |                  |                     |           |                |                                                                                                                                       |              |         |               |                  |  |  |
|                                        |                         |                  | TRICAL CO           |           |                | - CALIBRATIO                                                                                                                          | NC           | N       | lodel or Ur   | nit No.:         |  |  |
| KCI Solution                           | on (μS/cm= <sub>l</sub> | umhos/cm)        |                     |           | 1413 at 25°C   | 12880 at 25°                                                                                                                          | С            |         |               |                  |  |  |
| Field Temp                             | erature °C              |                  |                     |           |                |                                                                                                                                       |              |         |               |                  |  |  |
| Instrument                             | Reading                 |                  |                     |           |                |                                                                                                                                       |              |         | A             |                  |  |  |
|                                        |                         | OX CALIBR        | RATION              |           | DISSOL         | ED OXYGEN                                                                                                                             | CALIBRATI    | ON N    | otes:         | MP SPOOL.        |  |  |
|                                        | Solution (m             |                  |                     |           | Altitude / Sal |                                                                                                                                       |              | [A      | ponky:        | caused           |  |  |
|                                        | perature °C             |                  |                     |           |                | Temperature °C Me to sticks                                                                                                           |              |         |               |                  |  |  |
|                                        | t Reading (             | mV)              |                     | li li     | nstrument R    | ment Reading (mg/L)                                                                                                                   |              |         |               |                  |  |  |
| Model or Unit No.:  Model or Unit No.: |                         |                  |                     |           |                |                                                                                                                                       |              |         | agging bottom |                  |  |  |
|                                        | of well                 |                  |                     |           |                |                                                                                                                                       |              |         |               |                  |  |  |



| Well ID:             | AP-             | MWH              |                     |               |                           | Initial D                                                           | enth to Wat                   | er: 13 (                                     | 24            | Wifefel                       |  |
|----------------------|-----------------|------------------|---------------------|---------------|---------------------------|---------------------------------------------------------------------|-------------------------------|----------------------------------------------|---------------|-------------------------------|--|
|                      |                 | Dupl             | icate ID:           |               |                           | Initial Depth to Water: 13,04  Depth to Water after Sampling: 13.71 |                               |                                              |               |                               |  |
| Sample De            | 1777            |                  | loute ib            |               |                           |                                                                     | pth to Well                   |                                              |               | ,                             |  |
|                      |                 | : 670            | 6 1500              | 60            |                           | Well Dia                                                            | meter:                        | 2"                                           |               |                               |  |
| Project Na           | me:             | MPA C            | Fiblion             | 8 (100        | ex Mine                   |                                                                     | g/Borehole                    |                                              |               |                               |  |
| Date:                |                 |                  |                     |               |                           | 4 Casing/Borehole Volumes:                                          |                               |                                              |               |                               |  |
| Sampled I            | Зу:             | 55               | Marion              | 0.0           |                           | (Circle d                                                           |                               | -                                            |               |                               |  |
|                      |                 | :_ Lo            | 1 1                 | W             |                           |                                                                     | sing/Boreh                    |                                              |               |                               |  |
| Wethou of            | Sampling        |                  | VV JI ()            | W             |                           | Volumes Removed:                                                    |                               |                                              |               |                               |  |
| Time                 | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)             | Specific<br>Electrical<br>Conductance<br>(mS/cm)                    | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) |               | emarks<br>dity, and sediment) |  |
| Low                  | Flow Stabi      | lization Cri     | iteria              | +/- 3%        | +/- 0.1                   | +/- 3%                                                              | +/- 10%                       | +/- 10%                                      | NTh           |                               |  |
| 1017                 |                 | √250             |                     | 21.15         | 5.44                      | 4.81                                                                | 0,52                          | 123                                          | 666           | Light brown                   |  |
| 1022                 |                 |                  |                     | 21,07         |                           | 4.74                                                                | 0.42                          | 117                                          | 129           | Methane Odor                  |  |
| 1027                 |                 |                  |                     | 21,41         | 5,45                      | 4.72                                                                | 0,38                          | 112                                          | 60.7          | Jan- cleaning                 |  |
| 1039                 |                 |                  |                     | 21,34         | 5,44                      | 4,73                                                                | 0,34                          | 108                                          | 21,3          |                               |  |
| 1037                 |                 |                  | alv _               | 21,13         |                           | 4,76                                                                | 0,32                          | 105                                          | 1.3           | clearing                      |  |
| 1942                 |                 |                  | <b>\$</b> 7         | 31,24         | 5.45                      | 4.76                                                                | 0.32                          | 102                                          | 0,0           | Nearly clear                  |  |
|                      |                 | _                |                     |               |                           |                                                                     |                               |                                              |               |                               |  |
|                      |                 | -                | amol                | e5            | tak                       | en la                                                               | ) 1                           | 147                                          |               |                               |  |
|                      | V               | /0               | runge               |               | Jan                       | en Co                                                               | 10                            | 110                                          |               |                               |  |
|                      |                 |                  |                     |               |                           |                                                                     |                               |                                              |               |                               |  |
|                      |                 |                  |                     |               | 4                         |                                                                     |                               |                                              |               | -                             |  |
|                      |                 |                  | -U CALID            | DATION        | (-l                       |                                                                     |                               |                                              | 4 1 l - i t   | New                           |  |
| D. (1) O. I          |                 |                  | PH CALIB            |               | (choose two)              |                                                                     |                               | IV                                           | Model or Unit | No.:                          |  |
| Buffer Sol           |                 |                  |                     | pH 4.0        | pH 7.0                    | pH 10.0                                                             |                               |                                              |               |                               |  |
|                      | perature °C     | ;                |                     |               |                           |                                                                     |                               |                                              |               |                               |  |
| Instrumen            |                 |                  |                     |               |                           |                                                                     |                               |                                              |               |                               |  |
|                      |                 |                  |                     | ONDUCT        |                           | - CALIBRATI                                                         |                               | N                                            | lodel or Unit | No.:                          |  |
| KCI Solution         | on (μS/cm=      | μmhos/cm)        |                     |               | 1413 at 25°C              | 12880 at 25                                                         | °C                            |                                              |               | 7                             |  |
| Field Temp           | oerature °C     |                  |                     |               |                           |                                                                     |                               |                                              |               |                               |  |
| Instrument           | Reading         |                  |                     |               |                           |                                                                     |                               |                                              |               |                               |  |
|                      | ORP/RED         | OX CALIBI        | RATION              |               | DISSOL                    | VED OXYGEN                                                          | CALIBRAT                      | TON N                                        | lotes:        |                               |  |
|                      | Solution (m     |                  |                     |               | Altitude / Sal            |                                                                     |                               |                                              |               |                               |  |
| Field Temperature °C |                 |                  |                     |               | Field Temperature °C      |                                                                     |                               |                                              |               |                               |  |
|                      | t Reading (     | mV)              |                     |               | Instrument Reading (mg/L) |                                                                     |                               |                                              |               |                               |  |
| Model or t           | Jnit No.:       |                  |                     |               | Model or Unit No.:        |                                                                     |                               |                                              |               |                               |  |



|                     |                 |                  |                     |          |                |                                                  |                               |                                           |             | wrieeler                      |       |
|---------------------|-----------------|------------------|---------------------|----------|----------------|--------------------------------------------------|-------------------------------|-------------------------------------------|-------------|-------------------------------|-------|
| Well ID:            | AP-             | MW 11            | >                   |          |                | Initial Depth to Water: 13.90                    |                               |                                           |             |                               |       |
| Sample ID           | :               | Dup              | licate ID: _        |          |                | Depth to                                         | o Water afte                  | er Samplin                                | ng:         | 13.88                         | 20    |
| Sample Do           | epth:           | ( 22             |                     |          |                | Total De                                         | epth to Well                  |                                           |             |                               |       |
|                     |                 | : 6706           |                     |          | <del></del>    | Well Dia                                         | meter:                        | 8                                         | ۷′′         |                               |       |
| Project Na<br>Date: |                 |                  | blans               | Creek    | K Mine         | 1 Casing/Borehole Volume:(Circle one)            |                               |                                           |             |                               |       |
| Sampled I           | Ву:             | CM               |                     |          |                | 4 Casing/Borehole Volumes:(Circle one)           |                               |                                           |             |                               |       |
| Method of           | Purging:        | 55               | Mons                | 901      |                |                                                  | asing/Borel                   | nole                                      |             |                               |       |
| Method of           | Sampling        | : Lo             | r f1                | aw/      |                |                                                  | s Removed                     |                                           |             |                               |       |
| Time                | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.    | pH<br>(units)  | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation<br>Reductio<br>Potentia<br>(mV) | n (color tu | Remarks rbidity, and sediment | )     |
| Low                 | Flow Stabi      | lization Cr      | teria               | +/- 3%   | +/- 0.1        | +/- 3%                                           | +/- 10%                       | +/- 10%                                   |             | 1                             |       |
| 1141                |                 | ~250             | <b>650</b>          | 22,55    | 5,62           | 2.12                                             | 0,80                          | 78                                        | 593         | Light Tan-                    |       |
| 1146                |                 |                  |                     | 22,91    |                | 2,06                                             | 0,53                          | 81                                        | 170         | heavy methone                 | 200   |
| 1151                |                 |                  |                     | 22,6     | 35,63          | 2.07                                             | 0,44                          | 309                                       | 383         |                               |       |
| 156                 |                 |                  |                     | 22,90    | 5.62           | 2,07                                             | 0,39                          | 106                                       | 7.6         | cleaning up (                 | tolor |
| 1201                |                 |                  |                     | 22,93    | 5,63           | 2,07                                             | 0,35                          | 102                                       | 2,7         | 1                             |       |
| 1206                |                 |                  |                     | 23.05    | 5.63           | 2,07                                             | 0.32                          | 115                                       | 0.7         |                               |       |
| 1311                |                 |                  |                     | 23,14    | 5.64           | 2,07                                             | 0.31                          | 119                                       | 0,0         | Very dear                     | -     |
| 1216                |                 |                  | 5                   | 23,19    | 5,64           | 207                                              | 0.31                          | 121                                       | 0.0         | adar still pre:               | 5en   |
|                     |                 |                  |                     |          |                |                                                  |                               |                                           |             | ,                             |       |
|                     |                 |                  |                     |          |                | 1                                                | tak                           | en                                        | a           |                               |       |
|                     |                 |                  |                     | 1        | Dan            | ples                                             | J-17 (                        | 17                                        | 1           |                               |       |
|                     |                 |                  |                     |          |                | 1                                                |                               | 12                                        | 16          |                               |       |
|                     |                 |                  | pH CALIB            | RATION ( | choose two     | )                                                |                               |                                           | Model or U  | nit No.:                      |       |
| Buffer Solu         | ution           |                  |                     | pH 4.0   | pH 7.0         | pH 10.0                                          |                               |                                           |             |                               |       |
| Field Temp          | oerature °C     |                  |                     |          |                |                                                  |                               |                                           |             |                               |       |
| Instrument          | Reading         |                  |                     |          |                |                                                  |                               |                                           |             |                               |       |
|                     | SPEC            | CIFIC ELEC       | TRICAL CO           | ONDUCTA  | ANCE (SEC)     | - CALIBRATION                                    | ON                            |                                           | Model or U  | nit No.:                      | 1     |
| KCI Solutio         | n (μS/cm=μ      | umhos/cm)        |                     |          | 1413 at 25°C   | 12880 at 25°                                     | °C                            |                                           |             |                               |       |
| Field Temp          | erature °C      |                  |                     |          |                |                                                  |                               | The same                                  |             |                               |       |
| Instrument          | Reading         |                  | _                   |          |                |                                                  |                               |                                           |             |                               |       |
| QE EN               | ORP/RED         | OX CALIBR        | RATION              |          | DISSOL         | /ED OXYGEN                                       | CALIBRAT                      | ION                                       | Notes:      |                               | 1     |
| Standard S          | Solution (m     | V)               |                     |          | Altitude / Sal | inity %                                          |                               |                                           |             |                               | 1     |
| Field Temp          | oerature °C     |                  |                     |          | Field Tempe    | rature °C                                        |                               |                                           |             |                               |       |
| Instrument          | Reading (       | mV)              |                     | 1        | Instrument R   | ent Reading (mg/L)                               |                               |                                           |             |                               |       |
| Model or U          | Jnit No.:       |                  |                     |          | Model or Uni   | t No.:                                           |                               |                                           |             |                               |       |



| Sample ID Sample Do Project an Project Na Date: Sampled I Method of | epth:<br>ad Task No<br>ame:<br>2 - 2<br>By:<br>f Purging: | Dupl<br>.: <u>6706</u><br>MP A C<br>1-16 | 1500<br>Sibbons     | 60            | ( Mne                                         | Initial Depth to Water:                          |                               |                                              |            |                                |
|---------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------|---------------------|---------------|-----------------------------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|------------|--------------------------------|
| Time                                                                | Intake<br>Depth                                           | Rate<br>(ml/min)                         | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)                                 | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color, tu | Remarks rbidity, and sediment) |
| Low                                                                 | Flow Stabi                                                | lization Cri                             | teria               | +/- 3%        | +/- 0.1                                       | +/- 3%                                           | +/- 10%                       | +/- 10%                                      |            |                                |
| 1504                                                                |                                                           | -230                                     |                     | 24.3          | 7 4,71                                        | 10.9                                             | 0.96                          | 231                                          | 84.2       | Slight ran                     |
| 1509                                                                |                                                           |                                          |                     | 24.53         | 4.65                                          | 10.9                                             | 0.66                          | 245                                          | 41.0       | MITTEL PLEINGING OF            |
| 1514                                                                |                                                           |                                          |                     | 29,61         | 4,61                                          | 10.7                                             | 0,51                          | 253                                          | 16.7       | ***                            |
| 1519                                                                |                                                           |                                          |                     | 24.6          | 4,59                                          | 10.9                                             | 0,44                          | 261                                          | 61         |                                |
| 1524                                                                |                                                           |                                          | 1                   | 24.61         | 4.55                                          | 10.0                                             | 0,38                          | 270                                          | 1,3        |                                |
| 1529                                                                |                                                           |                                          | 4                   | 24,69         | 4.53                                          | 11.0                                             | 0,41                          | 276                                          | 0.0        |                                |
| 1534                                                                |                                                           |                                          |                     | 24.67         | 4,50                                          |                                                  | 0.39                          | 282                                          | 0.0        |                                |
| 1539                                                                |                                                           |                                          | 5.                  | 24,62         | 4,48                                          | 11.0                                             | 039                           | 285                                          | 9,0        |                                |
|                                                                     | <b>X</b> 5                                                | Sam                                      | (6)                 | 5             | ake                                           | in Ca                                            |                               | 53.                                          | 9          |                                |
|                                                                     |                                                           |                                          | pH CALIB            | RATION (c     | hoose two)                                    |                                                  |                               | M                                            | lodel or U | nit No.:                       |
| Buffer Solu                                                         | ution                                                     |                                          |                     | pH 4.0        | pH 7.0                                        | pH 10.0                                          |                               |                                              |            |                                |
| Field Tem                                                           | perature °C                                               |                                          |                     |               |                                               |                                                  |                               |                                              |            | _                              |
| Instrument                                                          | t Reading                                                 |                                          |                     |               |                                               |                                                  |                               |                                              |            |                                |
|                                                                     | SPE                                                       | CIFIC ELEC                               | TRICAL C            | ONDUCTA       | NCE (SEC)                                     | - CALIBRATION                                    | ON                            | N                                            | lodel or U | nit No.:                       |
| KCI Solutio                                                         | n (μS/cm= <sub>l</sub>                                    | umhos/cm)                                |                     |               | 1413 at 25°C                                  | 12880 at 25°                                     | °C                            |                                              |            |                                |
| Field Temp                                                          | 7                                                         |                                          |                     |               |                                               |                                                  |                               |                                              |            |                                |
| Instrument                                                          |                                                           | OV 041 ID                                | ATION               |               | DISCOL                                        | (ED OVECET)                                      | 0411557                       | 1011                                         |            |                                |
| Ctonderd                                                            |                                                           | OX CALIBR                                | ATION               |               |                                               | ED OXYGEN                                        | CALIBRAT                      | ION N                                        | lotes:     |                                |
| Standard Solution (mV) Field Temperature °C                         |                                                           |                                          |                     |               | Altitude / Sali                               |                                                  |                               |                                              |            |                                |
| Instrument Reading (mV)                                             |                                                           |                                          |                     |               | ield Temper                                   |                                                  |                               |                                              |            |                                |
| Model or U                                                          |                                                           | mv)                                      |                     |               | Instrument Reading (mg/L)  Model or Unit No.: |                                                  |                               |                                              |            |                                |



|                                   |                 |                  |                     |               |                               |                                                  |                               |                                              |               | wrieeler                            |  |  |
|-----------------------------------|-----------------|------------------|---------------------|---------------|-------------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|---------------|-------------------------------------|--|--|
| Well ID:                          | SFL-            | MWZ              |                     |               | Initial Depth to Water: 11.71 |                                                  |                               |                                              |               |                                     |  |  |
| Sample ID                         | ):              | Dupl             | icate ID: _         |               |                               | Depth to                                         | Water after                   | er Sampling                                  | 12,           | 72                                  |  |  |
| Sample D                          | epth:           |                  |                     |               |                               |                                                  | epth to Well                  |                                              |               |                                     |  |  |
|                                   |                 | : 670            |                     |               |                               | Well Dia                                         | meter:                        | 2"                                           |               |                                     |  |  |
|                                   |                 | MAC              | Sibbon              | 5 Crec        | : K Mre                       | 1 Casing/Borehole Volume:(Circle one)            |                               |                                              |               |                                     |  |  |
| Sampled                           | 12-27<br>By:    | SCM              |                     |               |                               | 4 Casing/Borehole Volumes:(Circle one)           |                               |                                              |               |                                     |  |  |
| Method of                         | f Purging:      | 55               | MONS                | acn           |                               |                                                  | asing/Boreh                   | ole                                          |               |                                     |  |  |
| Method of                         | f Sampling      | :                | Law-                | flow          |                               |                                                  | s Removed                     |                                              |               |                                     |  |  |
| Time                              | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)                 | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) |               | Remarks r, turbidity, and sediment) |  |  |
| Low                               | Flow Stabi      | lization Cri     | teria               | +/- 3%        | +/- 0.1                       | +/- 3%                                           | +/- 10%                       | +/- 10%                                      |               |                                     |  |  |
| 0920                              |                 | ~250             |                     | 22,28         | 6.54                          | 22.6                                             | 0,60                          | 178                                          | 520           | Murky white                         |  |  |
| 0925                              |                 |                  |                     | 22.49         | 6,56                          | 22.6                                             | 0.10                          | 176                                          | 224           | Nooder                              |  |  |
| 0930                              |                 |                  |                     | 22.75         | 6.55                          | 22.6                                             | 0.00                          | 175                                          | 23.4          |                                     |  |  |
| 935                               |                 |                  |                     | 22.80         |                               | 22,7                                             | 0,00                          | 175                                          | 33.9          | Clearing                            |  |  |
| 0940                              |                 |                  |                     | 22,88         | 6.54                          | 22.7                                             | 000                           | 176                                          | 16,0          | Stightly                            |  |  |
| 0945                              |                 |                  | 4.5                 | 22, 96        | 6,55                          | 22,8                                             | 0,00                          | 177                                          | 2.7           | Clearer                             |  |  |
| Í                                 |                 |                  |                     |               |                               |                                                  |                               |                                              |               |                                     |  |  |
|                                   |                 |                  |                     |               | 1                             |                                                  |                               |                                              |               |                                     |  |  |
|                                   |                 |                  | 29                  | M             | les                           | takon                                            | (a)                           | 1946                                         |               |                                     |  |  |
|                                   | _               |                  | FOR                 | KI            | *                             | 1-10                                             | 1000                          | 1112                                         |               |                                     |  |  |
|                                   |                 |                  | -01                 | 11 10         | 7 2                           | × 16/                                            | ZM                            | JOINX                                        | 100           | 1910                                |  |  |
|                                   |                 |                  | pH CALIB            | RATION (c     | hoose two)                    |                                                  |                               | N                                            | lodel or Unit | No.:                                |  |  |
| Buffer Soli                       | ution           |                  |                     | pH 4.0        | pH 7.0                        | pH 10.0                                          |                               |                                              |               |                                     |  |  |
| Field Tem                         | perature °C     |                  |                     |               |                               |                                                  |                               |                                              |               |                                     |  |  |
| Instrumen                         | t Reading       |                  |                     |               |                               |                                                  |                               |                                              |               |                                     |  |  |
|                                   | SPEC            | CIFIC ELEC       | TRICAL C            | ONDUCTA       | NCE (SEC)                     | - CALIBRATI                                      | ON                            | N                                            | lodel or Unit | No.:                                |  |  |
| KCI Solutio                       | on (μS/cm=μ     | umhos/cm)        |                     | 1             | 1413 at 25°C                  | 12880 at 25°                                     | °C                            |                                              |               |                                     |  |  |
| Field Temp                        | erature °C      |                  |                     |               |                               |                                                  |                               |                                              |               |                                     |  |  |
| Instrument                        | Reading         |                  |                     |               |                               | ě                                                |                               |                                              |               |                                     |  |  |
|                                   | ORP/RED         | OX CALIBR        | RATION              |               | DISSOL                        | /ED OXYGEN                                       | CALIBRAT                      | ION N                                        | otes:         |                                     |  |  |
| Standard S                        | Solution (m     | V)               |                     | А             | ltitude / Sal                 | inity %                                          |                               |                                              |               |                                     |  |  |
| Field Temperature °C Field Temp   |                 |                  |                     |               |                               | rature °C                                        |                               |                                              |               |                                     |  |  |
| Instrument Reading (mV) Instrumen |                 |                  |                     |               |                               | nent Reading (mg/L)                              |                               |                                              |               |                                     |  |  |
| Model or U                        | Jnit No.:       |                  |                     | N             | lodel or Uni                  | t No.:                                           |                               |                                              |               |                                     |  |  |



|                              | /-1             | M1. 12           |                     |               | Initial Depth to Water: 17.6 |                                                  |                               |                                              |                     |                               |  |  |
|------------------------------|-----------------|------------------|---------------------|---------------|------------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|---------------------|-------------------------------|--|--|
|                              |                 | MW3              |                     |               |                              | Depth to Water: 17.70                            |                               |                                              |                     |                               |  |  |
|                              |                 |                  | licate ID: _        |               |                              |                                                  |                               |                                              | ]:                  | 70                            |  |  |
| Sample D                     | epth:           | 170              | 61500               | 10            |                              |                                                  | epth to Well                  |                                              |                     |                               |  |  |
| Project an                   | nd Task No      | 10 A C S         | 6 1 300             | H V           | Mlan                         |                                                  |                               | 27                                           |                     |                               |  |  |
| Project Na                   | ame:            | 115 611          | bong (              | reen          | 11415                        | 1 Casing/Borehole Volume:(Circle one)            |                               |                                              |                     |                               |  |  |
| -                            | 12-29           |                  |                     |               |                              | 4 Casing/Borehole Volumes:                       |                               |                                              |                     |                               |  |  |
|                              | By: <u> </u>    |                  | Mansa               | 24            |                              | (Circle one)                                     |                               |                                              |                     |                               |  |  |
|                              |                 |                  | 01                  |               |                              |                                                  | asing/Boreh                   |                                              |                     |                               |  |  |
| wethod of                    | Sampling        | :                | 7 100               |               |                              | Volumes Removed:                                 |                               |                                              |                     |                               |  |  |
| Time                         | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)                | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color, tur         | Remarks bidity, and sediment) |  |  |
| Low                          | Flow Stabi      | ilization Cr     | iteria              | +/- 3%        | +/- 0.1                      | +/- 3%                                           | +/- 10%                       | +/- 10%                                      | _                   | 1                             |  |  |
| 1100                         |                 | ~259             |                     | 22,38         | 3.76                         | 16.9                                             | 0.11                          | 367                                          | >1000               | yellow-brown                  |  |  |
| 1105                         |                 |                  |                     | 22,43         | 3.74                         | 17.0                                             | 0,00                          | 369                                          | >1000               | No cool                       |  |  |
| 1110                         |                 |                  |                     | 22,42         | 3.74                         | 17.0                                             | 0,00                          | 371                                          | 533                 | cleaning slight               |  |  |
| 1115                         |                 |                  |                     | 22,55         | 3.73                         | 16.9                                             | 0,00                          | 372                                          | 250                 |                               |  |  |
| 1120                         |                 |                  |                     | 22,70         | 3,74                         | 17.0                                             | 0.00                          | 372                                          | 119                 |                               |  |  |
| 1125                         |                 |                  |                     | 22,81         | 3.74                         | 17.0                                             | 0,00                          | 373                                          | ¥. 73. <sup>4</sup> | Llearing Slightly             |  |  |
| 1130                         | -               |                  | #                   | aa,72         | 3,73                         | 17.0                                             | 0,00                          | 374                                          | 36,7                | clearing                      |  |  |
| 1135                         |                 |                  | 4.5                 | 22,74         | 3, 73                        | 17.0                                             | 0.00                          | 37 4                                         | 20.1                |                               |  |  |
|                              |                 |                  |                     | _             |                              | 6 1                                              |                               |                                              |                     |                               |  |  |
|                              |                 |                  | 1                   | DAM.          | oles                         | 10/10                                            | 1/9)                          | 1121                                         |                     |                               |  |  |
|                              |                 |                  | 1                   | 1011          | PICS                         | 1.100                                            | 1100                          | 112                                          | 2                   |                               |  |  |
|                              |                 |                  |                     |               |                              |                                                  |                               |                                              | 1                   |                               |  |  |
|                              |                 |                  | pH CALIB            |               | hoose two)                   |                                                  |                               | IV                                           | lodel or Ur         | nit No.:                      |  |  |
| Buffer Sol                   | ution           |                  |                     | pH 4.0        | pH 7.0                       | pH 10.0                                          |                               |                                              |                     | 1.70                          |  |  |
| Field Tem                    | perature °C     | ;                |                     |               |                              |                                                  |                               |                                              |                     |                               |  |  |
| Instrumen                    | t Reading       |                  |                     |               |                              |                                                  |                               |                                              |                     |                               |  |  |
|                              | SPE             | CIFIC ELEC       | CTRICAL C           | ONDUCTA       | NCE (SEC)                    | - CALIBRATI                                      | ON                            | N                                            | lodel or Ur         | nit No.:                      |  |  |
| KCI Solution                 | on (μS/cm=      | μmhos/cm)        |                     |               | 1413 at 25°C                 | 12880 at 25                                      | °C                            |                                              |                     |                               |  |  |
| Field Temp                   | oerature °C     |                  |                     |               |                              |                                                  |                               |                                              |                     |                               |  |  |
| Instrument                   | Reading         |                  |                     |               |                              |                                                  |                               |                                              |                     |                               |  |  |
|                              | ORP/RED         | OX CALIBI        | RATION              |               | DISSOL                       | /ED OXYGEN                                       | CALIBRAT                      | ION N                                        | lotes: N            | Tu would                      |  |  |
| Standard :                   | Solution (m     | iV)              |                     | P             | Altitude / Sal               | inity %                                          |                               | 1                                            | not a               | 1                             |  |  |
| Field Temperature °C Field T |                 |                  |                     |               |                              | Field Temperature °C than 19                     |                               |                                              |                     |                               |  |  |
| Instrumen                    | t Reading (     | mV)              |                     | - I           | strument Reading (mg/L)      |                                                  |                               |                                              |                     |                               |  |  |
| Model or U                   | Jnit No.:       |                  |                     | N             | Model or Uni                 | t No.:                                           |                               |                                              |                     |                               |  |  |
|                              |                 |                  |                     |               |                              |                                                  |                               |                                              |                     |                               |  |  |



| Sample ID Sample D Project Ar Project Na Date: Sampled Method of | epth:<br>nd Task No<br>ame:<br>[2- ]3<br>By:<br>f Purging:<br>f Sampling | Dup              | Mans Cum. Vol. | 160<br>Krea   | x Mine                    | Total Depth to Well:  Well Diameter:  1 Casing/Borehole Volume: (Circle one)  4 Casing/Borehole Volumes: (Circle one)  Total Casing/Borehole |                  |                                              |            |                                         |  |  |
|------------------------------------------------------------------|--------------------------------------------------------------------------|------------------|----------------|---------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------|------------|-----------------------------------------|--|--|
| Time                                                             | Intake<br>Depth                                                          | Rate<br>(ml/min) | (gal.)         | Temp.<br>(°C) | pH<br>(units)             | Electrical<br>Conductance<br>(mS/cm)                                                                                                         | Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color, to | Remarks urbidity, and sediment)         |  |  |
| Low                                                              | Flow Stabi                                                               | lization Cr      | iteria         | +/- 3%        | +/- 0.1                   | +/- 3%                                                                                                                                       | +/- 10%          | +/- 10%                                      | _          | 1                                       |  |  |
| 1215                                                             |                                                                          | ~250             |                | 2243          | 6.26                      | 18.3                                                                                                                                         | 0.57             | 20                                           | 395        | Tan/nothing co                          |  |  |
| 1220                                                             |                                                                          |                  |                | 22.61         | 6.48                      | 18.2                                                                                                                                         | 0,00             | -20                                          | 382        | 1211/2111111111111111111111111111111111 |  |  |
| 1225                                                             |                                                                          |                  |                | 2279          | 645                       | 18,5                                                                                                                                         | 0,00             | -14                                          | 282        |                                         |  |  |
| 1230                                                             |                                                                          |                  |                | 22.83         | 645                       | 18,6                                                                                                                                         | 0,00             | -6                                           | 65.7       |                                         |  |  |
| 1235                                                             |                                                                          |                  |                | 22,81         | 6.44                      | 18.6                                                                                                                                         | 9.00             | -3                                           |            | nearly clear                            |  |  |
| 1249                                                             |                                                                          |                  | 3              | 22, 88        | 6,45                      | 18,6                                                                                                                                         | 0,00             | -2                                           | 0.5        | The aring cream                         |  |  |
|                                                                  |                                                                          | 1                | 6              | Zum           | 25                        | Falla                                                                                                                                        | 11/0             | HIDE                                         |            |                                         |  |  |
|                                                                  |                                                                          |                  |                |               |                           |                                                                                                                                              | C                | 124                                          | 01         |                                         |  |  |
|                                                                  |                                                                          |                  |                |               |                           |                                                                                                                                              |                  |                                              |            |                                         |  |  |
| 4                                                                |                                                                          |                  | pH CALIB       | RATION (c     | hoose two)                |                                                                                                                                              |                  | N                                            | lodel or L | Jnit No.:                               |  |  |
| Buffer Sol                                                       | ution                                                                    |                  |                | pH 4.0        | pH 7.0                    | pH 10.0                                                                                                                                      |                  |                                              |            |                                         |  |  |
| Field Tem                                                        | perature °C                                                              |                  |                |               |                           |                                                                                                                                              |                  |                                              |            | - 1                                     |  |  |
| Instrumen                                                        | t Reading                                                                |                  |                |               |                           |                                                                                                                                              |                  |                                              |            |                                         |  |  |
|                                                                  | SPE                                                                      | CIFIC ELEC       | CTRICAL C      | ONDUCTA       | NCE (SEC)                 | - CALIBRATI                                                                                                                                  | ON               | N                                            | lodel or U | Jnit No.:                               |  |  |
| KCI Solutio                                                      | on (μS/cm= <sub>l</sub>                                                  | umhos/cm)        |                |               | 1413 at 25°C              | 12880 at 25                                                                                                                                  | °C               |                                              |            |                                         |  |  |
|                                                                  | perature °C                                                              |                  |                |               |                           |                                                                                                                                              |                  |                                              |            |                                         |  |  |
| Instrument                                                       |                                                                          |                  |                |               |                           |                                                                                                                                              |                  |                                              |            |                                         |  |  |
|                                                                  |                                                                          | OX CALIBR        | RATION         |               |                           | ED OXYGEN                                                                                                                                    | CALIBRAT         | ION N                                        | otes:      |                                         |  |  |
|                                                                  | Solution (m                                                              |                  |                |               | Ititude / Sali            |                                                                                                                                              |                  | A                                            | Til        | The An                                  |  |  |
| Field Temperature °C                                             |                                                                          |                  |                | F             | ield Temper               | rature °C                                                                                                                                    |                  | 42                                           | NO         |                                         |  |  |
| Instrument Reading (mV)                                          |                                                                          |                  |                | Ir            | Instrument Reading (mg/L) |                                                                                                                                              |                  |                                              | 6          |                                         |  |  |
| Model or Unit No.:                                               |                                                                          |                  |                | V             | lodel or Uni              | t No.:                                                                                                                                       |                  |                                              |            | MAGA                                    |  |  |



| Well ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | APM             | W-3              |                     |               |               | Initial De                                       | epth to Wat                   | er: 10.                                      | 49       |                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|---------------------|---------------|---------------|--------------------------------------------------|-------------------------------|----------------------------------------------|----------|---------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  | licate ID:          |               |               |                                                  |                               | er Sampling                                  |          | .08                                   |
| Sample De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | epth: * L       | 11'              | licate ID:          |               |               |                                                  |                               | : 43.                                        |          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  | 150060              |               |               | Well Dia                                         | meter:                        | 24                                           |          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  | bbons Ci            |               |               |                                                  |                               | Volume:                                      |          |                                       |
| Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Februar         | 20,2             | 017                 |               |               | (Circle o                                        |                               |                                              |          | -                                     |
| Sampled E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                  |                     |               |               | 4 Casing (Circle of                              |                               | Volumes: _                                   |          |                                       |
| Method of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Purging:        | per              | istaltic            |               |               |                                                  | asing/Borel                   | ole                                          |          |                                       |
| Method of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sampling        | 1: <u>/00</u>    | o flow              |               |               |                                                  |                               | :                                            |          |                                       |
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units) | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color,  | Remarks<br>, turbidity, and sediment) |
| Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Flow Stab       | ilization Cr     | iteria              | +/- 3%        | +/- 0.1       | +/- 3%                                           | +/- 10%                       | +/- 10%                                      |          |                                       |
| 1730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41'             | 225              |                     | 19.86         | 5,06          | 1.81                                             | 2.43                          | 177                                          | 29.0     | Clear, no odor                        |
| 1735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1               | 1                |                     | 20.08         | 5.06          | 1.81                                             | 1.95                          | 203                                          | 13.8     |                                       |
| 1740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                  |                     | 20.29         | 5.03          | 1.79                                             | 1.52                          | 192                                          | 6,2      |                                       |
| 1745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                  |                     | 20,40         | 5.04          | 1.78                                             | 1,00                          | 126                                          | 3,8      |                                       |
| 1750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                  |                     | 20.39         | 5.04          | 1.78                                             | 0,0                           | 113                                          | 0,6      |                                       |
| 1755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1               | V                | \$2.0               | 20.41         | 5.05          | 1.78                                             | 0,0                           | 108                                          | Ø.9      | s V                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                     | >             | 1             | 1                                                |                               |                                              |          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                     | Dam           | ples          | /ak                                              | en                            |                                              |          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                     | 1             | /             | 1                                                |                               |                                              |          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                     |               |               |                                                  |                               |                                              |          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                     |               |               | 4                                                |                               |                                              |          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                     |               | 1             |                                                  |                               |                                              |          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  | pH CALIB            | RATION (c     | choose two    | )                                                | المام                         | V                                            | Model o  | r Unit No.:                           |
| Buffer Sol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ution           |                  |                     | pH 4.0        | pH 7.0        | pH 10.0                                          |                               |                                              |          |                                       |
| Field Tem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | perature °(     | 0                |                     |               |               |                                                  |                               |                                              |          |                                       |
| Instrumen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t Reading       |                  |                     |               |               |                                                  |                               |                                              |          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SPE             | CIFIC ELE        | CTRICAL C           | ONDUCTA       | NCE (SEC)     | - CALIBRATI                                      | ION                           | N                                            | /lodel o | or Unit No.:                          |
| KCI Solutio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | on (μS/cm=      | μmhos/cm)        |                     |               | 1413 at 25°C  | 12880 at 25                                      | 5°C                           |                                              |          |                                       |
| Field Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | perature °C     | ,                |                     |               |               |                                                  |                               |                                              |          |                                       |
| Instrument                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                  |                     |               |               |                                                  |                               |                                              |          |                                       |
| The second secon |                 | OX CALIB         | RATION              |               | DISSOL        | VED OXYGEN                                       | CALIBRA                       | TION I                                       | Notes:   |                                       |
| Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Solution (n     |                  |                     |               | Altitude / Sa | The second second                                |                               |                                              |          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | perature °      |                  |                     |               | Field Tempe   |                                                  |                               |                                              |          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t Reading       |                  |                     |               |               | Reading (mg/L)                                   | )                             |                                              |          |                                       |
| Model or I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | <u> </u>         |                     |               | Model or Un   |                                                  |                               |                                              |          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                     |               |               |                                                  |                               |                                              |          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                     |               |               |                                                  |                               |                                              |          |                                       |



| Method of Purging:   Subsersable   Method of Sampling:   Los floor   Los flo |              |             |              |            |          |               |                        |              |                        |           | wheeler                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|--------------|------------|----------|---------------|------------------------|--------------|------------------------|-----------|--------------------------|
| Sample Depth:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Well ID: _   | APM         | W-1D         |            |          |               | Initial De             | epth to Wat  | er: <u>13</u> .        | 68'       |                          |
| Project Name: TMPA Gibbons Creek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample ID    | );          | Dup          | licate ID: |          |               | Depth to               | Water after  | r Sampling             | : 14      | 1.37'                    |
| Project Name: TMPA   Gibbons Creek     1 Casing/Borohole Volumes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample De    | epth:       | 11 × 41      |            |          |               | Total De               | epth to Well | : 43'                  |           |                          |
| Date:   February 2 , 2017   Sampled By:   PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |             |              | 50060      |          |               | Well Dia               | meter:       | 710                    |           |                          |
| Method of Purging:   Subversible   Sampled By:   A Casing/Borehole Volumes:   Circle one)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Project Na   | ame: TN     | MPA Gib      | bons Cree  | ek       |               |                        |              | Volume: _              |           |                          |
| Circle one   Total Casing/Borehole   Total Casing/Bo | Date:        | February    | 21,2017      |            |          |               |                        |              | 1112                   |           |                          |
| Nethod of Purging:   Subversible   Total Casing/Borehole   Volumes Removed:     Total Casing/Borehole   Volumes Removed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |              |            |          |               |                        |              | Volumes: _             |           |                          |
| Note    | Method of    | f Purging:  | _ subm       | ersible    |          |               |                        |              | ole                    |           |                          |
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Method of    | f Sampling  | 1: 10w f     | low        |          |               |                        |              |                        |           |                          |
| Low Flow Stabilization Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Time         |             |              |            |          |               | Electrical Conductance | Oxygen       | Reduction<br>Potential | (COIOI,   | turbidity, and sediment) |
| 17.99   5.84   1.90   8.8   17   97.4   5   5   5   5   5   1.92   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.8   9.  | Low          | Flow Stab   | ilization Cr | iteria     | +/- 3%   | +/- 0.1       | +/- 3%                 | +/- 10%      | +/- 10%                |           |                          |
| 17.99   5.84   1.90   8.8   17   97.4   5   5   5   5   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9   17.9    | 9:32         | × 41'       | u150         |            | 18.21    | 5.84          | 1,88                   | 0.00         | 3.2                    | 82.4      | Slightly clauder         |
| 17.45   5.84   1.92   0.6   32   71.2   1/2   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3   1/3    |              | 1           | 1            |            |          |               |                        |              |                        | 99.4      |                          |
| 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |             |              |            |          |               |                        |              |                        |           | 9                        |
| PH CALIBRATION (choose two)  Buffer Solution Field Temperature °C Instrument Reading  ORP/REDOX CALIBRATION Standard Solution (mV) Field Temperature °C Instrument Reading  ORP/REDOX CALIBRATION Altitude / Salinity % Field Temperature °C Instrument Reading  ORP/REDOX CALIBRATION Altitude / Salinity % Field Temperature °C Instrument Reading  ORP/REDOX CALIBRATION Altitude / Salinity % Field Temperature °C Instrument Reading (mV) Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |              |            |          |               |                        |              | 65.5                   |           |                          |
| pH CALIBRATION (choose two)  Buffer Solution pH 4.0 pH 7.0 pH 10.0  Field Temperature °C Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (μS/cm=μmhos/cm)  Field Temperature °C Instrument Reading  ORP/REDOX CALIBRATION  DISSOLVED OXYGEN CALIBRATION  Standard Solution (mV)  Field Temperature °C Instrument Reading (my/L)  Notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | V           | V            | \$1.5      |          |               |                        |              |                        |           |                          |
| Model or Unit No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -            |             |              | 3 1        | 10.00    | 1             | 1                      |              |                        | A 11 G    |                          |
| Buffer Solution pH 4.0 pH 7.0 pH 10.0  Field Temperature °C Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (μS/cm=μmhos/cm)  1413 at 25°C  12880 at 25°C  Field Temperature °C Instrument Reading  ORP/REDOX CALIBRATION  Standard Solution (mV)  Altitude / Salinity %  Field Temperature °C  Instrument Reading (mV)  Field Temperature °C  Instrument Reading (mV)  Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |             | 5            | ampl       | 25       | 1a            | Ken                    |              |                        |           |                          |
| Buffer Solution         pH 4.0         pH 7.0         pH 10.0           Field Temperature °C         Image: PH 10.0         PH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |             |              | pH CALIB   | RATION ( | choose two    |                        |              |                        | Model or  | · Unit No ·              |
| Field Temperature °C Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (μS/cm=μmhos/cm)  1413 at 25°C  12880 at 25°C  Field Temperature °C Instrument Reading  ORP/REDOX CALIBRATION  Standard Solution (mV)  Field Temperature °C  Instrument Reading (mV)  Instrument Reading (mV)  Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Buffer Sol   | ution       |              | pri ozialo |          |               |                        | 1            |                        | viodei oi | Offic No                 |
| Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (μS/cm=μmhos/cm)  Field Temperature °C Instrument Reading  ORP/REDOX CALIBRATION  Standard Solution (mV)  Field Temperature °C  Instrument Reading (mV)  Instrument Reading (mg/L)  Model or Unit No.:  Altitude / Salinity %  Field Temperature °C  Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             | 2            |            | pr1 4.0  | pi 7.0        | pri 10.0               |              |                        |           |                          |
| SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (μS/cm=μmhos/cm)  1413 at 25°C  12880 at 25°C  Field Temperature °C  Instrument Reading  ORP/REDOX CALIBRATION  DISSOLVED OXYGEN CALIBRATION  Standard Solution (mV)  Altitude / Salinity %  Field Temperature °C  Instrument Reading (mV)  Instrument Reading (mg/L)  Model or Unit No.:  Model or Unit No.:  Model or Unit No.:  Altitude / Salinity °C  Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |             | <i>-</i>     |            |          |               |                        |              |                        |           |                          |
| KCI Solution (μS/cm=μmhos/cm)  Field Temperature °C  Instrument Reading  ORP/REDOX CALIBRATION  Standard Solution (mV)  Field Temperature °C  Instrument Reading (mV)  Field Temperature °C  Instrument Reading (mV)  Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Instrumen    |             | 200 1 7 7 7  |            | -        |               |                        |              |                        | 2         |                          |
| Field Temperature °C  Instrument Reading  ORP/REDOX CALIBRATION  DISSOLVED OXYGEN CALIBRATION  Standard Solution (mV)  Altitude / Salinity %  Field Temperature °C  Instrument Reading (mV)  Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | SPE         | CIFIC ELE    | CTRICAL CO | ONDUCTA  | ANCE (SEC)    | - CALIBRATI            | ION          | N                      | Model or  | Unit No.:                |
| Instrument Reading  ORP/REDOX CALIBRATION  DISSOLVED OXYGEN CALIBRATION  Notes:  Standard Solution (mV)  Altitude / Salinity %  Field Temperature °C  Instrument Reading (mV)  Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | KCI Solution | on (μS/cm=  | μmhos/cm)    | )          |          | 1413 at 25°C  | 12880 at 25            | 5°C          |                        |           |                          |
| ORP/REDOX CALIBRATION     DISSOLVED OXYGEN CALIBRATION     Notes:       Standard Solution (mV)     Altitude / Salinity %       Field Temperature °C     Field Temperature °C       Instrument Reading (mV)     Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Field Tem    | perature °C | )            |            |          |               |                        |              |                        |           |                          |
| Standard Solution (mV)  Altitude / Salinity %  Field Temperature °C  Instrument Reading (mV)  Altitude / Salinity %  Field Temperature °C  Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Instrument   | t Reading   |              |            |          |               |                        |              |                        |           |                          |
| Field Temperature °C Field Temperature °C Instrument Reading (mV) Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | ORP/RED     | OX CALIB     | RATION     |          | DISSOL        | VED OXYGEN             | CALIBRAT     | TION I                 | Notes:    |                          |
| Instrument Reading (mV)  Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Standard     | Solution (n | nV)          |            |          | Altitude / Sa | llinity %              |              |                        |           |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Field Tem    | perature °  | С            |            |          | Field Tempe   | erature °C             |              |                        |           |                          |
| Model or Unit No.:  Model or Unit No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Instrumer    | nt Reading  | (mV)         |            |          | Instrument F  | Reading (mg/L)         | )            |                        |           |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Model or     | Unit No.:   |              |            |          | Model or Ur   | nit No.:               | 1            |                        |           |                          |



| Well ID: _ | APN             | 1/11-5           |                     |               |               | Initial De                                       | epth to Wat                   | or:                                          | - /1     | wheeler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------|-----------------|------------------|---------------------|---------------|---------------|--------------------------------------------------|-------------------------------|----------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                 |                  | licate ID:          |               |               |                                                  | Water afte                    |                                              |          | The state of the s |
| Sample De  |                 |                  | noate ib            |               |               |                                                  | pth to Well                   |                                              |          | 4,16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            |                 |                  | 150060              |               |               |                                                  | meter:                        |                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                 |                  | bons Crea           |               |               |                                                  | g/Borehole                    |                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                 |                  | 17                  |               |               | (Circle o                                        |                               | voidille                                     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sampled I  |                 |                  | k_l                 |               |               |                                                  | g/Borehole                    | Volumes: _                                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                 |                  | mersible            |               |               | (Circle o                                        |                               |                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                 | : low            | Λι                  |               |               |                                                  | sing/Boreh<br>Removed         |                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Time       | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units) | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color   | Remarks<br>, turbidity, and sediment)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Low        | Flow Stab       | ilization Cr     | iteria              | +/- 3%        | +/- 0.1       | +/- 3%                                           | +/- 10%                       | +/- 10%                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11:06      | 241'            | 4200             |                     | 19.72         | 3,79          | 5.37                                             | 0.0                           | 3/4                                          | 544      | H.tan ; nooder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 11:11      | 1               | T                |                     | 19.95         | 3,77          | 5,45                                             | Ø. Ø8                         |                                              | 434      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11:16      |                 |                  |                     | 20.09         |               |                                                  | Ø.ø                           | 324                                          | 280      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11:21      |                 |                  |                     | 20.12         |               |                                                  | \$.0                          | 328                                          | 180      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11:26      |                 |                  |                     | 20.21         |               |                                                  | Ø.Ø                           | 331                                          |          | clearing up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11:31      | 1               | V                | 11.5                | 20.31         | 3.65          | 5,55                                             | 0.0                           | 332                                          | 58.8     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -          |                 |                  | 3                   |               |               |                                                  |                               |                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                 |                  | Day                 | MOLE          | 8             | Vak +                                            | 200                           |                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                 |                  |                     | 1             | )             | 1 ocite                                          |                               |                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                 |                  |                     |               |               |                                                  |                               |                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                 |                  |                     |               |               |                                                  |                               |                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                 |                  |                     |               |               |                                                  |                               |                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                 |                  | pH CALIB            | RATION (c     | hoose two     | )                                                |                               | N                                            | Model c  | or Unit No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Buffer Sol | lution          |                  |                     | pH 4.0        | pH 7.0        | pH 10.0                                          |                               |                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Field Tem  | perature °(     | 0                |                     |               |               |                                                  |                               |                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | nt Reading      |                  |                     |               |               |                                                  |                               |                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                 | CIFIC FLE        | CTRICAL C           | ONDUCTA       | NCE (SEC      | ) – CALIBRAT                                     | ION                           | ,                                            | Model    | or Unit No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| KCI Soluti |                 | μmhos/cm         |                     |               | 1413 at 25°C  |                                                  |                               |                                              | vioder ( | or offiction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | perature °C     |                  | )                   |               | 1410 00 20 0  | 12000 at 20                                      | , 0                           |                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Instrumen  |                 |                  |                     |               | -             |                                                  |                               |                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| modulien   |                 | OOX CALIB        | PATION              |               | DISSOI        | VED OVVCEN                                       | CALIBRA                       | TION                                         | Madaai   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Standard   | Solution (n     |                  | MATION              |               | Altitude / Sa | VED OXYGEN                                       | CALIBRA                       |                                              | Notes:   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | nperature °     |                  |                     |               | Field Tempe   |                                                  |                               |                                              | Tump     | initially not working.  pull it & take apart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | nt Reading      |                  |                     |               |               | Reading (mg/L)                                   | \                             |                                              | Had t    | pull it & take apart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Model or   |                 | ()               |                     |               | Model or Ur   |                                                  |                               |                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                 |                  |                     |               |               |                                                  |                               |                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



|            |                 |                  |                     |          |               |                                                  |                               |                                              |         | wheeler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------|-----------------|------------------|---------------------|----------|---------------|--------------------------------------------------|-------------------------------|----------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Well ID: _ | APM             | W-4              |                     |          |               | Initial De                                       | epth to Wat                   | er: <u>/2.</u>                               | 42'     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                 |                  | licate ID:          |          |               |                                                  | Water afte                    |                                              |         | 36'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sample D   | epth:           | 50'              |                     |          |               |                                                  | pth to Well                   |                                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project an | nd Task No      | 67061            | 50060               |          |               | Well Dia                                         | meter:                        | 2"                                           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project Na | ame: TN         | MPA Gib          | bons Cre            | ek       |               |                                                  | g/Borehole                    | Volume: _                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Date:      | February        | 21,201           | 7                   |          |               | (Circle o                                        |                               |                                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sampled I  | Ву:1            | 35               |                     |          |               | 4 Casing (Circle of                              | g/Borehole                    | Volumes: _                                   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Method of  | f Purging:      | subn             | nersible            |          |               |                                                  | ising/Boreh                   | ole                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Method of  | f Sampling      | j:               | w flow              |          |               |                                                  | s Removed                     |                                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Time       | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.    | pH<br>(units) | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color, | Remarks<br>turbidity, and sediment)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Low        | Flow Stab       | ilization Cr     | iteria              | +/- 3%   | +/- 0.1       | +/- 3%                                           | +/- 10%                       | +/- 10%                                      | 71700   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12:10      | \$50            | 2250             |                     | 19.69    | 5,55          | 4.89                                             | 5.26                          | 10                                           | 27.2    | Clear; no odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 12:15      | 1               | 1                |                     | 19.91    |               | 4.89                                             | 3.66                          | 24                                           | 7.6     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12:20      |                 |                  |                     | 19.92    |               | 4.89                                             | 2.93                          | 34                                           | 2.6     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12:25      |                 |                  |                     | 19,95    |               | 4.88                                             | 2,30                          | 38                                           | 0.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12:30      |                 |                  |                     | 20.00    |               | 4.89                                             | 1.42                          | 37                                           | 1.1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12:35      |                 |                  |                     | 19.98    |               | 4.85                                             | Ø.98                          | 35                                           | Ø.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12:40      | V               | 1                | \$ 2.5              |          |               | 4.84                                             | Ø.73                          | 33                                           | 0.0     | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10.10      | ,               |                  |                     | ,        |               | 1                                                | 7                             | 00                                           | PIP     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                 |                  | Dan                 | ples     | 5/0           | ken                                              |                               |                                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                 |                  |                     |          |               |                                                  |                               |                                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                 |                  |                     |          |               |                                                  |                               |                                              |         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | 1               |                  |                     |          |               |                                                  |                               |                                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | -               | egact.           | pH CALIB            | RATION ( | choose two    | )                                                |                               |                                              | Model o | r Unit No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Buffer So  | lution          |                  |                     | pH 4.0   | pH 7.0        | pH 10.0                                          | 1                             |                                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | nperature °     | ^                |                     | pi i iio | pi i i i      | pi 10.0                                          |                               |                                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                 | 0                |                     |          |               |                                                  |                               |                                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| msuumer    | nt Reading      | CIFIC EL E       | OTDICAL C           | ONDUCT   | ANOF (SES)    | 011/25/                                          | 1011                          |                                              | NA DAY  | The Professional Control of Contr |
|            |                 |                  | 2 12 24 4 12 24     | ONDUCT   |               | - CALIBRAT                                       |                               |                                              | wodel c | or Unit No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            |                 | -μmhos/cm        | )                   |          | 1413 at 25°C  | 12880 at 25                                      | 5°C                           |                                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Field Tem  | perature °C     | 2                |                     |          |               |                                                  |                               |                                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Instrumen  | t Reading       |                  |                     |          |               |                                                  |                               |                                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | ORP/REI         | OOX CALIE        | RATION              |          | DISSOL        | VED OXYGEN                                       | CALIBRA                       | TION                                         | Notes:  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Standard   | Solution (r     | mV)              |                     |          | Altitude / Sa | llinity %                                        |                               | 1                                            | 3:45 -  | - Eabk-BJG-22117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Field Ten  | nperature °     | С                |                     |          | Field Tempe   | erature °C                                       |                               |                                              |         | taken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Instrume   | nt Reading      | (mV)             |                     |          | Instrument I  | Reading (mg/L                                    | )                             |                                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Model or   | Unit No.:       |                  |                     |          | Model or Ur   | nit No.:                                         |                               |                                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                 |                  |                     |          |               |                                                  |                               |                                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



| Well ID: S | SP/AP           | MW-1             |                     |         |                           | Initial De                                       | epth to Wat                   | er: 5,3                                      | 1'      | wneeler                             |
|------------|-----------------|------------------|---------------------|---------|---------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|---------|-------------------------------------|
|            |                 |                  | icate ID:           |         |                           |                                                  |                               | r Sampling                                   |         | .441                                |
|            | epth:           |                  |                     |         |                           |                                                  |                               | 43.                                          |         |                                     |
|            |                 | : 6706/          | 50060               |         |                           |                                                  |                               | ) 11                                         |         |                                     |
|            |                 |                  | bons Cre            | ek      |                           |                                                  |                               | Volume:                                      |         |                                     |
| Date:      | February        | 21,201           | 7                   |         |                           | (Circle o                                        |                               |                                              |         |                                     |
|            | Ву:В            |                  |                     |         |                           | 4 Casing (Circle of                              |                               | Volumes: _                                   |         |                                     |
| Method of  | f Purging:      | Subw             | ersible             |         |                           |                                                  | sing/Boreh                    | iole                                         |         |                                     |
| Method of  | f Sampling      | : 10W            | flow                |         |                           |                                                  | s Removed                     |                                              |         |                                     |
| Time       | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.   | pH<br>(units)             | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color, | Remarks<br>turbidity, and sediment) |
| Low        | Flow Stabi      | ilization Cr     | iteria              | +/- 3%  | +/- 0.1                   | +/- 3%                                           | +/- 10%                       | +/- 10%                                      |         |                                     |
| 1427       | ≈38′            | \$250            |                     | 22.01   | 5.62                      | 8.69                                             | \$.56                         | -10                                          | 76.4    | It. tan ; no odor                   |
| 1432       | 1               |                  |                     | 22.09   | 5.68                      | 8.69                                             | Ø.97                          | -18                                          | 112     | Slight hydrocarmon oder             |
| 1437       |                 |                  |                     | 22.10   | 5,67                      | 8.68                                             | Ø.Ø                           | -20                                          | 287     |                                     |
| 1442       |                 |                  |                     | 22.11   | 5.60                      | 8.66                                             | Ø.Ø                           | -19                                          | 328     |                                     |
| 1447       |                 |                  |                     | 22.16   | 5.59                      | 8.68                                             | Ø. Ø                          | -16                                          | 407     |                                     |
| 1452       | V               | V                | ₩2.0                | 22.19   | 5.56                      | 8.71                                             | Ø.0                           | -13                                          | 432     | V                                   |
|            |                 |                  | any                 | des     |                           | ake                                              | n                             |                                              |         |                                     |
|            | 1               |                  | 12-10 THE WEIL TO   |         |                           |                                                  | - continued so                |                                              |         |                                     |
|            |                 |                  | pH CALIE            |         | choose two                |                                                  |                               | 1                                            | Model o | r Unit No.:                         |
| Buffer So  | lution          |                  |                     | pH 4.0  | pH 7.0                    | pH 10.0                                          |                               |                                              |         |                                     |
| Field Tem  | nperature °(    | C                |                     |         |                           |                                                  |                               |                                              |         |                                     |
| Instrumer  | nt Reading      |                  |                     |         |                           |                                                  |                               |                                              |         |                                     |
|            | SPE             | CIFIC ELE        | CTRICAL C           | ONDUCTA | ANCE (SEC                 | ) – CALIBRAT                                     | ION                           |                                              | Model c | or Unit No.:                        |
| KCI Soluti | ion (μS/cm=     | -μmhos/cm        | )                   |         | 1413 at 25°C              | 12880 at 25                                      | 5°C                           |                                              |         |                                     |
| Field Tem  | perature °C     |                  |                     |         |                           |                                                  |                               |                                              |         |                                     |
| Instrumen  | nt Reading      |                  |                     |         |                           |                                                  |                               |                                              |         |                                     |
|            | ORP/RED         | OOX CALIE        | RATION              |         | DISSOLVED OXYGEN CA       |                                                  |                               | TION                                         | Notes:  |                                     |
| Standard   | Solution (r     | nV)              |                     |         | Altitude / Sa             | alinity %                                        | 1                             |                                              |         |                                     |
| Field Ter  | mperature °     | С                |                     |         | Field Temperature °C      |                                                  |                               |                                              |         |                                     |
| Instrume   | nt Reading      | (mV)             |                     |         | Instrument Reading (mg/L) |                                                  |                               |                                              |         |                                     |
| Model or   | Unit No.:       |                  |                     |         | Model or Unit No.:        |                                                  |                               |                                              |         |                                     |



| Well ID:     | SSP M              | W-2              |                     |               | Initial Depth to Water:      |                                                  |                               |                                              |          |                                     |  |
|--------------|--------------------|------------------|---------------------|---------------|------------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|----------|-------------------------------------|--|
| Sample ID    | ;                  | Dupl             | icate ID:           |               |                              | Depth to                                         | Water after                   | r Sampling                                   | : 37     | .28"                                |  |
| Sample De    |                    |                  |                     |               |                              | Total De                                         | epth to Well                  | : 46.0                                       | 7'       |                                     |  |
| Project an   | d Task No          | .: 6706          | 150060              |               |                              | Well Dia                                         | meter: 🔌                      | u                                            |          |                                     |  |
| Project Na   | ame:TA             | MPA Gibb         | ons Cree            | h             |                              |                                                  |                               | Volume:                                      |          | 8                                   |  |
| Date:        | February           | 21,2017          | 7                   |               |                              | (Circle o                                        |                               |                                              |          |                                     |  |
| Sampled E    |                    |                  |                     |               |                              | 4 Casing                                         | g/Borehole<br>one)            | Volumes: _                                   |          |                                     |  |
| Method of    | Purging:           | Subr             | nersible            |               |                              |                                                  | asing/Boreh                   | iole                                         |          |                                     |  |
| Method of    | Sampling           | :low             | flow                |               |                              |                                                  |                               | :                                            |          |                                     |  |
| Time         | Intake<br>Depth    | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)                | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color,  | Remarks<br>turbidity, and sediment) |  |
| Low          | Flow Stab          | ilization Cr     | iteria              | +/- 3%        | +/- 0.1                      | +/- 3%                                           | +/- 10%                       | +/- 10%                                      |          |                                     |  |
| /535         | 244                | \$250            |                     | 21.66         | 4,79                         | 10.1                                             | \$.20                         | 148                                          | 91.9     | slightly cloudy; no odor            |  |
| 1540         | 1                  | 1                |                     | 21.52         |                              | 10,2                                             | Ø.Ø                           | 145                                          | 104      | 1                                   |  |
| 1545         | 4                  |                  |                     | 21.61         |                              | 10.2                                             | Ø.Ø                           | 138                                          | 101      |                                     |  |
| 1550         |                    |                  |                     | 21,80         |                              | 10.1                                             | Ø. Ø                          | 130                                          | 62.6     | clearing up                         |  |
| 1555         | V                  | V                | ×2.0                |               |                              | 10.1                                             | Ø. Ø                          | 124                                          | 48.9     |                                     |  |
|              |                    |                  | amp                 | le 5          | 7                            | ake                                              | n°                            |                                              |          |                                     |  |
| Buffer Sol   | ution              |                  | pH CALIB            | pH 4.0        | choose two                   | ) pH 10.0                                        | VEIDER                        | N                                            | Model or | Unit No.:                           |  |
| Field Tem    | perature °(        | 0                |                     |               |                              |                                                  |                               |                                              |          |                                     |  |
| Instrumen    | nt Reading         |                  |                     |               |                              |                                                  |                               |                                              |          |                                     |  |
|              | SPE                | CIFIC ELE        | CTRICAL C           | ONDUCT        | ANCE (SEC                    | – CALIBRAT                                       | ION                           | N                                            | Model o  | r Unit No.:                         |  |
| KCI Solution | on (μS/cm=         | μmhos/cm         | )                   |               | 1413 at 25°C                 | 12880 at 25                                      | 5°C                           |                                              |          |                                     |  |
| Field Tem    | perature °C        |                  |                     |               |                              |                                                  |                               |                                              |          |                                     |  |
| Instrumen    | t Reading          |                  |                     |               |                              |                                                  |                               |                                              |          |                                     |  |
|              | ORP/RED            | OOX CALIB        | RATION              |               | DISSOLVED OXYGEN CALIBRATION |                                                  |                               |                                              | Notes:   |                                     |  |
| Standard     | Solution (r        | nV)              |                     |               | Altitude / Salinity %        |                                                  |                               |                                              |          |                                     |  |
| Field Tem    | nperature °        | С                |                     |               | Field Temperature °C         |                                                  |                               |                                              |          |                                     |  |
| Instrumer    | nt Reading         | (mV)             |                     |               |                              | Reading (mg/L                                    | .)                            |                                              |          |                                     |  |
| Model or     | Model or Unit No.: |                  |                     |               | Model or Unit No.:           |                                                  |                               |                                              |          |                                     |  |



| Well ID: _         | SSPA            | 160-4            |                     |               | Initial Depth to Water: 25, 06' |                                                  |                               |                                              |                                             |                |  |
|--------------------|-----------------|------------------|---------------------|---------------|---------------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|---------------------------------------------|----------------|--|
| Sample ID          | ):              | Dupl             | licate ID: _        | DUP           | -1                              |                                                  | Water after                   |                                              |                                             | 691            |  |
| Sample D           |                 |                  |                     |               |                                 |                                                  | pth to Well                   |                                              |                                             |                |  |
|                    |                 |                  | 5150060             |               |                                 |                                                  | meter:                        | 011                                          |                                             |                |  |
| Project Na         | ame: Ti         | MPA Gi           | bbons C             | reek          |                                 |                                                  | g/Borehole                    |                                              |                                             |                |  |
| Date:              | Februar         | y 21, 6          | 2017                |               |                                 | (Circle o                                        |                               |                                              |                                             |                |  |
|                    | Ву:             |                  | . 1                 |               |                                 | 4 Casing (Circle of                              | g/Borehole<br>one)            | Volumes: _                                   |                                             |                |  |
|                    |                 |                  | mersible            |               |                                 |                                                  | asing/Boreh                   | ole                                          |                                             |                |  |
| Method of          | f Sampling      | j:               | wflow               |               |                                 |                                                  | s Removed                     |                                              |                                             |                |  |
| Time               | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)                   | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | Remarks<br>(color, turbidity, and sediment) |                |  |
| Low                | Flow Stab       | ilization Cr     | iteria              | +/- 3%        | +/- 0.1                         | +/- 3%                                           | +/- 10%                       | +/- 10%                                      |                                             |                |  |
| 1646               | 2491            | ≈ 250            |                     | 21.42         | 5.90                            | 5,77                                             | 1.15                          | 74                                           | 31.8                                        | Clear; no odor |  |
| 1651               |                 |                  |                     | 21.51         | 5,93                            | 5.77                                             | Ø. Ø3                         | 73                                           | 26.1                                        | f              |  |
| 1656               |                 |                  |                     | 21.58         | 5.95                            | 5.77                                             | Ø.0                           | 72                                           | 23.5                                        |                |  |
| 1701               | V               | 1                | \$1.5               | 21059         | 5,95                            |                                                  | Ø.Ø                           | 72                                           | 22.0                                        |                |  |
| -                  |                 |                  |                     | 1             | 1                               |                                                  | 1                             |                                              |                                             |                |  |
|                    |                 |                  | ,                   |               |                                 |                                                  |                               |                                              |                                             |                |  |
|                    |                 |                  | pH CALIB            | RATION (      | choose two                      | )                                                |                               | N. I                                         | Model or                                    | Unit No.:      |  |
| Buffer Sol         | lution          |                  |                     | pH 4.0        | pH 7.0                          | pH 10.0                                          |                               |                                              |                                             |                |  |
| Field Tem          | perature °(     | 2                |                     |               |                                 |                                                  |                               |                                              |                                             |                |  |
| Instrumer          | nt Reading      |                  |                     |               |                                 |                                                  |                               |                                              |                                             |                |  |
|                    | SPE             | CIFIC ELE        | CTRICAL C           | ONDUCTA       | ANCE (SEC)                      | - CALIBRATI                                      | ION                           | 1                                            | Model or                                    | Unit No.:      |  |
| KCI Soluti         |                 | μmhos/cm)        |                     | X * 2922 2327 | 1413 at 25°C                    |                                                  |                               |                                              |                                             | S.III. 140     |  |
| Field Tem          | perature °C     | )                |                     |               |                                 |                                                  |                               |                                              |                                             |                |  |
| Instrumen          | t Reading       |                  |                     |               |                                 |                                                  |                               |                                              |                                             |                |  |
|                    | ORP/RED         | OX CALIB         | RATION              |               | DISSOL                          | VED OXYGEN                                       | CALIBRAT                      | TION I                                       | Notes:                                      |                |  |
| Standard           | Solution (n     | nV)              |                     |               | Altitude / Sa                   | linity %                                         | 14                            |                                              | DO                                          | IP-1 taken     |  |
| Field Ten          | nperature °     | C                |                     |               | Field Temperature °C            |                                                  |                               |                                              | PU                                          | Janen          |  |
| Instrumer          | nt Reading      | (mV)             |                     |               | Instrument Reading (mg/L)       |                                                  |                               |                                              |                                             |                |  |
| Model or Unit No.: |                 |                  |                     |               | Model or Unit No.:              |                                                  |                               |                                              |                                             |                |  |



|                      |                 |                  |                     |                           |                                | Initial De                                       | enth to Wat                   | er. 26. 5                                    | 18          |                                     |  |
|----------------------|-----------------|------------------|---------------------|---------------------------|--------------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|-------------|-------------------------------------|--|
|                      |                 |                  |                     |                           | Initial Depth to Water: 26.581 |                                                  |                               |                                              |             |                                     |  |
|                      |                 | Dup              | licate ID: _        |                           |                                | Depth to                                         | Water after                   | er Sampling                                  | : <u>30</u> | 0.091                               |  |
| Sample De            | epth:v          | 145.5'           |                     |                           |                                | Total De                                         | pth to Well                   | : 48.                                        | 21          |                                     |  |
| Project and          | d Task No       | : 6706           | 150060              | >                         |                                | Well Dia                                         | meter:                        | 2"                                           |             |                                     |  |
|                      |                 |                  | abons Cr            | eek                       |                                |                                                  |                               | Volume:                                      |             |                                     |  |
| Date:                | Februar         | 4 22, 2          | 017                 |                           |                                | (Circle o                                        |                               |                                              |             |                                     |  |
| Sampled E            | By:             | 4                |                     |                           |                                | 4 Casing (Circle of                              |                               | Volumes: _                                   |             |                                     |  |
| Method of            | Purging:        | Sub              | mersible            |                           |                                |                                                  |                               | nole                                         |             |                                     |  |
| Method of            | Sampling        | : 10w            | How                 |                           |                                | Total Casing/Borehole Volumes Removed:           |                               |                                              |             |                                     |  |
| Time                 | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C)             | pH<br>(units)                  | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color,     | Remarks<br>turbidity, and sediment) |  |
| Low I                | Flow Stabi      | lization Cr      | iteria              | +/- 3%                    | +/- 0.1                        | +/- 3%                                           | +/- 10%                       | +/- 10%                                      | 14100       |                                     |  |
| 09:12                | \$45,5          | ×250             | 1                   | 20.20                     | 4.48                           | 8.53                                             | <b>Ø</b> .09                  | 125                                          | 388         | It. tan; no odor                    |  |
| 09:17                |                 |                  |                     | 20.61                     | 4.45                           | 8.55                                             | Ø.Ø                           | 283                                          | 636         | 1 1an moodot                        |  |
| 09:22                |                 |                  |                     | 20.89                     |                                | 8,56                                             | Ø. Ø                          | 282                                          | 370         |                                     |  |
| 09:27                |                 |                  |                     | 20.90                     |                                | 8.55                                             | Ø. Ø                          | 278                                          | 178         |                                     |  |
| 09:32                |                 |                  |                     | 20.90                     |                                |                                                  | 0.0                           | 273                                          | 99.8        | Clearing up                         |  |
| 09:37                |                 |                  | ₩2.0                | 20.96                     |                                |                                                  | Ø. Ø                          | 266                                          | 64.7        | 11                                  |  |
|                      |                 |                  |                     |                           |                                |                                                  | 1                             |                                              | 0 1.1       | - U                                 |  |
|                      |                 |                  |                     | am                        | 1/00                           | 1                                                | Low                           |                                              |             |                                     |  |
|                      |                 |                  | _                   | Jan                       |                                | 101                                              |                               |                                              |             |                                     |  |
|                      |                 |                  |                     |                           |                                |                                                  |                               |                                              |             |                                     |  |
|                      |                 |                  |                     |                           |                                |                                                  |                               |                                              |             |                                     |  |
|                      |                 |                  |                     |                           |                                |                                                  |                               |                                              |             |                                     |  |
|                      |                 | 100              | pH CALIB            | RATION (c                 | hoose two                      | )                                                |                               | 111                                          | Nodel or    | Unit No.:                           |  |
| Buffer Solu          | ution           |                  |                     | pH 4.0                    | pH 7.0                         | pH 10.0                                          |                               |                                              |             |                                     |  |
| Field Tem            | perature °C     | )                |                     |                           |                                |                                                  |                               |                                              |             |                                     |  |
| Instrument           |                 |                  |                     |                           |                                |                                                  |                               |                                              |             |                                     |  |
|                      | 100             | CIFIC ELE        | CTRICAL C           | ONDUCTA                   | NCE (SEC)                      | - CALIBRATI                                      | ION                           | 1                                            | Model or    | r Unit No.:                         |  |
| KCI Solutio          |                 | μmhos/cm)        |                     | -                         | 1413 at 25°C                   |                                                  | * 15                          |                                              | viodel of   | One No                              |  |
| Field Temp           |                 |                  |                     |                           |                                | 12000 01 20                                      |                               | -                                            |             |                                     |  |
| Instrument           |                 |                  |                     |                           | •                              |                                                  |                               |                                              |             |                                     |  |
|                      |                 | OX CALIB         | RATION              |                           | DISSOL                         | VED OXYGEN                                       | CVIIBDV                       | TION                                         | Notes:      |                                     |  |
| Standard :           | Solution (m     |                  |                     |                           | Altitude / Sa                  |                                                  | SALIDKA                       | TION I                                       | votes:      |                                     |  |
|                      | perature °(     | -                |                     |                           | Field Tempe                    |                                                  |                               |                                              |             |                                     |  |
|                      | t Reading (     |                  |                     | Instrument Reading (mg/L) |                                |                                                  |                               |                                              |             |                                     |  |
| Model or U           |                 | /                |                     | Model or Unit No.:        |                                |                                                  |                               |                                              |             |                                     |  |
| model of other reci- |                 |                  |                     | model of otherwo          |                                |                                                  |                               |                                              |             |                                     |  |



| Total Depth to Well:   23,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5(6)             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Total Depth to Well:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
| Project Name:   IMPA   2,666   2006   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
| Project Name:   TMPA & 16 bons Creek   1 Casing/Borehole Volumes:   Circle one   1 Casing/Borehole Volumes:   Circle one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| Date:   February 22, 3017   Sampled By:   Bd   Clincle one   A Casing/Borehole Volumes:   Clircle one   A Casing/Borehole Volumes:   Clircle one   Clircle one   Clircle one   Clircle one   Total Casing/Borehole   Volumes Removed:   Volumes Re |                  |
| Sampled By:   Ed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
| Method of Purging:   Det   State   Det   |                  |
| Method of Purging:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
| Method of Sampling:   10 to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
| Low Flow Stabilization Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s<br>d sediment) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| 14:22   22.89   4.20   13.4   6.22   444   6.6     14:27   V   21.5   22.89   4.21   13.4   6.65   441   6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CAOT             |
| 14:27   V   2.15   22.89   4.21   73.4   6.65   441   6.6   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.65   4.  |                  |
| pH CALIBRATION (choose two)  Buffer Solution  Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| PH CALIBRATION (choose two)  Buffer Solution  Field Temperature °C  Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (μS/cm=μmhos/cm)  Field Temperature °C  Instrument Reading  ORP/REDOX CALIBRATION  DISSOLVED OXYGEN CALIBRATION  Notes:  Standard Solution (mV)  Field Temperature °C  Field Temperature °C  Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
| Buffer Solution pH 4.0 pH 7.0 pH 10.0  Field Temperature °C Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (μS/cm=μmhos/cm) Field Temperature °C Instrument Reading  ORP/REDOX CALIBRATION Standard Solution (mV) Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |
| Field Temperature °C Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (μS/cm=μmhos/cm) Field Temperature °C Instrument Reading  ORP/REDOX CALIBRATION DISSOLVED OXYGEN CALIBRATION Standard Solution (mV) Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |
| Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (μS/cm=μmhos/cm)  Field Temperature °C  Instrument Reading  ORP/REDOX CALIBRATION  Standard Solution (mV)  Field Temperature °C  Altitude / Salinity %  Field Temperature °C  Field Temperature °C  Field Temperature °C  Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
| SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (μS/cm=μmhos/cm)  1413 at 25°C  12880 at 25°C  Field Temperature °C  Instrument Reading  ORP/REDOX CALIBRATION  DISSOLVED OXYGEN CALIBRATION  Standard Solution (mV)  Field Temperature °C  Field Temperature °C  Field Temperature °C  Model or Unit No.:  Model or Unit No.:  Altitude / Salinity %  Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| KCI Solution (μS/cm=μmhos/cm)       1413 at 25°C       12880 at 25°C         Field Temperature °C       Instrument Reading         ORP/REDOX CALIBRATION       DISSOLVED OXYGEN CALIBRATION Notes:         Standard Solution (mV)       Altitude / Salinity %       Tubing left in         Field Temperature °C       Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |
| Field Temperature °C  Instrument Reading  ORP/REDOX CALIBRATION  DISSOLVED OXYGEN CALIBRATION  Standard Solution (mV)  Altitude / Salinity %  Field Temperature °C  Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| Instrument Reading  ORP/REDOX CALIBRATION DISSOLVED OXYGEN CALIBRATION Notes:  Standard Solution (mV) Altitude / Salinity % Field Temperature °C Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
| ORP/REDOX CALIBRATION     DISSOLVED OXYGEN CALIBRATION     Notes:       Standard Solution (mV)     Altitude / Salinity %     Tubing left in       Field Temperature °C     Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| Standard Solution (mV)  Altitude / Salinity %  Field Temperature °C  Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |
| Field Temperature °C Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |
| Field Temperature °C Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | well.            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 000111           |
| Instrument Reading (mV)  Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
| Model or Unit No.:  Model or Unit No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |



| Well ID:                | SFI A           | 4111-4           |                     |           |                                                                       | Initial De                                       | enth to Wat                   | or: /4                                       | 1.11      | wrieeler                           |  |
|-------------------------|-----------------|------------------|---------------------|-----------|-----------------------------------------------------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|-----------|------------------------------------|--|
|                         |                 |                  | icate ID:           | DUP-      | Initial Depth to Water:/4, // /  Depth to Water after Sampling:/7,931 |                                                  |                               |                                              |           |                                    |  |
| Sample De               |                 |                  |                     |           |                                                                       |                                                  | pth to Well                   |                                              |           | ,0                                 |  |
|                         |                 |                  | 615006              | 50        |                                                                       | Well Dia                                         | meter:                        | 2 1/                                         |           |                                    |  |
|                         |                 |                  | bbons Cr            |           |                                                                       |                                                  | g/Borehole                    |                                              |           |                                    |  |
|                         |                 | ry 22,           |                     |           |                                                                       | (Circle o                                        |                               |                                              |           |                                    |  |
| Sampled E               |                 | 1                |                     |           |                                                                       |                                                  | g/Borehole                    | Volumes: _                                   |           |                                    |  |
| Method of               | Purging:        | Sub              | mersible            | ,         |                                                                       | (Circle o                                        |                               | ala                                          |           |                                    |  |
|                         |                 | 10               |                     |           |                                                                       |                                                  | sing/Boreh<br>s Removed       |                                              |           |                                    |  |
| Time                    | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.     | pH<br>(units)                                                         | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color, t | Remarks<br>urbidity, and sediment) |  |
| Low                     | Flow Stab       | ilization Cr     | iteria              | +/- 3%    | +/- 0.1                                                               | +/- 3%                                           | +/- 10%                       | +/- 10%                                      | 14100     |                                    |  |
| 15:35                   | ×40             | \$200            |                     | 22,57     | 6.32                                                                  | 7.77                                             | \$.25                         | -27                                          | 39.8      | Clear; Shight<br>hydrocarbon odor  |  |
| 15:40                   |                 |                  |                     | 22.59     |                                                                       |                                                  | Ø.Ø                           | -23                                          | 15.4      |                                    |  |
| 15:45                   |                 |                  |                     | 22.60     | ,                                                                     |                                                  | 0.0                           | -16                                          | 4.7       |                                    |  |
| 15:50                   |                 |                  |                     | 22.61     |                                                                       | 7.89                                             | \$.\$                         | -14                                          | \$.0      |                                    |  |
|                         |                 | -                | 7                   | 1         | 1                                                                     | 1                                                |                               |                                              |           |                                    |  |
|                         |                 |                  | Damy                | ples      | 10                                                                    | Ken                                              |                               |                                              |           |                                    |  |
|                         |                 |                  | •                   |           | ,                                                                     |                                                  |                               |                                              |           |                                    |  |
|                         |                 |                  |                     |           |                                                                       |                                                  |                               |                                              |           |                                    |  |
|                         |                 |                  |                     |           |                                                                       |                                                  |                               |                                              |           |                                    |  |
|                         |                 |                  |                     |           |                                                                       |                                                  |                               |                                              |           |                                    |  |
|                         |                 |                  |                     |           |                                                                       |                                                  |                               |                                              |           |                                    |  |
|                         |                 |                  |                     |           |                                                                       |                                                  |                               |                                              |           |                                    |  |
|                         |                 |                  | pH CALIB            | RATION (c | hoose two                                                             | se two)                                          |                               |                                              | Model or  | Unit No.:                          |  |
| Buffer Sol              | ution           |                  |                     | pH 4.0    | pH 7.0                                                                | pH 10.0                                          |                               |                                              |           |                                    |  |
| Field Tem               | perature °      | С                |                     |           |                                                                       |                                                  |                               |                                              |           |                                    |  |
| Instrumen               | t Reading       |                  |                     |           |                                                                       |                                                  |                               |                                              |           |                                    |  |
|                         | SPE             | CIFIC ELE        | CTRICAL C           | ONDUCTA   | NCE (SEC                                                              | ) - CALIBRAT                                     | ION                           |                                              | Model or  | Unit No.:                          |  |
| KCI Solution            | on (μS/cm=      | =μmhos/cm        | )                   |           | 1413 at 25°C                                                          | 12880 at 25                                      | 5°C                           |                                              |           |                                    |  |
| Field Tem               |                 |                  |                     |           |                                                                       |                                                  |                               |                                              |           |                                    |  |
| Instrumen               |                 |                  |                     |           |                                                                       |                                                  |                               |                                              |           |                                    |  |
|                         |                 | DOX CALIB        | RATION              |           | DISSOL                                                                | VED OXYGEN                                       | CALIBRA                       | TION                                         | Notes:    |                                    |  |
| Standard                | Solution (r     | mV)              |                     | ,         | Altitude / Sa                                                         |                                                  |                               |                                              |           | 2-2 collected                      |  |
|                         | nperature °     |                  |                     |           | Field Temperature °C                                                  |                                                  |                               |                                              | JU        | a collected                        |  |
| Instrument Reading (mV) |                 |                  |                     |           | Instrument Reading (mg/L)                                             |                                                  |                               |                                              |           |                                    |  |
| Model or Unit No.:      |                 |                  |                     |           | Model or Unit No.:                                                    |                                                  |                               |                                              |           |                                    |  |
|                         |                 |                  |                     |           |                                                                       |                                                  |                               |                                              |           |                                    |  |



| Semple   Depth   SPL MW-2   Sample   Depth   Depth   Semple   Depth   Se    |            |                    |                |              |           |                                         |                        |             |                        |          | wrieeler                            |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------|----------------|--------------|-----------|-----------------------------------------|------------------------|-------------|------------------------|----------|-------------------------------------|--|--|
| Sample Depth: \$21'  Project Name: TMPA Sibbans Creek Date: February 22 2017  Sampled By: 334  Method of Purging: Sub weersible: Circle one)  Time Intake Depth Railbans Creek Depth Railbans Creek (Circle one)  Total Depth to Well: 23.6/  Well Diameter: 2 V  1 Casing/Borehole Volumes: (Circle one)  A Casing/Borehole Volumes: (Circle one)  Total Casing/Borehole Volumes: (Circle one | Well ID: _ | SFLM               | W-2            |              |           |                                         |                        |             |                        |          |                                     |  |  |
| Project Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                    |                | licate ID: _ |           |                                         | Depth to               | Water afte  | r Sampling             | : 13.    | 14'                                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sample D   | epth: <del>ゞ</del> | 211            |              |           |                                         | Total De               | pth to Well | 23.6                   |          |                                     |  |  |
| Date:   Feb ruary 22   2017   Sampled By:   But   Method of Puriging:   Sub metricial   Time   Intake   Depth   (ml/min)   Cow flow Stabilization Criteria   +/-3%   +/-0.1   +/-3%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%   +/-10%      | Project ar | nd Task No         | .: 6706        | 150060       |           |                                         | Well Dia               | meter:o     | 24                     |          |                                     |  |  |
| Sampled Sy:   Substitute   Su    | Project Na | ame: TN            | IPA Gi         | bhons Cr     | eek       |                                         |                        |             | Volume: _              |          |                                     |  |  |
| Method of Purging:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date:      | Februa             | ry 22,         | 2017         |           |                                         |                        |             |                        |          |                                     |  |  |
| Total Casing/Borehole   Volumes Removed:     Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total Casing/Borehole   Volumes Removed:   Total C    |            |                    |                |              |           |                                         |                        |             | Volumes: _             |          |                                     |  |  |
| Time   Intake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Method o   | f Purging:         | Sub            | mersible     | e         |                                         |                        |             |                        |          |                                     |  |  |
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Method o   | f Sampling         | j: <u>/o</u> j | wflow        |           |                                         |                        |             |                        |          |                                     |  |  |
| Low Flow Stabilization Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Time       |                    |                |              |           |                                         | Electrical Conductance | Oxygen      | Reduction<br>Potential |          | Remarks<br>turbidity, and sediment) |  |  |
| (6:59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Low        | Flow Stab          | ilization Cr   | iteria       | +/- 3%    | +/- 0.1                                 | +/- 3%                 | +/- 10%     | +/- 10%                |          |                                     |  |  |
| (6:59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16:54      | ×21'               | *200           |              | 22.20     | 6.68                                    | 9.35                   | 1.14        | 147                    | 86.4     | Slightly dandy and                  |  |  |
| 17:04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16:59      |                    | -4.            | ,            |           | 1                                       |                        |             |                        | 53.1     | Cleaning                            |  |  |
| 17:09   3   1,5   2   1,68   6.58   9.49   0.42   1/64   7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17:04      |                    |                |              |           |                                         |                        |             |                        |          |                                     |  |  |
| pH CALIBRATION (choose two)  Buffer Solution pH 4.0 pH 7.0 pH 10.0  Field Temperature °C Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (µS/cm=µmhos/cm)  1413 at 25°C  12880 at 25°C  Field Temperature °C Instrument Reading  ORP/REDOX CALIBRATION  Standard Solution (mV)  Altitude / Salinity %  17:55 – Fark-BSA-32  Collected  Instrument Reading (mV)  Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17:09      |                    |                | 21,5         |           |                                         |                        |             |                        |          |                                     |  |  |
| PH CALIBRATION (choose two)   Model or Unit No.:    Buffer Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                    | -              |              |           | 1                                       | 1                      |             |                        |          |                                     |  |  |
| ## Proof of the p   |            |                    |                | amo          | es        | 1a                                      | Ker                    |             |                        |          |                                     |  |  |
| Buffer Solution pH 4.0 pH 7.0 pH 10.0  Field Temperature °C Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (μS/cm=μmhos/cm)  1413 at 25°C 12880 at 25°C  Field Temperature °C Instrument Reading  ORP/REDOX CALIBRATION  Standard Solution (mV)  Altitude / Salinity %  Field Temperature °C Instrument Reading (mV)  Field Temperature °C Instrument Reading (mV)  Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                    |                |              |           |                                         |                        |             |                        |          |                                     |  |  |
| Buffer Solution pH 4.0 pH 7.0 pH 10.0  Field Temperature °C Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (μS/cm=μmhos/cm)  1413 at 25°C 12880 at 25°C  Field Temperature °C Instrument Reading  ORP/REDOX CALIBRATION  Standard Solution (mV)  Altitude / Salinity %  Field Temperature °C Instrument Reading (mV)  Field Temperature °C Instrument Reading (mV)  Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                    |                |              |           |                                         |                        |             |                        |          |                                     |  |  |
| Buffer Solution pH 4.0 pH 7.0 pH 10.0  Field Temperature °C Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (μS/cm=μmhos/cm)  1413 at 25°C 12880 at 25°C  Field Temperature °C Instrument Reading  ORP/REDOX CALIBRATION  Standard Solution (mV)  Altitude / Salinity %  Field Temperature °C Instrument Reading (mV)  Field Temperature °C Instrument Reading (mV)  Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                    |                |              |           |                                         |                        |             |                        |          |                                     |  |  |
| Buffer Solution pH 4.0 pH 7.0 pH 10.0  Field Temperature °C Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (μS/cm=μmhos/cm)  Field Temperature °C Instrument Reading  ORP/REDOX CALIBRATION  Standard Solution (mV)  Field Temperature °C  Instrument Reading  Instrument Reading  Standard Solution (mV)  Field Temperature °C  Instrument Reading (mV)  Field Temperature °C  Instrument Reading (mV)  Field Temperature °C  Instrument Reading (mV)  Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                    |                |              |           |                                         |                        |             |                        |          |                                     |  |  |
| Buffer Solution pH 4.0 pH 7.0 pH 10.0  Field Temperature °C Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (μS/cm=μmhos/cm)  1413 at 25°C 12880 at 25°C  Field Temperature °C Instrument Reading  ORP/REDOX CALIBRATION  Standard Solution (mV)  Altitude / Salinity %  Field Temperature °C Instrument Reading (mV)  Field Temperature °C Instrument Reading (mV)  Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                    |                |              |           |                                         |                        |             |                        |          |                                     |  |  |
| Buffer Solution pH 4.0 pH 7.0 pH 10.0  Field Temperature °C Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (μS/cm=μmhos/cm)  Field Temperature °C Instrument Reading  ORP/REDOX CALIBRATION  Standard Solution (mV)  Field Temperature °C  Instrument Reading  Instrument Reading  Standard Solution (mV)  Field Temperature °C  Instrument Reading (mV)  Field Temperature °C  Instrument Reading (mV)  Field Temperature °C  Instrument Reading (mV)  Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                    |                | 1            |           |                                         |                        |             |                        |          |                                     |  |  |
| Buffer Solution pH 4.0 pH 7.0 pH 10.0  Field Temperature °C Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (μS/cm=μmhos/cm)  Field Temperature °C Instrument Reading  ORP/REDOX CALIBRATION  Standard Solution (mV)  Field Temperature °C  Instrument Reading  Instrument Reading  Standard Solution (mV)  Field Temperature °C  Instrument Reading (mV)  Field Temperature °C  Instrument Reading (mV)  Field Temperature °C  Instrument Reading (mV)  Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                    |                | pH CALIB     | RATION (d | choose two                              | )                      |             | N N                    | Model or | Unit No ·                           |  |  |
| Field Temperature °C Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (μS/cm=μmhos/cm) Field Temperature °C Instrument Reading  ORP/REDOX CALIBRATION Standard Solution (mV) Field Temperature °C Instrument Reading (mV)  Field Temperature °C Instrument Reading (mV)  Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Buffer So  | lution             |                |              | 100       | 100000000000000000000000000000000000000 |                        |             |                        |          | omerio                              |  |  |
| Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (μS/cm=μmhos/cm)  Field Temperature °C  Instrument Reading  ORP/REDOX CALIBRATION  Standard Solution (mV)  Field Temperature °C  Instrument Reading (mV)  Instrument Reading (mg/L)  Model or Unit No.:  Model or Unit No.:  Model or Unit No.:  12880 at 25°C  Instrument Reading (mV).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                    | 2              |              | p. 1 1.0  | pi r.o                                  | pir 10.0               |             |                        |          |                                     |  |  |
| SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION  KCI Solution (μS/cm=μmhos/cm)  1413 at 25°C  Field Temperature °C  Instrument Reading  ORP/REDOX CALIBRATION  Standard Solution (mV)  Field Temperature °C  Instrument Reading (mV)  Instrument Reading (mg/L)  Model or Unit No.:  Model or Unit No.:  12880 at 25°C  Instrument Reading (molecate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 1                  |                |              |           |                                         |                        |             |                        |          |                                     |  |  |
| KCI Solution (μS/cm=μmhos/cm)       1413 at 25°C       12880 at 25°C         Field Temperature °C       Instrument Reading         ORP/REDOX CALIBRATION       DISSOLVED OXYGEN CALIBRATION Notes:         Standard Solution (mV)       Altitude / Salinity %       17:55 - EOBK-BJG-Jage Calibration (mV)         Field Temperature °C       Field Temperature °C       Collected         Instrument Reading (mV)       Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | instrumer  |                    | ALEIA ELE      | 0771011 0    | CHELLOT   |                                         |                        |             |                        | 4        | 1.150.157                           |  |  |
| Field Temperature °C  Instrument Reading  ORP/REDOX CALIBRATION  DISSOLVED OXYGEN CALIBRATION  Notes:  Standard Solution (mV)  Field Temperature °C  Instrument Reading (mV)  Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                    |                |              |           |                                         |                        |             |                        | Model or | Unit No.:                           |  |  |
| Instrument Reading  ORP/REDOX CALIBRATION  DISSOLVED OXYGEN CALIBRATION  Notes:  Standard Solution (mV)  Field Temperature °C  Instrument Reading (mV)  Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | KCI Soluti | ion (μS/cm=        | μmhos/cm       | )            |           | 1413 at 25°C                            | 12880 at 25            | 5°C         |                        |          |                                     |  |  |
| ORP/REDOX CALIBRATION DISSOLVED OXYGEN CALIBRATION Notes:  Standard Solution (mV) Altitude / Salinity % Field Temperature °C Instrument Reading (mV) Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Field Tem  | perature °C        | )              |              |           |                                         |                        |             |                        |          |                                     |  |  |
| Standard Solution (mV)  Altitude / Salinity %  Field Temperature °C  Instrument Reading (mV)  Altitude / Salinity %  Field Temperature °C  Collected  Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Instrumen  | nt Reading         |                |              |           |                                         |                        |             |                        |          |                                     |  |  |
| Field Temperature °C Field Temperature °C Collected Instrument Reading (mV) Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | ORP/REI            | OOX CALIB      | RATION       |           | DISSOL                                  | VED OXYGEN             | CALIBRA     | TION                   | Notes:   |                                     |  |  |
| Field Temperature °C Field Temperature °C collected  Instrument Reading (mV) Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Standard   | Solution (r        | nV)            |              |           | Altitude / Sa                           | alinity %              |             | 1                      | 17:55    | - EOBK-BJG-2221                     |  |  |
| Instrument Reading (mV)  Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Field Ter  | nperature °        | С              |              |           | Field Tempe                             | erature °C             |             |                        |          |                                     |  |  |
| Model or Unit No.:  Model or Unit No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Instrume   | nt Reading         | (mV)           |              |           | Instrument I                            | Reading (mg/L          | )           | - 4                    |          |                                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Model or   | Unit No.:          |                |              |           | Model or Ur                             | nit No.:               | 1           |                        |          |                                     |  |  |



|                         | 1 may 800       |                                         |                     |               |                    |                                                  |                               |                                              |          | wheeler                             |  |  |
|-------------------------|-----------------|-----------------------------------------|---------------------|---------------|--------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|----------|-------------------------------------|--|--|
| Well ID:                |                 |                                         |                     |               | _                  | Initial Depth to Water: 15,77                    |                               |                                              |          |                                     |  |  |
| Sample ID               |                 |                                         | licate ID:          |               |                    | Depth to                                         | Water after                   | r Sampling                                   | : 19.    | 231                                 |  |  |
| Sample De               | epth:&          | 22'                                     |                     |               |                    | Total De                                         | pth to Well                   | : 24                                         | 1.3'     |                                     |  |  |
|                         |                 |                                         | 150060              |               |                    | Well Dia                                         | meter:                        | 2"                                           | :        |                                     |  |  |
|                         |                 |                                         | ibbons C            | reek          |                    | 1 Casing/Borehole Volume:                        |                               |                                              |          |                                     |  |  |
| Date:                   | February        | 23,20                                   | 017                 |               |                    | (Circle one) 4 Casing/Borehole Volumes:          |                               |                                              |          |                                     |  |  |
| Sampled B               |                 |                                         |                     |               |                    | 4 Casing (Circle of                              |                               | Volumes: _                                   |          |                                     |  |  |
| Method of               | Purging:        | Sul                                     | mersible            |               |                    |                                                  | sing/Boreh                    | nole                                         |          |                                     |  |  |
| Method of               | Sampling        | : Low                                   | flow                |               |                    |                                                  | s Removed                     |                                              |          |                                     |  |  |
| Time                    | Intake<br>Depth | Rate<br>(ml/min)                        | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)      | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color,  | Remarks<br>turbidity, and sediment) |  |  |
| Low                     | Flow Stab       | ilization Cr                            | riteria             | +/- 3%        | +/- 0.1            | +/- 3%                                           | +/- 10%                       | +/- 10%                                      |          |                                     |  |  |
| 08:47                   | 222             | \$175                                   |                     | 18,93         | 4,29               | 12.1                                             | 1.59                          | 351                                          | 59.2     | Clear; no odor                      |  |  |
| 08:52                   | 1               | 1                                       |                     | 19.04         |                    |                                                  | 1.30                          |                                              | 45.1     | , , , ,                             |  |  |
| 08:57                   |                 |                                         |                     | 19.18         | 9.6                | 12.1                                             | 1,00                          | 326                                          | 26.1     |                                     |  |  |
| 09:02                   | V               | V                                       | 21.5                | 19.26         |                    | 12.1                                             | 0.96                          | 320                                          | 18.0     |                                     |  |  |
|                         |                 | 5                                       | amp                 | les           | Ta                 | ken                                              |                               |                                              |          |                                     |  |  |
|                         |                 |                                         |                     |               |                    |                                                  |                               |                                              |          |                                     |  |  |
|                         |                 |                                         | pH CALIB            | RATION (      | choose two         | )                                                |                               | 1                                            | lodel or | Unit No.:                           |  |  |
| Buffer Sol              | ution           |                                         |                     | pH 4.0        | pH 7.0             | pH 10.0                                          |                               |                                              |          |                                     |  |  |
| Field Tem               | perature °(     | 0                                       |                     |               |                    |                                                  |                               |                                              |          |                                     |  |  |
| Instrumen               | t Reading       |                                         |                     |               | 17                 |                                                  |                               |                                              |          |                                     |  |  |
|                         |                 | CIFIC ELE                               | CTRICAL C           | ONDUCTA       | NCE (SEC           | – CALIBRATI                                      | ION                           | 1                                            | Andel or | Unit No.:                           |  |  |
| KCI Solution            |                 | μmhos/cm                                | -                   |               | 1413 at 25°C       |                                                  | 600                           |                                              | noder of | Offic No                            |  |  |
|                         | perature °C     | *************************************** | /                   |               | 7                  |                                                  |                               |                                              |          |                                     |  |  |
| Instrument              | 2000000         |                                         |                     |               | 1                  |                                                  |                               |                                              |          |                                     |  |  |
|                         |                 | OX CALIB                                | RATION              |               | DISSOI             | VED OXYGEN                                       | CALIBRA                       | TION I                                       | Notes:   |                                     |  |  |
| Standard Solution (mV)  |                 |                                         |                     |               | Altitude / Sa      |                                                  | AVEIDIVA                      |                                              | ioles.   |                                     |  |  |
| Field Temperature °C    |                 |                                         |                     |               | Field Tempe        |                                                  |                               |                                              |          |                                     |  |  |
| Instrument Reading (mV) |                 |                                         |                     |               |                    | Reading (mg/L)                                   |                               |                                              |          |                                     |  |  |
| Model or Unit No.:      |                 |                                         |                     |               | Model or Unit No.: |                                                  |                               |                                              |          |                                     |  |  |
|                         |                 |                                         |                     |               |                    |                                                  |                               |                                              |          |                                     |  |  |
|                         |                 |                                         |                     |               |                    |                                                  |                               |                                              |          |                                     |  |  |



| Well ID: $\underline{SFL\ MW-3}$ Initial Depth to Water: $\underline{17.28}^{\circ}$ Sample ID: Depth to Water after Sampling: $\underline{17.73}$ Total Depth to Well: $\underline{28.2}^{\circ}$ |                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|                                                                                                                                                                                                    | ~1                             |
| Sample Depth: $25.5'$ Total Depth to Well: $28.2'$                                                                                                                                                 | 5                              |
|                                                                                                                                                                                                    |                                |
| Project and Task No.: 6706/50060 Well Diameter: 2"                                                                                                                                                 |                                |
| Project Name: TMPA Gibbons Creek 1 Casing/Borehole Volume:                                                                                                                                         |                                |
| Date: February 23, 2017 (Circle one)                                                                                                                                                               |                                |
| Sampled By: 4 Casing/Borehole Volumes:(Circle one)                                                                                                                                                 |                                |
| Method of Purging: Submersible Total Casing/Borehole                                                                                                                                               |                                |
| Method of Sampling: Volumes Removed:                                                                                                                                                               |                                |
| Time Intake Depth Rate (ml/min) Cum. Vol. (gal.) Temp. (°C) PH (units) Specific Electrical Conductance (mS/cm) Dissolved Oxygen (mg/L) Oxidation-Reduction Potential (mV) NTW                      | temarks<br>dity, and sediment) |
| Low Flow Stabilization Criteria +/- 3% +/- 0.1 +/- 3% +/- 10% +/- 10%                                                                                                                              |                                |
| 09:51 ×25.5 ×250 21.15 3.46 7.32 Ø.Ø3 358 311 tax                                                                                                                                                  | n; no oder                     |
|                                                                                                                                                                                                    | tan; 1111                      |
| 10:01 21.47 3.47 7.31 \$ \$ \$ 347 116                                                                                                                                                             | 1                              |
| 10:06 21.59 3.46 7.31 Ø.Ø 345 72.6                                                                                                                                                                 | ·                              |
| 10:11 21.61 3.46 7.30 \$.\$ 344 49.4 4                                                                                                                                                             | learing up                     |
| 10:16 V X 2.5 21.62 3.46 7.30 Ø. Ø 343 32.1                                                                                                                                                        | 11 11                          |
|                                                                                                                                                                                                    |                                |
| Damples Taken                                                                                                                                                                                      |                                |
|                                                                                                                                                                                                    |                                |
|                                                                                                                                                                                                    |                                |
|                                                                                                                                                                                                    |                                |
|                                                                                                                                                                                                    |                                |
| pH CALIBRATION (choose two)  Model or Unit                                                                                                                                                         | No.:                           |
| Buffer Solution pH 4.0 pH 7.0 pH 10.0                                                                                                                                                              |                                |
| Field Temperature °C                                                                                                                                                                               |                                |
| Instrument Reading                                                                                                                                                                                 |                                |
| SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION Model or Unit                                                                                                                                  | t No.:                         |
| KCl Solution (μS/cm=μmhos/cm) 1413 at 25°C 12880 at 25°C                                                                                                                                           |                                |
| Field Temperature °C                                                                                                                                                                               |                                |
| Instrument Reading                                                                                                                                                                                 |                                |
| ORP/REDOX CALIBRATION DISSOLVED OXYGEN CALIBRATION Notes:                                                                                                                                          |                                |
| Standard Solution (mV)  Altitude / Salinity %                                                                                                                                                      | BK-BJG-22317                   |
|                                                                                                                                                                                                    | lected                         |
| Instrument Reading (mV)  Instrument Reading (mg/L)                                                                                                                                                 |                                |
| Model or Unit No.: Model or Unit No.:                                                                                                                                                              |                                |
|                                                                                                                                                                                                    |                                |

| 480     |
|---------|
| ALA A   |
|         |
| A       |
| amec.   |
| foster  |
|         |
| wheeler |

| Well ID: _             | SFL-                    | - MW             | 3                   |                           |                    | Initial Depth to Water:                          |                               |                                             |                               |              |  |  |  |
|------------------------|-------------------------|------------------|---------------------|---------------------------|--------------------|--------------------------------------------------|-------------------------------|---------------------------------------------|-------------------------------|--------------|--|--|--|
| Sample ID              | :                       | Dup              | licate ID: _        |                           |                    | Depth to Water after Sampling:                   |                               |                                             |                               |              |  |  |  |
| Sample D               | epth:                   | 10               | 1. 5                |                           |                    | Total Depth to Well:                             |                               |                                             |                               |              |  |  |  |
|                        |                         |                  | 16 1500             |                           |                    | Well Diameter:                                   |                               |                                             |                               |              |  |  |  |
| Project Na             |                         |                  | GC 1                | M.he                      |                    | 1 Casing/Borehole Volume:(Circle one)            |                               |                                             |                               |              |  |  |  |
| Sampled I              | Зу:                     | SCM              | Ć)                  |                           |                    | 4 Casing                                         |                               | Volumes:                                    |                               |              |  |  |  |
| Method of              |                         | 1                | r flow<br>w flo     | v Sub                     | -                  | Total Ca<br>Volume                               | asing/Bore                    | hole<br>d:                                  |                               |              |  |  |  |
| Time                   | Intake<br>Depth         | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C)             | pH<br>(units)      | Specific<br>Electrical<br>Conductance<br>(µS/em) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation<br>Reduction<br>Potential<br>(mV) | on (color, turbidity, and sed |              |  |  |  |
| 0415                   |                         | ~a50             |                     | 3.90                      | 3.69               | 41                                               | 211                           | 469                                         | 100                           | Light        |  |  |  |
| 2720                   |                         | -250             |                     | 743                       | 73.66              | (97                                              | @1.2                          | +437                                        | 190                           | Mr dropp     |  |  |  |
| 7425                   |                         |                  |                     | 24,7                      | 37/4               | 691                                              | 0.98                          | 424                                         | 69.8                          | Clearing     |  |  |  |
| 7930                   |                         |                  |                     | 25.00                     | 3,67               | 6.89                                             | 0.85                          | ,                                           | 36.1                          | Eleavina     |  |  |  |
| 0935                   |                         |                  | 2,5                 | 25,10                     |                    | 6,88                                             | 0.79                          | 403                                         | 30,1                          | NTV at       |  |  |  |
|                        |                         |                  |                     |                           |                    |                                                  |                               |                                             |                               | Lovest point |  |  |  |
|                        |                         | Same             |                     | 11                        |                    | ) - 4-                                           | -                             |                                             |                               |              |  |  |  |
| , ,                    | 7                       | amp              | 185                 | Jako                      | en C               | () 13                                            | 50                            |                                             |                               |              |  |  |  |
|                        |                         |                  |                     |                           |                    |                                                  |                               |                                             |                               |              |  |  |  |
| ,                      |                         |                  |                     |                           |                    |                                                  |                               |                                             |                               |              |  |  |  |
|                        |                         |                  | pH CALIB            | RATION (                  | choose two         |                                                  |                               |                                             | Model or Unit                 | No.:         |  |  |  |
| Buffer Soli            | ution                   |                  |                     | pH 4.0                    | pH 7.0             | pH 10.0                                          |                               |                                             |                               |              |  |  |  |
| Field Tem              | perature °0             |                  |                     |                           |                    |                                                  |                               |                                             |                               |              |  |  |  |
| Instrumen              | t Reading               |                  |                     |                           |                    |                                                  |                               |                                             |                               | 1            |  |  |  |
|                        | SPE                     | CIFIC ELEC       | CTRICAL CO          | ONDUCTA                   | NCE (SEC)          | - CALIBRATI                                      | ON                            |                                             | Model or Unit                 | No.:         |  |  |  |
| KCI Solutio            | n (μS/cm=               | μmhos/cm)        |                     |                           | 1413 at 25°C       | 12880 at 25                                      | °C                            |                                             |                               |              |  |  |  |
| Field Temp             | erature °C              |                  |                     |                           |                    |                                                  |                               |                                             |                               |              |  |  |  |
| Instrument             | Reading                 |                  |                     |                           |                    |                                                  |                               |                                             |                               |              |  |  |  |
| ORP/REDOX CALIBRATION  |                         |                  |                     |                           | DISSOL             | CALIBRA                                          | TION                          | Notes:                                      |                               |              |  |  |  |
| Standard Solution (mV) |                         |                  | Altitude / Sal      | inity %                   |                    |                                                  |                               |                                             |                               |              |  |  |  |
| Field Tem              | Field Temperature °C    |                  |                     | Field Temperature °C      |                    |                                                  |                               |                                             |                               |              |  |  |  |
| Instrumen              | Instrument Reading (mV) |                  |                     | Instrument Reading (mg/L) |                    |                                                  |                               |                                             |                               |              |  |  |  |
| Model or U             | Model or Unit No.:      |                  |                     |                           | Model or Unit No.: |                                                  |                               |                                             |                               |              |  |  |  |



|             | -               | 14:              | 11                  |               |               |                                                  |                               |                                              |              | wheeler                       |  |  |
|-------------|-----------------|------------------|---------------------|---------------|---------------|--------------------------------------------------|-------------------------------|----------------------------------------------|--------------|-------------------------------|--|--|
| Well ID: _  | SFL             | MW               | T                   | 1000          | <u> </u>      | Initial Depth to Water: 14, 98                   |                               |                                              |              |                               |  |  |
| Sample ID   | ):              | Dup              | licate ID: _        | DUP           | -1            | Depth to                                         | o Water after                 | er Sampling                                  | :            |                               |  |  |
|             | epth:           |                  | -/-15               |               |               | Total De                                         | epth to Wel                   | l:                                           |              |                               |  |  |
| Project ar  | nd Task No      | D.: 6/0          | 06 150              | 060           |               | Well Dia                                         | ameter:                       | 2"                                           |              |                               |  |  |
| Project Na  | 5-2             | MP.T             | GC M                | 1.10          |               | 1 Casing/Borehole Volume:(Circle one)            |                               |                                              |              |                               |  |  |
|             |                 | SCM              |                     |               |               | 4 Casing/Borehole Volumes:                       |                               |                                              |              |                               |  |  |
| Method of   | f Purging:      | Low              | flags               | Jul.          |               | (Circle o                                        |                               |                                              |              |                               |  |  |
|             |                 |                  | w flan              |               |               |                                                  | asing/Borel<br>s Removed      | l:                                           |              |                               |  |  |
| Time        | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units) | Specific<br>Electrical<br>Conductance<br>(ES/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color, turk | Remarks sidity, and sediment) |  |  |
| 1018        |                 | ~25C             |                     | 2507          | 6.10          | 7.55                                             | 1.98                          | 38                                           | 201          | tan henry                     |  |  |
| 1023        |                 |                  |                     | 24.94         | 6.17          | 7.63                                             | 0 93                          | 22                                           | 57.3         | Sulfhos                       |  |  |
| 1928        |                 |                  |                     | 24 96         | 6.18          | 767                                              | 0.67                          | 23                                           | 14,4         | Clearing                      |  |  |
| 1033        |                 |                  |                     | 24 95         | 611           | 769                                              | 0.55                          | 26                                           |              | )                             |  |  |
| 1038        |                 |                  | 4                   | 24,95         | 617           | 7:71                                             | 0,50                          | 27                                           | 7,3<br>5.5   | clearing                      |  |  |
| 1           |                 |                  |                     | 1.75          |               |                                                  | 0,00                          |                                              |              |                               |  |  |
|             |                 |                  |                     |               |               |                                                  |                               |                                              |              |                               |  |  |
|             |                 |                  | 5                   | (400)         | 26 (          | 11-1                                             | -11                           | 0                                            | 30           |                               |  |  |
|             |                 |                  | 10                  | angle         | ) (           | HECK                                             | 00                            | 10.                                          | 58           |                               |  |  |
|             |                 |                  |                     |               |               | ) · · · · · · · · · · · · · · · · · · ·          |                               |                                              |              |                               |  |  |
|             |                 |                  |                     |               |               |                                                  |                               |                                              |              |                               |  |  |
|             |                 |                  |                     |               |               |                                                  |                               |                                              |              |                               |  |  |
|             |                 |                  |                     |               |               |                                                  |                               |                                              |              |                               |  |  |
| 1           | A MILE          |                  | pH CALIB            | RATION (c     | hoose two     |                                                  |                               | N                                            | lodel or Uni | it No.:                       |  |  |
| Buffer Sol  | ution           |                  |                     | pH 4.0        | pH 7.0        | pH 10.0                                          |                               |                                              |              |                               |  |  |
| Field Tem   | perature °C     |                  |                     |               |               |                                                  |                               |                                              |              |                               |  |  |
| Instrumen   | t Reading       |                  |                     |               |               |                                                  |                               |                                              |              |                               |  |  |
|             | SPE             | CIFIC ELEC       | CTRICAL C           | ONDUCTA       | NCE (SEC)     | - CALIBRATI                                      | ON                            | N                                            | lodel or Uni | it No.:                       |  |  |
| KCI Solutio | on (μS/cm=      | μmhos/cm)        |                     |               | 1413 at 25°C  | 12880 at 25                                      | °C                            |                                              |              |                               |  |  |
| Field Temp  | oerature °C     |                  |                     |               |               |                                                  |                               |                                              |              |                               |  |  |
| Instrument  | Reading         |                  |                     |               |               |                                                  |                               |                                              |              |                               |  |  |
|             | ORP/RED         | OX CALIB         | RATION              |               | DISSOLY       | /ED OXYGEN                                       | CALIBRAT                      | ION N                                        | lotes:       |                               |  |  |
| Standard :  | Solution (m     | ıV)              |                     | A             | ltitude / Sal | inity %                                          |                               |                                              |              |                               |  |  |
| Field Tem   | perature °0     |                  |                     | F             | ield Tempe    | rature °C                                        |                               |                                              |              |                               |  |  |
| Instrumen   | t Reading (     | (mV)             |                     | li            | nstrument R   | teading (mg/L)                                   |                               |                                              |              |                               |  |  |
| Model or l  | Jnit No.:       |                  | - 1                 | N             | lodel or Uni  | t No.:                                           |                               |                                              |              |                               |  |  |



| Well ID: _  | MNU             | 1-18             |                     |           |                   | Initial Depth to Water: 8.88′                    |                               |                                              |                                         |                                  |  |  |
|-------------|-----------------|------------------|---------------------|-----------|-------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|-----------------------------------------|----------------------------------|--|--|
| Sample ID   | ):              | Dup              | licate ID: _        |           |                   | Depth to Water after Sampling:                   |                               |                                              |                                         |                                  |  |  |
| Sample D    | epth:           | 19'              |                     |           |                   | Total De                                         | epth to Wel                   | : 50.                                        | 95'                                     |                                  |  |  |
|             |                 |                  | 6 1500              |           |                   | Well Diameter:                                   |                               |                                              |                                         |                                  |  |  |
| Project Na  | ame:/           | MPA G            | ibbans o            | Creek     | Mine              | 1 Casing/Borehole Volume:                        |                               |                                              |                                         |                                  |  |  |
| Date:       | 5-2-1           | 7                | 2/                  |           |                   | (Circle one)                                     |                               |                                              |                                         |                                  |  |  |
| Sampled I   | Ву:             | SCM/I            | 16                  | 1         | 111               | 4 Casing/Borehole Volumes:(Circle one)           |                               |                                              |                                         |                                  |  |  |
| Method of   | f Purging:      | Low              | flow                | persto    | ritic             | Total Casing/Borehole                            |                               |                                              |                                         |                                  |  |  |
| Method of   | f Sampling      | : Low            | flow                | Pe.1:50   | altic             | Volumes Removed:                                 |                               |                                              |                                         |                                  |  |  |
| Time        | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.     | pH<br>(units)     | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) |                                         | Remarks<br>idity, and sediment)  |  |  |
| Low         | Flow Stab       | ilization Cr     | iteria              | +/- 3%    | +/- 0.1           | +/- 3%                                           | +/- 10%                       | +/- 10%                                      | ,                                       | 10                               |  |  |
| 1223        | 491             | 250              |                     | 24.79     | 7.41              | 4,48                                             | 3.09                          | -129                                         | 3.8                                     | Stight Sulhur as<br>Mostly Clear |  |  |
| 1228        | 1               |                  |                     | 24,30     | 7.39              | 4,46                                             | 2,65                          | -134                                         | 7.0                                     | 1 310                            |  |  |
| 1233        |                 |                  |                     | 23,90     | 1 0               | 4.47                                             | a.45                          | -130                                         |                                         |                                  |  |  |
| 1238        |                 | V                | 12                  | 23,66     |                   | 4.48                                             | 2,34                          | -136                                         | 0.0                                     |                                  |  |  |
|             |                 | V                |                     | *         |                   | 1000                                             |                               | 100                                          |                                         |                                  |  |  |
|             |                 |                  |                     |           |                   |                                                  | 1                             |                                              |                                         |                                  |  |  |
|             |                 |                  | A                   | Sula      | 06 /              | To location                                      | ed Ca                         | ) [2:                                        | 32                                      |                                  |  |  |
|             |                 |                  |                     | -ary      |                   | Loneen                                           |                               |                                              |                                         |                                  |  |  |
|             |                 |                  |                     |           |                   |                                                  |                               |                                              |                                         |                                  |  |  |
|             |                 |                  |                     |           |                   |                                                  |                               |                                              |                                         |                                  |  |  |
|             |                 |                  |                     |           |                   |                                                  |                               |                                              |                                         |                                  |  |  |
|             |                 |                  |                     |           |                   |                                                  |                               |                                              |                                         |                                  |  |  |
|             |                 |                  | pH CALIB            | RATION (c | hoose two         | )                                                |                               | N                                            | lodel or Uni                            | t No.:                           |  |  |
| Buffer Sol  | ution           |                  |                     | pH 4.0    | pH 7.0            | pH 10.0                                          |                               |                                              |                                         |                                  |  |  |
| Field Tem   | perature °(     | 2                |                     |           |                   |                                                  |                               |                                              |                                         |                                  |  |  |
|             | t Reading       |                  |                     |           |                   |                                                  |                               |                                              |                                         |                                  |  |  |
|             |                 | CIFIC FLE        | CTRICAL C           | ONDUCTA   | NCF (SFC)         | - CALIBRATI                                      | ON                            | N                                            | lodel or Uni                            | t No.:                           |  |  |
| KCI Solutio |                 | μmhos/cm)        | T. G. S. C. S. C.   |           | 1413 at 25°C      |                                                  |                               | "                                            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 77                               |  |  |
|             |                 |                  |                     |           | 1410 0120 0       | 12000 0120                                       |                               |                                              |                                         |                                  |  |  |
|             | perature °C     | ,                |                     |           |                   |                                                  |                               |                                              |                                         |                                  |  |  |
| Instrument  |                 | 201/04/15        | DATION              |           | DIOCOL            | VED OVVCEN                                       | CALIBBAT                      | TION A                                       | 1-4                                     | 1. 40//                          |  |  |
| Chandin     | 120000          | OOX CALIB        | KATION              |           | - 100 No. 10 Care | VED OXYGEN                                       | CALIBRA                       | ION N                                        | iotes:/oc                               | is 19" ags                       |  |  |
|             | Solution (n     |                  |                     |           | Altitude / Sa     |                                                  | -                             |                                              |                                         |                                  |  |  |
|             | nperature °     |                  |                     |           | Field Tempe       |                                                  |                               |                                              |                                         |                                  |  |  |
|             | nt Reading      | (mV)             |                     |           |                   | Reading (mg/L)                                   |                               |                                              |                                         |                                  |  |  |
| Model or    | Unit No.:       |                  |                     | 1         | Model or Un       | nt No.:                                          | ſ                             |                                              |                                         | -                                |  |  |
|             |                 |                  |                     |           |                   |                                                  | 1                             |                                              |                                         |                                  |  |  |



|                         |                 |                          |                     |          |                           |                                                  |                               |                                              |          | VIII CEICI                          |  |  |
|-------------------------|-----------------|--------------------------|---------------------|----------|---------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|----------|-------------------------------------|--|--|
| Well ID: _              | MNW-1           | 5                        |                     |          |                           | Initial Depth to Water: 4,62'                    |                               |                                              |          |                                     |  |  |
|                         |                 |                          | licate ID: _        |          |                           | Depth to                                         | Water after                   | er Sampling                                  | 1: 407   | 181                                 |  |  |
| Sample D                | epth:2          | 4.30                     |                     |          |                           | Total De                                         | epth to Well                  | : 26.8                                       | 0'       |                                     |  |  |
| Project ar              | nd Task No      | : 67061                  | 50060               |          |                           | Well Diameter: 2"                                |                               |                                              |          |                                     |  |  |
| Project Na              | ame: TM         | PA - Gib                 | bons Cre            | ek       |                           | 1 Casing/Borehole Volume:                        |                               |                                              |          |                                     |  |  |
| Date:/                  | Tay 2, 2        | 017                      |                     |          |                           | (Circle one)                                     |                               |                                              |          |                                     |  |  |
| Sampled I               | Ву:             |                          |                     |          |                           | 4 Casing/Borehole Volumes:(Circle one)           |                               |                                              |          |                                     |  |  |
| Method of               | f Purging:      | low                      | flow                |          | Total Casing/Borehole     |                                                  |                               |                                              |          |                                     |  |  |
| Method of               | f Sampling      | : per                    | istaltic            |          |                           |                                                  | s Removed                     |                                              |          |                                     |  |  |
| Time                    | Intake<br>Depth | Rate<br>(ml/min)         | Cum. Vol.<br>(gal.) | Temp.    | pH<br>(units)             | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color,  | Remarks<br>turbidity, and sediment) |  |  |
| Low                     | Flow Stabi      | lization Cr              | iteria              | +/- 3%   | +/- 0.1                   | +/- 3%                                           | +/- 10%                       | +/- 10%                                      |          |                                     |  |  |
| 1736                    | 24.30           | 200                      |                     | 29.33    | 3.98                      | 2.70                                             | 4.47                          | 372                                          | 8.0      | Clear; no odor                      |  |  |
| 1741                    | 1               | 1                        |                     | 26.92    |                           | 3,33                                             | 3.10                          | 328                                          | Ø. Ø     | 7.5.500                             |  |  |
| 1746                    |                 |                          |                     | 26.44    |                           |                                                  | 2.80                          | 324                                          | Ø.0      |                                     |  |  |
| 1751                    | V               | V                        | 22.0                |          |                           |                                                  | 2.66                          | 324                                          | 0.0      |                                     |  |  |
| -                       |                 |                          | 1                   | *        | 1                         |                                                  |                               |                                              |          |                                     |  |  |
|                         | (               | Da                       | mple                | 25       | Vah                       | en                                               |                               |                                              |          |                                     |  |  |
|                         |                 |                          | 1                   |          |                           |                                                  |                               |                                              |          |                                     |  |  |
|                         |                 |                          |                     |          |                           |                                                  |                               |                                              |          |                                     |  |  |
|                         |                 |                          |                     |          |                           |                                                  |                               |                                              |          |                                     |  |  |
|                         |                 |                          |                     |          |                           |                                                  |                               |                                              |          |                                     |  |  |
|                         |                 |                          |                     |          |                           |                                                  |                               |                                              |          |                                     |  |  |
|                         |                 |                          |                     |          |                           |                                                  |                               |                                              |          |                                     |  |  |
|                         |                 | E                        | pH CALIB            | RATION ( | choose two                | )                                                |                               | N                                            | lodel or | Unit No.:                           |  |  |
| Buffer Sol              | ution           |                          | /                   | pH 4.0   | pH 7.0                    | pH 10.0                                          |                               |                                              |          |                                     |  |  |
| Field Tem               | perature °C     |                          |                     |          |                           |                                                  |                               |                                              |          |                                     |  |  |
| Instrumen               |                 |                          |                     |          |                           |                                                  |                               |                                              |          |                                     |  |  |
| modulich                |                 | CIEIC EL E               | CTRICAL C           | ONDUCT   | ANCE (SEC)                | CALIDDATI                                        | ON                            | N.                                           | Andal or | Unit No.:                           |  |  |
| 14010 1 11              |                 |                          |                     | CNDOCI   |                           | - CALIBRATI                                      |                               | IV                                           | iouei or | Offit NO                            |  |  |
|                         | on (μS/cm=      | Character State State St |                     |          | 1413 at 25°C              | 12880 at 25                                      | -0                            |                                              |          |                                     |  |  |
|                         | perature °C     |                          |                     |          |                           |                                                  |                               |                                              |          |                                     |  |  |
| Instrument              | Reading         |                          |                     |          |                           |                                                  |                               |                                              |          |                                     |  |  |
| ORP/REDOX CALIBRATION   |                 |                          |                     |          | DISSOL                    | VED OXYGEN                                       | CALIBRAT                      | ION N                                        | lotes: 7 | Tocis 29" ags                       |  |  |
| Standard Solution (mV)  |                 |                          |                     |          | Altitude / Sa             | linity %                                         |                               |                                              |          | 3                                   |  |  |
| Field Temperature °C    |                 |                          |                     |          | Field Tempe               | erature °C                                       |                               |                                              |          |                                     |  |  |
| Instrument Reading (mV) |                 |                          |                     |          | Instrument Reading (mg/L) |                                                  |                               |                                              |          |                                     |  |  |
| Model or                | Unit No.:       |                          |                     |          | Model or Unit No.:        |                                                  |                               |                                              |          |                                     |  |  |
|                         |                 |                          |                     |          |                           |                                                  |                               |                                              |          |                                     |  |  |



| Well ID:               | SFL-                 | MWZ              |                     |           |                              | Initial De                                       | epth to Wat                   | er:                                          | 1.10        |                                  |  |  |
|------------------------|----------------------|------------------|---------------------|-----------|------------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|-------------|----------------------------------|--|--|
| 0.000                  |                      |                  | licate ID: _        |           |                              | Depth to Water after Sampling: 12,13             |                               |                                              |             |                                  |  |  |
| Sample D               | enth:                |                  |                     |           |                              | Total De                                         | pth to Well                   | :                                            |             |                                  |  |  |
| Project a              | nd Task No           | o.: 670          | 06/50               | 060       |                              | Well Dia                                         | meter:                        | 2"                                           |             |                                  |  |  |
| Project N              |                      | MPA              | GC                  |           |                              | 1 Casing/Borehole Volume:(Circle one)            |                               |                                              |             |                                  |  |  |
| Sampled                | Ву:                  | 5CM              | Ν .                 |           |                              | 4 Casing<br>(Circle o                            | g/Borehole<br>one)            | Volumes: _                                   |             |                                  |  |  |
| A                      |                      | Low<br>Lov       | - flows             | ond Sv    | bi                           |                                                  | sing/Boreh<br>Removed         |                                              |             |                                  |  |  |
| Time                   | Intake<br>Depth      | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.     | pH<br>(units)                | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color, tur | Remarks<br>bidity, and sediment) |  |  |
| Low                    | Flow Stab            | ilization Cr     | iteria              | +/- 3%    | +/- 0.1                      | +/- 3%                                           | +/- 10%                       | +/- 10%                                      |             | 1                                |  |  |
| 0936                   |                      | ~200             |                     | 23,86     | 5.85                         | 9.88                                             | 2.49                          | 177                                          | 109         | Mostlycar                        |  |  |
| 0941                   |                      |                  |                     | 27.19     | 5.98                         | 9,94                                             | 1.67                          | 158                                          | 41.9        |                                  |  |  |
| 0946                   |                      |                  |                     | 24,54     | 6.09                         | 9,98                                             | 1123                          | 140                                          | 16.4        |                                  |  |  |
| 0951                   |                      |                  |                     | 24.63     | 6,13                         | 10.0                                             | 1.03                          | 133                                          | 9.9         |                                  |  |  |
| 2956                   |                      |                  |                     | 25:01     | 6.15                         | 10.5                                             | 0.89                          | 198                                          | 6.1         | very clear                       |  |  |
| 1001                   |                      |                  |                     | 25,11     | 6.17                         | 10,6                                             | 0.81                          | 125                                          | 5.6         |                                  |  |  |
| 1006                   |                      |                  | 3,5                 | 25,13     | 6.19                         | 10,7                                             | 0.76                          | 123                                          | 1,9         |                                  |  |  |
|                        |                      |                  | AS                  | Pary      | 3                            | aker (                                           | a ,                           | 00                                           | 6           |                                  |  |  |
|                        |                      |                  |                     | V         |                              |                                                  |                               |                                              |             |                                  |  |  |
| 8-7                    |                      |                  | pH CALIB            | RATION (c | choose two                   | )                                                |                               |                                              | Model or Ur | nit No ·                         |  |  |
| Buffer So              | lution               |                  | *                   | pH 4.0    | pH 7.0                       | pH 10.0                                          | - ×                           |                                              | 10401 01 01 |                                  |  |  |
|                        | nperature °          | D                |                     | prino     | Pittio                       | privote                                          |                               |                                              |             |                                  |  |  |
| Instrume               | nt Reading           |                  |                     |           |                              |                                                  |                               |                                              |             |                                  |  |  |
|                        | SPE                  | CIFIC ELE        | CTRICAL C           | ONDUCTA   | NCE (SEC)                    | - CALIBRATI                                      | ON                            | N                                            | Model or U  | nit No.:                         |  |  |
| KCI Soluti             | on (μS/cm=           | μmhos/cm)        |                     |           | 1413 at 25°C                 | 12880 at 25                                      | °C                            |                                              |             |                                  |  |  |
| Field Tem              | perature °C          |                  |                     |           |                              |                                                  |                               |                                              |             |                                  |  |  |
| Instrumer              | t Reading            |                  |                     |           |                              |                                                  |                               |                                              |             |                                  |  |  |
| ORP/REDOX CALIBRATION  |                      |                  |                     |           | DISSOLVED OXYGEN CALIBRATION |                                                  |                               | ION N                                        | lotes:      |                                  |  |  |
| Standard Solution (mV) |                      |                  |                     |           | Altitude / Sa                | linity %                                         |                               |                                              |             |                                  |  |  |
| Field Ter              | Field Temperature °C |                  |                     |           | Field Temperature °C         |                                                  |                               |                                              |             |                                  |  |  |
| Instrume               | nt Reading           | (mV)             |                     |           | Instrument Reading (mg/L)    |                                                  |                               |                                              |             |                                  |  |  |
| Model or               | Unit No.:            |                  |                     | 1         | Model or Un                  | it No.:                                          |                               |                                              |             |                                  |  |  |



| Well ID:              | SFL                    | - MW             | 5                   |           |                           | Initial D                                        | epth to Wat                   | er.                                          | 159         | Wheeler                          |  |  |  |
|-----------------------|------------------------|------------------|---------------------|-----------|---------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|-------------|----------------------------------|--|--|--|
| 7.51                  |                        |                  | licate ID: _        |           |                           | Depth to Water after Sampling:                   |                               |                                              |             |                                  |  |  |  |
| Sample D              | enth:                  |                  |                     |           |                           | Total De                                         | enth to Well                  | :                                            |             |                                  |  |  |  |
| Project a             | nd Task No             | o.: 670          | 16 150              | 1060      | -                         | Well Dia                                         | meter:                        | 2"                                           |             |                                  |  |  |  |
| Project N             |                        | AAMI             | GC M                |           |                           | 1 Casing/Borehole Volume:(Circle one)            |                               |                                              |             |                                  |  |  |  |
| 7                     | By: <u></u>            |                  | DI                  |           |                           |                                                  | g/Borehole                    | Volumes:                                     |             |                                  |  |  |  |
|                       |                        | Low<br>: Low     | <b>1</b>            | Sub.      |                           | Total Ca                                         | asing/Borel<br>s Removed      |                                              |             |                                  |  |  |  |
| Time                  | Intake<br>Depth        | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.     | pH<br>(units)             | Specific<br>Electrical<br>Conductance<br>(µS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) |             | Remarks<br>bidity, and sediment) |  |  |  |
| 1045                  |                        | -200             |                     | 24.96     | 4.67                      | 11.5                                             | 2,64                          | 323                                          | 19.8        | Mostly clear                     |  |  |  |
| 1050                  |                        |                  | 0-1                 | 25,24     | 4.58                      | 11.6                                             | 1.34                          |                                              | 6.7         |                                  |  |  |  |
| 1055                  |                        |                  |                     | 25.36     | 4,56                      | 116                                              | 1.12                          | 328                                          | 4.0         |                                  |  |  |  |
| 1100                  |                        |                  |                     | 25,53     | 4.53                      | 1116                                             | 0.93                          | 330                                          | 8.1         | Very clear                       |  |  |  |
| 1105                  |                        |                  |                     | 25.57     | 4.51                      | 11.6                                             | 0.86                          | 330                                          | 1,5         |                                  |  |  |  |
| 1110                  |                        |                  | 3                   | 25,41     | 4,49                      | 11,6                                             | 0.78                          | 336                                          | 1.0         |                                  |  |  |  |
|                       |                        |                  |                     |           |                           |                                                  | 4                             |                                              |             |                                  |  |  |  |
|                       |                        |                  |                     | 1         | Ta                        | miles                                            | take                          | 1)                                           |             |                                  |  |  |  |
|                       |                        |                  |                     |           |                           | (a)                                              | 110                           |                                              |             |                                  |  |  |  |
| T-201-20              |                        |                  |                     |           |                           |                                                  |                               |                                              |             |                                  |  |  |  |
| D " 0 I               |                        |                  | PH CALIB            | RATION (c |                           |                                                  |                               | V                                            | Model or Un | it No.:                          |  |  |  |
| Buffer Sol            |                        |                  |                     | pH 4.0    | pH 7.0                    | pH 10.0                                          |                               |                                              |             |                                  |  |  |  |
|                       | perature °C            | ;                |                     |           | -                         |                                                  |                               |                                              |             |                                  |  |  |  |
| Instrumen             | nt Reading             |                  | 1000                |           |                           |                                                  | Secretary Dres                |                                              |             |                                  |  |  |  |
| 1.5                   |                        |                  | CTRICAL CO          |           |                           | - CALIBRATI                                      |                               | N                                            | Model or Un | nit No.:                         |  |  |  |
|                       | **                     | μmhos/cm)        |                     | 1         | 1413 at 25°C              | 12880 at 25°                                     | °C                            |                                              |             |                                  |  |  |  |
|                       | perature °C            |                  |                     |           |                           |                                                  |                               |                                              |             |                                  |  |  |  |
| Instrument            | t Reading              |                  |                     |           |                           |                                                  |                               |                                              |             |                                  |  |  |  |
| ORP/REDOX CALIBRATION |                        |                  |                     |           | DISSOL                    | VED OXYGEN                                       | CALIBRAT                      | ION N                                        | lotes:      |                                  |  |  |  |
|                       | Standard Solution (mV) |                  |                     |           | ltitude / Sal             | inity %                                          |                               |                                              |             |                                  |  |  |  |
|                       | Field Temperature °C   |                  |                     | F         | ield Tempe                | rature °C                                        |                               |                                              |             |                                  |  |  |  |
|                       | t Reading (            | mV)              | 7                   |           | Instrument Reading (mg/L) |                                                  |                               |                                              |             |                                  |  |  |  |
| Model or              | Model or Unit No.:     |                  |                     |           | Model or Unit No.:        |                                                  |                               |                                              |             |                                  |  |  |  |



| Well ID: _              | 551             | /AP              | MW.                 |                      |                           | Initial D                             | epth to Wa                    | ter: <i>E</i>                        | 5.46         | wieeier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|-------------------------|-----------------|------------------|---------------------|----------------------|---------------------------|---------------------------------------|-------------------------------|--------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                         | ,               | /                | licate ID: _        |                      |                           | 1-110                                 |                               |                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Sample D                | epth:           |                  |                     |                      |                           | Total Depth to Well:                  |                               |                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Project an              | d Task No       | o.: 670          | 26150               | 060                  |                           | Well Diameter:                        |                               |                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                         | ame:            | .0               |                     | i                    |                           | 1 Casing/Borehole Volume:(Circle one) |                               |                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                         | 5-3-1           |                  |                     |                      |                           | 4 Casing/Borehole Volumes:            |                               |                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Sampled I               |                 |                  | fi .                | ^ I                  |                           | (Circle                               |                               | volumes: _                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                         |                 | Low              | 1.1                 |                      |                           |                                       | asing/Bore                    |                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Time                    | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.                | pH<br>(units)             | Specific<br>Electrical<br>Conductance | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential | (color, turb | Remarks<br>idity, and sediment)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 1745                    |                 | -250             |                     | 2/12                 | E 041                     | 029                                   | 100                           | (mV)                                 | NIU          | Light brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 1350                    |                 | av               |                     | 2603                 |                           | 8,5/                                  | 1,80                          | -13                                  | 964          | moderate Sutter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 1355                    |                 |                  |                     | 26,41                | 5.85                      | 841                                   | 0.11                          | 0                                    | 583          | 1 -/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 1400                    |                 |                  |                     | 27.16                |                           | 011                                   | 0.76                          | 2                                    | 435          | Clearing Sl.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 1405                    |                 |                  |                     | 28,21                | 5.85                      | 0,72                                  | 016)                          | 2                                    | 335          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 1410                    |                 |                  |                     | 20 95                | 5.84                      | 8.42                                  | 0,61                          | 7                                    | 264          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 1415                    |                 |                  |                     | 28.95                | 100                       | 8,53                                  | 0.66                          | 15                                   | 145          | TO COMPANY OF THE PARTY OF THE |  |  |  |
| 1420                    |                 | _                | -3.5                | 28.3                 | -0                        | 8,59                                  | 061                           | 13                                   | 94.0         | + Lanesy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 1 7000                  |                 |                  | 2,2                 | ٥, ٦                 | , ,,,,                    | 0197                                  | 0.61                          | 13                                   | 1100         | NTU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                         |                 |                  | 1                   |                      | 9                         | 1.0                                   |                               |                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                         |                 | -                | TAW                 | Mes                  |                           | Kenl                                  | 2                             | 147                                  | 0            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                         |                 |                  | 00                  | AICC                 | , ,                       |                                       |                               | 10                                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                         |                 |                  |                     |                      |                           |                                       |                               |                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                         |                 |                  | pH CALIB            | RATION (             | choose two)               |                                       |                               | N                                    | lodel or Uni | t No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Buffer Solu             | ution           |                  |                     | pH 4.0               | pH 7.0                    | pH 10.0                               |                               |                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Field Temp              | perature °C     | ,                |                     |                      |                           |                                       |                               |                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Instrument              | t Reading       |                  |                     |                      |                           |                                       |                               |                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                         | SPE             | CIFIC ELEC       | TRICAL CO           | ONDUCTA              | NCE (SEC)                 | - CALIBRATI                           | ON                            | I.                                   | lodel or Uni | t No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| KCI Solutio             | n (μS/cm=       | μmhos/cm)        |                     |                      | 1413 at 25°C              | 12880 at 25                           | °C                            |                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Field Temp              | erature °C      |                  |                     |                      |                           |                                       |                               |                                      |              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Instrument              | Reading         |                  |                     |                      |                           |                                       |                               |                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| ORP/REDOX CALIBRATION   |                 |                  |                     |                      | DISSOLV                   | CALIBRAT                              | TON N                         | lotes                                | 5/1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Standard Solution (mV)  |                 |                  |                     | Altitude / Sal       | inity %                   |                                       | 1                             | adium                                | Samples      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Field Temperature °C    |                 |                  |                     | Field Temperature °C |                           |                                       |                               | Taker                                | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Instrument Reading (mV) |                 |                  |                     |                      | Instrument Reading (mg/L) |                                       |                               |                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Model or L              | Jnit No.:       |                  |                     |                      | Model or Uni              | t No.:                                |                               |                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |



| Well ID: _              | SFL M           | 1W-6             |                     |               |                           | Initial Depth to Water:                          |                               |                                              |            |                                   |  |  |
|-------------------------|-----------------|------------------|---------------------|---------------|---------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|------------|-----------------------------------|--|--|
| Sample ID               | :               | Dupl             | icate ID:           |               |                           |                                                  |                               | er Sampling                                  |            | 67'                               |  |  |
| Sample De               | epth:           | 21'              |                     |               |                           | Total De                                         | pth to Well                   | : 23.1                                       | 1          |                                   |  |  |
| Project an              | d Task No       | 6706             |                     |               |                           |                                                  | meter:                        |                                              |            |                                   |  |  |
| Project Na              | ame: TA         | APA- GI          | bbons Cri           | eek           |                           |                                                  |                               | Volume:                                      |            |                                   |  |  |
| Date:/                  | May 3,          | 2017             |                     |               |                           | (Circle o                                        |                               |                                              |            |                                   |  |  |
| Sampled B               |                 |                  |                     |               |                           | 4 Casing (Circle of                              | g/Borehole                    | Volumes: _                                   |            |                                   |  |  |
| Method of               | Purging:        | 1000             | flow                |               |                           |                                                  |                               | nole                                         |            |                                   |  |  |
|                         |                 | : per            |                     | pump          |                           | Total Casing/Borehole Volumes Removed:           |                               |                                              |            |                                   |  |  |
| Time                    | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)             | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color, tu | Remarks<br>rbidity, and sediment) |  |  |
| Low                     | Flow Stab       | ilization Cri    | iteria              | +/- 3%        | +/- 0.1                   | +/- 3%                                           | +/- 10%                       | +/- 10%                                      |            |                                   |  |  |
| 14:07                   | 21'             | ×150             |                     | 26.93         | 3,97                      | 13.1                                             | 4.36                          | 444                                          | Ø.Ø        | Clear; no odor                    |  |  |
| 14:12                   | 1               | 1                |                     | 26.89         |                           | 13.2                                             | 3.78                          | 462                                          | 0.0        | Clear, no odor                    |  |  |
| 14:17                   |                 |                  |                     | 27.00         |                           | 13.2                                             | 3,43                          |                                              | 0.0        |                                   |  |  |
| 14:22                   | V               | Y                | \$2.0               | 27.14         |                           | 13.2                                             | 3.28                          | 460                                          | Ø.Ø        |                                   |  |  |
|                         |                 | -                | 1                   |               | 1                         |                                                  |                               |                                              | -          |                                   |  |  |
|                         |                 |                  |                     |               |                           |                                                  |                               |                                              |            |                                   |  |  |
|                         |                 |                  | - IL CALIB          | DATION /      |                           |                                                  |                               |                                              |            |                                   |  |  |
| Buffer Sol              | ution           |                  | ph CALIB            |               | choose two                |                                                  | T                             |                                              | Model or U | nit No.:                          |  |  |
|                         | perature °(     | 2                |                     | pH 4.0        | pH 7.0                    | pH 10.0                                          |                               |                                              |            |                                   |  |  |
|                         | · S VIII        | <u> </u>         |                     |               |                           |                                                  |                               |                                              |            |                                   |  |  |
| Instrumen               | nt Reading      |                  |                     |               | 17/25 (1.25               | - 100 At 100 and 100                             |                               |                                              |            |                                   |  |  |
|                         | -               |                  |                     | ONDUCTA       |                           | ) – CALIBRAT                                     |                               | 1                                            | Model or L | Init No.:                         |  |  |
|                         |                 | μmhos/cm)        | 6                   |               | 1413 at 25°C              | 12880 at 25                                      | 5°C                           |                                              |            |                                   |  |  |
|                         | perature °C     | 0                |                     |               |                           |                                                  |                               |                                              |            |                                   |  |  |
| Instrumen               | t Reading       |                  |                     |               |                           |                                                  |                               |                                              |            |                                   |  |  |
| ORP/REDOX CALIBRATION   |                 |                  |                     |               | DISSOL                    | VED OXYGEN                                       | CALIBRA                       | TION                                         | Notes:     |                                   |  |  |
| Standard Solution (mV)  |                 |                  |                     |               | Altitude / Sa             | alinity %                                        |                               |                                              |            |                                   |  |  |
| Field Temperature °C    |                 |                  |                     |               | Field Tempe               | erature °C                                       |                               |                                              |            |                                   |  |  |
| Instrument Reading (mV) |                 |                  |                     |               | Instrument Reading (mg/L) |                                                  |                               |                                              |            |                                   |  |  |
| Model or                | Unit No.:       |                  |                     |               | Model or Unit No.:        |                                                  |                               |                                              |            |                                   |  |  |



|                         | e/ h            | A\ (             | _                   | 11111         |                           | 0.00000                                          | CONTRACTO                     |                                             |              | wheeler                          |  |  |  |
|-------------------------|-----------------|------------------|---------------------|---------------|---------------------------|--------------------------------------------------|-------------------------------|---------------------------------------------|--------------|----------------------------------|--|--|--|
|                         |                 |                  | -2                  |               |                           | Initial Depth to Water:                          |                               |                                             |              |                                  |  |  |  |
|                         |                 | 1117             | licate ID:          |               | -                         |                                                  |                               |                                             |              |                                  |  |  |  |
| Sample D                | epth:           | 12               | 2615                | 00 [0         |                           | Total Depth to Well:                             |                               |                                             |              |                                  |  |  |  |
|                         |                 |                  |                     |               |                           |                                                  |                               |                                             |              |                                  |  |  |  |
|                         |                 |                  | 6                   |               |                           | (Circle one)                                     |                               |                                             |              |                                  |  |  |  |
| Sampled I               |                 |                  | A                   |               |                           | 4 Casin                                          |                               | Volumes                                     | :            |                                  |  |  |  |
| Method of               | Purging:        | Lan              | 1 How               | v Sib         | ,                         |                                                  | asing/Boreh                   | nole                                        |              |                                  |  |  |  |
| Method of               | Sampling        | : Lan            | fla                 | ~ JA          | 6.                        |                                                  |                               |                                             |              |                                  |  |  |  |
| Time                    | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)             | Specific<br>Electrical<br>Conductance<br>(AS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation<br>Reduction<br>Potentian<br>(mV) | n (color tur | Remarks<br>bidity, and sediment) |  |  |  |
| 1520                    |                 | ~200             |                     | 26,68         | 4.86                      | 9,56                                             | 109                           | 136                                         | 685          | moderate Sulfa                   |  |  |  |
| 1525                    |                 |                  |                     | 2601          | 4.88                      | 9,55                                             | 0.75                          | 127                                         | 451          | Slight tan                       |  |  |  |
| 1530                    |                 |                  |                     | 26.40         | 4.89                      | 9.53                                             | 0.55                          | 122                                         | 268          | clearing                         |  |  |  |
| 1535                    | 1               |                  |                     | 26,27         | 7 4.91                    | 9,53                                             | 0.50                          | 119                                         | 146          | lodor still pres                 |  |  |  |
| 1540                    |                 |                  |                     | 2684          | 4,94                      | 9,51                                             | 0,45                          | 8311                                        | 3 89,3       | mostly clear                     |  |  |  |
| 1545                    |                 |                  |                     | 27.4          | 4,96                      | 9,49                                             | 0.45                          | 111                                         | 70,3         | + Lowest                         |  |  |  |
|                         |                 |                  |                     |               |                           |                                                  |                               |                                             |              | NTU                              |  |  |  |
|                         |                 |                  |                     |               |                           |                                                  |                               |                                             |              |                                  |  |  |  |
|                         |                 | /                | 7-1                 | -             |                           | 1                                                | 0                             | IL                                          | 115          |                                  |  |  |  |
|                         |                 | 1 /              | ample               | ) (           | allec                     | 100                                              | Co                            | 10                                          | 10           |                                  |  |  |  |
|                         |                 |                  | A.                  |               |                           |                                                  |                               |                                             |              |                                  |  |  |  |
| 100                     |                 | -                | 700                 | CP            | Mor                       | 5                                                |                               |                                             |              |                                  |  |  |  |
|                         |                 |                  | , .                 |               | 1 de                      |                                                  |                               |                                             |              |                                  |  |  |  |
|                         |                 |                  | pH CALIBI           | RATION (      | choose two                |                                                  |                               |                                             | Model or Ur  | nit No.:                         |  |  |  |
| Buffer Solu             | ution           |                  |                     | pH 4.0        | pH 7.0                    | pH 10.0                                          |                               |                                             |              |                                  |  |  |  |
| Field Temp              | oerature °C     | ,                |                     |               |                           |                                                  |                               |                                             |              |                                  |  |  |  |
| Instrument              | Reading         |                  |                     |               |                           |                                                  |                               |                                             | •            | `                                |  |  |  |
|                         | SPE             | CIFIC ELEC       | TRICAL CO           | ONDUCTA       | NCE (SEC)                 | - CALIBRATI                                      | ON                            |                                             | Model or Ur  | nit No.:                         |  |  |  |
| KCI Solutio             | n (μS/cm=       | μmhos/cm)        |                     |               | 1413 at 25°C              | 12880 at 25                                      | °C                            |                                             |              |                                  |  |  |  |
| Field Temp              | erature °C      |                  |                     |               |                           |                                                  |                               |                                             |              |                                  |  |  |  |
| Instrument              | Reading         |                  |                     |               |                           |                                                  |                               |                                             |              |                                  |  |  |  |
|                         | ORP/RED         | OX CALIBR        | RATION              |               | DISSOLV                   | /ED OXYGEN                                       | CALIBRAT                      | ION                                         | Notes:       | Ran aut at                       |  |  |  |
| Standard S              | Solution (m     | V)               |                     | ,             | Altitude / Sal            |                                                  |                               |                                             | ( Liter)     | Cranked up                       |  |  |  |
| Field Temperature °C    |                 |                  |                     |               | Field Tempe               |                                                  |                               |                                             | PLIMP +      | lovered it                       |  |  |  |
| Instrument Reading (mV) |                 |                  |                     |               | Instrument Reading (mg/L) |                                                  |                               |                                             | Fuse bu      | sted on central                  |  |  |  |
| Model or U              | Jnit No.:       |                  |                     |               | Model or Uni              | t No.:                                           |                               |                                             | 0 1          | est America                      |  |  |  |

Samples taken



| Well ID: _              | APM             | W-3              |                     |                    |                                   | Initial D                                        | epth to Wat                   | er:                                          | 38'         |                                  |
|-------------------------|-----------------|------------------|---------------------|--------------------|-----------------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|-------------|----------------------------------|
|                         |                 |                  | licate ID:          |                    |                                   |                                                  | Water after                   |                                              |             |                                  |
|                         | epth:           |                  |                     |                    |                                   |                                                  | epth to Well                  |                                              |             |                                  |
|                         |                 |                  | 150060              |                    |                                   | Well Dia                                         | ımeter:&                      | 4                                            |             |                                  |
| Project N               | ame: T          | MPA-G            | cibbons C           | reek               |                                   |                                                  | g/Borehole                    | Volume: _                                    |             |                                  |
| Date:                   | May ?           | 3,2017           |                     |                    |                                   | (Circle o                                        |                               |                                              |             |                                  |
|                         | Ву:1            |                  | 1                   |                    |                                   | (Circle o                                        | g/Borehole<br>one)            | Volumes: _                                   |             |                                  |
| Method o                | f Purging:      | low              | flow                |                    |                                   |                                                  | asing/Borel                   | nole                                         |             |                                  |
| Method o                | f Sampling      | g: per           | istaltic            | pump               |                                   | Volume                                           | s Removed                     | :                                            |             |                                  |
| Time                    | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C)      | pH<br>(units)                     | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color, tur | Remarks<br>bidity, and sediment) |
| Low                     | Flow Stab       | ilization Cr     | iteria              | +/- 3%             | +/- 0.1                           | +/- 3%                                           | +/- 10%                       | +/- 10%                                      |             |                                  |
| 1601                    | 41'             | 2200             |                     | 26.13              | 5.01                              | 1.74                                             | 4.10                          | 218                                          | 0.0         | Clear; no odor                   |
| 1606                    |                 |                  |                     | 25.80              |                                   | 1.72                                             | 3.90                          | 231                                          | 13.3        |                                  |
| 1611                    |                 |                  |                     | 25.63              |                                   | 1.69                                             | 3.74                          |                                              | Ø.ø         |                                  |
|                         | 1616 4 4 32     |                  |                     |                    | 5.02                              | 1.70                                             | 3.62                          |                                              | 0.0         |                                  |
|                         |                 |                  | -                   |                    |                                   |                                                  |                               |                                              |             |                                  |
|                         |                 |                  | Pamp                | les                | Vat                               | en —                                             |                               |                                              |             |                                  |
|                         |                 |                  |                     |                    |                                   |                                                  |                               |                                              |             |                                  |
|                         |                 |                  | pH CALIB            | RATION (           | choose two                        | )                                                |                               | N                                            | lodel or Ur | nit No.:                         |
| Buffer So               | lution          |                  |                     | pH 4.0             | pH 7.0                            | pH 10.0                                          |                               |                                              |             |                                  |
| Field Tem               | nperature °(    | С                |                     |                    |                                   |                                                  |                               |                                              |             |                                  |
| Instrumer               | nt Reading      |                  |                     |                    |                                   |                                                  |                               |                                              |             |                                  |
|                         | SPE             | CIFIC ELE        | CTRICAL CO          | ONDUCTA            | ANCE (SEC)                        | - CALIBRATI                                      | ON                            | N                                            | Model or Ur | nit No.:                         |
| KCI Soluti              | on (μS/cm=      | -μmhos/cm)       |                     |                    | 1413 at 25°C                      | 12880 at 25                                      | °C                            |                                              |             |                                  |
| Field Tem               | perature °C     |                  |                     |                    |                                   |                                                  |                               |                                              |             |                                  |
| Instrumen               | t Reading       |                  |                     |                    |                                   |                                                  |                               |                                              |             | \                                |
|                         | ORP/RED         | OOX CALIB        | RATION              |                    | DISSOL                            | VED OXYGEN                                       | CALIBRATION                   |                                              | lotes:      |                                  |
| Standard Solution (mV)  |                 |                  |                     |                    | Altitude / Sa                     | linity %                                         |                               |                                              | Split r     | adium Samples                    |
| Field Temperature °C    |                 |                  |                     |                    | Field Temperature °C Split radium |                                                  |                               |                                              | ollected.   |                                  |
| Instrument Reading (mV) |                 |                  |                     |                    | Instrument Reading (mg/L)         |                                                  |                               |                                              |             |                                  |
| Model or Unit No.:      |                 |                  |                     | Model or Unit No.: |                                   |                                                  |                               |                                              |             |                                  |



|                         | 10 111          | .1 .18           |                     |               |                                           | 1-111-1 D                                        |                               | 12                                           | 3/1           | MICCICI                             |
|-------------------------|-----------------|------------------|---------------------|---------------|-------------------------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|---------------|-------------------------------------|
|                         | AP MO           |                  |                     |               |                                           | Initial De                                       | epth to Wat                   | er:                                          | 160           | ии /                                |
| Sample ID               | ):              | Dup              | licate ID: _        |               |                                           | Depth to                                         | Water after                   | r Sampling                                   | 173           | 77                                  |
|                         | epth: ሗ식        |                  | A second second     |               |                                           |                                                  | epth to Well                  |                                              |               |                                     |
|                         |                 | .: 67061         |                     | i             |                                           |                                                  |                               |                                              |               |                                     |
|                         |                 |                  | bons Cree           |               |                                           | 1 Casing (Circle of                              | g/Borehole<br>one)            | Volume:                                      |               | -                                   |
|                         | May 4,          |                  |                     |               |                                           |                                                  | g/Borehole                    | Volumes:                                     |               |                                     |
|                         | Ву:             |                  | 01                  |               |                                           | (Circle d                                        |                               | _                                            |               |                                     |
|                         |                 | low              |                     |               | -                                         |                                                  | sing/Boreh                    |                                              |               |                                     |
| Method o                | f Sampling      | : Subv           | nersible            |               |                                           | volume                                           | s Removed                     |                                              |               |                                     |
| Time                    | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)                             | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color,       | Remarks<br>turbidity, and sediment) |
| Low                     | Flow Stab       | ilization Cr     | iteria              | +/- 3%        | +/- 0.1                                   | +/- 3%                                           | +/- 10%                       | +/- 10%                                      |               |                                     |
| 08:47                   | 340.5           | \$ 200           |                     | 21.86         | 5.95                                      | 1.83                                             | 3,39                          | 151                                          | 33.3          | Clear ; no oder                     |
| 08:52                   | 1               |                  |                     | 22.14         |                                           | 1.84                                             | 3.23                          | 143                                          | 13:0          |                                     |
| 08:57                   |                 |                  |                     |               | 5.94                                      | 1.85                                             | 3.11                          | 143                                          | 9.0           |                                     |
|                         |                 |                  |                     |               | -1                                        |                                                  |                               |                                              |               |                                     |
|                         |                 | Dam              | ples                | 7             | aken                                      |                                                  |                               |                                              |               |                                     |
|                         |                 |                  |                     |               | N                                         |                                                  |                               |                                              |               |                                     |
|                         |                 |                  |                     |               |                                           |                                                  |                               |                                              |               |                                     |
|                         |                 |                  |                     |               |                                           |                                                  |                               |                                              |               |                                     |
|                         |                 |                  |                     |               |                                           |                                                  |                               |                                              |               |                                     |
|                         |                 |                  |                     |               |                                           |                                                  |                               |                                              |               |                                     |
|                         |                 |                  |                     |               |                                           |                                                  |                               |                                              |               |                                     |
|                         |                 |                  |                     |               |                                           |                                                  |                               |                                              |               |                                     |
|                         |                 |                  | pH CALIB            | RATION (      | choose two                                | )                                                |                               | N                                            | lodel or      | Unit No.:                           |
| Buffer So               | lution          |                  |                     | pH 4.0        | pH 7.0                                    | pH 10.0                                          |                               |                                              |               |                                     |
| Field Tem               | nperature °C    |                  |                     |               |                                           |                                                  |                               |                                              |               | ()                                  |
| Instrumer               | nt Reading      |                  |                     |               |                                           |                                                  |                               |                                              |               |                                     |
|                         | SPE             | CIFIC ELE        | CTRICAL C           | ONDUCT        | ANCE (SEC)                                | - CALIBRATI                                      | ON                            | V                                            | lodel or      | Unit No.:                           |
| KCI Soluti              | on (μS/cm=      | μmhos/cm)        | )                   |               | 1413 at 25°C                              | 12880 at 25                                      | °C                            |                                              |               |                                     |
| Field Tem               | perature °C     |                  |                     |               |                                           |                                                  |                               |                                              |               |                                     |
| Instrumen               | t Reading       |                  |                     |               |                                           |                                                  |                               |                                              |               |                                     |
|                         | ORP/RED         | OX CALIB         | RATION              |               | DISSOL                                    | VED OXYGEN                                       | CALIBRAT                      | ION N                                        | lotes:        |                                     |
| Standard Solution (mV)  |                 |                  |                     | Altitude /    |                                           | linity %                                         |                               |                                              | Purged        | for 10 min. prior                   |
| Field Temperature °C    |                 |                  |                     |               | Field Temperature °C to taking reas       |                                                  |                               |                                              | ing readings. |                                     |
| Instrument Reading (mV) |                 |                  |                     |               | Instrument F                              | Reading (mg/L)                                   |                               |                                              | , , , , ,     | 1                                   |
| Model or Unit No.:      |                 |                  |                     |               | Model or Unit No.: Duplicate/split radium |                                                  |                               |                                              |               |                                     |
|                         |                 |                  |                     |               |                                           |                                                  |                               |                                              | Sample        | es collected                        |



|             | 258             | -                | 1                   |               |                |                                       |                               |                                              | 3 9 0        | wheeler                         |
|-------------|-----------------|------------------|---------------------|---------------|----------------|---------------------------------------|-------------------------------|----------------------------------------------|--------------|---------------------------------|
|             |                 | Mw -l            |                     |               |                |                                       | epth to Wat                   |                                              |              | - 11                            |
| Sample ID   | :               | Dup              | licate ID: _        |               |                |                                       | Water afte                    |                                              | : 41.8       | 27                              |
| Sample De   |                 | 1-               | 26                  |               |                | Total De                              | epth to Well                  | :                                            |              |                                 |
|             |                 | o.: 670          |                     |               |                | Well Dia                              | meter:                        | 2"                                           |              |                                 |
|             | ,               | MPA              | GC 1                | Mne           |                |                                       | g/Borehole                    | Volume: _                                    |              |                                 |
| Date:       |                 |                  |                     |               |                | (Circle o                             |                               | Volumosi                                     |              |                                 |
| Sampled I   |                 |                  | Ai                  | 11            |                | (Circle                               | g/Borehole<br>one)            | volumes: _                                   |              |                                 |
|             |                 | Low              | D                   | Subi          |                |                                       | asing/Boreh                   |                                              |              |                                 |
| Method of   | Sampling        | : Low            | flow 5              | b             |                | Volume                                | s Removed                     | :                                            |              |                                 |
| Time        | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)  | Specific<br>Electrical<br>Conductance | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) |              | Remarks<br>idity, and sediment) |
| 0930        |                 | ~200             |                     | 2239          | 6.11           | 537                                   | 1.48                          | 18                                           | 43.9         | No odor                         |
| 0935        |                 |                  |                     | 22.14         | 6.17           | 5,37                                  | 1.08                          | 13                                           | 18.1         | Mostly clear                    |
| 0340        |                 |                  |                     | 23,29         | 6,17           | 5,37                                  | 0.83                          | 10                                           | 7.3          |                                 |
| 0945        |                 |                  |                     | 23,33         | 6,17           | 5.36                                  | 0.72                          | 8                                            | 3.5          | Very clear                      |
| 0950        |                 |                  |                     | 23,18         | 6,20           | 5,35                                  | 0.65                          | 6                                            | 1.5          |                                 |
| 0955        |                 |                  | 25                  | 23,05         | 6:26           | 5,35                                  | 0.64                          | 5                                            | 0,2          |                                 |
|             |                 |                  |                     |               |                |                                       |                               |                                              |              |                                 |
|             |                 | 09               | ample               | 25            | ker            | (a)                                   | 195                           | 5                                            |              |                                 |
|             |                 |                  | pH CALIB            | RATION (c     | choose two     |                                       |                               | N                                            | lodel or Uni | No.:                            |
| Buffer Solu | ution           |                  |                     | pH 4.0        | pH 7.0         | pH 10.0                               |                               |                                              |              |                                 |
| Field Temp  | oerature °C     | )                |                     |               |                |                                       |                               |                                              |              | 1                               |
| Instrument  | Reading         |                  |                     |               |                |                                       |                               |                                              |              |                                 |
|             | SPE             | CIFIC ELEC       | TRICAL CO           | ONDUCTA       | NCE (SEC)      | - CALIBRATI                           | ON                            | V                                            | lodel or Uni | it No.:                         |
| KCI Solutio | n (μS/cm=       | μmhos/cm)        |                     |               | 1413 at 25°C   | 12880 at 25                           | °C                            |                                              |              |                                 |
| Field Temp  | erature °C      |                  |                     | - 1           |                |                                       |                               |                                              |              | 800                             |
| Instrument  | Reading         |                  |                     |               |                |                                       |                               |                                              | ٨            |                                 |
|             | ORP/RED         | OX CALIBR        | RATION              |               | DISSOLY        | /ED OXYGEN                            | CALIBRAT                      | ION N                                        | lotes: 5     | Lit Poli                        |
| Standard S  | Solution (m     | V)               |                     | F             | Altitude / Sal | inity %                               |                               |                                              | Sanolo       | - Laken                         |
| Field Tem   | perature °C     | )                |                     |               | Field Tempe    |                                       |                               | 0                                            | Tost A       | merical                         |
| Instrument  | Reading (       | mV)              |                     | 1             | nstrument R    | eading (mg/L)                         |                               |                                              | 1-0 1/       | mericay                         |
| Model or U  | Jnit No.:       |                  |                     |               | Model or Uni   |                                       |                               |                                              |              |                                 |
| Document1   |                 |                  |                     |               |                |                                       |                               |                                              |              |                                 |



|                        | ^~                 |                  |                     |               |                                   |                                                  |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 001        | WICCIC                                            |
|------------------------|--------------------|------------------|---------------------|---------------|-----------------------------------|--------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------|
| Well ID: _             | AP                 | MW-5             |                     |               |                                   | Initial De                                       | epth to Wat                   | er:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29'        |                                                   |
|                        |                    |                  | licate ID: _        | DUP-          | 3                                 | Depth to                                         | Water afte                    | r Sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | : <i>L</i> | 1.94'                                             |
| Sample D               | epth:&             | 40.5             |                     |               |                                   |                                                  | pth to Well                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                   |
|                        |                    |                  | 150060              |               |                                   | Well Dia                                         | meter:                        | 2"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                   |
| Project Na             | ame: TM            | IPA-Gil          | bons Cre            | ek            |                                   |                                                  | g/Borehole                    | Volume: _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                                   |
| Date:                  | May 4, 2           | 1017             |                     |               |                                   | (Circle o                                        |                               | Valumaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                                   |
| Sampled                | By:                | 1                | Λ.                  |               |                                   | (Circle o                                        | g/Borehole<br>one)            | volumes: _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                                   |
| Method o               | f Purging:         | low              | How                 |               |                                   | Total Ca                                         | sing/Boreh                    | ole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                                                   |
| Method o               | f Sampling         | : _ subv         | nersible            |               |                                   | Volume                                           | s Removed                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                   |
| Time                   | Intake<br>Depth    | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)                     | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (color,    | Remarks<br>turbidity, and sediment)               |
| Low                    | Flow Stabi         | ilization Cr     | iteria              | +/- 3%        | +/- 0.1                           | +/- 3%                                           | +/- 10%                       | +/- 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                                   |
| 10:41                  | #40.5              | \$150            |                     | 22.40         | 3.64                              | 5.56                                             | 3.39                          | 302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 356        | chalky; nooder                                    |
| 10:46                  | 1                  | 1                |                     | 22.50         |                                   |                                                  | 3.12                          | 328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 155        | 7,100                                             |
| 10:51                  |                    |                  |                     | 22.77         |                                   | 1                                                | 3.00                          | 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 78.8       | clearing up                                       |
| 10:56                  |                    |                  |                     | 22.74         | _                                 |                                                  | 2.90                          | 351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32.4       | 3                                                 |
| 11:01                  | 1                  | V                | 21.5                | 22:86         |                                   | 5.67                                             | 2.83                          | 356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.6        |                                                   |
| -                      |                    |                  |                     | 1             | 1                                 | 1                                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                   |
|                        |                    | )                | eny                 | les           | /                                 | ake                                              | 1                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                   |
|                        |                    |                  | pH CALIB            | RATION (      | choose two                        | )                                                |                               | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Model or   | Unit No.:                                         |
| Buffer So              | lution             |                  |                     | pH 4.0        | pH 7.0                            | pH 10.0                                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                   |
| Field Tem              | nperature °C       |                  |                     |               |                                   |                                                  |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                   |
| Instrumer              | nt Reading         |                  |                     |               |                                   |                                                  |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                   |
|                        | SPE                | CIFIC ELE        | CTRICAL C           | ONDUCTA       | ANCE (SEC)                        | - CALIBRATI                                      | ON                            | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Aodel o    | Unit No.:                                         |
| KCI Soluti             | on (μS/cm=         | μmhos/cm)        |                     |               | 1413 at 25°C                      | 12880 at 25                                      | °C                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                   |
| Field Tem              | perature °C        | ;                |                     |               |                                   |                                                  |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                   |
| Instrumen              | t Reading          |                  |                     |               |                                   |                                                  |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                   |
|                        | ORP/RED            | OX CALIB         | RATION              |               | DISSOL                            | VED OXYGEN                                       | CALIBRAT                      | A CONTRACT OF THE PARTY OF THE | Notes:     |                                                   |
| Standard Solution (mV) |                    |                  |                     |               | Altitude / Sa                     | llinity %                                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Duplic     | ate samples collected<br>driven samples collected |
| Field Temperature °C   |                    |                  |                     |               | Field Tempe                       | erature °C                                       |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                   |
| Instrumer              | nt Reading         | (mV)             |                     |               | Instrument F                      | Reading (mg/L)                                   |                               | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | plat ra    | dium samples collected                            |
| Model or               | Model or Unit No.: |                  |                     |               | Model or Unit No.:  Good recharge |                                                  |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                   |



|             |                 |                  |                     |               |                |                                                  |                               |                                             |            | wheeler                        |
|-------------|-----------------|------------------|---------------------|---------------|----------------|--------------------------------------------------|-------------------------------|---------------------------------------------|------------|--------------------------------|
| Well ID: _  | 55              | - MI             | W-3                 |               |                | Initial De                                       | epth to Wat                   | er:                                         | 27,        | 24                             |
| Sample ID   | :               | Dup              | licate ID: _        | DUP-          | 2              |                                                  | Water afte                    |                                             |            | 29,47                          |
| Sample De   | epth:           |                  |                     |               |                | Total De                                         | pth to Well                   | 880                                         |            |                                |
| Project an  | d Task No       | .: 670           | 26150               | 060           |                | Well Dia                                         | meter:                        | 3                                           | -/         |                                |
| Project Na  | me:             | MPA              | GC N                | line          |                |                                                  | g/Borehole                    |                                             |            |                                |
| Sampled I   |                 |                  |                     |               |                |                                                  | g/Borehole                    | Volumes:                                    |            |                                |
| Sampled i   | Durging         |                  | flow                | C. h          | _              | (Circle o                                        |                               |                                             |            |                                |
|             |                 | : Law            |                     |               | 6              |                                                  | sing/Boreh<br>s Removed       |                                             |            |                                |
| Time        | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)  | Specific<br>Electrical<br>Conductance<br>(µ8/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation<br>Reduction<br>Potential<br>(mV) | (color tu  | Remarks rbidity, and sediment) |
| 1100        |                 | 200              |                     | 23,71         | 4,45           | 8,38                                             | 1.61                          | 288                                         | 256        | 190/ Claudy                    |
| 1105        |                 |                  |                     | 250           | 7 4.32         | 241                                              | 0.22                          | 299                                         | 528        | No adar                        |
| 1110        |                 |                  |                     | 24,30         | 1 4,32         | 8.39                                             | 0.66                          | 299                                         | 184        |                                |
| 1115        |                 |                  |                     | 24,45         | 4,32           | 2.35                                             | 0.57                          | 300                                         | 75,8       | clearing                       |
| 1120        |                 |                  |                     | 24,47         | 4,33           | 8,33                                             | 0,50                          | 309                                         | 35,4       |                                |
| 1125        |                 |                  | 2.5                 | 24,7          | 4,34           | 8,32                                             | 0.45                          | 300                                         | 21,4       | mostly clear                   |
| 1           |                 |                  |                     |               |                |                                                  |                               |                                             |            |                                |
|             |                 |                  |                     |               |                |                                                  | 1                             |                                             |            |                                |
| _           |                 |                  |                     |               | -              | Sand                                             | 5                             | aken                                        |            |                                |
|             |                 |                  |                     |               | V              | 101 P                                            | ,                             | 7 (-)                                       |            |                                |
|             |                 |                  |                     |               |                | (A)                                              | 110                           | E                                           |            |                                |
|             |                 |                  |                     |               |                | (00                                              | 110                           | 2                                           |            |                                |
|             |                 |                  |                     |               |                |                                                  |                               |                                             |            |                                |
|             |                 |                  | pH CALIB            | RATION (      | choose two)    | )                                                |                               |                                             | Model or U | nit No.:                       |
| Buffer Solu | ution           |                  |                     | pH 4.0        | pH 7.0         | pH 10.0                                          |                               |                                             |            |                                |
| Field Tem   | oerature °C     |                  |                     |               |                |                                                  |                               |                                             |            |                                |
| Instrument  | Reading         |                  |                     |               |                |                                                  |                               |                                             |            |                                |
|             | SPE             | CIFIC ELEC       | CTRICAL CO          | ONDUCTA       | NCE (SEC)      | - CALIBRATI                                      | ON                            |                                             | Model or U | Init No.:                      |
| KCI Solutio | n (μS/cm=       | μmhos/cm)        |                     |               | 1413 at 25°C   | 12880 at 25                                      | °C                            |                                             |            |                                |
| Field Temp  | erature °C      |                  |                     |               |                |                                                  |                               |                                             |            | - 13                           |
| Instrument  | Reading         |                  |                     |               |                |                                                  |                               |                                             | -10        |                                |
|             | ORP/RED         | OX CALIB         | RATION              |               | DISSOL         | ED OXYGEN                                        | CALIBRAT                      | ION                                         | Notes      | 1.4 Radian                     |
| Standard S  | Solution (m     | V)               |                     | 1             | Altitude / Sal | inity %                                          |                               |                                             | Samola     | 1 taken                        |
| Field Tem   | perature °C     | )                |                     | F             | ield Tempe     | rature °C                                        |                               |                                             | Cer        | AMERT (A)                      |
| Instrumen   | t Reading (     | mV)              |                     | 1             | nstrument R    | eading (mg/L)                                    |                               |                                             | (          | 1, -4-5)                       |
| Model or U  | Jnit No.:       |                  |                     | 1             | Model or Uni   | t No.:                                           |                               |                                             |            |                                |
| D1          |                 |                  |                     |               | 7              |                                                  |                               |                                             |            |                                |

A EQBK/SCM/050417 Taken@1255



|             |                 |                  |                     |               |               |                                                  |                               |                                              |              | Wileelei                            |
|-------------|-----------------|------------------|---------------------|---------------|---------------|--------------------------------------------------|-------------------------------|----------------------------------------------|--------------|-------------------------------------|
| Well ID: _  | AP MI           | N-4              |                     |               |               | Initial De                                       | epth to Wat                   | er: _/3.                                     | 25'          |                                     |
| Sample ID   | ):              | Dup              | licate ID: _        |               |               | Depth to                                         | Water after                   | r Sampling                                   | : <u>14.</u> | ,19'                                |
| Sample D    | epth:           | 50.0             |                     |               |               |                                                  | epth to Well                  |                                              | 3'           |                                     |
| Project an  | nd Task No      | : 6706           | 150060              |               |               | Well Dia                                         | ameter:                       | 2 "                                          |              |                                     |
| Project Na  | ame:            | 1PA-Gi           | bbons Cr            | reck          |               |                                                  | g/Borehole                    | Volume: _                                    |              |                                     |
| Date:/      | May 4,          | 2017             |                     |               |               | (Circle o                                        |                               | Valuman                                      |              |                                     |
| Sampled I   | By: By          |                  | 1                   |               |               | (Circle o                                        | g/Borehole<br>one)            | volumes:                                     |              |                                     |
| Method of   | f Purging:      | low              | flow                |               |               | Total Ca                                         | asing/Boreh                   | ole                                          |              |                                     |
| Method of   | f Sampling      | : subm           | ersible pu          | anp           |               | Volume                                           | s Removed                     | :                                            |              |                                     |
| Time        | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units) | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color,      | Remarks<br>turbidity, and sediment) |
| Low         | Flow Stabi      | lization Cr      | riteria             | +/- 3%        | +/- 0.1       | +/- 3%                                           | +/- 10%                       | +/- 10%                                      | NTU          | 1                                   |
| 1236        | \$50.0          | 2150             |                     | 23.46         | 5.71          | 5.02                                             | 3.92                          | 52                                           | 37,9         | Clear; sulfur odor                  |
| 1241        |                 | 1                |                     | 23,30         | 5.70          | 4.99                                             | 3.83                          | 65                                           | 36.2         |                                     |
| 1246        |                 |                  |                     | 23.59         |               | 4.99                                             | 3.39                          | 68                                           | 20.2         |                                     |
| 1251        |                 |                  |                     | 23.79         |               | 4.96                                             | 2.73                          | 86                                           | 3.1          |                                     |
| 1256        | V               | V                | 21.5                | 23:75         |               | 4.97                                             | 2.68                          | 92                                           | Ø.0          |                                     |
|             |                 |                  |                     | 1             | T             | - 1                                              |                               |                                              | /            |                                     |
|             |                 |                  | Dav                 | mple:         | 5/            | aken                                             |                               |                                              |              |                                     |
|             |                 |                  |                     | 1             |               |                                                  |                               |                                              |              |                                     |
|             |                 |                  |                     |               |               |                                                  |                               |                                              |              |                                     |
|             |                 |                  |                     |               |               |                                                  |                               |                                              |              |                                     |
| 1354        | - EC            | RBK              | -BJG                | 1-50          | 9417          | taken                                            |                               |                                              |              |                                     |
|             |                 |                  |                     |               |               |                                                  |                               |                                              |              |                                     |
|             |                 |                  | pH CALIB            | RATION (      | choose two    | 0)                                               |                               | N                                            | lodel or     | Unit No.:                           |
| Buffer Sol  | lution          |                  |                     | pH 4.0        | pH 7.0        | pH 10.0                                          |                               |                                              |              |                                     |
| Field Tem   | perature °C     | )                |                     |               |               |                                                  |                               |                                              |              |                                     |
| Instrumen   | nt Reading      |                  |                     |               |               |                                                  |                               |                                              |              |                                     |
|             |                 | CIFIC ELE        | CTRICAL C           | ONDUCTA       | ANCE (SEC     | ) – CALIBRATI                                    | ON                            | N                                            | Model or     | Unit No.:                           |
| KCI Solutio | on (μS/cm=      |                  |                     |               | 1413 at 25°0  |                                                  |                               |                                              |              |                                     |
|             | perature °C     |                  |                     |               |               |                                                  |                               |                                              |              |                                     |
| Instrument  |                 |                  |                     |               |               |                                                  |                               |                                              |              |                                     |
|             | ORP/RED         | OX CALIB         | RATION              |               | DISSOL        | VED OXYGEN                                       | CALIBRAT                      | ION I                                        | lotes:       |                                     |
| Standard    | Solution (m     | nV)              |                     |               | Altitude / Sa | alinity %                                        |                               | 4                                            | Split r      | adium samples                       |
| Field Tem   | nperature °(    | 0                |                     |               | Field Temp    | erature °C                                       |                               |                                              | colle        | ected                               |
| Instrumer   | nt Reading (    | (mV)             |                     |               | Instrument    | Reading (mg/L)                                   |                               |                                              | - 11         |                                     |
| Model or    | Unit No.:       |                  |                     |               | Model or U    | nit No.:                                         |                               | /                                            | 354-E        | quip-blank taken                    |
|             |                 |                  |                     |               |               |                                                  |                               |                                              |              |                                     |



|            |                 |                  |                     |               |               |                                                  |                               |                                              | 1 1       | wheeler                            |
|------------|-----------------|------------------|---------------------|---------------|---------------|--------------------------------------------------|-------------------------------|----------------------------------------------|-----------|------------------------------------|
| Well ID: _ | SFL             | MW-              | 7                   |               |               |                                                  | epth to Wat                   |                                              | 2.00      |                                    |
|            |                 |                  | licate ID:          |               |               | Depth to                                         | Water after                   | r Sampling                                   | : _/4     | .79'                               |
| Sample D   | epth:           | 55.5             |                     |               |               | Total De                                         | pth to Well                   | : 58.1                                       | 1         |                                    |
|            |                 |                  | 150060              |               |               | Well Dia                                         | meter:                        | 2"                                           |           |                                    |
|            |                 |                  | ibbons C            |               |               | 1 Casing (Circle of                              |                               | Volume: _                                    |           |                                    |
|            |                 |                  |                     |               |               |                                                  | g/Borehole                    | Volumes:                                     |           |                                    |
| Sampled    | By:R            | M.               | Λ.                  |               |               | (Circle o                                        |                               | volunies.                                    |           |                                    |
|            |                 |                  | flow                |               |               |                                                  | sing/Boreh                    |                                              |           |                                    |
| Method o   | f Sampling      | :                | omersible           | 2             |               | Volume                                           | s Removed                     | -                                            |           |                                    |
| Time       | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units) | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color, t | Remarks<br>urbidity, and sediment) |
| Low        | Flow Stab       | ilization Cr     | iteria              | +/- 3%        | +/- 0.1       | +/- 3%                                           | +/- 10%                       | +/- 10%                                      | NTU       |                                    |
| 1142       | \$55.5          | ₩150             |                     | 24.40         | 6.56          | 8.04                                             | 3.29                          | -35                                          | 55.4      | clear ; no oder                    |
| 1147       | 1               | 1                |                     | 24.83         | 6.55          | 8.28                                             | 2.79                          | -41                                          | 79.0      |                                    |
| 1152       |                 |                  |                     | 24.96         | 6.43          | 8.97                                             | 2.58                          | -24                                          | 108       |                                    |
| 1157       |                 |                  |                     | 24.75         | 6.39          | 9.35                                             | 2.51                          | -9                                           | 66.3      | ·                                  |
| 1202       | V               | V                | ¥1.5                | 24.61         | 6.37          | 9.46                                             | 2.44                          | -5                                           | 36.1      |                                    |
|            |                 |                  |                     | 1             | 1             | 1                                                |                               |                                              |           |                                    |
|            |                 | (                | Dan                 | ple.          | 5 /           | aken                                             |                               |                                              |           |                                    |
|            |                 |                  |                     | / -           |               |                                                  |                               | -                                            |           |                                    |
|            |                 |                  |                     |               |               |                                                  |                               |                                              |           |                                    |
| E . No.    |                 |                  |                     |               |               |                                                  |                               |                                              |           |                                    |
|            |                 |                  |                     |               |               |                                                  |                               |                                              |           |                                    |
|            |                 |                  |                     |               |               |                                                  |                               |                                              |           |                                    |
|            |                 |                  | pH CALIB            | RATION (      | choose two    | )                                                |                               |                                              | Model or  | Unit No.:                          |
| Buffer So  | olution         |                  |                     | pH 4.0        | pH 7.0        | pH 10.0                                          |                               |                                              |           |                                    |
| Field Ten  | nperature °(    | 0                |                     |               |               |                                                  |                               |                                              |           |                                    |
| Instrume   | nt Reading      |                  |                     |               |               |                                                  |                               |                                              |           |                                    |
| *4         | SPE             | CIFIC ELE        | CTRICAL C           | ONDUCT        | ANCE (SEC)    | - CALIBRAT                                       | ION                           | 1                                            | Model or  | Unit No.:                          |
|            | ion (μS/cm=     |                  |                     |               | 1413 at 25°C  |                                                  |                               |                                              |           |                                    |
| Field Tem  | nperature °C    |                  |                     |               |               |                                                  |                               |                                              |           |                                    |
| Instrumer  | nt Reading      |                  |                     |               |               |                                                  |                               |                                              |           |                                    |
|            | ORP/RED         | OX CALIE         | RATION              |               | DISSOL        | VED OXYGEN                                       | CALIBRA                       | TION                                         | Notes:    | *                                  |
| Standard   | Solution (n     | nV)              |                     |               | Altitude / Sa | alinity %                                        |                               |                                              |           |                                    |
|            | mperature °     |                  |                     |               | Field Tempe   |                                                  |                               |                                              |           |                                    |
|            | nt Reading      |                  |                     |               | Instrument I  | Reading (mg/L)                                   | )                             |                                              |           |                                    |
|            | Unit No.:       |                  |                     |               | Model or Ur   |                                                  |                               |                                              |           |                                    |
|            |                 |                  |                     |               |               |                                                  |                               |                                              |           |                                    |
|            |                 |                  |                     |               |               |                                                  |                               |                                              |           |                                    |



|            |                      |                  |                     |          |               |                                                  |                               |                                              |          | AALIGETEI                           |
|------------|----------------------|------------------|---------------------|----------|---------------|--------------------------------------------------|-------------------------------|----------------------------------------------|----------|-------------------------------------|
| Well ID: _ | MNW.                 | -18              |                     |          |               | Initial De                                       | epth to Wat                   | er: 9.4                                      | 0'       |                                     |
|            |                      |                  | licate ID: _        |          |               | Depth to                                         | Water after                   | er Sampling                                  | : 12:    | 89'                                 |
| Sample D   | epth:X               | 48.5'            |                     |          |               | Total De                                         | epth to Well                  | : 50.9                                       | 5'       |                                     |
| Project ar | nd Task No           | .: 6706          | 150060              | )        |               | Well Dia                                         | meter:                        | 4"                                           |          |                                     |
| Project N  | ame: TA              | 1PA-G            | ibbons Ci           | reek     |               |                                                  |                               | Volume: _                                    |          |                                     |
| Date:      | May 30,              | 2017             |                     |          |               | (Circle o                                        |                               |                                              |          |                                     |
| Sampled    | Ву:                  | 84               |                     |          |               | 4 Casing<br>(Circle o                            |                               | Volumes: _                                   |          |                                     |
| Method o   | f Purging:           | Subi             | mersible            |          |               |                                                  | asing/Borel                   | nole                                         |          |                                     |
| Method o   | f Sampling           | : low            | flow                |          |               |                                                  | s Removed                     |                                              |          |                                     |
| Time       | Intake<br>Depth      | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.    | pH<br>(units) | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color,  | Remarks<br>turbidity, and sediment) |
| Low        | Flow Stab            | ilization Cr     | iteria              | +/- 3%   | +/- 0.1       | +/- 3%                                           | +/- 10%                       | +/- 10%                                      | NTU      | 1                                   |
| 1612       | ₩48.5                | 1200             |                     | 24.36    | 7.15          | 4.56                                             | 4.83                          | -120                                         | Ø.0      | clear in oder                       |
| 1617       |                      | 1                |                     | 24.64    |               | 4.55                                             | 3.52                          | -126                                         | 2.9      | 11 11                               |
| 1622       |                      |                  |                     | 24.70    |               | 4.57                                             | 3.09                          | -125                                         | 6.9      | slight gray that                    |
| 1627       | V                    | V                | 21.5                | 25.12    | 7.16          | 4.54                                             | 3.02                          | -/23                                         | 6.6      | 11                                  |
|            |                      | -/               | ~                   | 1 .      | 1             | 1                                                |                               |                                              |          |                                     |
|            |                      |                  | Dame                | ses      | la            | ken                                              |                               |                                              |          | ,                                   |
|            |                      |                  | 1                   |          |               |                                                  |                               |                                              |          |                                     |
|            |                      |                  |                     |          |               |                                                  |                               |                                              |          |                                     |
|            |                      |                  |                     |          |               |                                                  |                               |                                              |          |                                     |
|            |                      |                  |                     |          |               |                                                  |                               |                                              |          |                                     |
|            |                      |                  |                     |          |               |                                                  |                               |                                              |          |                                     |
|            |                      |                  |                     |          |               |                                                  |                               |                                              |          |                                     |
|            |                      |                  | pH CALIB            | RATION ( | choose two    | )                                                |                               | V                                            | Model or | Unit No.:                           |
| Buffer So  | lution               |                  |                     | pH 4.0   | pH 7.0        | pH 10.0                                          |                               |                                              |          |                                     |
| Field Ten  | nperature °(         | 2                |                     |          |               |                                                  |                               |                                              |          |                                     |
| Instrumer  | nt Reading           |                  |                     |          |               |                                                  |                               |                                              |          |                                     |
|            |                      | CIFIC ELE        | CTRICAL C           | ONDUCTA  | ANCE (SEC     | ) – CALIBRATI                                    | ION                           | 1                                            | Aodel or | Unit No.:                           |
| KCI Soluti |                      | μmhos/cm)        |                     |          | 1413 at 25°C  |                                                  |                               |                                              | 10 200 2 | 7,,                                 |
|            | perature °C          |                  |                     |          |               | 2 2000                                           |                               |                                              |          |                                     |
| Instrumen  |                      | ,                |                     |          |               |                                                  |                               |                                              |          |                                     |
| mstrumen   | Total 19 (19 )       | OOV CALIB        | DATION              |          | DISCOL        | VED OVVCEN                                       | CALIDDAT                      | TION I                                       | latası   |                                     |
| Standard   | Solution (n          | OOX CALIB        | KATION              |          | Altitude / Sa | VED OXYGEN                                       | CALIBRA                       | ION I                                        | Notes:   |                                     |
|            | nperature °          |                  |                     |          | Field Temp    |                                                  |                               |                                              |          |                                     |
|            |                      |                  |                     |          |               |                                                  |                               |                                              |          |                                     |
|            | nt Reading Unit No.: | (1117)           |                     |          |               | Reading (mg/L)                                   |                               |                                              |          |                                     |
| Model or   | OTHE NO.:            |                  |                     |          | Model or Ur   | III NO.;                                         |                               | -                                            |          |                                     |
|            |                      |                  |                     |          |               |                                                  |                               |                                              |          |                                     |



|           |                 |                  |                     |               |               |                                                  |                               |                                              | ,          | WITE                 | eeler              |
|-----------|-----------------|------------------|---------------------|---------------|---------------|--------------------------------------------------|-------------------------------|----------------------------------------------|------------|----------------------|--------------------|
| Well ID:  | SFLM            | W-7              |                     | A Vigary is   |               |                                                  | epth to Wat                   |                                              |            |                      |                    |
|           |                 |                  | licate ID: 👤        | JUP-1         |               |                                                  | Water afte                    |                                              |            | 27'                  |                    |
| Sample D  | epth:3          | £ 55.5°          |                     |               |               | Total De                                         | pth to Well                   | 58.11                                        | ı          |                      |                    |
|           | nd Task No      |                  |                     |               |               | Well Dia                                         | meter: _                      | ) ((                                         |            |                      |                    |
|           |                 |                  | bons Cree           | k             |               |                                                  | g/Borehole                    | Volume: _                                    |            |                      |                    |
| Date:     | May 31, 2       | 017              |                     |               |               | (Circle o                                        |                               | Valumas                                      |            |                      |                    |
|           | By:             |                  |                     |               |               | (Circle o                                        | g/Borehole<br>one)            | voiumes                                      |            |                      |                    |
|           | f Purging:      |                  |                     |               |               |                                                  | sing/Boreh                    |                                              |            |                      |                    |
| Method o  | f Sampling      | : low            | flow                |               |               | Volumes                                          | s Removed                     | :                                            |            |                      |                    |
| Time      | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units) | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color, to | Remar<br>urbidity, a | ks<br>nd sediment) |
| Low       | Flow Stabi      | ilization Cr     | iteria              | +/- 3%        | +/- 0.1       | +/- 3%                                           | +/- 10%                       | +/- 10%                                      | NTU        |                      |                    |
| 1105      | <b>☆55.5′</b>   | ₹150             |                     | 25,66         | 6.72          | 6.99                                             | 3.56                          | -56                                          | 30.8       | Clearin              | ooder              |
| 1110      | i               | ĺ                |                     | 26.15         | 6.65          | 7.06                                             | 2.67                          | -52                                          | 14.6       |                      |                    |
| 1115      |                 |                  |                     | 26.53         |               | 8.27                                             | 2.45                          | -29                                          | 6.3        |                      |                    |
| 1120      |                 |                  |                     | 26.18         |               | 8,95                                             | 2.32                          | -17                                          | 3.3        |                      |                    |
| 1125      | V               | V                | ×2.0                | 25:98         |               | 9,10                                             | 2.24                          | -12                                          | 2.2        | 1                    | V                  |
|           |                 | Dam              | ples                | To            | iken          |                                                  |                               |                                              |            |                      |                    |
|           |                 | Darve            | piss                | 70            |               |                                                  |                               |                                              |            |                      |                    |
|           |                 |                  |                     |               |               |                                                  |                               |                                              |            |                      |                    |
|           |                 |                  |                     |               |               |                                                  |                               |                                              |            |                      |                    |
|           |                 |                  |                     |               |               |                                                  |                               |                                              |            |                      |                    |
|           |                 |                  |                     |               |               |                                                  |                               |                                              |            |                      |                    |
|           |                 |                  | pH CALIB            | RATION (      | choose two    | )                                                |                               | 1                                            | Model or I | Unit No.:            |                    |
| Buffer Sc | olution         |                  |                     | pH 4.0        | pH 7.0        | pH 10.0                                          |                               |                                              |            |                      |                    |
| Field Ter | mperature °0    | 2                |                     |               |               |                                                  |                               |                                              |            |                      |                    |
| Instrume  | nt Reading      |                  |                     |               |               |                                                  |                               |                                              |            |                      |                    |
|           | SPE             | CIFIC ELE        | CTRICAL C           | ONDUCTA       | ANCE (SEC)    | - CALIBRATI                                      | ION                           |                                              | Model or   | Unit No.:            |                    |
| KCI Solut | ion (μS/cm=     | -μmhos/cm        | )                   |               | 1413 at 25°C  | 12880 at 25                                      | 5°C                           |                                              |            |                      |                    |
| Field Ten | nperature °C    | )                |                     |               |               |                                                  |                               |                                              |            |                      |                    |
| Instrume  | nt Reading      |                  | -                   |               |               |                                                  |                               |                                              |            |                      |                    |
|           | ORP/RED         | OOX CALIE        | BRATION             |               | DISSOL        | VED OXYGEN                                       | CALIBRA                       | TION                                         | Notes:     |                      |                    |
| Standard  | d Solution (n   | nV)              |                     |               | Altitude / Sa | alinity %                                        |                               |                                              | Good       | rechar               | 96                 |
| -         | mperature °     |                  |                     |               | Field Tempe   | erature °C                                       |                               |                                              |            |                      |                    |
| Instrume  | ent Reading     | (mV)             |                     |               | Instrument F  | Reading (mg/L)                                   | )                             |                                              | DUP-       | 1 colle              | ected              |
| Model or  | r Unit No.:     |                  |                     |               | Model or Ur   | nit No.:                                         |                               |                                              |            |                      |                    |
|           |                 |                  |                     |               |               |                                                  |                               |                                              |            |                      |                    |



| Well ID:    | MNW             | -15              |                                         |               |               | Initial De                                       | epth to Wat                   | er: 4.8                                      | 5'        |                                     |
|-------------|-----------------|------------------|-----------------------------------------|---------------|---------------|--------------------------------------------------|-------------------------------|----------------------------------------------|-----------|-------------------------------------|
| Sample I    | D:              | Dup              | licate ID:                              |               |               | Depth to                                         | Water afte                    | r Sampling                                   | : 51      | 0'                                  |
| Sample I    | Depth:          | 24'              |                                         |               |               | Total De                                         | pth to Well                   | : 26.80                                      | )'        |                                     |
| Project a   | nd Task No      | 67061            | 50060                                   |               |               | Well Dia                                         | meter: _a                     | 74                                           |           |                                     |
| Project N   | lame: TM        | PA-Gibbo         | ns Creek                                |               |               |                                                  | g/Borehole                    | Volume: _                                    |           |                                     |
| Date:       | May 31,5        | 2017             |                                         |               |               | (Circle o                                        |                               | 24.27                                        |           |                                     |
|             | Ву:В            |                  |                                         |               |               | 4 Casing<br>(Circle o                            | g/Borehole<br>one)            | Volumes: _                                   |           |                                     |
| Method      | of Purging:     | Subme            | ersible                                 |               |               |                                                  | sing/Boreh                    | ole                                          |           |                                     |
|             | of Sampling     |                  | Λ.                                      |               |               |                                                  | s Removed                     |                                              |           |                                     |
| Time        | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.)                     | Temp.<br>(°C) | pH<br>(units) | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color,   | Remarks<br>turbidity, and sediment) |
| Lov         | v Flow Stab     | ilization Cr     | iteria                                  | +/- 3%        | +/- 0.1       | +/- 3%                                           | +/- 10%                       | +/- 10%                                      | NTU       |                                     |
| 1231        | ≈24'            | 2200             |                                         | 26.48         | 3.66          | 3.53                                             | 4.85                          | 326                                          | 1177      | Yellow; no odor                     |
| 1236        | 1               | 1                |                                         | 26.86         |               | 3.69                                             | 2.89                          | 320                                          | 144       | 1                                   |
| 1241        |                 |                  |                                         | 27.20         |               | 3.80                                             | 2.42                          | 325                                          |           | Clearing                            |
| 1246        |                 |                  |                                         | 27.18         |               | 3.84                                             | 2.22                          | 328                                          | 37.1      |                                     |
| 1251        | V               | V                | 12.0                                    | 26.96         |               | 3.86                                             | 2.12                          | 327                                          | 22.9      |                                     |
|             |                 |                  | 1                                       |               | -             |                                                  |                               |                                              |           | *                                   |
|             |                 | 5                | emple                                   | 5 /           | ake           | n —                                              |                               |                                              |           |                                     |
|             |                 |                  | 7                                       |               |               |                                                  |                               |                                              |           |                                     |
|             |                 |                  |                                         |               |               |                                                  |                               |                                              |           |                                     |
|             |                 |                  |                                         |               |               |                                                  |                               |                                              |           |                                     |
| 1515        | - EQB           | K-BJA-           | 053117                                  | calle         | ted           |                                                  |                               |                                              |           |                                     |
| 1010        |                 | , , ,            |                                         | Conce         |               |                                                  |                               |                                              |           |                                     |
|             |                 |                  | pH CALIB                                | RATION (      | choose two    | )                                                |                               | N                                            | Model or  | Unit No.:                           |
| Buffer S    | olution         | ~                |                                         | pH 4.0        | pH 7.0        | pH 10.0                                          |                               |                                              |           |                                     |
| Field Te    | mperature °     | C                |                                         |               |               |                                                  |                               |                                              |           |                                     |
|             | ent Reading     |                  |                                         |               |               |                                                  |                               |                                              |           |                                     |
| Illottuille |                 | COURTS ELE       | CTDICAL C                               | ONDUCT        | NCE (SEC      | CALIDDAT                                         | ION                           | ,                                            | Madalar   | Linit No.                           |
|             |                 |                  | 200000000000000000000000000000000000000 | CNDOCIA       |               | ) – CALIBRAT                                     |                               |                                              | viouei of | Unit No.:                           |
|             | tion (μS/cm=    |                  | )                                       | 1             | 1413 at 25°C  | 12880 at 25                                      | ) YC                          |                                              |           |                                     |
| Field Ter   | mperature °(    | 0                |                                         |               |               |                                                  |                               |                                              |           |                                     |
| Instrume    | nt Reading      |                  |                                         |               |               |                                                  |                               |                                              |           |                                     |
|             | ORP/REI         | DOX CALIE        | RATION                                  |               | DISSOL        | VED OXYGEN                                       | CALIBRA                       | TION                                         | Notes:    |                                     |
| Standar     | d Solution (r   | mV)              |                                         |               | Altitude / Sa | alinity %                                        |                               |                                              | Good      | recharge                            |
| Field Te    | mperature °     | C                |                                         |               | Field Temp    | erature °C                                       |                               |                                              |           | 3                                   |
| Instrum     | ent Reading     | (mV)             |                                         |               | Instrument    | Reading (mg/L)                                   | )                             |                                              |           |                                     |
| Model o     | r Unit No.:     |                  |                                         |               | Model or U    | nit No.:                                         |                               |                                              |           |                                     |
|             |                 |                  |                                         |               |               |                                                  |                               |                                              |           |                                     |

amec foster wheeler

| Well ID: _  | 2               | P/AP             | 10/W-               |          |                | Initial D                             | epth to Wat                   | er:                                          | 97         | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------|-----------------|------------------|---------------------|----------|----------------|---------------------------------------|-------------------------------|----------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | P               | Dup              |                     |          |                | Depth to                              | Water after                   | er Sampling                                  | ):         | 14.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sample D    | epth:           | 1-               |                     |          |                |                                       |                               |                                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                 | o.: 670          |                     |          | = 1            | Well Dia                              | meter:                        | 2                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | ame: //         | 1PAG             | C Mil               | ne CC    | -R             | 1 Casing<br>(Circle o                 |                               | Volume:                                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sampled     | Ву: 🥩           | IM               | ^/                  |          |                | 4 Casing<br>(Circle o                 | g/Borehole<br>one)            | Volumes: _                                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                 | Low t            | -1'1                |          |                |                                       | asing/Borel<br>s Removed      |                                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Time        | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.    | pH<br>(units)  | Specific<br>Electrical<br>Conductance | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color, to | Remarks<br>urbidity, and sediment)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1420        |                 | ~150             |                     | 25,77    | 7573           | 8,55                                  | 1,70                          | 49                                           | 219        | Librat tan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1425        |                 |                  |                     | 28.16    | 5,75           | 8,45                                  | 0.00                          | 32                                           | 290        | . 5011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| M30         |                 |                  |                     | 27.89    | 5.76           | 8.33                                  | 0.00                          | 29                                           | 307        | Jishtly dear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1435        |                 |                  |                     | 28.19    | 515            | 8.47                                  | 0.00                          | 28                                           | 312        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1440        |                 |                  |                     | 25,31    | 15.73          | 8.64                                  | 0.00                          | 30                                           | 232        | lawer NTV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1445        |                 |                  |                     | 25,7     | 4573           | 8,64                                  | 000                           | 30                                           | 182        | Cloudy -white                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1450        |                 | ~                | 2,5                 | 26/1     | 5,73           | 8-67                                  | 0,00                          | 30                                           | 167        | Serving Williams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                 |                  |                     | 0.00     |                |                                       |                               |                                              | 107        | A STATE OF THE STA |
|             |                 | 7                | amp                 | ed       | a              | 145                                   | 0                             |                                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _           |                 |                  |                     |          |                |                                       |                               |                                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2017        |                 |                  | pH CALIB            | RATION ( | choose two     |                                       |                               | IV                                           | lodel or L | Jnit No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Buffer Sol  | ution           |                  |                     | pH 4.0   | pH 7.0         | pH 10.0                               |                               |                                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Field Tem   | perature °C     | 2                |                     |          |                |                                       |                               |                                              |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Instrumen   | t Reading       |                  |                     |          |                |                                       |                               |                                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5           | SPE             | CIFIC ELEC       | CTRICAL C           | ONDUCTA  | ANCE (SEC)     | - CALIBRATI                           | ON                            | N                                            | lodel or U | Jnit No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| KCI Solutio | on (μS/cm=      | μmhos/cm)        |                     |          | 1413 at 25°C   | 12880 at 25                           | °C                            |                                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Field Tem   | perature °C     |                  |                     |          |                |                                       |                               |                                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Instrument  | Reading         |                  |                     |          |                |                                       |                               |                                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | ORP/RED         | OX CALIBI        | RATION              |          | DISSOL         | /ED OXYGEN                            | CALIBRAT                      | ION N                                        | lotes:     | VIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Standard    | Solution (m     | nV)              |                     |          | Altitude / Sal | inity %                               |                               | 6                                            | Slow I     | 1 dropping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Field Tem   | perature °C     | 0                |                     |          | Field Tempe    | rature °C                             |                               | A                                            | MU, LO     | Purginar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Instrumen   | t Reading (     | (mV)             |                     |          | Instrument R   | teading (mg/L)                        |                               | 0                                            | rank       | t flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Model or    | Unit No.:       |                  |                     |          | Model or Uni   | it No.:                               |                               |                                              | rate of    | ance then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Document1   |                 |                  |                     |          |                |                                       |                               | /                                            | E IVEN (   | Ta un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Meles and Will



| Well ID: _                             | A               | 10157            | APM                 | W-4       |                           | Initial De                            | epth to Wat                   | er:                                          | 12       | .78 IJ -                            |
|----------------------------------------|-----------------|------------------|---------------------|-----------|---------------------------|---------------------------------------|-------------------------------|----------------------------------------------|----------|-------------------------------------|
| Sample ID                              | ):              | Dup              | licate ID: _        |           |                           |                                       |                               | r Sampling                                   |          | 174/                                |
| Sample D                               | epth:           |                  |                     |           |                           | Total De                              | pth to Well                   | :                                            |          |                                     |
| Project ar                             | nd Task No      | 670              | 61500               | 060       |                           | Well Dia                              | meter:                        | 2"                                           |          |                                     |
| Project Na                             | ame: 1/         | MPA C            | SC Mil              | ecc       | R                         |                                       | g/Borehole                    |                                              |          |                                     |
|                                        | By: <u>5</u>    |                  | <u> </u>            |           |                           | •                                     | g/Borehole                    | Volumes: _                                   |          |                                     |
|                                        |                 | LOW              | Flow S              | ub        |                           |                                       | asing/Boreh                   | ole                                          |          |                                     |
|                                        |                 | : 1 au           |                     | Suf       |                           |                                       | s Removed                     |                                              |          |                                     |
| Time                                   | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.     | pH<br>(units)             | Specific<br>Electrical<br>Conductance | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color,  | Remarks<br>turbidity, and sediment) |
| 650                                    | V               | 250              |                     | 22,05     | 5,60                      | 4.81                                  | 0.00                          | 65                                           | 132      | moderate HE add                     |
| 1655                                   |                 |                  |                     | 22,8      | 5.51                      | 4.82                                  | 0.00                          | 74                                           | 58.7     | The court                           |
| 17M                                    |                 |                  |                     | 22,80     | 5 49                      | 4.85                                  | 0.00                          | 77                                           | 15.1     | much cleaver                        |
| 1705                                   |                 |                  |                     | 22,70     | 5.48                      | 48/                                   | 0.00                          | 78                                           | RA       | Nearly Costal Cle                   |
| 1710                                   |                 | v                | 2.5                 | 22,82     | 5.48                      | 4 27                                  | 0.00                          | 78                                           | 7        | Cao very tout                       |
| (24)                                   |                 |                  |                     | ~ alcer   | 2,10                      | Iral                                  | OL (O O                       | 100                                          | 5.3      |                                     |
| 1                                      |                 |                  |                     |           |                           |                                       |                               |                                              | 2, )     |                                     |
|                                        |                 |                  |                     |           |                           |                                       |                               |                                              |          |                                     |
|                                        |                 | V                | Cons                | noled     | 6                         | 0                                     |                               |                                              |          |                                     |
|                                        |                 | V                | /01                 | 1111      |                           | 210                                   |                               |                                              |          |                                     |
|                                        |                 |                  |                     |           |                           | 110                                   |                               |                                              |          |                                     |
|                                        |                 |                  |                     |           | 9.4                       | ,,,                                   |                               |                                              |          |                                     |
|                                        |                 |                  | pH CALIB            | RATION (c | hoose two                 | )                                     |                               | N                                            | lodel or | Unit No.:                           |
| Buffer Sol                             | ution           |                  |                     | pH 4.0    | pH 7.0                    | pH 10.0                               |                               |                                              |          |                                     |
| Field Tem                              | perature °C     |                  |                     |           |                           |                                       |                               |                                              |          |                                     |
| Instrumen                              | t Reading       |                  |                     |           |                           |                                       |                               |                                              |          |                                     |
|                                        |                 | CIFIC ELEC       | CTRICAL C           | ONDUCTA   | NCE (SEC)                 | - CALIBRATI                           | ON                            | N                                            | lodel or | Unit No.:                           |
| KCI Solutio                            |                 | μmhos/cm)        |                     |           | 1413 at 25°C              |                                       |                               |                                              |          |                                     |
|                                        | perature °C     |                  |                     |           |                           |                                       |                               |                                              |          |                                     |
| Instrument                             |                 |                  |                     |           |                           |                                       |                               |                                              |          |                                     |
| mod unien                              |                 | OX CALIBI        | PATION              |           | DISSOL                    | VED OXYGEN                            | CALIBRAT                      | ION N                                        | Intes:   | Boards around                       |
| Standard                               | Solution (m     |                  | ATION               | _         |                           |                                       |                               |                                              |          |                                     |
|                                        |                 |                  |                     |           | 1, 11                     |                                       |                               |                                              |          |                                     |
| C 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |                 |                  |                     |           | Instrument Pending (mg/L) |                                       |                               |                                              |          | 1 1                                 |
|                                        |                 |                  |                     |           | Model or Uni              | 200 - 0. 10 - 10 - 10 - 10            |                               |                                              | Tro      | nails sticking                      |
| Document1                              |                 |                  |                     |           |                           |                                       |                               | 0                                            | ut a     | AND COME                            |



| Well ID: APMW-3 Initial Depth to Water: |                         |                  |                     |           |                                                   |                           |         |         |                                            |                |  |  |
|-----------------------------------------|-------------------------|------------------|---------------------|-----------|---------------------------------------------------|---------------------------|---------|---------|--------------------------------------------|----------------|--|--|
| Sample ID                               | :                       | Dupl             | icate ID:           |           |                                                   |                           |         |         |                                            |                |  |  |
| Sample D                                | epth:~                  | 41'              |                     |           |                                                   |                           |         |         |                                            |                |  |  |
| Project an                              | d Task No               | .: 6706          | 150060              | 1         |                                                   | Well Dia                  | meter:  | 2"      |                                            |                |  |  |
| Project Na                              | ame: TM                 | PA - Gibl        | ons Creek           | ς         |                                                   |                           |         | Volume: |                                            |                |  |  |
| Date:                                   | June 12                 | ,2017            |                     |           |                                                   | (Circle o                 |         | Valumaa |                                            |                |  |  |
|                                         |                         |                  |                     |           |                                                   | (Official offic)          |         |         |                                            |                |  |  |
| Method of                               | f Purging:              | 1000             | flow                |           |                                                   | Total Casing/Borehole     |         |         |                                            |                |  |  |
| Method of                               | f Sampling              | : per            | istaltic            |           |                                                   | Volumes Removed:          |         |         |                                            |                |  |  |
| Time                                    | Intake<br>Depth         | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.     | (°C) (units) Conductance (mS/cm) Oxygen (mg/L) Re |                           |         |         | Remarks<br>(color, turbidity, and sediment |                |  |  |
| Low                                     | Flow Stab               | ilization Cr     | iteria              | +/- 3%    | +/- 0.1                                           | +/- 3%                    | +/- 10% | +/- 10% | NTW                                        |                |  |  |
| 1748                                    | ×41                     | ±150             |                     | 25.88     | 5.08                                              | 1.84                      | 3.61    | 195     | 0.0                                        | clear; no odor |  |  |
| 1753                                    | i                       | 1                |                     | 25.92     | 5,10                                              | 1.83                      | 2.93    | 192     | Ø.0                                        |                |  |  |
| 1758                                    |                         |                  |                     | 25.98     | 5.11                                              | 1.82                      | 2.68    | 189     | Ø.0                                        |                |  |  |
| 1803                                    |                         |                  |                     | 25.84     | 5.11                                              | 1.81                      | 2.56    | 189     | 9.0                                        |                |  |  |
| 1808                                    | 1808 V V 1.5            |                  |                     |           | 5.12                                              | 1.80                      | 2.52    | 188     | 0.0                                        | V              |  |  |
|                                         |                         |                  |                     |           | ampl                                              | es 70                     | rken-   |         |                                            |                |  |  |
| Buffer So                               | lution                  |                  | pH CALIB            | RATION (c | pH 7.0                                            |                           |         | N       | Model or                                   | Unit No.:      |  |  |
| Field Ten                               | nperature °             | С                |                     |           |                                                   |                           |         |         |                                            |                |  |  |
| Instrumer                               | nt Reading              |                  |                     |           |                                                   |                           |         |         |                                            |                |  |  |
|                                         | SPE                     | CIFIC ELE        | CTRICAL C           | ONDUCTA   | NCE (SEC                                          | ) - CALIBRAT              | ION     | 1       | Model or                                   | Unit No.:      |  |  |
| KCI Soluti                              | ion (μS/cm=             | =μmhos/cm        | )                   |           | 1413 at 25°0                                      | 12880 at 25               | 5°C     |         |                                            |                |  |  |
| Field Tem                               | perature °(             | 0                |                     |           |                                                   |                           |         |         |                                            |                |  |  |
| Instrumer                               | nt Reading              |                  |                     |           |                                                   |                           |         |         |                                            |                |  |  |
|                                         | ORP/REI                 | DOX CALIE        | RATION              |           | DISSOL                                            | VED OXYGEN                | CALIBRA | TION    | Notes:                                     |                |  |  |
| Standard Solution (mV)                  |                         |                  |                     |           | Altitude / Sa                                     | alinity %                 |         |         |                                            |                |  |  |
| Field Temperature °C                    |                         |                  |                     |           | Field Temperature °C                              |                           |         |         |                                            |                |  |  |
| Instrume                                | Instrument Reading (mV) |                  |                     |           |                                                   | Instrument Reading (mg/L) |         |         |                                            |                |  |  |
| Model or                                | Unit No.:               |                  |                     |           | Model or U                                        | nit No.:                  |         |         |                                            |                |  |  |
|                                         |                         |                  |                     |           |                                                   |                           |         |         |                                            |                |  |  |



|                                  | AN              |                  |                     |               |               |                                          |                               |                                           |              | Wileelei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|----------------------------------|-----------------|------------------|---------------------|---------------|---------------|------------------------------------------|-------------------------------|-------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Well ID:                         | AP 1            | MW-5             |                     |               | 4             | Initial Depth to Water:                  |                               |                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Sample ID:                       | 1               | Dup              | licate ID: _        |               |               | Depth to Water after Sampling: 11,35     |                               |                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Sample Dep                       | oth:            |                  | 2/10                | -0            |               | Total De                                 | epth to Well                  | :                                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Project and                      | Task No         | 61               | 06150               | 1000          |               | Well Dia                                 | ameter:                       | d                                         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Project Nam                      | ne: ///         | AGC              | MINE                |               |               | 1 Casing/Borehole Volume:(Circle one)    |                               |                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Sampled By                       |                 |                  |                     | A 1           |               | 4 Casing/Borehole Volumes:(Circle one)   |                               |                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Method of F                      |                 |                  | and I               | Tow 5         | ab            |                                          |                               |                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Method of S                      |                 | (                | 1                   | low 5         | ato           | Total Casing/Borehole Volumes Removed:   |                               |                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Timo                             | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units) | Specific<br>Electrical<br>Conductance    | Dissolved<br>Oxygen<br>(mg/L) | Oxidatio<br>Reduction<br>Potentia<br>(mV) | on (color, t | Remarks urbidity, and sediment)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 1800                             |                 | ~200             |                     | 23,57         | 3.39          | 5.67                                     | 0,00                          | 334                                       |              | very light HCg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 1805                             |                 |                  |                     | 23,41         | 3.37          | 5.76                                     | 0,00                          | 336                                       | 78.5         | very high rica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 1810                             |                 |                  |                     | 2324          | 3,36          | 5.78                                     | 0,00                          | 336                                       | 1            | Odar tading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 1815                             |                 | 8                | ~.3                 | 28,9          |               | 5,79                                     | 0.90                          | 333                                       |              | Nearly crysta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 1820                             |                 |                  |                     |               |               |                                          |                               | 30)                                       |              | odor nearly as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                                  |                 |                  |                     |               |               |                                          |                               |                                           | 1            | The state of the s |  |  |
|                                  |                 |                  | 6                   | A) a          |               | IOIE                                     |                               |                                           |              | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                  |                 |                  | 1                   | imple         | 0             | 1417                                     |                               |                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                  |                 |                  |                     | ٧             |               |                                          |                               |                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                  |                 |                  | 1                   | 1             |               | ,                                        |                               |                                           |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 1858                             |                 | EQB              | 450                 | n/00          | 61217         | taken                                    |                               |                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                  |                 |                  |                     | 1             |               |                                          |                               |                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                  |                 |                  |                     |               |               |                                          |                               |                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                  |                 |                  | pH CALIB            | RATION (      | choose two    |                                          |                               |                                           | Model or U   | Init No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Buffer Soluti                    | ion             |                  |                     | pH 4.0        | pH 7.0        | pH 10.0                                  |                               |                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Field Tempe                      | erature °C      | ;                |                     |               |               |                                          |                               |                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Instrument F                     | Reading         |                  |                     |               |               |                                          |                               |                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                  | SPE             | CIFIC ELEC       | CTRICAL C           | ONDUCTA       | ANCE (SEC)    | - CALIBRATI                              | ON                            |                                           | Model or U   | Jnit No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| KCI Solution                     | (μS/cm=         | μmhos/cm)        |                     |               | 1413 at 25°C  | 12880 at 25                              | °C                            |                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Field Tempe                      | rature °C       | 7                |                     |               |               |                                          |                               |                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Instrument R                     | Reading         |                  |                     |               |               |                                          |                               |                                           |              | - N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| C                                | RP/RED          | OX CALIBI        | RATION              |               | DISSOLV       | /ED OXYGEN                               | CALIBRAT                      | ION                                       | Notes:       | TU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Standard Solution (mV) Altitude  |                 |                  |                     |               |               | Altitude / Salinity % Lowest point = 15. |                               |                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Field Temperature °C Field Te    |                 |                  |                     |               |               | eld Temperature °C                       |                               |                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Instrument Reading (mV) Instrume |                 |                  |                     |               |               | strument Reading (mg/L)                  |                               |                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Model or Un                      | nit No.:        |                  |                     |               | Model or Uni  | t No.:                                   |                               | 1                                         | horiba       | not working                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Document1                        |                 |                  |                     |               |               |                                          |                               |                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |



| Well ID: _              |                 |                  |                     |               |                           | Initial Depth to Water:                          |                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |
|-------------------------|-----------------|------------------|---------------------|---------------|---------------------------|--------------------------------------------------|-------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|--|
|                         |                 |                  | licate ID:          |               |                           |                                                  | Water after                   |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |
|                         |                 | 22'              |                     |               |                           |                                                  | pth to Well                   |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |
|                         |                 |                  | 150060              | ,             |                           | Well Dia                                         | meter:                        | 2"                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |
|                         | 4               |                  | bons Cree           |               |                           | 1 Casing (Circle of                              | g/Borehole                    | Volume: _                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |
|                         |                 |                  |                     |               |                           | 4 Casing/Borehole Volumes:                       |                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |
| Sampled I               | Ву:             | 1                | 01                  |               |                           | (Circle o                                        | one)                          | voidines.                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |
|                         |                 |                  | flow                |               |                           | Total Casing/Borehole Volumes Removed:           |                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |
| Method of               | Sampling        | j: <u>per</u>    | istaltic            |               |                           |                                                  |                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |
| Time                    | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)             | Specific<br>Electrical<br>Conductance<br>(µS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation<br>Reduction<br>Potential<br>(mV) | (color,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Remarks<br>turbidity, and sediment) |  |  |
| 0948                    | 22'             | 4150             |                     | 25.31         | 3.96                      | 13.5                                             | 3.40                          | 440                                         | A STATE OF THE PARTY OF THE PAR | Too clear; no odor                  |  |  |
| 0953                    | 1               | 1                |                     | 25,40         | 3,97                      | 13.6                                             | 3,07                          | 446                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |  |  |
| 6958                    |                 |                  |                     | 25.56         | 3.98                      | 13.5                                             | 2.78                          | 438                                         | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |  |  |
| 1003                    | V               | V                |                     | 25.57         | 3.99                      | 13.5                                             | 2.70                          | 434                                         | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V                                   |  |  |
| _                       |                 | _<               |                     | /             | 1                         |                                                  |                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |
|                         |                 | _                | ampl                | es            | Tak                       | en                                               |                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |
|                         |                 |                  | 1                   |               |                           |                                                  |                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |
|                         |                 |                  |                     |               |                           |                                                  |                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |
|                         |                 |                  |                     |               |                           |                                                  |                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |
|                         |                 |                  |                     |               |                           |                                                  |                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |
|                         |                 |                  |                     |               |                           |                                                  |                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |
|                         |                 |                  |                     |               |                           |                                                  |                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |
|                         |                 |                  |                     |               |                           |                                                  |                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |
|                         |                 | - H              | pH CALIBI           |               | hoose two                 |                                                  |                               |                                             | Model or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unit No.:                           |  |  |
| Buffer Soli             | ution           |                  |                     | pH 4.0        | pH 7.0                    | pH 10.0                                          |                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |
| Field Tem               | perature °C     | 0                |                     |               |                           |                                                  |                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |
| Instrument              | t Reading       |                  |                     |               |                           |                                                  |                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |
|                         | SPE             | CIFIC ELEC       | CTRICAL CO          | ONDUCTA       | NCE (SEC)                 | - CALIBRATIO                                     | ON                            |                                             | Model or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unit No.:                           |  |  |
| KCI Solutio             | n (μS/cm=       | μmhos/cm)        |                     |               | 1413 at 25°C              | 12880 at 25°                                     | C                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |
| Field Temp              | erature °C      |                  |                     |               |                           |                                                  |                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |
| Instrument              |                 |                  |                     |               |                           |                                                  |                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |
|                         | ORP/RED         | OX CALIBI        | RATION              | - T 1 9       | DISSOL                    | VED OXYGEN                                       | CALIBRAT                      | ION                                         | Notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |  |  |
| Standard S              |                 |                  |                     | F             | Altitude / Sa             |                                                  |                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |
| Field Temperature °C Fi |                 |                  |                     |               | Field Temperature °C      |                                                  |                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |
| Instrument Reading (mV) |                 |                  |                     |               | Instrument Reading (mg/L) |                                                  |                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |
| Model or U              |                 |                  |                     |               | Model or Unit No.:        |                                                  |                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |
| Dogument 1              |                 |                  |                     |               |                           |                                                  |                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |



| Well ID: _  | MNW                       | 18         |                     |          |                    | Initial Depth to Water:                          |                               |                                           |            |                                         |  |  |
|-------------|---------------------------|------------|---------------------|----------|--------------------|--------------------------------------------------|-------------------------------|-------------------------------------------|------------|-----------------------------------------|--|--|
|             |                           |            | licate ID: _        |          |                    |                                                  | o Water afte                  |                                           |            | 2 13,72                                 |  |  |
| Sample D    | epth:                     |            |                     |          |                    | Total De                                         | epth to Wel                   | l:                                        |            |                                         |  |  |
| Project an  | d Task No                 | 6701       | 61500               | 0        |                    | Well Dia                                         | ameter: H                     | "                                         |            |                                         |  |  |
| Project Na  | ame: 1/                   | MA G       | C M                 | ne CC    | IR_                | 1 Casin                                          | g/Borehole                    | Volume:                                   |            |                                         |  |  |
| Date:       | 6-13                      | -17        |                     |          |                    | (Circle one) 4 Casing/Borehole Volumes:          |                               |                                           |            |                                         |  |  |
| Sampled I   | By: <u></u>               | · M        | <u> </u>            |          |                    | 4 Casin<br>(Circle                               |                               | Volumes                                   | :          |                                         |  |  |
| Method of   | f Purging:                | Law        | flow s              | sub      |                    |                                                  | asing/Borel                   | nole                                      |            | ,                                       |  |  |
| Method of   | f Sampling                | : Lan/ 7   | 1 aw 50             | nb-      |                    |                                                  | s Removed                     |                                           |            |                                         |  |  |
| Time        | Time Intake Rate (ml/min) |            | Cum. Vol.<br>(gal.) | Temp.    | pH<br>(units)      | Specific<br>Electrical<br>Conductance<br>(μS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidatio<br>Reduction<br>Potentia<br>(mV) | n (color t | Remarks<br>urbidity, and sediment)      |  |  |
| 0.445       |                           | ~150       |                     | 22,09    | 6.87               | 4.93                                             | 000                           | -100                                      | 0,51       | Amost Crystil                           |  |  |
| 0950        |                           |            |                     | 22,07    | 6.93               | 4 92                                             | 0.00                          | -122                                      | -          | 100000000000000000000000000000000000000 |  |  |
| 0955        |                           |            |                     | 22,03    | 6.94               | 491                                              | 0.00                          | -126                                      | 1100       |                                         |  |  |
| 9000        |                           |            |                     | 22.14    | PAF                | 4.90                                             | 9.00                          | -128                                      |            |                                         |  |  |
| 1005        |                           |            | 2,5                 | 21.91    | 6,95               | 4.87                                             | 0.00                          | -130                                      |            |                                         |  |  |
| 1           |                           |            | - Ji                | -11.7.   | - 175              | 1.00                                             |                               |                                           | , 5,1      |                                         |  |  |
|             |                           |            |                     |          |                    | 9 4                                              |                               |                                           |            |                                         |  |  |
| 1           |                           |            | 0                   | 1        | 1                  |                                                  | A -                           | _                                         |            | -                                       |  |  |
|             |                           | 1          | 51                  | MOR      | 10                 |                                                  |                               | 5                                         |            | -                                       |  |  |
|             |                           | V          | 100                 | Ac       |                    |                                                  |                               |                                           |            |                                         |  |  |
|             |                           |            |                     |          | 18                 |                                                  |                               |                                           |            |                                         |  |  |
|             |                           |            |                     |          | 1                  |                                                  |                               | 21                                        |            |                                         |  |  |
|             |                           |            |                     |          |                    |                                                  |                               | 1                                         | l          |                                         |  |  |
|             |                           |            | pH CALIB            | RATION ( | choose two         |                                                  |                               |                                           | Model or l | Unit No.:                               |  |  |
| Buffer Sol  | ution                     |            | -                   | pH 4.0   | pH 7.0             | pH 10.0                                          |                               |                                           |            |                                         |  |  |
| Field Tem   | perature °C               | ;          |                     |          |                    |                                                  |                               |                                           |            |                                         |  |  |
| Instrumen   | t Reading                 |            |                     |          |                    |                                                  |                               |                                           |            |                                         |  |  |
|             |                           | CIFIC ELEC | CTRICAL C           | ONDUCTA  | ANCE (SEC)         | - CALIBRATI                                      | ION                           |                                           | Model or l | Unit No.:                               |  |  |
| KCI Solutio |                           | μmhos/cm)  |                     |          | 1413 at 25°C       |                                                  |                               |                                           |            |                                         |  |  |
|             | perature °C               |            |                     |          |                    |                                                  |                               |                                           |            | 11                                      |  |  |
| Instrument  |                           |            |                     |          |                    |                                                  |                               |                                           |            | 0.01                                    |  |  |
| mot union   |                           | OX CALIBI  | RATION              |          | DISSOLV            | VED OXYGEN                                       | CALIBRAT                      | ION                                       | Notes:     |                                         |  |  |
| Standard :  | Solution (m               |            |                     |          | Altitude / Sal     |                                                  |                               | A                                         | 470        |                                         |  |  |
|             |                           |            |                     |          |                    | Field Temperature °C                             |                               |                                           |            | ensor No                                |  |  |
|             |                           |            |                     |          |                    | Field Temperature °C  Instrument Reading (mg/L)  |                               |                                           |            |                                         |  |  |
| Model or U  |                           |            |                     |          | Model or Unit No.: |                                                  |                               |                                           |            |                                         |  |  |
|             |                           |            |                     |          |                    |                                                  |                               |                                           |            |                                         |  |  |



| Well ID:    | AP-1                                         | NW-11            |                     |               |               | Initial Depth to Water:                          |                               |                                              |         |                                     |  |  |
|-------------|----------------------------------------------|------------------|---------------------|---------------|---------------|--------------------------------------------------|-------------------------------|----------------------------------------------|---------|-------------------------------------|--|--|
|             |                                              |                  | licate ID: _        |               | 13.00         |                                                  |                               |                                              |         |                                     |  |  |
| Sample D    | onth:                                        |                  |                     |               |               |                                                  |                               |                                              |         |                                     |  |  |
| Project ar  | nd Task No                                   | 670              | 6150                | 060           |               | Well Dia                                         | pth to Well<br>meter:         | 2"                                           |         |                                     |  |  |
| Project N   | ame: $\boxed{\mathcal{M}}$                   | PA GC            | Mino                | , CC          | R             | 1 Casing                                         | /Borehole                     |                                              |         |                                     |  |  |
|             | -13-1                                        |                  |                     |               |               | (Circle one)  4 Casing/Borehole Volumes:         |                               |                                              |         |                                     |  |  |
| Sampled     | By: <u>5</u>                                 | CM               | £1                  |               | - [           | 4 Casing/Borehole Volumes:(Circle one)           |                               |                                              |         |                                     |  |  |
| Method o    | f Purging:                                   | bar              | 1 11                | ow 50         |               |                                                  | sing/Boreh                    |                                              |         |                                     |  |  |
| Method o    | f Sampling                                   | : Lau            | 5 / 10              | w Ju          | .b            | Volumes                                          | s Removed:                    | -                                            |         |                                     |  |  |
| Time        | Intake<br>Depth                              | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units) | Specific<br>Electrical<br>Conductance<br>(AS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) |         | Remarks<br>turbidity, and sediment) |  |  |
| 1520        | 520 -200 2647 5                              |                  |                     |               |               | 1.89                                             | 2,02                          | 221                                          | 124     | Dirgining Clary                     |  |  |
| 1525        |                                              |                  |                     | 2553          | 5,63          | 1,92                                             | 1.52                          | 193                                          | 161     |                                     |  |  |
| 1530        |                                              |                  |                     | 35.50         | 5.62          | 1,93                                             | 1.17                          | 167                                          | 35.4    | Clearer bit                         |  |  |
| 1535        |                                              |                  |                     | 25.35         | 5.62          | 1.94                                             | 1.03                          | 155                                          | 15.0    |                                     |  |  |
| 1540        |                                              | ~                | 3.0                 | 2531          | 5,62          | 1,95                                             | 0,95                          | 148                                          | 6.8     | Very clear                          |  |  |
| 1           |                                              |                  |                     |               | 2             |                                                  |                               |                                              |         |                                     |  |  |
|             |                                              |                  |                     |               | 0             |                                                  |                               |                                              |         |                                     |  |  |
|             |                                              |                  |                     |               |               |                                                  | 156                           | -0                                           |         |                                     |  |  |
|             |                                              |                  | <b>?</b>            | 101           | 100           | 100                                              | 15                            | 9                                            |         |                                     |  |  |
|             |                                              |                  |                     |               |               |                                                  |                               |                                              |         |                                     |  |  |
|             |                                              |                  |                     |               | 1             |                                                  |                               |                                              |         |                                     |  |  |
|             |                                              |                  |                     |               | 244           |                                                  |                               |                                              |         |                                     |  |  |
|             |                                              |                  | PH CALIB            | PATION (      | choose two)   |                                                  |                               | l n                                          | Andel o | r Unit No.:                         |  |  |
| Buffer So   | lution                                       |                  | pri OALID           |               | pH 7.0        |                                                  |                               |                                              | noder o | one no.                             |  |  |
| 1000        | perature °C                                  | :                |                     | -             | 1             | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1          |                               |                                              |         |                                     |  |  |
|             | nt Reading                                   |                  |                     |               |               |                                                  |                               |                                              |         |                                     |  |  |
| modumen     |                                              | CIFIC FLF        | CTRICAL C           | ONDUCTA       | NCE (SEC)     | - CALIBRATI                                      | ON                            | ı                                            | Model o | r Unit No.:                         |  |  |
| KCI Soluti  | on (μS/cm=                                   |                  |                     |               | 1413 at 25°C  | 12880 at 25                                      |                               |                                              |         | V. messar barr.                     |  |  |
|             | perature °C                                  | 1                |                     |               |               |                                                  |                               |                                              |         |                                     |  |  |
| Instrumen   |                                              |                  |                     |               |               |                                                  |                               |                                              |         |                                     |  |  |
| instrumen   |                                              | OY CALIB         | RATION              |               | DISSOLV       | /ED OXYGEN                                       | CALIBRAT                      | ION                                          | Notes:  |                                     |  |  |
| Standard    | ORP/REDOX CALIBRATION Standard Solution (mV) |                  |                     |               |               |                                                  | CALIBRAT                      | .511                                         |         |                                     |  |  |
|             | Field Temperature °C                         |                  |                     |               |               | Altitude / Salinity % Field Temperature °C       |                               |                                              |         |                                     |  |  |
|             | Instrument Reading (mV)                      |                  |                     |               |               | Instrument Reading (mg/L)                        |                               |                                              |         |                                     |  |  |
| \           | 01                                           |                  |                     |               |               | Model or Unit No.:                               |                               |                                              |         |                                     |  |  |
| 7,19,119,11 | 0, 174.0                                     |                  |                     |               |               |                                                  |                               |                                              |         |                                     |  |  |
|             |                                              |                  |                     |               |               |                                                  |                               |                                              | _       |                                     |  |  |



|              | 6               | SCA              | AA: /               |               |                           |                                                                     |                               |                                           | -1.5       | wheeler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|--------------|-----------------|------------------|---------------------|---------------|---------------------------|---------------------------------------------------------------------|-------------------------------|-------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Well ID: _   | 74              | 131              | MW                  | D .           | 2                         | Initial Depth to Water: 27.34  Depth to Water after Sampling: 29.20 |                               |                                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              |                 |                  | licate ID:          | Dup           | 0                         |                                                                     |                               |                                           |            | Section 1 and 1 an |  |  |
|              | epth:           |                  | 6 15006             | CA            |                           | Total De                                                            | epth to Wel                   | 0//                                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Project al   | ama: TM         | A A              | Min                 | - ((          | P                         | Total Depth to Well: Well Diameter:                                 |                               |                                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              | 6-13-           |                  |                     |               |                           | 1 Casing/Borehole Volume:(Circle one)                               |                               |                                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              | By: <u></u>     |                  |                     |               |                           | 4 Casin                                                             | g/Borehole                    | Volumes:                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              |                 |                  | 1 flow              | 5ub           |                           | (Circle o                                                           |                               |                                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              |                 |                  | w flav              | -             |                           |                                                                     | sing/Borel<br>s Removed       |                                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Time         | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)             | Specific<br>Electrical<br>Conductance<br>(AS/cm)                    | Dissolved<br>Oxygen<br>(mg/L) | Oxidation<br>Reductio<br>Potentia<br>(mV) | n (color   | Remarks<br>turbidity, and sediment)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 1755         | C               | 150              |                     | 25.79         | 4.15                      | 8.45                                                                | 1.07                          | 278                                       | 575        | Light tan-cla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 1800         |                 |                  |                     | 25,22         | 4.17                      | 8.49                                                                | 0,89                          | 277                                       | 358        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 1805         | 805 25.8        |                  |                     |               |                           | 8.49                                                                | 0.85                          | 280                                       | 310        | Much clearer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 1810         |                 | -200             |                     | 25,99         | 4.15                      | 8,35                                                                | 0.83                          | 284                                       | 245        | Bumped up rate s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 1815         |                 |                  |                     | 2538          | 4.15                      | 8,42                                                                | 0.80                          | 284                                       | 118        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 1820         |                 |                  |                     | 25,33         | 4.16                      | 8.48                                                                | 0.78                          | 283                                       | 71,3       | very light tan-a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 1825         |                 |                  | ~3,5                | 25.17         | 4.16                      | 8.47                                                                | 0,75                          | 284                                       | 48.1       | very faintly clave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| CESON N      |                 |                  |                     |               |                           |                                                                     |                               |                                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              |                 |                  |                     |               | 1                         |                                                                     |                               |                                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              |                 |                  | 5                   | MOL           | 1                         | 218                                                                 | 25                            |                                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              |                 |                  | 100                 | . Are         | , (                       | 210                                                                 |                               |                                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              |                 |                  | _                   | - 4           |                           |                                                                     |                               |                                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              |                 |                  | pH CALIB            | RATION (c     | hoose two)                |                                                                     |                               |                                           | Model or   | Unit No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Buffer Sol   | ution           |                  |                     | pH 4.0        | pH 7.0                    | pH 10.0                                                             |                               |                                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Field Tem    | perature °C     |                  |                     |               |                           | -                                                                   |                               |                                           |            | · F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Instrumen    | t Reading       |                  |                     |               |                           |                                                                     |                               |                                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              | SPEC            | CIFIC ELEC       | TRICAL CO           | ONDUCTAI      | NCE (SEC)                 | - CALIBRATIO                                                        | ON                            |                                           | Model or   | Unit No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| KCI Solution | on (μS/cm=μ     | umhos/cm)        |                     | 1             | 413 at 25°C               | 12880 at 25°                                                        | °C                            |                                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Field Temp   | erature °C      |                  |                     |               |                           |                                                                     |                               |                                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Instrument   | Reading         |                  |                     |               |                           |                                                                     |                               |                                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|              | ORP/RED         | OX CALIBR        | RATION              |               | DISSOLV                   | ED OXYGEN                                                           | CALIBRAT                      | ION                                       | Notes: N   | TU increasing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Standard     | Solution (m     | V)               |                     | A             | ltitude / Sali            | nity %                                                              |                               | C                                         | T like     | tomp cranked                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Field Tem    | perature °C     |                  |                     | F             | Field Temperature °C      |                                                                     |                               |                                           | the par    | mp rate then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|              | t Reading (ı    | mV)              |                     |               | Instrument Reading (mg/L) |                                                                     |                               |                                           | gaing down |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Model or l   | Jnit No.:       |                  |                     | IV            | lodel or Unit             | No.:                                                                |                               |                                           | after f    | irst reading)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Document1    |                 | . /              | /                   |               |                           |                                                                     |                               |                                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |

EQBK/SCM/061317 Taken @ 1915



| M-II ID-     | SFL-                      | Mile             | 7                   |          |                                               |                                       |                               | -                                           | 60       | wheeler 8                           |
|--------------|---------------------------|------------------|---------------------|----------|-----------------------------------------------|---------------------------------------|-------------------------------|---------------------------------------------|----------|-------------------------------------|
|              |                           |                  |                     |          |                                               |                                       | epth to Wa                    |                                             | 0,00     | 18,71                               |
|              | D:                        |                  | licate ID: _        |          | _                                             |                                       | o Water afte                  |                                             |          |                                     |
| Project a    | Depth:<br>nd Task No      | 670              | 6 1500              | 10       |                                               | lotal De                              | eptn to wel                   | 2"                                          |          |                                     |
|              | lame: 1                   |                  |                     |          |                                               |                                       |                               |                                             |          |                                     |
|              | 6-14                      | -                |                     | (PL      |                                               | (Circle                               | g/Borehole<br>one)            | volume: _                                   |          |                                     |
|              | ву: 30                    |                  |                     |          |                                               | 4 Casin                               | g/Borehole                    | Volumes:                                    |          |                                     |
|              | of Purging:               |                  | flow.               | Site     |                                               | (Circle                               |                               |                                             |          |                                     |
|              | of Sampling               |                  |                     | N JUD    |                                               |                                       | asing/Borel<br>s Removed      |                                             |          |                                     |
| Time         | Intake<br>Depth           | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.    | pH<br>(units)                                 | Specific<br>Electrical<br>Conductance | Dissolved<br>Oxygen<br>(mg/L) | Oxidation<br>Reduction<br>Potential<br>(mV) | (color t | Remarks<br>surbidity, and sediment) |
| 1005         | ~                         | 250              |                     | 24,71    | 4.53                                          | 10.9                                  | 1.47                          | 312                                         | 11.6     | Vela Cear                           |
| 1019         |                           |                  |                     | 24.20    | 4.51                                          | 10.9                                  | 113                           | 304                                         | 2.3      | 7(9)                                |
| 1015         |                           |                  |                     | 24.89    | 4.50                                          | 10.9                                  | 0.99                          | 304                                         | 0,0      |                                     |
| 1020         |                           |                  |                     | 24.60    | 4.47                                          | 10.9                                  | 0,20                          | 305                                         |          | Clysial clean                       |
| 1025         |                           |                  |                     | 24.68    | 4.44                                          | 11.0                                  | 083                           | 310                                         | 0.0      | 1 195 1 516                         |
| 1030         | -3.0 21.64 4.44 10.9 0.81 |                  |                     |          |                                               | 310                                   | 0.0                           |                                             |          |                                     |
|              |                           |                  |                     |          |                                               | 10.7                                  | Chai                          | 3.0                                         |          |                                     |
|              | Sample                    |                  |                     |          |                                               | 030                                   |                               | ,                                           |          |                                     |
|              |                           | <u> </u>         | pH CALIB            | RATION ( | choose two)                                   |                                       |                               |                                             | Model or | Unit No.:                           |
| Buffer Sol   | lution                    |                  |                     | pH 4.0   | pH 7.0                                        | pH 10.0                               |                               |                                             |          |                                     |
| Field Tem    | perature °C               | ;                |                     |          |                                               |                                       |                               |                                             |          |                                     |
| Instrumen    | nt Reading                |                  |                     |          |                                               |                                       |                               |                                             |          |                                     |
|              |                           |                  | CTRICAL C           | ONDUCTA  | ANCE (SEC)                                    | - CALIBRATI                           | ON                            |                                             | Model or | Unit No.:                           |
| KCI Solution | on (μS/cm=                | μmhos/cm)        |                     |          | 1413 at 25°C                                  | 12880 at 25                           | °C                            |                                             |          |                                     |
| Field Tem    | perature °C               |                  |                     |          |                                               |                                       |                               |                                             |          |                                     |
| Instrument   |                           |                  |                     |          |                                               |                                       |                               |                                             |          |                                     |
|              |                           | OX CALIBR        | RATION              |          |                                               | ED OXYGEN                             | CALIBRAT                      | ION                                         | Notes:   |                                     |
|              |                           |                  |                     |          |                                               | nity %                                |                               |                                             |          |                                     |
|              |                           |                  |                     |          | Field Temperature °C                          |                                       |                               |                                             |          |                                     |
|              | nt Reading (              | mV)              |                     |          | Instrument Reading (mg/L)  Model or Unit No.: |                                       |                               |                                             |          |                                     |
| Model or     | Unit No.:                 |                  |                     |          | viodel or Unit                                | t No.:                                |                               | -                                           |          |                                     |
| Document1    |                           |                  |                     |          |                                               |                                       |                               |                                             |          |                                     |



|                              |                 |                                  |                     |               |                                      |                                                  |                               |                                              |          | 111100101                           |  |  |
|------------------------------|-----------------|----------------------------------|---------------------|---------------|--------------------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|----------|-------------------------------------|--|--|
| Well ID: _                   | SSPA            | 1W-2                             |                     |               | Initial Depth to Water: <u>21.78</u> |                                                  |                               |                                              |          |                                     |  |  |
| Sample ID                    | ):              | Dup                              | licate ID: _        |               |                                      |                                                  |                               |                                              |          |                                     |  |  |
|                              |                 |                                  |                     |               |                                      | Total De                                         | epth to Well                  | : 46.9                                       | ,        |                                     |  |  |
| Project an                   | d Task No       | 6706                             | 150060              |               |                                      | Well Dia                                         | meter: 2                      | H                                            |          |                                     |  |  |
|                              |                 |                                  | bons Cree           |               |                                      | 1 Casing<br>(Circle o                            | g/Borehole                    | Volume: _                                    |          |                                     |  |  |
|                              |                 |                                  |                     |               |                                      | 4 Casing/Borehole Volumes:                       |                               |                                              |          |                                     |  |  |
| Sampled I                    | By:             | 1                                | Λí                  |               |                                      | (Circle o                                        | one)                          | volumes                                      |          |                                     |  |  |
|                              |                 | lon                              |                     |               | <del></del>                          |                                                  | asing/Boreh                   |                                              |          |                                     |  |  |
| Method of                    | Sampling        | j:Su                             | bmersible           | e             |                                      | Volume                                           | s Removed                     | :                                            |          |                                     |  |  |
| Time                         | Intake<br>Depth | Rate<br>(ml/min)                 | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)                        | Specific<br>Electrical<br>Conductance<br>(µS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color,  | Remarks<br>turbidity, and sediment) |  |  |
| 1004                         | 44.5            | 4.5 \$200 24.66 4.90 10.0 3.08 1 |                     |               |                                      |                                                  |                               |                                              | 140      | It. tan ; no odor                   |  |  |
| 1009                         | 1               | 1                                |                     | 24.81         | 4.89                                 | 9.96                                             | 2.60                          | 131                                          | 184      |                                     |  |  |
| 1014                         |                 |                                  |                     | 24.77         | 4.85                                 | 9.92                                             | 2.49                          | 146                                          | 187      |                                     |  |  |
| 1019                         |                 |                                  |                     | 24,83         | 4.83                                 | 9.90                                             | 2.48                          | 161                                          | 156      |                                     |  |  |
| 1024                         |                 |                                  |                     | 25.07         | 4.79                                 | 9.89                                             | 2.54                          | 177                                          | 140      |                                     |  |  |
| 1029                         |                 |                                  |                     |               | 4.78                                 | 9.87                                             | 2.58                          | 188                                          | 104      |                                     |  |  |
| 1034                         | V               | V                                | ≈ 2,5               | 25.40         | 6 4.76                               | 9,86                                             | 2.59                          | 197                                          | 940      | V                                   |  |  |
| -                            |                 |                                  |                     | 1             | 1                                    | 1                                                |                               |                                              |          |                                     |  |  |
|                              |                 | (                                | Dam                 | ples          | s la                                 | ken-                                             |                               |                                              |          |                                     |  |  |
|                              |                 |                                  |                     |               |                                      |                                                  |                               |                                              |          |                                     |  |  |
|                              |                 |                                  |                     |               |                                      |                                                  |                               |                                              |          |                                     |  |  |
|                              |                 |                                  |                     |               |                                      |                                                  |                               |                                              |          |                                     |  |  |
|                              |                 |                                  | pH CALIB            | RATION        | (choose two                          | )                                                |                               | N                                            | lodel or | Unit No.:                           |  |  |
| Buffer Sol                   | ution           |                                  |                     | pH 4.0        | pH 7.0                               | pH 10.0                                          |                               |                                              |          |                                     |  |  |
| Field Tem                    | perature °0     | 0                                |                     |               |                                      |                                                  |                               |                                              |          |                                     |  |  |
| Instrumen                    | t Reading       |                                  |                     |               |                                      |                                                  |                               |                                              |          |                                     |  |  |
|                              | SPE             | CIFIC ELEC                       | CTRICAL C           | ONDUCT        | ANCE (SEC)                           | - CALIBRATI                                      | ON                            | N                                            | lodel or | Unit No.:                           |  |  |
| KCI Solutio                  | on (μS/cm=      | μmhos/cm)                        |                     |               | 1413 at 25°C                         | 12880 at 25                                      | °C                            |                                              |          |                                     |  |  |
| Field Temp                   | perature °C     | ;                                |                     |               |                                      |                                                  |                               |                                              |          |                                     |  |  |
| Instrument                   | Reading         | Ş.                               |                     |               |                                      |                                                  |                               |                                              |          |                                     |  |  |
|                              | ORP/RED         | OX CALIBI                        | RATION              |               | DISSOL                               | VED OXYGEN                                       | CALIBRAT                      | ION N                                        | lotes:   |                                     |  |  |
| Standard Solution (mV) Altit |                 |                                  |                     |               |                                      | inity %                                          |                               | F                                            | ad bea   | inning to crack                     |  |  |
| Field Temperature °C Fie     |                 |                                  |                     |               | Field Temperature °C Poor recharge   |                                                  |                               |                                              |          | echarae                             |  |  |
| Instrument Reading (mV)      |                 |                                  |                     |               | Instrument Reading (mg/L)            |                                                  |                               |                                              |          |                                     |  |  |
| Model or Unit No.:           |                 |                                  |                     |               | Model or Un                          | it No.:                                          |                               |                                              |          |                                     |  |  |
| D                            |                 |                                  |                     |               |                                      |                                                  |                               |                                              | -        |                                     |  |  |



| Well ID:           | ST                   | La M               | W-2                 |               |                           | Initial Depth to Water:                          |                               |                                              |            |                                   |  |  |
|--------------------|----------------------|--------------------|---------------------|---------------|---------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|------------|-----------------------------------|--|--|
| Sample ID          | ):                   | Dup                | licate ID: _        |               |                           | Depth to Water after Sampling:                   |                               |                                              |            |                                   |  |  |
| Sample D           | enth:                |                    |                     |               |                           | Total De                                         | pth to Well                   | :                                            |            |                                   |  |  |
| Project ar         | nd Task No           | 670                | 61500               | 60            |                           | Well Dia                                         | meter:                        | 3"                                           |            |                                   |  |  |
| Project Na         |                      | MPA G              | SC M                |               | CR                        | 1 Casing/Borehole Volume:(Circle one)            |                               |                                              |            |                                   |  |  |
|                    | Ву:                  | - 10               | £                   |               |                           | 4 Casing/Borehole Volumes:(Circle one)           |                               |                                              |            |                                   |  |  |
| Method of          | Purging:             | - Law              | 114                 | N SUI         | <u> </u>                  |                                                  | sing/Boreh                    | nole                                         |            |                                   |  |  |
| Method of          | f Sampling           | : Law              | Har                 | Sub           |                           | Volumes Removed:                                 |                               |                                              |            |                                   |  |  |
| Time               | Intake<br>Depth      | Rate<br>(ml/min)   | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)             | Specific<br>Electrical<br>Conductance<br>(AS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color, tu | Remarks<br>urbidity, and sediment |  |  |
| 1105               |                      | ~200               |                     | 24,05         | 5,75                      | 7,93                                             | 1,54                          | 245                                          | 205        | Shight by Claver                  |  |  |
| 1110               |                      |                    |                     | 24.47         | 5.81                      | 10.0                                             | 0.98                          | 223                                          | 38.2       | rlearing                          |  |  |
| 1115               |                      |                    |                     | 24.39         | 5.91                      | 10:1                                             | 0.87                          | 186                                          | 12.8       |                                   |  |  |
| 1120               |                      |                    |                     | 24,61         | 5,99                      | 19,1                                             | 0.80                          | 164                                          | 6,2        |                                   |  |  |
| 1125               |                      |                    | 20                  | 2967          | 6.03                      | 19,1                                             | 0.77                          | 154                                          | 3,1        |                                   |  |  |
| 1130               | 1130 ~30 24.72 6     |                    |                     |               |                           | 19,1                                             | 0.74                          | 147                                          | 2,0        | Clystal Clear                     |  |  |
|                    |                      |                    |                     |               |                           |                                                  |                               |                                              |            |                                   |  |  |
| $\overline{}$      |                      |                    |                     | 1             | 1                         | / / /                                            |                               |                                              |            |                                   |  |  |
|                    |                      |                    | 5                   | avro e        | 0/0                       | 0 15                                             | 9                             |                                              |            |                                   |  |  |
|                    |                      |                    |                     | T             | C                         | 11.                                              |                               |                                              |            |                                   |  |  |
| 1255               | FA                   | BK/s               | SCM/C               | 1614          | 7                         | Taken                                            | a 1                           | 255                                          | )          |                                   |  |  |
| 1000               |                      | VY                 | pH CALIB            | RATION (c     | hoose two                 |                                                  |                               | M                                            | lodel or U | Init No.:                         |  |  |
| Buffer Sol         | ution                |                    |                     | pH 4.0        | pH 7.0                    | pH 10.0                                          |                               |                                              | 1          |                                   |  |  |
| Field Tem          | perature °C          | ;                  |                     |               |                           |                                                  |                               |                                              |            |                                   |  |  |
| Instrumen          |                      |                    |                     |               |                           |                                                  |                               |                                              |            |                                   |  |  |
|                    | SPE                  | CIFIC ELEC         | CTRICAL C           | ONDUCTA       | NCE (SEC)                 | - CALIBRATI                                      | ON                            | IV                                           | lodel or U | Init No.:                         |  |  |
| KCI Solutio        | n (μS/cm=            | μ <b>mhos/cm</b> ) |                     |               | 1413 at 25°C              | 12880 at 25°                                     | °C                            |                                              |            |                                   |  |  |
| Field Temp         | erature °C           |                    |                     |               |                           |                                                  |                               |                                              |            |                                   |  |  |
| Instrument         | Reading              |                    |                     |               |                           |                                                  |                               |                                              |            |                                   |  |  |
|                    | ORP/RED              | OX CALIBI          | RATION              |               | DISSOL                    | /ED OXYGEN                                       | ION N                         | lotes:                                       |            |                                   |  |  |
| Standard           |                      |                    |                     |               |                           | inity %                                          |                               |                                              |            |                                   |  |  |
| Field Tem          | Field Temperature °C |                    |                     |               |                           | Field Temperature °C                             |                               |                                              |            |                                   |  |  |
| Instrumen          | t Reading (          | mV)                |                     | Ir            | Instrument Reading (mg/L) |                                                  |                               |                                              |            |                                   |  |  |
| Model or Unit No.: |                      |                    |                     |               |                           | t No.:                                           |                               |                                              |            |                                   |  |  |



| Sample ID: Duplicate ID: Depth to Water after Sampling: 36.36  Sample Depth: Total Depth to Well: Total Depth to Well: Well Diameter: |                                       |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|--|--|--|--|
| Project and Task No.: 6706150060 Well Diameter: 2"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |  |  |  |  |  |  |
| TANDO ALL O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 Casing/Borehole Volume:(Circle one) |  |  |  |  |  |  |
| Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |  |  |  |  |  |  |
| Sampled By: 4 Casing/Borehole Volumes:(Circle one)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |  |  |  |  |  |  |
| Method of Purging: 10w flow Total Casing/Borehole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |  |  |  |  |  |  |
| Method of Sampling: Volumes Removed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Remarks<br>oldity, and sediment)      |  |  |  |  |  |  |
| 1129 49.0' \$300 26.12 6.26 5.60 3.60 61 44.3 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | clear; no odor                        |  |  |  |  |  |  |
| 1134   26.22 6.26 5.66 8.62 54 27.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                     |  |  |  |  |  |  |
| 1139 26,45 6.26 5.65 3.34 51 25.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |  |  |  |  |  |  |
| 1144 26.72 6.26 5.65 2.20 48 21.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |  |  |  |  |  |  |
| 1149 V × 2.0 27.02 6.26 5.64 2.13 45 19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V                                     |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |  |  |  |  |  |  |
| Dample'S Taken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~                                     |  |  |  |  |  |  |
| 1255 - EQBK-BJG-061417 taken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |  |  |  |  |  |  |
| pH CALIBRATION (choose two) Model or Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t No.:                                |  |  |  |  |  |  |
| Buffer Solution pH 4.0 pH 7.0 pH 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |  |  |  |  |  |  |
| Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |  |  |  |  |  |  |
| Instrument Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |  |  |  |  |  |  |
| SPECIFIC ELECTRICAL CONDUCTANCE (SEC) – CALIBRATION Model or Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | it No.:                               |  |  |  |  |  |  |
| KCI Solution (μS/cm=μmhos/cm) 1413 at 25°C 12880 at 25°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |  |  |  |  |  |  |
| Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |  |  |  |  |  |  |
| Instrument Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |  |  |  |  |  |  |
| ORP/REDOX CALIBRATION DISSOLVED OXYGEN CALIBRATION Notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |  |  |  |  |  |  |
| Standard Solution (mV)  Altitude / Salinity %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |  |  |  |  |  |  |
| Field Temperature °C Field Temperature °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |  |  |  |  |  |  |
| Instrument Reading (mV)  Instrument Reading (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |  |  |  |  |  |  |
| Model or Unit No.:  Model or Unit No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |  |  |  |  |  |  |



| Well ID:    | MNIN                   | -15              |                     |          |                           | Initial Depth to Water: 4.57                      |                               |                                             |          |           |                    |  |
|-------------|------------------------|------------------|---------------------|----------|---------------------------|---------------------------------------------------|-------------------------------|---------------------------------------------|----------|-----------|--------------------|--|
|             |                        |                  | licate ID: _        |          |                           | Depth to Water after Sampling: 4.61               |                               |                                             |          |           |                    |  |
| Sample De   | epth:                  |                  |                     |          |                           | Total De                                          | onth to Well                  |                                             |          |           |                    |  |
| Project an  | d Task No              | : 670            | 6150                | 060      |                           | Well Dia                                          | meter:                        | 24                                          |          |           |                    |  |
| Project Na  | me:                    | NPA C            | SC M                | ine C    | CR                        | 1 Casing/Borehole Volume:(Circle one)             |                               |                                             |          |           |                    |  |
| Date:       | 6-14-<br>By:           | 5CM              | ٧.                  |          |                           | 4 Casing/Borehole Volumes:(Circle one)            |                               |                                             |          |           |                    |  |
| Method of   | Purging:               | Law              | Flow                | Sul      |                           | Total Casing/Borehole                             |                               |                                             |          |           |                    |  |
| Method of   | Sampling               | : lout           | T GW                | 5 wb     | <u> </u>                  | Volumes Removed:                                  |                               |                                             |          |           |                    |  |
| Time        | Intake<br>Depth        | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.    | pH<br>(units)             | Specific<br>Electrical<br>Conductance<br>/(NS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation<br>Reduction<br>Potential<br>(mV) | (color   | very.     | s<br>d sediment)   |  |
| 1349        | ~                      | 200              |                     | 2604     | 3,50                      | 3,56                                              | 1.55                          | 356                                         | 681      | Mild      | HC add             |  |
| 1345        |                        |                  |                     | 27,39    | 3,51                      | 370                                               | 1,01                          | 333                                         | 1000     | yellow-   | crange             |  |
| 1350        |                        |                  |                     | 28.78    | 3,51                      | 3,75                                              | 9.89                          | 331                                         | 440      |           | 1                  |  |
| 1355        |                        |                  |                     | 29.19    | 3,52                      | 3.77                                              | 0.87                          | 329                                         | 305      |           | 1/                 |  |
| 1400        |                        |                  |                     | 29.13    | 3,52                      | 3,76                                              | 0.81                          | 328                                         | 254      | Light     | ndra               |  |
| 1405        |                        |                  |                     | 29.47    | 3,52                      | 3.77                                              | 0.77                          | 327                                         | 208      | 1         |                    |  |
| 1410        |                        | V-1              |                     | 09.80    | 3,53                      | 3.77                                              | 120.9                         | 6 3 30                                      | 1148     | Lighter   | yellow             |  |
| 1415        |                        |                  |                     | 29.93    | 3,53                      | 3,77                                              | 0.74                          | 330                                         | 195      | , 1       | (2.1.10            |  |
| 1420        |                        | `                | ^2,5                | 29.79    | 3.53                      | 3,77                                              | 0.74                          | 332                                         | 51,1     | cloudy.   | sightly<br>be flaw |  |
|             |                        | D                | 2-1                 | et       | 0                         | 147                                               | Λ                             |                                             |          |           |                    |  |
|             |                        | V                | arp                 | 200      |                           | 110                                               | ()                            |                                             |          |           |                    |  |
| (C)         |                        |                  | pH CALIB            | RATION ( | choose two)               |                                                   |                               |                                             | Model or | Unit No · |                    |  |
| Buffer Solu | ıtion                  |                  |                     | pH 4.0   | pH 7.0                    | pH 10.0                                           |                               |                                             | model of | OTHER TO. | T 7                |  |
| Field Temp  | perature °C            |                  |                     |          |                           |                                                   |                               |                                             |          |           |                    |  |
| Instrument  | Reading                |                  |                     |          |                           |                                                   |                               |                                             |          |           |                    |  |
|             | SPEC                   | CIFIC ELEC       | CTRICAL CO          | ONDUCTA  | NCE (SEC)                 | - CALIBRATI                                       | ON                            |                                             | Model or | Unit No.: |                    |  |
| KCI Solutio | n (μS/cm=μ             | ımhos/cm)        |                     |          | 1413 at 25°C              | 12880 at 25°                                      | C                             |                                             |          |           | 1.7                |  |
| Field Temp  | erature °C             |                  |                     |          |                           |                                                   |                               |                                             |          |           | 1                  |  |
| Instrument  | Reading                |                  |                     |          |                           |                                                   |                               |                                             |          |           |                    |  |
|             | ORP/RED                | OX CALIBR        | RATION              |          | DISSOLV                   | /ED OXYGEN                                        | CALIBRAT                      | ION                                         | Notes:   | MU        |                    |  |
| Standard S  | Standard Solution (mV) |                  |                     |          |                           | inity %                                           |                               |                                             | DINPI    | 1=4       | 9,1                |  |
| Field Temp  | Field Temperature °C   |                  |                     |          |                           | Field Temperature °C                              |                               |                                             |          |           | 0                  |  |
| Instrument  | Reading (r             | mV)              |                     | 1        | Instrument Reading (mg/L) |                                                   |                               |                                             |          |           |                    |  |
| Model or U  | Init No.:              |                  |                     | ı        | Model or Uni              | t No.:                                            |                               |                                             |          |           |                    |  |



| Well ID:                 | SFL                    | MW -       | 7          | 12=     | 3                         |                                                  | epth to Wa                    |                                              | 111 1/                                   |  |  |  |
|--------------------------|------------------------|------------|------------|---------|---------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|------------------------------------------|--|--|--|
|                          |                        |            | licate ID: | Up -    | _                         |                                                  | o Water afte                  |                                              | g:                                       |  |  |  |
| Sample D                 | epth:                  | 1706       | 1500       | 60      |                           | Total De                                         | epth to Wel                   | 2-1                                          |                                          |  |  |  |
| Project ar               | nd Task No             | NA A CC    | Mine       | 04      | A                         |                                                  |                               |                                              |                                          |  |  |  |
|                          | 6-14-                  |            | LINE       |         |                           | 1 Casing/Borehole Volume:(Circle one)            |                               |                                              |                                          |  |  |  |
|                          | By:                    |            | D.         | -       |                           | 4 Casing/Borehole Volumes:(Circle one)           |                               |                                              |                                          |  |  |  |
| Method of                | f Purging:             | Law        | Tlaw       | Sub     |                           |                                                  | 11.8                          | nole                                         |                                          |  |  |  |
| Method of                | f Sampling             | : Law      | Plaw       | 5 ub.   |                           | Total Casing/Borehole<br>Volumes Removed:        |                               |                                              |                                          |  |  |  |
| Time                     | Depth (mi/min) (°C) (  |            |            |         | pH<br>(units)             | Specific<br>Electrical<br>Conductance<br>(µS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | Remarks (color, turbidity, and sediment) |  |  |  |
| 1590                     |                        | -200       |            | 26.15   | 6.17                      | 6.69                                             | 1.36                          | 1                                            | 68,2 Claudy -white                       |  |  |  |
| 1505                     |                        |            |            | 26.88   | 6.32                      | 7,40                                             | 0.95                          | -20                                          | 32.1                                     |  |  |  |
| 1510                     |                        |            |            | 27.38   | 621                       | 8,63                                             | 0.85                          | # 2                                          | 7.9 CROTING                              |  |  |  |
| 1515                     |                        |            |            | 27,26   | 6.19                      | 8.90                                             | 0.81                          | 13                                           | 3.1 poor milly present                   |  |  |  |
| 1529                     |                        |            |            | 28,21   | 6.18                      | 2.98                                             | 0.79                          | 19                                           | 1.0 cleaning                             |  |  |  |
| 1525                     |                        |            |            | 26.71   | 6.18                      | A. 9.07                                          | 0.76                          | 23                                           | 0.2                                      |  |  |  |
| 1530                     |                        | ~          | 2.0        | 27.00   | 6.17                      | 9.16                                             | 0.83                          | 24                                           | 0,3 Crysial Clear                        |  |  |  |
| - 1                      |                        |            |            |         |                           |                                                  |                               |                                              | Odor Mildly pressi                       |  |  |  |
|                          |                        |            | - 1        |         |                           | ( 5                                              |                               |                                              |                                          |  |  |  |
|                          |                        | 7          | MA         | 2       | (a)                       | IL                                               | 3/                            |                                              |                                          |  |  |  |
| _                        |                        |            | upi        |         |                           | 1                                                |                               | /                                            |                                          |  |  |  |
|                          |                        |            |            |         |                           |                                                  |                               |                                              |                                          |  |  |  |
|                          |                        |            |            |         |                           |                                                  |                               |                                              |                                          |  |  |  |
|                          |                        |            | pH CALIBI  |         | hoose two)                |                                                  |                               | N                                            | lodel or Unit No.:                       |  |  |  |
| Buffer Soli              |                        |            |            | pH 4.0  | pH 7.0                    | pH 10.0                                          |                               |                                              |                                          |  |  |  |
| Field Tem                | perature °C            | ;          |            |         |                           |                                                  | 4                             |                                              |                                          |  |  |  |
| Instrument               | t Reading              |            |            |         |                           |                                                  |                               |                                              |                                          |  |  |  |
|                          | SPE                    | CIFIC ELEC | TRICAL CO  | ONDUCTA | NCE (SEC)                 | - CALIBRATI                                      | ON                            | N                                            | lodel or Unit No.:                       |  |  |  |
| KCI Solutio              | n (μS/cm= <sub>l</sub> | μmhos/cm)  |            |         | 1413 at 25°C              | 12880 at 25                                      | °C                            |                                              |                                          |  |  |  |
| Field Temp               | erature °C             |            |            |         |                           |                                                  |                               |                                              |                                          |  |  |  |
| Instrument               | Reading                |            |            |         |                           |                                                  |                               |                                              |                                          |  |  |  |
|                          | ORP/RED                | OX CALIBR  | RATION     |         | DISSOLV                   | ED OXYGEN                                        | CALIBRAT                      | ION N                                        | otes:                                    |  |  |  |
|                          |                        |            |            |         |                           | nity %                                           |                               |                                              |                                          |  |  |  |
| Field Temperature °C Fie |                        |            |            |         | Field Temperature °C      |                                                  |                               |                                              |                                          |  |  |  |
| Instrument Reading (mV)  |                        |            |            |         | Instrument Reading (mg/L) |                                                  |                               |                                              |                                          |  |  |  |
| Model or U               | Jnit No.:              |            |            | N       | Model or Unit No.:        |                                                  |                               |                                              |                                          |  |  |  |



| Well ID: 5-L MW-3            |             |                  |                     |          |                              | Initial Depth to Water:                                                                                                                      |                               |                                              |                                  |               |
|------------------------------|-------------|------------------|---------------------|----------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------|----------------------------------|---------------|
| Sample ID: Duplicate ID:     |             |                  |                     |          |                              | Depth to Water after Sampling: 17,74                                                                                                         |                               |                                              |                                  |               |
| Sample I                     | Depth:      | 10               | /                   |          |                              | Total Depth to Well:  Well Diameter:  1 Casing/Borehole Volume: (Circle one)  4 Casing/Borehole Volumes: (Circle one)  Total Casing/Borehole |                               |                                              |                                  |               |
| Project a                    | and Task No | o.: 6101         | 150C                | 160      |                              |                                                                                                                                              |                               |                                              |                                  |               |
|                              | Name: 7/    | V                | CMI                 | ne CC    | R                            |                                                                                                                                              |                               |                                              |                                  |               |
|                              | I By:       |                  |                     |          |                              |                                                                                                                                              |                               |                                              |                                  |               |
|                              | of Purging: | 4                | flam                | 546      |                              |                                                                                                                                              |                               |                                              |                                  |               |
| Method o                     | of Sampling | g: Law           | flam                | 506      |                              |                                                                                                                                              | s Removed                     |                                              |                                  |               |
| Time Intake Depth            |             | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.    | pH<br>(units)                | Specific<br>Electrical<br>Conductance<br>(AS/cm)                                                                                             | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color, turbidity, and sediment) |               |
| 1625                         |             | ~200             |                     | 25.86    | 3.68                         | 6.95                                                                                                                                         | 2.18                          | 395                                          | 664                              | Mild HC ador  |
| 1634                         |             |                  |                     | 26,25    |                              | 6.96                                                                                                                                         | 0.93                          | 384                                          | 428                              | AND IN CHAI   |
| 1635                         |             |                  |                     | 2614     | 3.66                         | 6.96                                                                                                                                         | 1.80                          | 381                                          | áaa                              | Clearer       |
| 1640                         |             |                  |                     | 2600     |                              | 6.96                                                                                                                                         | 0.74                          | 379                                          | 125                              |               |
| 1645                         |             |                  |                     | 2609     | 3.65                         | 6.97                                                                                                                                         | 0,70                          | 377                                          | 74.4                             |               |
| 1650.                        |             |                  | 25                  | 25.97    | 3.64                         | 6.96                                                                                                                                         | 0,66                          | 378                                          | 43.7                             | Nearly clear  |
|                              |             |                  |                     |          |                              |                                                                                                                                              |                               |                                              | 1                                | Lightly claus |
| •                            |             |                  |                     |          |                              |                                                                                                                                              |                               |                                              |                                  |               |
|                              |             | 75               | Jan pla             | ed (     | 0 16                         | 550                                                                                                                                          |                               |                                              |                                  |               |
|                              |             |                  | pH CALIB            | RATION ( | choose two                   | )                                                                                                                                            |                               | M                                            | lodel or                         | Unit No.:     |
| Buffer Solution pH 4.        |             |                  |                     |          | pH 7.0                       | pH 10.0                                                                                                                                      |                               |                                              |                                  |               |
| Field Temperature °C         |             |                  |                     |          |                              |                                                                                                                                              |                               |                                              |                                  |               |
| Instrumer                    | nt Reading  |                  |                     |          |                              |                                                                                                                                              |                               |                                              |                                  |               |
|                              | SPE         | CIFIC ELEC       | TRICAL C            | ONDUCTA  | NCE (SEC)                    | - CALIBRATI                                                                                                                                  | ON                            | M                                            | lodel or                         | Unit No.:     |
| CI Solution (μS/cm=μmhos/cm) |             |                  |                     |          | 1413 at 25°C 12880 at 25°    |                                                                                                                                              | °C                            |                                              |                                  |               |
| Field Tem                    | perature °C |                  |                     |          |                              |                                                                                                                                              |                               |                                              |                                  |               |
| Instrumen                    | t Reading   |                  |                     |          |                              |                                                                                                                                              |                               |                                              |                                  |               |
|                              | ORP/RED     | OX CALIBR        | RATION              |          | DISSOLVED OXYGEN CALIBRATION |                                                                                                                                              |                               | ION N                                        | otes:                            | 17-11         |
| Standard Solution (mV)       |             |                  |                     |          | Altitude / Sali              | CENTRAL PROPERTY.                                                                                                                            |                               |                                              | low                              | 1             |
| Field Temperature °C         |             |                  |                     |          | Field Temper                 |                                                                                                                                              |                               |                                              | **                               |               |
| Instrument Reading (mV)      |             |                  |                     |          | Instrument Reading (mg/L)    |                                                                                                                                              |                               |                                              |                                  |               |
| Model or                     | Unit No.:   |                  |                     |          | Model or Uni                 |                                                                                                                                              |                               |                                              |                                  |               |
| ocument1                     |             |                  |                     |          |                              |                                                                                                                                              |                               |                                              |                                  |               |

#### WELL SAMPLING AND/OR DEVELOPMENT RECORD wheeler Well ID: Initial Depth to Water: Sample ID: \_\_\_\_\_ Duplicate ID: Depth to Water after Sampling: Sample Depth: Total Depth to Well: Project and Task No.: Well Diameter: Project Name: 1 Casing/Borehole Volume: (Circle one) Date: 4 Casing/Borehole Volumes: Sampled By: (Circle one) Method of Purging: Total Casing/Borehole Method of Sampling: Volumes Removed: Specific Cum. Vol. Dissolved Oxidation-Rate pH Intake Electrical Temp. Remarks Time (gal.) Reduction Oxygen Conductance Depth (ml/min) (units) (color, turbidity, and sediment) (°C) (mg/L) Potential Mus/cm) (mV) ~200 101 0.70 pH CALIBRATION (choose two) Model or Unit No.: **Buffer Solution** pH 4.0 pH 7.0 pH 10.0 Field Temperature °C Instrument Reading SPECIFIC ELECTRICAL CONDUCTANCE (SEC) - CALIBRATION Model or Unit No.: 1413 at 25°C 12880 at 25°C KCI Solution (µS/cm=µmhos/cm) Field Temperature °C Instrument Reading

DISSOLVED OXYGEN CALIBRATION

Altitude / Salinity %

Model or Unit No .:

Field Temperature °C

Instrument Reading (mg/L)

Notes: Lowes

Document1

Standard Solution (mV)

Instrument Reading (mV)

Field Temperature °C

Model or Unit No .:

ORP/REDOX CALIBRATION

|     |     | 1   | 7. |   |
|-----|-----|-----|----|---|
|     |     | S   | ¥  | 4 |
| arr | iec | 4   | Δ  | 7 |
| fos |     | - 1 |    |   |

| Well ID        | ):              | NW-18            |                   |          |        |               |                                       |                            |          |                            | -0.11       |           | toster<br>wheeler |
|----------------|-----------------|------------------|-------------------|----------|--------|---------------|---------------------------------------|----------------------------|----------|----------------------------|-------------|-----------|-------------------|
| Sample         | e ID:           | Du               | uplicate ID       | ):       |        |               | Initia                                | l Depth to W               | /ater: _ |                            | 9.7         | 3         |                   |
| Sample         | e Depth:        |                  |                   |          |        |               | Dept                                  | h to Water a               | fter Sa  | mpling                     | g: <u> </u> | 600       | 15                |
| Project        | and Task        | No.: 67          | 0615              | m        | 0      |               | Total                                 | Depth to We                | ell:     |                            |             |           |                   |
| Project        | Name:           | NPA              | 60                | MA       | 0      | CP            |                                       | Diameter                   |          |                            |             |           |                   |
| Date: _        | 6               | -                | ,                 | 1 11/1   |        |               | 1 Cas                                 | ing/Borehol                | e Volu   | me:                        |             |           |                   |
| Sample         | d By:           | 50               | 7                 |          |        |               |                                       |                            |          |                            |             |           |                   |
|                | of Purging      |                  | 1 1               | an       | Sid    |               | (Circle                               | ing/Borehole<br>e one)     | e volu   | mes: _                     |             |           |                   |
| Method         | of Samplin      | g: La            | in it             | 19W      |        | ib            | Total (                               | Casing/Bore<br>les Removed | hole     |                            |             |           |                   |
| Time           | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vo<br>(gal.) | Te       | mp.    | pH<br>(units) | Specific<br>Electrical<br>Conductance | Dissolved                  | Oxid     | ation-<br>iction<br>ential | (color, tu  | Remarks   | sediment          |
| 13-10          |                 | Du 150           |                   | 23       | 97     | 737           | 467                                   | 0.00                       | (m       | (V)                        | MUL         |           |                   |
| 1345           |                 |                  |                   | 25       | 16.0   | 7.11          | 4,53                                  | 0.58                       | 161      | -                          | 10 V        | ery clear |                   |
| (350)          |                 |                  |                   |          | ,26    | 690           | -                                     | 6,76                       | -4       |                            | 20          |           |                   |
| 1955           | ,               |                  |                   | 24       | 911    | 201           | 5.43                                  | 6.36                       | -6       | 2 8                        | 3,0 6       | lack to   | tyrko             |
| 1790           |                 |                  |                   | 25       | 15     | 105           | 5.07                                  | 6.55                       | -7       | 7 6                        | 62          | and MI    | AC. HC            |
| 1405           |                 |                  |                   | 24       | 94     | 6.25          | 506                                   | 6.32                       | -K       | 18 6                       | 24 =        | Carer L   | but               |
| 1410           |                 |                  |                   |          | / /    | 0.00          | 5.07                                  | 621                        | -11:     | 5 4                        | 9,2         | Sill      | grey              |
| 1415           |                 |                  | 3                 | 24.5     | 3 0    | 6.84          | 5.04                                  | 6.47                       | -19      | _                          | DPNO        | early cle | arin              |
| X i            |                 |                  |                   | - (1)    | 0      | 6,84          | 5,03                                  | T 03-7                     | -10      |                            |             | loudy -c  |                   |
|                |                 |                  | <b>5</b> • •      |          |        |               |                                       |                            |          |                            | 10          | andy -c   | legr.             |
|                |                 | 6                | LA                | 1        |        | 114 1         |                                       |                            |          |                            |             |           |                   |
|                | 7               | ary              | (                 | JP.      |        |               |                                       |                            |          |                            |             |           |                   |
| 4              |                 |                  |                   |          | -      |               |                                       |                            |          |                            |             |           |                   |
|                |                 | р                | H CALIBR          | RATION   | l (cho | pose two)     |                                       |                            |          |                            |             |           |                   |
| Buffer Soluti  | ion             |                  |                   | pH 4.0   |        | pH 7.0        | ti es -                               |                            |          | Mode                       | or Unit     | No.:      |                   |
| Field Tempe    | erature °C      |                  | 7%                | P. 1.1.0 | -      | рп 7.0        | pH 10.0                               |                            |          |                            |             |           |                   |
| Instrument R   | Reading         |                  |                   |          | -      |               |                                       |                            |          |                            |             |           |                   |
| (E             |                 | IC EL ECTE       | 1011              |          |        |               |                                       |                            |          |                            |             |           | 2                 |
| KCI Solution ( | /u.C/om-        | IC ELECTR        | ICAL COI          | NDUCT    | ANC    | E (SEC) -     | CALIBRATION                           | ٧                          |          | Model                      | or Unit N   | VI-       |                   |
|                | (μο/cm-μm       | hos/cm)          |                   |          |        | 3 at 25°C     | 12880 at 25°C                         |                            |          | Model                      | or Onit i   | VO.:      |                   |
| Field Tempera  |                 |                  |                   |          |        |               |                                       |                            |          |                            |             | -         |                   |
| Instrument Re  |                 |                  |                   |          |        |               |                                       |                            |          |                            |             | 8         |                   |
| OF             | RP/REDOX        | CALIBRAT         | ION               |          | D      | ISSOLVED      | OVVOT                                 |                            |          |                            |             |           |                   |
| Standard Solu  |                 |                  |                   |          | Altitu | de / Salinity | OXYGEN CA                             | LIBRATION                  | 1        | Votes:                     | Pump        | Strugg    | 1100              |
| Field Tempera  |                 |                  |                   |          |        |               |                                       |                            |          | Up                         | ped :       | fland     | ring,             |
| Instrument Re  |                 |                  |                   |          |        | Temperatu     |                                       |                            | 1        | ate                        | ocras       | ignall.   | 1                 |
| Model or Unit  | No.:            |                  |                   | 1        | Mode   | ment Read     | ing (mg/L)                            |                            |          | cep                        | UP          | - III     | 10                |
|                |                 |                  |                   | 1        | MOUE   | l or Unit No  |                                       |                            |          | /                          | 1.          |           |                   |
| Ocument1       | 0               | a to.            | 1                 |          |        | -             |                                       |                            | ^        | Tu                         | Stort.      | an.       |                   |
|                | Bu              | 19 fars.         |                   |          | Tu     | rb. V.        | sible                                 |                            | Ä        | 10/                        | Moll        | 41        | _/-               |
|                |                 | + 1 11           | . 0               | •        | 1      |               | - 10-                                 |                            | to       | 1000                       | 1           | Inc       | 9                 |
|                | 1               | 10 neson         | ON )              | 10       | 7      | 1.101         |                                       | <b>A</b> . 1               | 3.0      | 01-0                       |             | lack      | 1                 |

|        | -   |
|--------|-----|
|        | (X) |
|        |     |
|        |     |
| amec   |     |
| foster |     |
| whaste |     |

| Well ID:     | 48              | MANN             | SFI                 | MW-       |                 | Initial D                                        | anth to 18/-                  |                                              | 3 h     | wheeler                             |
|--------------|-----------------|------------------|---------------------|-----------|-----------------|--------------------------------------------------|-------------------------------|----------------------------------------------|---------|-------------------------------------|
|              | D:              |                  | -                   |           |                 |                                                  | epth to Wa                    |                                              |         | 14.41                               |
|              | Depth:          |                  |                     |           |                 |                                                  | o Water aft                   |                                              |         |                                     |
|              | nd Task No      |                  | 150060              | 7         |                 | Well Di                                          | eptil to wei                  | 2"                                           |         |                                     |
| Project N    | ame: N          | PA G             | Mine                | CCR       |                 |                                                  |                               |                                              |         |                                     |
|              | 6-28-           |                  |                     |           |                 | (Circle                                          | one)                          | volume                                       |         |                                     |
| Sampled      | Ву:             | SCM              |                     |           |                 | 4 Casin<br>(Circle o                             | g/Borehole                    | Volumes:                                     |         |                                     |
| Method o     | f Purging:      | Law              | Flaw s              |           |                 |                                                  | asing/Borel                   | nole                                         |         |                                     |
| Method o     | f Sampling      | : Law            | Flaw                | 5 W.      |                 | Volume                                           | s Removed                     | :                                            |         |                                     |
| Time         | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.     | pH<br>(units)   | Specific<br>Electrical<br>Conductance<br>MuS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color, | Remarks<br>turbidity, and sediment) |
| 1220         |                 | 人可愛              | 1                   | 24,71     | 6.58            | 623                                              | 323                           | -58                                          | 33,3    | Slightly cloudy                     |
| 1225         | V               | -200             |                     | 26H       | 6.54            | 6.99                                             | 2.10                          | -61                                          | 117     | Mad HE adan                         |
| 1230         |                 |                  |                     | 25,41     | 6.40            | 226                                              | 1.87                          | -24                                          | 0.0     | Almost crystal                      |
| 1235         |                 |                  |                     | 25,31     | 6.33            | 8.99                                             | 174                           | -11                                          | 0.0     | ador still present                  |
| 1240         |                 |                  |                     | 25,25     | 632             | 9.21                                             | 1.67                          | -8                                           | 0,0     | 7                                   |
| 1245         |                 |                  |                     | 25.35     | 6.31            | 9,28                                             | 1.61                          | -7                                           | 0.0     | 11                                  |
| 1250         |                 | V                | 2.5                 | 25.17     | 6.32            | 9.39                                             | 1.69                          | -8                                           | 0,0     | 71                                  |
|              |                 |                  | Sany                | ole a     | 1               | 2 10                                             | 50                            |                                              |         |                                     |
|              |                 |                  | pH CALIBR           | RATION (c | hoose two)      |                                                  |                               | M                                            | odel or | Unit No.:                           |
| Buffer Solu  | ution           |                  |                     | pH 4.0    | pH 7.0          | pH 10.0                                          |                               |                                              |         | STILL TVO                           |
| Field Temp   | perature °C     |                  |                     |           |                 |                                                  |                               |                                              |         |                                     |
| Instrument   | Reading         |                  |                     |           |                 |                                                  |                               |                                              |         |                                     |
|              | SPEC            | IFIC ELEC        | TRICAL CO           | NDUCTA    | NCE (SEC) -     | - CALIBRATIC                                     | )N                            | M                                            | odel or | Unit No.:                           |
| KCI Solution | n (μS/cm=μι     |                  |                     |           | 1413 at 25°C    | 12880 at 25°0                                    |                               |                                              | 010101  | Offic No                            |
| Field Tempe  | erature °C      |                  |                     |           |                 |                                                  |                               |                                              |         |                                     |
| Instrument   | Reading         |                  |                     |           |                 |                                                  |                               |                                              |         |                                     |
|              | ORP/REDO        | X CALIBR         | ATION               |           | DISSOLVI        | ED OXYGEN C                                      | ALIBRATIO                     | ON NO                                        | tes:    |                                     |
| Standard S   | Solution (mV    | )                |                     | А         | Ititude / Salin |                                                  |                               | IV.                                          |         |                                     |
| Field Temp   | erature °C      |                  |                     |           | ield Tempera    |                                                  |                               |                                              |         |                                     |
| Instrument   | Reading (m      | V)               |                     |           |                 | ading (mg/L)                                     |                               |                                              |         |                                     |
| Model or U   | nit No.:        |                  | -                   |           | odel or Unit    |                                                  | I                             |                                              |         |                                     |
| Document1    |                 |                  |                     |           |                 |                                                  |                               |                                              |         |                                     |



| 1000000     | A4                     |               |                     |           |                                     |                                       |                               |                                             |          | Wileelei                            |
|-------------|------------------------|---------------|---------------------|-----------|-------------------------------------|---------------------------------------|-------------------------------|---------------------------------------------|----------|-------------------------------------|
|             | WMM-                   |               |                     |           |                                     | · Initial D                           | epth to Wa                    | ter:                                        | 4.59     | 1                                   |
|             |                        |               | olicate ID: _       |           |                                     | Depth to                              | o Water afte                  | er Samplin                                  | g:       | 4,63'                               |
|             | epth:                  |               | 1500/0              |           |                                     | Total De                              | epth to Wel                   | l:                                          |          |                                     |
|             |                        |               | 150060              |           | <u> </u>                            | Well Dia                              | ameter:                       | 2"                                          |          |                                     |
| Project Na  | ame: $\frac{1}{6}$     | PA GO         | Mine                | e cel     | )                                   | 1 Casin<br>(Circle o                  | g/Borehole                    | Volume: _                                   |          |                                     |
|             | Ву:                    |               |                     |           |                                     | 4 Casin                               | g/Borehole                    | Volumes:                                    |          |                                     |
|             | f Purging:             | - 1           | Flow Sv             | 16        |                                     | (Circle o                             | one)                          |                                             |          |                                     |
|             | f Sampling             | Λ.            | Flaw S              |           |                                     |                                       | asing/Borel<br>s Removed      |                                             |          |                                     |
| Time        | Intake<br>Depth        | Rate (ml/min) | Cum. Vol.<br>(gal.) | Temp.     | pH<br>(units)                       | Specific<br>Electrical<br>Conductance | Dissolved<br>Oxygen<br>(mg/L) | Oxidation<br>Reduction<br>Potential<br>(mV) | (color   | Remarks<br>turbidity, and sediment) |
| 1320        | -                      | 200           |                     | 25.80     | 3.51                                | 3,81                                  | 4.05                          | 358                                         | 173      | Olonge-brown                        |
| 1325        |                        |               |                     | 25,72     |                                     |                                       | 1.89                          | 319                                         | 337      | Mild HC oder                        |
| 1330        |                        |               |                     | 262       | 5 3,48                              | 3,93                                  | 165                           | 320                                         | 61.1     | Light tan                           |
| 1335        |                        | 3             | Polico              | 26,2      | 7 3,48                              | 3.93                                  | 1.56                          | 320                                         | 16,8     |                                     |
| 1340        |                        |               | ~2.0                | 26,16     | 3.48                                | 3,94                                  | 1.51                          | 319                                         | 5,3      |                                     |
|             |                        | <b>\</b>      | Sar                 | pled      | 0                                   | 1349                                  |                               |                                             |          | Still present                       |
|             |                        |               |                     |           |                                     |                                       |                               |                                             |          |                                     |
|             |                        |               | pH CALIBI           | RATION (c | choose two)                         |                                       |                               |                                             | Andel or | Unit No.:                           |
| Buffer Solu | ution                  |               |                     | pH 4.0    | pH 7.0                              | pH 10.0                               |                               |                                             | 1000101  | Offic No.:                          |
|             | perature °C            |               |                     | <u> </u>  | 1                                   | F                                     |                               |                                             |          |                                     |
| Instrument  | Reading                |               |                     |           |                                     |                                       |                               |                                             |          |                                     |
|             | SPE                    | CIFIC ELEC    | TRICAL CO           | ONDUCTA   | NCE (SEC)                           | CALIBRATIO                            | ON                            | N                                           | Model or | Unit No.:                           |
| KCI Solutio | n (μS/cm= <sub>l</sub> | umhos/cm)     |                     |           | 1413 at 25°C                        | 12880 at 25°                          | С                             |                                             |          |                                     |
| Field Temp  | erature °C             |               |                     |           |                                     |                                       |                               |                                             |          |                                     |
| Instrument  | Reading                |               |                     |           |                                     |                                       |                               |                                             |          |                                     |
| 7-1.0 110   | ORP/RED                | OX CALIBR     | RATION              |           | DISSOLV                             | ED OXYGEN (                           | CALIBRATI                     | ON N                                        | lotes:   | William I all I                     |
| Standard S  | Solution (m            | V)            |                     | A         | Altitude / Salir                    |                                       |                               | +                                           | MA L     | ARMI HALLIE                         |
| Field Temp  | oerature °C            |               |                     |           | Field Temperature °C                |                                       |                               |                                             |          |                                     |
| Instrument  | Reading (              | mV)           |                     | Ir        | Instrument Reading (mg/L)           |                                       |                               |                                             |          |                                     |
| Model or U  | Init No.:              |               |                     | N         | Model or Unit No.: 2500 between 1st |                                       |                               |                                             |          | between 1st                         |
| Document1   |                        |               |                     |           |                                     |                                       |                               | 16                                          | 10 0     |                                     |



| Well ID:                     | MM                      | N-18             |                     |          |                           | Initial Depth to Water: 9,71            |                               |                                             |           |                                     |  |  |
|------------------------------|-------------------------|------------------|---------------------|----------|---------------------------|-----------------------------------------|-------------------------------|---------------------------------------------|-----------|-------------------------------------|--|--|
| Sample II                    | D:                      | Dup              | licate ID: _        | DUP-     | 1                         |                                         | o Water afte                  |                                             |           | 15.52                               |  |  |
| Sample D                     | epth:                   |                  |                     |          |                           | Total De                                | epth to Wel                   | 1: 51                                       |           |                                     |  |  |
| Project ar                   | nd Task No              | o.: <u>67</u> 0  | 26150               | 1060     |                           | Well Dia                                | ameter:                       | 411                                         |           |                                     |  |  |
| Project N                    | ame: 1                  | MPA              | GCMIV               | 1c C     | CR                        |                                         |                               | Volume: _                                   |           |                                     |  |  |
|                              | 7-19                    |                  |                     |          |                           | (Circle one) 4 Casing/Borehole Volumes: |                               |                                             |           |                                     |  |  |
| Sampled                      | By: <u>50</u>           | - \(\rangle\)    | 11                  |          |                           | (Circle                                 | one)                          | volumes.                                    |           |                                     |  |  |
|                              |                         | Lan              | N 1                 |          |                           | Total Ca                                |                               |                                             |           |                                     |  |  |
| Method o                     | f Sampling              | : La             | ~ ) 11              | aw 5     | rp_                       | Volume                                  | s Removed                     | :                                           |           |                                     |  |  |
| Time                         | Intake<br>Depth         | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.    | pH<br>(units)             | Specific<br>Electrical<br>Conductance   | Dissolved<br>Oxygen<br>(mg/L) | Oxidation<br>Reduction<br>Potential<br>(mV) | (color    | Remarks<br>turbidity, and sediment) |  |  |
| 1200                         |                         | ~150             |                     | 25,76    | 6.72                      | 4.70                                    | 0,90                          | -77                                         | 0,0       | clear it of                         |  |  |
| 1205                         |                         |                  |                     | 27.7     | 668                       | 4,69                                    | 0,75                          | -88                                         | 0.0       | 1 - 10 ( 1 - 50)                    |  |  |
| 1219                         |                         |                  |                     | 27,9     | 56,67                     | 4.69                                    | 0.79                          | -90                                         | 0-0       | Same                                |  |  |
| 1215                         |                         | V                | 1.0                 | 286      | 1 6.68                    | 4,67                                    | 0,64                          | -93                                         | 0.0       | adar Paded                          |  |  |
|                              | >                       |                  |                     |          |                           |                                         |                               |                                             |           | Slightly                            |  |  |
|                              |                         |                  |                     |          |                           |                                         |                               |                                             |           |                                     |  |  |
|                              |                         |                  |                     | - 1      | 0                         | 101                                     | 5                             |                                             |           |                                     |  |  |
|                              |                         | >                | ampl                | 20       | (0)                       | 121                                     | $\supset$                     |                                             |           |                                     |  |  |
|                              | /                       |                  | V                   |          |                           | ,                                       |                               |                                             | -         |                                     |  |  |
|                              |                         |                  |                     |          |                           |                                         |                               |                                             |           |                                     |  |  |
|                              | 11                      |                  |                     |          |                           |                                         |                               |                                             | -         |                                     |  |  |
|                              |                         |                  |                     |          |                           |                                         |                               |                                             |           |                                     |  |  |
|                              |                         |                  | pH CALIB            | RATION ( | choose two)               | Ware and                                |                               |                                             | Model or  | Unit No.:                           |  |  |
| Buffer Sol                   | ution                   |                  |                     |          | pH 7.0                    |                                         |                               |                                             | VIOGOT OF | OTHER TOO.                          |  |  |
| Field Tem                    | perature °C             | )                |                     |          |                           |                                         |                               |                                             |           |                                     |  |  |
| Instrumen                    |                         |                  |                     |          |                           |                                         |                               |                                             |           |                                     |  |  |
|                              |                         | CIFIC ELEC       | CTRICAL C           | ONDUCTA  | NCE (SEC)                 | - CALIBRATI                             | ION                           |                                             | Model or  | Unit No.:                           |  |  |
| KCI Solution                 |                         | μmhos/cm)        |                     |          | 1413 at 25°C              |                                         |                               |                                             |           |                                     |  |  |
|                              | perature °C             |                  |                     |          |                           |                                         |                               |                                             |           |                                     |  |  |
| Instrument                   | t Reading               |                  |                     |          |                           |                                         |                               |                                             |           |                                     |  |  |
|                              | ORP/RED                 | OX CALIBI        | RATION              |          | DISSOLV                   | /ED OXYGEN                              | CALIBRAT                      | ION A                                       | Notes:    |                                     |  |  |
| Standard                     | Solution (m             | nV)              |                     | ,        | Altitude / Salinity %     |                                         |                               |                                             | DUP       | -I Take                             |  |  |
| Field Tem                    | Field Temperature °C Fi |                  |                     |          |                           | Field Temperature °C                    |                               |                                             |           |                                     |  |  |
| Instrument Reading (mV) Inst |                         |                  |                     |          | Instrument Reading (mg/L) |                                         |                               |                                             |           |                                     |  |  |
| Model or Unit No.: Mod       |                         |                  |                     |          | Model or Unit No.:        |                                         |                               |                                             |           |                                     |  |  |
|                              |                         |                  |                     |          |                           |                                         |                               |                                             |           |                                     |  |  |

Documentl

#### WELL SAMPLING AND/OR DEVELOPMENT RECORD foste wheeler Well ID: Initial Depth to Water: Sample ID: Duplicate ID: Depth to Water after Sampling: Sample Depth: Total Depth to Well: Project and Task No.: Well Diameter: **Project Name:** 1 Casing/Borehole Volume: (Circle one) Date: 4 Casing/Borehole Volumes: Sampled By: (Circle one) Method of Purging: Total Casing/Borehole Volumes Removed: Method of Sampling: Specific Cum. Vol. Dissolved Oxidation-Intake Rate рН Electrical Temp. Remarks (gal.) Time Oxygen Reduction Conductance Depth (ml/min) (color, turbidity, and sediment) (units) (°C) (mg/L) Potential (45/cm) (mV) 1005 ~300 010 1015 10170 pH CALIBRATION (choose two) Model or Unit No .: **Buffer Solution** pH 4.0 pH 7.0 pH 10.0 Field Temperature °C Instrument Reading SPECIFIC ELECTRICAL CONDUCTANCE (SEC) - CALIBRATION Model or Unit No .: KCl Solution (μS/cm=μmhos/cm) 1413 at 25°C 12880 at 25°C Field Temperature °C Instrument Reading **ORP/REDOX CALIBRATION DISSOLVED OXYGEN CALIBRATION** Standard Solution (mV) Altitude / Salinity % Field Temperature °C Field Temperature °C Instrument Reading (mV) Instrument Reading (mg/L) Model or Unit No .: Model or Unit No.:

Document1

Mr lovest

|           |                 |                  | - 7                 |               |               |                                                  | epth to Wat                   |                                              | 017     | 14.61                                 |  |  |  |  |
|-----------|-----------------|------------------|---------------------|---------------|---------------|--------------------------------------------------|-------------------------------|----------------------------------------------|---------|---------------------------------------|--|--|--|--|
|           |                 |                  | icate ID:           |               |               | Depth to Water after Sampling:                   |                               |                                              |         |                                       |  |  |  |  |
| Sample D  | epth:           | . 170            | 161590              | 260           |               | Well Diameter: 2 "                               |                               |                                              |         |                                       |  |  |  |  |
| Project N | id Lask No      | TMO A            | GCI                 | 1 no C        | CR            |                                                  |                               |                                              |         |                                       |  |  |  |  |
| Date:     | 7-2             | 0-17             | ,                   | (67)          |               | (Circle o                                        | one)                          |                                              |         |                                       |  |  |  |  |
|           | Ву:             |                  | A -                 |               |               | 4 Casing (Circle of                              |                               | Volumes: _                                   |         |                                       |  |  |  |  |
|           | _               | Can              | , flaw              | Sul           |               |                                                  | asing/Borel                   | nole                                         |         |                                       |  |  |  |  |
| Method o  | f Sampling      | :_(0             | wtle                | un Jib        |               | Volume                                           | s Removed                     | :                                            |         |                                       |  |  |  |  |
| Time      | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units) | Specific<br>Electrical<br>Conductance<br>(AS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) |         | Remarks<br>, turbidity, and sedi      |  |  |  |  |
| 1120      |                 | ~150             |                     | 27.34         | 654           | 656                                              | 0.91                          | -40                                          | 9,0     | Very Mild H                           |  |  |  |  |
| 1125      |                 | 100              |                     | 28.55         | 653           | 667                                              | 0.89                          | -54                                          | 19,5    | Verg Tile II                          |  |  |  |  |
| 1130      |                 |                  |                     | 28,83         | 0             | 6.53                                             | 0.54                          | -69                                          | 13,7    |                                       |  |  |  |  |
| (135      |                 |                  |                     | 28,69         | 641           | 8.18                                             | 0.51                          | -44                                          | 0.6     |                                       |  |  |  |  |
| 1140      |                 |                  |                     | 2843          | 636           | 8.61                                             | 0,44                          | -38                                          | 0,0     | Odar Na                               |  |  |  |  |
| 1145      |                 |                  | ~1.5                | 28.54         | 1 634         | 8.86                                             | 0,42                          |                                              | 4.9     | ,                                     |  |  |  |  |
| 1         |                 |                  |                     |               |               | 3,00                                             |                               |                                              |         |                                       |  |  |  |  |
|           |                 |                  |                     |               |               |                                                  |                               |                                              |         |                                       |  |  |  |  |
|           |                 |                  | 1                   |               | 4             |                                                  | 1                             |                                              |         |                                       |  |  |  |  |
|           |                 |                  | 1                   | 5             | MARA          | 19                                               | 1145                          |                                              |         |                                       |  |  |  |  |
|           |                 |                  |                     |               | apple Co      | C                                                | 1110                          |                                              |         |                                       |  |  |  |  |
|           |                 |                  |                     | 1             |               |                                                  |                               |                                              |         |                                       |  |  |  |  |
|           |                 |                  |                     |               |               |                                                  |                               |                                              | 4 1 1   | I I I I I I I I I I I I I I I I I I I |  |  |  |  |
|           |                 |                  | pH CALIE            |               | choose two    |                                                  |                               |                                              | Model ( | or Unit No.:                          |  |  |  |  |
| Buffer So | olution         |                  |                     | pH 4.0        | pH 7.0        | pH 10.0                                          |                               |                                              |         |                                       |  |  |  |  |
| Field Ter | nperature °     | С                |                     |               |               |                                                  |                               |                                              |         |                                       |  |  |  |  |
| Instrume  | nt Reading      |                  |                     |               |               |                                                  |                               |                                              |         |                                       |  |  |  |  |
|           | SPE             | ECIFIC ELE       | CTRICAL C           | CONDUCTA      | ANCE (SEC     | ) - CALIBRAT                                     | ION                           |                                              | Model   | or Unit No.:                          |  |  |  |  |
| KCI Solut | ion (μS/cm      | =μmhos/cm        | )                   |               | 1413 at 25°C  | 12880 at 2                                       | 5°C                           |                                              |         |                                       |  |  |  |  |
| Field Ten | nperature °(    | С                |                     |               |               |                                                  |                               |                                              |         |                                       |  |  |  |  |
| Instrume  | nt Reading      |                  |                     |               |               |                                                  |                               |                                              |         |                                       |  |  |  |  |
|           | ORP/RE          | DOX CALIE        | BRATION             |               | DISSOL        | VED OXYGEN                                       | CALIBRA                       | TION                                         | Notes:  |                                       |  |  |  |  |
| Standard  | d Solution (    | mV)              |                     |               | Altitude / Sa | alinity %                                        |                               |                                              |         |                                       |  |  |  |  |
| Field Te  | mperature °     | °C               |                     |               | Field Temp    | erature °C                                       |                               |                                              |         |                                       |  |  |  |  |
| Instrume  | ent Reading     | ı (mV)           |                     |               | Instrument    | Reading (mg/L                                    | .)                            |                                              |         |                                       |  |  |  |  |
| Model o   | r Unit No.:     |                  |                     |               | Model or U    | nit No.:                                         |                               |                                              |         |                                       |  |  |  |  |
|           |                 |                  |                     |               |               |                                                  |                               |                                              |         |                                       |  |  |  |  |

#### AND/OR DEVELOPMENT RECORD foster Well ID: SFL MW-Initial Depth to Water: Sample ID: \_\_\_\_ Duplicate ID: Depth to Water after Sampling: 16.68 Sample Depth: Total Depth to Well: Well Diameter: Project and Task No.: 6706 1500 60 Project Name: TMpA GC 1 Casing/Borehole Volume: \_\_\_\_ (Circle one) Date: 8-22-17 4 Casing/Borehole Volumes: \_\_\_ Sampled By: 50M (Circle one) Method of Purging: Low Total Casing/Borehole Method of Sampling: 1 000/ Volumes Removed: Specific Cum. Vol. Dissolved Oxidation-Intake Rate Electrical Temp. pH Remarks (gal.) Time Reduction Oxygen Conductance Depth (ml/min) (°C) (units) (color, turbidity, and sediment) (mg/L) Potential (mS/cm) (mV) Low Flow Stabilization Criteria +/- 3% +/- 0.1 +/- 3% +/- 10% +/- 10% MIU ~200 59 6,00 pH CALIBRATION (choose two) Model or Unit No .: **Buffer Solution** pH 4.0 pH 7.0 pH 10.0 Field Temperature °C Instrument Reading SPECIFIC ELECTRICAL CONDUCTANCE (SEC) - CALIBRATION Model or Unit No .: KCI Solution (μS/cm=μmhos/cm) 1413 at 25°C 12880 at 25°C Field Temperature °C Instrument Reading **ORP/REDOX CALIBRATION DISSOLVED OXYGEN CALIBRATION** Notes: Standard Solution (mV) Altitude / Salinity % Field Temperature °C Field Temperature °C Instrument Reading (mV) Instrument Reading (mg/L) Model or Unit No .: Model or Unit No .:

WELL SAMPLING



| Well ID:    | SFL                     | MW-              | 3                   |               |                 | Initial D                                        | epth to Wa                    | ter:                                         | 7.40     |                                     |  |  |
|-------------|-------------------------|------------------|---------------------|---------------|-----------------|--------------------------------------------------|-------------------------------|----------------------------------------------|----------|-------------------------------------|--|--|
| Sample II   | D:                      | Dup              | licate ID: _        |               |                 | Depth to Water after Sampling:                   |                               |                                              |          |                                     |  |  |
|             | epth:                   |                  |                     |               |                 | Total De                                         | epth to Wel                   | 1:                                           |          |                                     |  |  |
|             |                         |                  | 16150               |               | 204             | Well Dia                                         | ameter:                       | 2"                                           |          |                                     |  |  |
|             |                         |                  | GC M                | line (        | CR              |                                                  |                               | Volume: _                                    |          |                                     |  |  |
|             | 8-2                     |                  |                     |               |                 | (Circle o                                        |                               |                                              |          |                                     |  |  |
|             | Ву:                     | 1                | 11                  | 1             |                 | (Circle                                          | g/Borehole<br>one)            | Volumes: _                                   |          | -                                   |  |  |
|             | f Purging:              |                  | 1 - 1-              | 5 W           |                 |                                                  | asing/Borel                   |                                              |          |                                     |  |  |
| Method o    | of Sampling             |                  | - Ha                | w 5wb         |                 | Volume                                           | s Removed                     | :                                            |          |                                     |  |  |
| Time        | Intake<br>Depth         | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)   | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color,  | Remarks<br>turbidity, and sediment) |  |  |
| Low         | Flow Stab               | ilization Cr     | iteria              | +/- 3%        | +/- 0.1         | +/- 3%                                           | +/- 10%                       | +/- 10%                                      | Mul      | Light                               |  |  |
| 1730        |                         | ~200             |                     | 27.0          | 3 3.70          | 6.83                                             | 5.41                          | 361                                          | 215      |                                     |  |  |
| 1735        |                         |                  |                     | 28.43         | 3,69            | 7.08                                             | 1.13                          | 370                                          | 398      | HA HE GALLI                         |  |  |
| 1740        |                         |                  |                     | 29.36         | 3.70            | 7,20                                             | 0.88                          | 372                                          | 372      | Slightly clearer                    |  |  |
| 1795        |                         |                  |                     | 28.70         | 3.69            | 7,23                                             | 0.76                          | 375                                          | 194      | ) , = :-                            |  |  |
| 1750        |                         |                  |                     | 26.81         | 3.66            | 7.32                                             | 9.72                          | 376                                          | 186      | NTU Climbing                        |  |  |
| 1755        |                         |                  |                     | 26.29         |                 | 7,22                                             | 0,60                          | 376                                          | 396      | NTV dropping                        |  |  |
| 1800        |                         |                  |                     | 26.24         | 3.68            | 7.19                                             | 0,68                          | 376                                          | 184      | clearer"                            |  |  |
| 1805        |                         |                  |                     | 26.18         | 3.67            | 7.17                                             | 0.62                          | 376                                          | 122      |                                     |  |  |
| 1810        | -                       |                  | 3,5                 | 2601          | 3,67            | 7,16                                             | 2,67                          | 376                                          | 81.1     | Nearly Jear                         |  |  |
|             |                         |                  |                     | 0             |                 | 0.0                                              |                               |                                              |          | Cloudy                              |  |  |
|             | F                       | 7                | ampl                | ed            | a.              | 410                                              |                               |                                              |          |                                     |  |  |
|             |                         |                  | pH CALIBI           | RATION (      | choose two)     |                                                  |                               | M                                            | lodel or | Unit No.:                           |  |  |
| Buffer Sol  | ution                   |                  |                     | pH 4.0        | pH 7.0          | pH 10.0                                          |                               |                                              |          | 0.179/6/83                          |  |  |
| Field Tem   | perature °C             | ;                |                     |               |                 |                                                  |                               |                                              |          | , and the second                    |  |  |
| Instrumen   | t Reading               |                  |                     |               |                 |                                                  |                               |                                              |          |                                     |  |  |
|             | SPE                     | CIFIC ELEC       | TRICAL CO           | ONDUCTA       | ANCE (SEC)      | - CALIBRATION                                    | ON                            | M                                            | lodel or | Unit No.:                           |  |  |
| KCI Solutio | on (μS/cm= <sub>l</sub> | umhos/cm)        |                     |               | 1413 at 25°C    | 12880 at 25°                                     | C                             |                                              |          |                                     |  |  |
| Field Temp  | perature °C             |                  |                     |               |                 |                                                  |                               |                                              |          |                                     |  |  |
| Instrument  | Reading                 |                  |                     |               |                 |                                                  |                               |                                              |          |                                     |  |  |
|             | ORP/RED                 | OX CALIBR        | RATION              | 113           | DISSOLV         | ED OXYGEN                                        | CALIBRATI                     | ON N                                         | otes: \  | MIA                                 |  |  |
| Standard    | Solution (m             | V)               |                     | 1             | Altitude / Sali | nity %                                           |                               |                                              | Land     | 0<1~80                              |  |  |
| Field Tem   | perature °C             |                  |                     |               | Field Temper    | rature °C                                        |                               |                                              | - WW     |                                     |  |  |
| Instrumen   | t Reading (ı            | mV)              | 4                   | 1             | Instrument R    | eading (mg/L)                                    |                               |                                              |          |                                     |  |  |
| Model or l  | Jnit No.:               |                  |                     | 1             | Model or Unit   | t No.:                                           |                               |                                              |          |                                     |  |  |
|             |                         | 1                |                     |               |                 |                                                  |                               |                                              |          |                                     |  |  |
| EQ          | BK                      | 150              | M/Q8                | 328           | 2 2             | Jaken (                                          | @ 1                           | 850                                          |          |                                     |  |  |

1850



| Well ID:     | MNW                     | -15              |                     |        |               | Initial D                                        | epth to Wa                    | ter: 5.                                      | 21'      |                                     |
|--------------|-------------------------|------------------|---------------------|--------|---------------|--------------------------------------------------|-------------------------------|----------------------------------------------|----------|-------------------------------------|
| Sample I     | D:                      | Dup              | licate ID:          | DUP-   | 1             |                                                  | o Water afte                  |                                              |          | 19'                                 |
| Sample D     | Depth: 💥                | 25.0'            |                     |        |               |                                                  | epth to Wel                   |                                              |          |                                     |
| Project a    | nd Task No              | o.: 67061        | 50060               |        |               |                                                  |                               |                                              |          |                                     |
| Project N    | lame: TW                | 1PA-Gil          | bons Cre            | ech    |               | 1 Casin                                          | g/Borehole                    |                                              |          |                                     |
| Date: _/     | August                  | 22,201           | 7                   |        |               | (Circle                                          |                               |                                              |          |                                     |
| Sampled      | By:                     | 1                | 1.                  |        |               | 4 Casin<br>(Circle o                             | g/Borehole<br>one)            | Volumes:                                     |          |                                     |
| Method o     | of Purging:             | low              | flow                |        |               |                                                  | asing/Borel                   | nole                                         |          |                                     |
| Method o     | of Sampling             | : per            | istaltic            |        |               |                                                  | s Removed                     |                                              |          |                                     |
| Time         | Intake<br>Depth         | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.  | pH<br>(units) | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | 1        | Remarks<br>turbidity, and sediment) |
| Low          | Flow Stab               | ilization Cr     | iteria              | +/- 3% | +/- 0.1       | +/- 3%                                           | +/- 10%                       | +/- 10%                                      | NTL      |                                     |
| 1655         | 25.0                    | × 200            |                     | 29.8   | 7 3.55        | 3.68                                             | Ø.94                          | 355                                          | 97.6     | Clear; no oder                      |
| 1700         | 1                       |                  |                     | 29.1   |               | 3,79                                             | 9.49                          | 360                                          | 29.1     |                                     |
| 1705         |                         |                  |                     | 28.63  | 3.46          | 3.82                                             | 0.27                          | 359                                          | Ø. Ø     |                                     |
| 1710         |                         |                  |                     | 28,2   | 7 3.42        | 3.82                                             | \$.19                         | 358                                          | 9.0      |                                     |
| 1715         | V                       | V                | ₹1.5                | 28,11  | 3.42          | 3.82                                             | 9.14                          | 357                                          | 9.9      | V                                   |
|              |                         |                  | Sai                 | nple   | 25 7          | Taken                                            |                               |                                              |          |                                     |
|              |                         |                  | pH CALIBI           |        | (choose two   |                                                  |                               | M                                            | lodel or | Unit No.:                           |
| Buffer Sol   | ution                   |                  |                     | pH 4.0 | pH 7.0        | pH 10.0                                          |                               |                                              |          |                                     |
| Field Tem    | perature °C             |                  |                     |        |               |                                                  |                               |                                              |          |                                     |
| Instrumen    | t Reading               |                  |                     |        |               |                                                  |                               |                                              |          |                                     |
|              | SPE                     | CIFIC ELEC       | TRICAL CO           | ONDUCT | ANCE (SEC     | ) - CALIBRATIO                                   | ON                            | M                                            | odel or  | Unit No.:                           |
| KCI Solution | on (μS/cm= <sub>l</sub> | umhos/cm)        |                     |        | 1413 at 25°0  | 12880 at 25°                                     | c                             |                                              |          |                                     |
| Field Temp   | oerature °C             |                  |                     |        |               |                                                  |                               |                                              |          |                                     |
| Instrument   | Reading                 |                  |                     |        |               |                                                  |                               |                                              |          |                                     |
|              | ORP/RED                 | OX CALIBR        | RATION              |        | DISSOL        | VED OXYGEN                                       | CALIBRATI                     | ON N                                         | otes:    |                                     |
| Standard     | Solution (m             | V)               |                     |        | Altitude / Sa | alinity %                                        |                               | D                                            | up-1     |                                     |
| Field Tem    | perature °C             |                  |                     |        | Field Tempe   | erature °C                                       |                               |                                              |          |                                     |
| Instrumen    | t Reading (ı            | mV)              |                     |        | Instrument I  | Reading (mg/L)                                   |                               |                                              |          |                                     |
| Model or l   | Jnit No.:               |                  |                     |        | Model or Ur   | nit No.:                                         |                               |                                              |          |                                     |



|              |                 |                  |                     | 100       |                 |                                                  |                               |                                              |             | wheeler                             |
|--------------|-----------------|------------------|---------------------|-----------|-----------------|--------------------------------------------------|-------------------------------|----------------------------------------------|-------------|-------------------------------------|
| Well ID: _   | ARM             | W-3              |                     |           |                 | Initial D                                        | epth to Wa                    | ter: _ /0.                                   | 60          | THI COLO                            |
| Sample II    | D:              | Dup              | licate ID: _        |           |                 |                                                  | o Water afte                  |                                              |             | 091                                 |
| Sample D     | epth:           | 141'             |                     |           |                 |                                                  | epth to Wel                   |                                              |             |                                     |
|              |                 |                  | 6150060             |           |                 |                                                  | ameter:                       |                                              |             |                                     |
|              |                 |                  | ibbons C            | reek      |                 | 1 Casin                                          | g/Borehole                    | Volume:                                      |             |                                     |
| Date:        | August          | 22,201           | 7                   |           |                 | (Circle o                                        | one)                          |                                              |             |                                     |
|              | Ву:             |                  | Α.                  |           |                 | 4 Casing (Circle of                              | g/Borehole                    | Volumes:                                     |             |                                     |
| Method o     | f Purging:      | low              | flow                |           |                 |                                                  | asing/Borel                   | nole                                         |             |                                     |
| Method of    | f Sampling      | : per            | istaltic            |           |                 |                                                  | s Removed                     |                                              |             |                                     |
| Time         | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.     | pH<br>(units)   | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | The same of | Remarks<br>turbidity, and sediment) |
| Low          | Flow Stab       | ilization Cr     | iteria              | +/- 3%    | +/- 0.1         | +/- 3%                                           | +/- 10%                       | +/- 10%                                      | NTU         | 1                                   |
| 1825         | 241'            | \$150            |                     | 28,21     | 4.94            | 1.82                                             | 1.78                          | 280                                          |             | Clear; no odor                      |
| 1830         | j               |                  |                     | 26.73     | 4.93            | 1.85                                             | \$.66                         | 311                                          | Ø. Ø        | I I OHO!                            |
| 1835         |                 |                  |                     | 26.20     | 4.87            | 1.87                                             | Ø.30                          | 320                                          | Ø. Ø        |                                     |
| 1840         |                 |                  |                     | 26,26     |                 | 1.85                                             | Ø.17                          | 322                                          | Ø.0         |                                     |
| 1845         | V               | V                | ₩1.5                | 26.06     | 4.79            | 1.85                                             | 9.14                          | 324                                          | 4.0         |                                     |
|              |                 |                  |                     | /         |                 | +1                                               |                               |                                              |             |                                     |
|              |                 |                  | $\bigcirc$ a        | mple      | 5 1             | aker                                             | 1                             |                                              |             |                                     |
|              |                 |                  |                     | 1         |                 |                                                  |                               | Ð                                            |             |                                     |
|              |                 |                  |                     |           |                 |                                                  |                               |                                              |             |                                     |
|              |                 |                  |                     |           |                 |                                                  |                               |                                              |             |                                     |
|              |                 |                  |                     |           |                 |                                                  |                               |                                              |             |                                     |
|              |                 |                  |                     |           |                 |                                                  |                               |                                              |             |                                     |
|              |                 |                  | pH CALIBI           | RATION (d | hoose two)      |                                                  |                               | M                                            | odel or     | Unit No.:                           |
| Buffer Solu  | ıtion           |                  |                     | pH 4.0    | pH 7.0          | pH 10.0                                          |                               |                                              |             |                                     |
| Field Temp   | erature °C      |                  |                     |           |                 |                                                  |                               |                                              |             |                                     |
| Instrument   | Reading         |                  |                     |           |                 |                                                  |                               |                                              |             |                                     |
|              | SPEC            | CIFIC ELEC       | TRICAL CO           | ONDUCTA   | NCF (SFC)       | - CALIBRATIC                                     | ON :                          | M                                            | adal ar     | Unit No.:                           |
| KCI Solution |                 |                  |                     |           | 1413 at 25°C    | 12880 at 25°0                                    |                               | IVI                                          | odel of     | Offit No.:                          |
| Field Temp   |                 |                  |                     |           | 1410 0120 0     | 12000 at 25 V                                    |                               |                                              |             |                                     |
| Instrument   |                 |                  |                     |           |                 |                                                  |                               |                                              |             | 1                                   |
|              |                 | OX CALIBR        | ATION               | NO. 80 /S | DICCOLL         | ED OWNOEN A                                      |                               |                                              |             |                                     |
| Standard S   |                 |                  | ATION               |           |                 | ED OXYGEN (                                      | JALIBRATI                     | ON N                                         | otes:       |                                     |
| Field Temp   |                 |                  |                     |           | Ititude / Salir |                                                  |                               |                                              |             |                                     |
| Instrument   |                 |                  |                     |           | ield Tempera    |                                                  |                               |                                              |             |                                     |
| Model or U   |                 | 114)             |                     |           | lodel or Unit   | eading (mg/L)                                    |                               |                                              |             |                                     |
|              |                 |                  |                     |           | - Tree all all  |                                                  |                               |                                              |             |                                     |
|              |                 |                  |                     |           |                 |                                                  |                               |                                              |             |                                     |



|              |                 |                  |                     |               |                 |                                                  |                               |                                              |          | wheeler                             |
|--------------|-----------------|------------------|---------------------|---------------|-----------------|--------------------------------------------------|-------------------------------|----------------------------------------------|----------|-------------------------------------|
| Well ID: _   | SFL             | MW-6             |                     |               |                 | Initial D                                        | epth to Wa                    | ter:17.                                      | 821      |                                     |
| Sample ID    | ):              | Dup              | licate ID: _        |               |                 | Depth to                                         | o Water afte                  | er Sampling                                  | : 20     | 2.86'                               |
| Sample D     | epth:           | 21'              |                     |               |                 |                                                  | epth to Wel                   |                                              |          |                                     |
|              |                 | o.: <u>6706</u>  |                     |               |                 | Well Dia                                         | ameter:                       | 2"                                           |          |                                     |
| Project Na   | ame: _TN        | npa-Gi           | bbons Cr            | eek           |                 | 1 Casin                                          | g/Borehole                    | Volume:                                      |          |                                     |
| Date:A       | ugust à         | 73, 201          | 7                   |               |                 | (Circle o                                        |                               |                                              |          |                                     |
| Sampled I    | By:             | 7                |                     |               |                 | 4 Casing                                         | g/Borehole                    | Volumes:                                     |          |                                     |
| Method of    | FPurging:       | lowt             | 1000                |               |                 |                                                  | asing/Borel                   | nole                                         |          |                                     |
| Method of    | f Sampling      | : peri           | staltic             |               |                 |                                                  | s Removed                     |                                              |          |                                     |
| Time         | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)   | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) |          | Remarks<br>turbidity, and sediment) |
| Low          | Flow Stab       | ilization Cr     | iteria              | +/- 3%        | +/- 0.1         | +/- 3%                                           | +/- 10%                       | +/- 10%                                      | NTU      |                                     |
| 0935         | 21'             | 4150             |                     | 26.2          | 7 3.96          | 12.5                                             | 1.36                          | 465                                          | 1.5      | Clear; no odor                      |
| 8940         |                 |                  |                     | 26.21         | 3,97            | 12.6                                             | Ø.74                          | 483                                          | 0.0      | 1                                   |
| 0945         |                 |                  |                     | 26,09         | 3.95            | 12.7                                             | \$.66                         | 479                                          | 0.0      |                                     |
| 0950         |                 |                  |                     | 26.0          | 7 3,97          | 12.7                                             | Ø.48                          | 462                                          | 0.0      |                                     |
| 0955         | ¥               | V                | ₩1.0                | 25.98         | 3.98            | 12.7                                             | Ø.42                          | 457                                          | 0.0      | 8                                   |
|              |                 | -                | 9                   | 1             | -               | /                                                |                               |                                              |          | and the second                      |
|              |                 |                  | amp                 | es            | 10              | Ken                                              |                               |                                              |          |                                     |
|              |                 |                  | 4                   |               | 1               |                                                  |                               |                                              |          | 1                                   |
|              |                 |                  |                     |               |                 |                                                  |                               |                                              |          |                                     |
|              |                 |                  |                     |               |                 |                                                  |                               |                                              |          |                                     |
|              |                 |                  |                     |               |                 |                                                  |                               |                                              |          |                                     |
| 12           |                 |                  |                     |               |                 |                                                  |                               |                                              |          |                                     |
|              |                 |                  | pH CALIBR           | RATION (      | choose two      | 1                                                |                               | M                                            | lodel or | Unit No.:                           |
| Buffer Solu  | ition           |                  |                     | pH 4.0        | pH 7.0          | pH 10.0                                          |                               |                                              |          |                                     |
| Field Temp   | erature °C      |                  |                     |               |                 |                                                  |                               |                                              |          |                                     |
| Instrument   | Reading         |                  |                     |               |                 |                                                  |                               |                                              |          |                                     |
|              | SPE             | CIFIC ELEC       | TRICAL CO           | NDUCTA        | NCE (SEC)       | - CALIBRATIO                                     | ON                            | M                                            | odel or  | Unit No.:                           |
| KCI Solution |                 |                  |                     |               | 1413 at 25°C    | 12880 at 25°                                     |                               |                                              | 000101   | OTHERVO                             |
| Field Tempe  |                 |                  |                     |               |                 |                                                  |                               |                                              |          |                                     |
| Instrument I |                 |                  |                     |               |                 |                                                  |                               |                                              |          | 1                                   |
|              | 0               | OX CALIBR        | ATION               | A. 11         | DICCOLL         | /FD OVOYOFILE                                    |                               | 20.7.7.7                                     |          |                                     |
| Standard S   |                 |                  | ATION               |               | Altitude / Sali | /ED OXYGEN (                                     | CALIBRATI                     | ON N                                         | otes:    |                                     |
| Field Temp   |                 |                  |                     |               | Field Temper    |                                                  |                               |                                              |          |                                     |
| Instrument   |                 |                  |                     |               |                 | eading (mg/L)                                    |                               |                                              |          |                                     |
| Model or U   |                 |                  |                     |               | Model or Unit   |                                                  |                               |                                              |          |                                     |
|              |                 |                  |                     |               |                 |                                                  |                               |                                              |          |                                     |
|              |                 |                  |                     |               |                 |                                                  |                               |                                              |          |                                     |



| Well ID:                | SMAN NO         | W-15             | + 5                 | FLI           | 1W-7                      | Initial D                                        | epth to Wa                    | ter: 14.                                     | 15         | wheeler                            |
|-------------------------|-----------------|------------------|---------------------|---------------|---------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|------------|------------------------------------|
| Sample II               | D:              | Dup              | licate ID: _        |               |                           |                                                  |                               |                                              |            | 15,03                              |
| Sample D                | epth:           |                  |                     |               |                           |                                                  | epth to Wel                   | _ 11 -                                       |            |                                    |
| Project a               | nd Task No      | D.: 670          | D6 150              | 060.          | 904                       | Well Dia                                         | ameter:                       | 2                                            | 1          |                                    |
|                         | ame:            |                  | GC                  | Mhe<br>B-2-   |                           |                                                  | g/Borehole                    |                                              |            |                                    |
|                         | Ву:             | 1                | 1                   |               |                           |                                                  | g/Borehole                    | Volumes:                                     |            |                                    |
|                         |                 | La               |                     | own SV        |                           |                                                  | asing/Borel                   | nole                                         |            |                                    |
| Method o                | f Sampling      | j:               | Law                 | Tour          | Sub                       |                                                  | s Removed                     |                                              |            |                                    |
| Time                    | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)             | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color, tu | Remarks<br>urbidity, and sediment) |
| Low                     | Flow Stab       | ilization Cri    | iteria              | +/- 3%        | +/- 0.1                   | +/- 3%                                           | +/- 10%                       | +/- 10%                                      | NIV        | Mary clear                         |
| 749                     | \               | 150              |                     | 25.08         | 6.27                      | 6.74                                             | 0.89                          | -19                                          | 8.2        | mostly clear                       |
| 745                     |                 |                  |                     | 25.14         | 6.22                      | 8.26                                             | 0.68                          | -6                                           | 0.5        | No Cobr of to                      |
| 454                     |                 | 7                |                     | 25.07         | 6.19                      | 8,88                                             | 0,63                          | 15                                           | 0.6        |                                    |
| 455                     |                 |                  |                     | 25.10         | 6.20                      | 2.90                                             | 0,53                          | 17                                           | 0.0        | Crystal clear                      |
| 1000                    |                 | `                | -2                  | 25, 14        | 6.21                      | 8.96                                             | 0.54                          | 15                                           | 2.0        |                                    |
|                         |                 | PC               | Eamp le             | ed            | @                         | 1000                                             | )                             |                                              |            |                                    |
|                         | 1.7             |                  |                     |               |                           |                                                  |                               |                                              |            | *                                  |
| D-#0-1                  |                 | *'G:             | pH CALIBR           |               | choose two)               |                                                  |                               | M                                            | odel or U  | nit No.:                           |
| Buffer Solu             |                 |                  |                     | pH 4.0        | pH 7.0                    | pH 10.0                                          |                               |                                              |            |                                    |
|                         | perature °C     | 1                |                     |               |                           |                                                  |                               |                                              |            |                                    |
| Instrument              | Reading         |                  |                     |               |                           |                                                  |                               |                                              |            |                                    |
|                         | SPEC            | IFIC ELEC        | TRICAL CO           | NDUCTA        | NCE (SEC)                 | - CALIBRATIO                                     | ON                            | М                                            | odel or U  | nit No.:                           |
| KCI Solutio             | n (μS/cm=μ      | mhos/cm)         |                     |               | 1413 at 25°C              | 12880 at 25°                                     | С                             |                                              |            |                                    |
| Field Temp              | erature °C      |                  |                     |               |                           |                                                  |                               |                                              |            |                                    |
| Instrument              | Reading         |                  |                     |               |                           |                                                  |                               |                                              |            |                                    |
| 0                       | ORP/REDO        | X CALIBR         | ATION               | 1             | DISSOLV                   | ED OXYGEN (                                      | CALIBRATI                     | ON N                                         | otes:      | - 7                                |
| Standard S              | Solution (m\    | /)               |                     | 1             | Altitude / Sali           |                                                  |                               |                                              |            |                                    |
| Field Temp              | erature °C      |                  |                     |               | Field Temper              |                                                  |                               |                                              |            |                                    |
| Instrument Reading (mV) |                 |                  |                     |               | Instrument Reading (mg/L) |                                                  |                               |                                              |            |                                    |
| Model or U              | nit No.:        |                  |                     |               | Model or Unit             |                                                  |                               |                                              |            |                                    |



| Well ID: _              | SFL                  | MW-              |                     |          | Initial Depth to Water: 16, 40 |                                                  |                               |                                              |               |                                |  |  |  |
|-------------------------|----------------------|------------------|---------------------|----------|--------------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|---------------|--------------------------------|--|--|--|
| Sample II               | D:                   | Dup              | licate ID: _        |          |                                |                                                  | o Water afte                  |                                              |               | 79                             |  |  |  |
|                         | epth:                |                  |                     |          |                                |                                                  |                               |                                              |               |                                |  |  |  |
| Project a               | nd Task No           | o: 670           | 61500               | 260.     | 004                            | Total Depth to Well:  Well Diameter:             |                               |                                              |               |                                |  |  |  |
| Project N               | ame:                 | MPA G            | FC M                | ne Co    | R                              | 1 Casing/Borehole Volume:                        |                               |                                              |               |                                |  |  |  |
| Date:                   | 1-23-                | 17               |                     |          |                                | (Circle o                                        |                               |                                              |               |                                |  |  |  |
| Sampled                 | Ву:                  | SCM              |                     |          |                                | 4 Casing (Circle of                              | g/Borehole<br>one)            | Volumes:                                     |               |                                |  |  |  |
| Method o                | of Purging:          | Low              | Flow                | 5W       |                                |                                                  | asing/Borel                   | nole                                         |               |                                |  |  |  |
| Method o                | of Sampling          | g:               | on fla              | w sul    | )                              |                                                  | s Removed                     |                                              |               |                                |  |  |  |
| Time                    | Intake<br>Depth      | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.    | pH<br>(units)                  | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | K             | Remarks<br>dity, and sediment) |  |  |  |
| Low                     | Flow Stab            | ilization Cri    | teria               | +/- 3%   | +/- 0.1                        | +/- 3%                                           | +/- 10%                       | +/- 10%                                      | # Sm          |                                |  |  |  |
| 1045                    |                      | -200             |                     | 25,39    | 7 4.61                         | 11.3                                             | 2.12                          | 315                                          | Mast av       | mostly clear                   |  |  |  |
| 1050                    |                      |                  |                     | 26.18    | 4.59                           | 11.3                                             | 1.00                          | 310                                          | 5.5           |                                |  |  |  |
| 1055                    |                      |                  |                     | a7.11    | 4.60                           | 11,3                                             | 0.79                          | 312                                          | (,)           |                                |  |  |  |
| 1100                    |                      |                  |                     | 26.0     | 7 4.57                         | 11.3                                             | 0,68                          | 316                                          | Q.C           | Crystal                        |  |  |  |
| 1105                    |                      |                  | ~2                  | 26.2     | 8 4.58                         | 11.3                                             | 0.67                          | 320                                          | 0,5           |                                |  |  |  |
|                         |                      |                  |                     |          |                                | - 2                                              |                               |                                              |               |                                |  |  |  |
|                         |                      | D                | Sar                 | pled     | @ 1                            | 105                                              |                               |                                              |               |                                |  |  |  |
|                         |                      |                  | nH CALIB            | PATION ( | choose two)                    |                                                  |                               |                                              | Andal and it  | N                              |  |  |  |
| Buffer Sol              | ution                | *                | PIT CALIB           |          | pH 7.0                         |                                                  |                               |                                              | Model or Unit | No.:                           |  |  |  |
|                         |                      |                  |                     | pn 4.0   | pH 7.0                         | pH 10.0                                          |                               |                                              |               |                                |  |  |  |
|                         | perature °C          | ,                |                     |          |                                |                                                  |                               |                                              |               |                                |  |  |  |
| Instrumen               | t Reading            |                  |                     |          |                                | 7 A 7 19 3 S 7 S                                 | 17.17                         |                                              |               |                                |  |  |  |
|                         |                      |                  | TRICAL C            | ONDUCTA  |                                | - CALIBRATIO                                     |                               | N                                            | Model or Unit | No.:                           |  |  |  |
|                         |                      | μmhos/cm)        |                     |          | 1413 at 25°C                   | 12880 at 25°                                     | ,C                            |                                              |               |                                |  |  |  |
| Field Temp              | perature °C          |                  |                     |          |                                |                                                  |                               |                                              |               |                                |  |  |  |
| Instrument              | Reading              |                  |                     |          |                                |                                                  |                               |                                              |               |                                |  |  |  |
|                         |                      | OX CALIBR        | RATION              | - Feb.   | DISSOLVED OXYGEN CALIBRATION   |                                                  |                               |                                              | lotes:        |                                |  |  |  |
| Standard                | Solution (m          | V)               |                     |          | Altitude / Sali                | nity %                                           |                               |                                              |               |                                |  |  |  |
| Field Tem               | Field Temperature °C |                  |                     |          |                                | Field Temperature °C                             |                               |                                              |               |                                |  |  |  |
| Instrument Reading (mV) |                      |                  |                     |          | Instrument Reading (mg/L)      |                                                  |                               |                                              |               |                                |  |  |  |
| Model or l              | Model or Unit No.:   |                  |                     |          |                                | t No.:                                           |                               |                                              |               |                                |  |  |  |
|                         |                      |                  |                     |          |                                |                                                  |                               |                                              |               |                                |  |  |  |



| Well ID: _   | MNW-            | -18              |                     |               |                           | Initial Depth to Water:                          |                               |                                              |          |                                     |  |  |
|--------------|-----------------|------------------|---------------------|---------------|---------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|----------|-------------------------------------|--|--|
|              |                 |                  | licate ID: _        |               |                           |                                                  | Water after                   |                                              |          | 29'                                 |  |  |
|              | epth: 4         |                  |                     |               |                           | Total De                                         | epth to Well                  | : 51.0'                                      |          |                                     |  |  |
| Project a    | nd Task No      | .: 6706          | 150060              |               |                           | Well Dia                                         | meter:                        | 1"                                           |          |                                     |  |  |
| Project N    | ame: _T/\       | 1PA - Gib        | bons Cree           | k             |                           | 1 Casing                                         | g/Borehole                    |                                              |          |                                     |  |  |
|              | August 2        |                  |                     |               |                           | (Circle o                                        |                               |                                              |          |                                     |  |  |
|              | Ву:             |                  | ///                 |               |                           | 4 Casing                                         | g/Borehole<br>one)            | Volumes: _                                   |          |                                     |  |  |
|              | f Purging:      |                  |                     |               |                           | Total Ca                                         | sing/Boreh                    | ole                                          |          |                                     |  |  |
| Method o     | f Sampling      | : _ 5ubin        | nersible            |               |                           | Volume                                           | s Removed                     | :                                            |          |                                     |  |  |
| Time         | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)             | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color,  | Remarks<br>turbidity, and sediment) |  |  |
| Low          | Flow Stabi      | lization Cr      | iteria              | +/- 3%        | +/- 0.1                   | +/- 3%                                           | +/- 10%                       | +/- 10%                                      | NTU      |                                     |  |  |
| 1129         | 48.5            | ×150             |                     | 27.69         | 6.82                      | 4.47                                             | 1.20                          | -60                                          |          | Clear; slight sulfur od             |  |  |
| 1134         | 1               | 1                |                     | 27,85         | 6.77                      | 4.71                                             | Ø.53                          | -83                                          | Ø. Ø     | 1                                   |  |  |
| 1139         |                 | - Au             |                     | 28.15         | 6.69                      | 4.85                                             | Ø.33                          | -98                                          | 4.0      |                                     |  |  |
| 1144         |                 |                  |                     | 28.54         | 1 6.69                    | 4.87                                             | 9.25                          | -102                                         | 0.0      |                                     |  |  |
| 1149         | V               | V                | 21.0                | 28.66         | 6.70                      | 4.90                                             | Ø.22                          |                                              | 0.0      | 1                                   |  |  |
| _            |                 |                  | ,                   | -             | 1                         | 100                                              |                               |                                              |          |                                     |  |  |
|              |                 | - (              | )am                 | pk:           | 5 / 9                     | Ken                                              |                               |                                              |          |                                     |  |  |
|              |                 |                  |                     | •             |                           |                                                  |                               |                                              |          |                                     |  |  |
|              |                 | -                |                     |               |                           |                                                  |                               |                                              |          |                                     |  |  |
|              |                 |                  |                     |               |                           |                                                  |                               |                                              |          |                                     |  |  |
|              |                 |                  |                     |               |                           |                                                  |                               |                                              |          |                                     |  |  |
|              | -               |                  | -II CALIDI          | DATION (      |                           |                                                  | e eu euer                     |                                              |          |                                     |  |  |
| D. # 0-1     | 0               |                  | PH CALIBI           |               | choose two                |                                                  |                               | N                                            | lodel or | Unit No.:                           |  |  |
| Buffer Sol   |                 |                  |                     | pH 4.0        | pH 7.0                    | pH 10.0                                          |                               |                                              |          |                                     |  |  |
|              | perature °C     |                  |                     | ,             |                           |                                                  |                               |                                              |          |                                     |  |  |
| Instrumen    | t Reading       |                  |                     |               |                           |                                                  |                               |                                              |          |                                     |  |  |
|              | SPEC            | CIFIC ELEC       | TRICAL CO           | ONDUCTA       | ANCE (SEC)                | - CALIBRATIO                                     | NC                            | N                                            | lodel or | Unit No.:                           |  |  |
| KCI Solution | n (μS/cm=μ      | umhos/cm)        |                     |               | 1413 at 25°C              | 12880 at 25°                                     | С                             |                                              |          |                                     |  |  |
| Field Temp   | erature °C      |                  |                     |               |                           |                                                  |                               |                                              |          |                                     |  |  |
| Instrument   | Reading         |                  |                     |               |                           |                                                  |                               |                                              |          |                                     |  |  |
|              | ORP/RED         | OX CALIBR        | RATION              |               | DISSOLV                   | /ED OXYGEN                                       | CALIBRATI                     | ON N                                         | otes:    |                                     |  |  |
| Standard S   | Solution (m     | V)               |                     |               | Altitude / Sal            | inity %                                          |                               |                                              |          |                                     |  |  |
| Field Tem    | perature °C     |                  |                     |               | Field Temperature °C      |                                                  |                               |                                              |          |                                     |  |  |
| Instrument   | t Reading (r    | mV)              |                     |               | Instrument Reading (mg/L) |                                                  |                               |                                              |          |                                     |  |  |
| Model or U   | Jnit No.:       |                  |                     |               | Model or Unit No.:        |                                                  |                               |                                              |          |                                     |  |  |



| Well ID:    | SFL                  | MW-              | 2                   |                              |                | Initial D                                        | epth to Wat                   | ter:                                         | 1.36       | WI leetel                        |  |  |
|-------------|----------------------|------------------|---------------------|------------------------------|----------------|--------------------------------------------------|-------------------------------|----------------------------------------------|------------|----------------------------------|--|--|
|             |                      | Dup              |                     |                              |                |                                                  | o Water after                 |                                              |            | 12.64-                           |  |  |
| 12.000.002  |                      |                  |                     |                              |                |                                                  | epth to Well                  |                                              |            |                                  |  |  |
| Project a   | nd Task No           | o.: 670          | 261500              | 60,00                        | Well Diameter: |                                                  |                               |                                              |            |                                  |  |  |
| Project N   |                      | MAA 6            |                     |                              |                |                                                  | g/Borehole                    |                                              |            |                                  |  |  |
| Sampled     | By: <u>50</u>        | M                |                     | ,                            |                | 4 Casing                                         | g/Borehole<br>one)            | Volumes:                                     | s:         |                                  |  |  |
|             |                      | Low T            |                     |                              |                |                                                  | asing/Borel<br>s Removed      |                                              |            |                                  |  |  |
| Time        | Intake<br>Depth      | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C)                | pH<br>(units)  | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | 4 4 4      | Remarks<br>rbidity, and sediment |  |  |
| Low         | Flow Stab            | ilization Cr     | iteria              | +/- 3%                       | +/- 0.1        | +/- 3%                                           | +/- 10%                       | +/- 10%                                      | _          | 1-14                             |  |  |
| 1135        |                      | ~300             |                     | 36,10                        | 5.80           | 10.3                                             | 1.07                          | 226                                          | 97,3       | cloudy white                     |  |  |
| 1140        |                      |                  |                     | 26.23                        | 5,86           | 10,3 (                                           | 2.67                          | 223                                          | 17.3       | learing                          |  |  |
| 1145        |                      |                  |                     | 2630                         | 5.96           | 10.3                                             | 0.57                          | 214                                          | 5.4        |                                  |  |  |
| 1150        |                      |                  |                     | 2624                         | 6.03           | 103                                              | 0.51                          | 205                                          | 4,8        | Clearer                          |  |  |
| 1155        |                      |                  |                     | 26,49                        | 6,08           | 10,3                                             | 047                           | 2 193                                        | 0.0        | Crystal clear                    |  |  |
| 1200        |                      | •                | rd                  | 86.87                        | 6.09           | 10,3                                             | 0,44                          | 1881                                         | 0.0        | COC TOUCH                        |  |  |
|             |                      | 75               | ante                | 1                            | 0              | 200                                              |                               |                                              |            |                                  |  |  |
|             |                      |                  | pH CALIB            | RATION (c                    | hoose two      |                                                  |                               | N                                            | lodel or U | nit No.:                         |  |  |
| Buffer Sol  | ution                |                  |                     | pH 4.0                       | pH 7.0         | pH 10.0                                          |                               |                                              |            |                                  |  |  |
| Field Tem   | perature °C          | ;                |                     |                              |                |                                                  |                               |                                              |            |                                  |  |  |
| Instrumen   | Reading              |                  |                     |                              |                |                                                  |                               |                                              |            |                                  |  |  |
|             | SPE                  | CIFIC ELEC       | TRICAL CO           | ONDUCTAI                     | NCE (SEC)      | - CALIBRATION                                    | ON                            | N                                            | lodel or U | nit No ·                         |  |  |
| KCI Solutio |                      | μmhos/cm)        |                     |                              | 413 at 25°C    | 12880 at 25°                                     |                               |                                              |            |                                  |  |  |
| Field Temp  | erature °C           |                  |                     |                              |                |                                                  |                               |                                              |            |                                  |  |  |
| Instrument  | Reading              |                  |                     |                              |                |                                                  |                               |                                              |            |                                  |  |  |
|             | ORP/RED              | OX CALIBR        | RATION              | DISSOLVED OXYGEN CALIBRATION |                |                                                  |                               |                                              | otes:      |                                  |  |  |
| Standard    | Solution (m          | V)               |                     | А                            | ltitude / Sali |                                                  |                               |                                              |            |                                  |  |  |
| Field Tem   | Field Temperature °C |                  |                     |                              |                | Field Temperature °C                             |                               |                                              |            |                                  |  |  |
| Instrumen   | Reading (            | mV)              |                     | Instrument Reading (mg/L)    |                |                                                  |                               |                                              |            |                                  |  |  |
| Model or U  | Model or Unit No.:   |                  |                     |                              | lodel or Uni   | t No.:                                           |                               |                                              |            |                                  |  |  |



|             | 55/             |                  |                     |          | Initial Depth to Water: |                                                  |                               |                                              |            |                              |  |  |
|-------------|-----------------|------------------|---------------------|----------|-------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|------------|------------------------------|--|--|
| Sample II   | D:              | Dup              | licate ID: _        |          |                         | Depth t                                          | o Water afte                  | er Samplin                                   | g:         | 14,39                        |  |  |
|             | epth:           |                  | . /                 | (0.0     | 2.(1)                   | Total D                                          | epth to Wel                   | l:                                           |            |                              |  |  |
|             |                 | o.: 670          |                     |          |                         | Well Dia                                         | ameter:                       | 2"                                           |            |                              |  |  |
|             |                 | MPA              | 66                  | Mir      | CCK                     | Volume: _                                        |                               |                                              |            |                              |  |  |
|             | 8-23            |                  |                     |          |                         | Valumas                                          |                               |                                              |            |                              |  |  |
|             | Ву:             |                  | N 1                 |          |                         | (Circle                                          | g/Borenoie<br>one)            | volumes:                                     |            |                              |  |  |
|             |                 | Law I            |                     |          |                         | Total Casing/Borehole Volumes Removed:           |                               |                                              |            |                              |  |  |
| Time        | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.    | pH<br>(units)           | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) |            | Remarks<br>urbidity, and sed |  |  |
|             | Flow Stab       | ilization Cr     | iteria              | +/- 3%   | +/- 0.1                 | +/- 3%                                           | +/- 10%                       | +/- 10%                                      | -          | Brow                         |  |  |
| 1310        |                 | ~300             |                     | 27.7     | 25.86                   | 8,54                                             | 1.36                          | -3                                           | 226        | Light yell<br>mild He ad     |  |  |
| 1315        |                 |                  |                     | 29,2     |                         | 8.63                                             | 0.86                          | . 3                                          | 345        | No dubi                      |  |  |
| 1520        |                 |                  |                     | 29.87    | 5.83                    | 8.64                                             | 0.70                          | 6                                            | 439        |                              |  |  |
| 1525        |                 |                  |                     | 30.05    |                         | ~                                                | 0,59                          | 7                                            | 505        |                              |  |  |
| 1530        |                 |                  |                     | 30,19    | -                       | 8,62                                             | 0,51                          | 8                                            | 527        | No slaw                      |  |  |
| 1335        |                 |                  |                     | 27.91    |                         |                                                  | 0,45                          | 12                                           | 452        | Clearing of                  |  |  |
| 1349        |                 |                  |                     | 2809     | 5.80                    | 8.54                                             | 0.40                          | 15                                           | 2411       | Clearing                     |  |  |
| 1545        |                 |                  |                     | 28.23    | 5.80                    | 8.57                                             | 0,36                          | 16                                           | 164        | clearing                     |  |  |
| 1350        |                 | 4                | 12,5                | 28,3     | 5 5.80                  | 2,58                                             | 0,34                          | 17                                           | 119        | Light sell                   |  |  |
| 1           |                 |                  | 1                   | 1        |                         |                                                  |                               |                                              |            | - J. W. yen                  |  |  |
|             |                 | 1                | 9 5                 | amole    | 00                      | 135                                              | 0                             |                                              |            |                              |  |  |
|             |                 |                  |                     | 1        |                         |                                                  |                               |                                              |            | l                            |  |  |
|             |                 |                  | pH CALIB            | RATION ( | (choose two)            |                                                  |                               | N                                            | lodel or U | Init No.:                    |  |  |
| Buffer Solu | ution           |                  |                     | pH 4.0   | pH 7.0                  | pH 10.0                                          |                               |                                              |            |                              |  |  |
| Field Tem   | perature °C     |                  |                     |          |                         |                                                  |                               |                                              |            |                              |  |  |
| Instrument  | Reading         |                  |                     |          |                         |                                                  |                               |                                              |            |                              |  |  |
|             | SPEC            | CIFIC ELEC       | TRICAL CO           | ONDUCT   | ANCE (SEC)              | - CALIBRATION                                    | ON                            | N.                                           | lodel or U | nit No :                     |  |  |
| KCI Solutio |                 |                  |                     |          | 1413 at 25°C            | 12880 at 25°                                     |                               |                                              | 0001010    | THE INO                      |  |  |
| Field Temp  |                 |                  |                     |          | 77.10 41.20 0           | 12000 dt 20                                      |                               |                                              |            |                              |  |  |
| Instrument  |                 | н                |                     |          |                         |                                                  |                               |                                              |            |                              |  |  |
|             |                 | OV CALIBE        | ATION               |          | Diocet                  | ED COMP                                          |                               |                                              |            | <b>A</b> .                   |  |  |
| 731         | Solution (m)    | OX CALIBR        | AHON                |          |                         | ED OXYGEN                                        | CALIBRAT                      | ON N                                         | otes:      | IV                           |  |  |
|             | perature °C     |                  |                     | -        | Altitude / Sali         |                                                  | 1                             |                                              | MAX        | = 520                        |  |  |
|             | TEAC SHE TO     |                  | 12                  |          | Field Temper            | 7. UNIVERSE                                      |                               |                                              |            | 530                          |  |  |
| Inetriimant |                 | 117)             |                     |          |                         | eading (mg/L)                                    |                               |                                              | - ew       | St 5/16                      |  |  |
| Instrument  | THE INO.        |                  |                     | - 1      | Model or Unit           | No.:                                             |                               |                                              | -400       | - 11                         |  |  |
| Model or U  |                 |                  |                     |          |                         |                                                  |                               |                                              |            |                              |  |  |



| Well ID:         | 55F                | > MW             | 1-2                 |               |                           | Initial D                                        | epth to Wa                    | ter: 21                                      | .95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wileelei                           |  |
|------------------|--------------------|------------------|---------------------|---------------|---------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--|
|                  | 7                  | Dup              |                     |               |                           |                                                  |                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |  |
| Sample D         | epth:              |                  |                     |               |                           | Total De                                         | epth to Wel                   | 1:                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.10                              |  |
| Project a        | nd Task No         | o.: <u>670</u>   | 615000              | 50,00         | 14                        | Well Dia                                         | ameter:                       | 2"                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |  |
| Project N        | ame:               | IMPA             | GC                  | Mine          | CCR                       |                                                  | g/Borehole                    |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |  |
| Sampled          | Ву:                | SCM              | 1                   | 1             |                           | 4 Casin<br>(Circle                               | g/Borehole<br>one)            | Volumes:                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |  |
| 1. A. 1895, 3-53 |                    | Low<br>Low       | 11                  |               |                           | Total Ca<br>Volume                               | asing/Borel<br>s Removed      | nole<br>:                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |  |
| Time             | Intake<br>Depth    | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)             | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remarks<br>turbidity, and sediment |  |
| Low              | Flow Stab          | ilization Cr     | iteria              | +/- 3%        | +/- 0.1                   | +/- 3%                                           | +/- 10%                       | +/- 10%                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tight                              |  |
| 910              |                    | 200cm            |                     | 23.8          | 7 454                     | 9,88                                             | 1.46                          | 200                                          | 221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Light brown                        |  |
| 415              |                    |                  |                     | 23,97         |                           | 9,88                                             | 1,09                          | 193                                          | 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | clearing                           |  |
| 920              |                    |                  |                     | 24.41         | 4.59                      | 9.85                                             | 0.83                          | 20 195                                       | 88.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | clarina                            |  |
| 925              |                    |                  |                     | 24,28         | 4.58                      | 9.82                                             | 0.98                          | 200                                          | 66,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |  |
| 930              |                    |                  | 1.5                 | 24.75         | 455                       | 9,81                                             | 0,94                          | 211                                          | 75,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Still light                        |  |
|                  |                    | 75               | an y                | ies           | 100                       | 09                                               | 30                            |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |  |
|                  |                    |                  | nH CALIB            | RATION (      | choose two)               |                                                  |                               |                                              | La de la constante de la const |                                    |  |
| Buffer Soli      | ution              |                  | PITOALID            | pH 4.0        | pH 7.0                    | pH 10.0                                          |                               | IV                                           | lodel or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ⊎nit No.:                          |  |
|                  | perature °C        |                  |                     | pi 1 4.0      | pri 7.0                   | рн то.о                                          |                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |  |
| Instrument       |                    |                  |                     |               | 1                         |                                                  |                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |  |
|                  | SPE                | CIFIC ELEC       | TRICAL CO           | ONDUCTA       | NCE (SEC)                 | - CALIBRATIO                                     | ON                            | M                                            | lodel or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unit No.:                          |  |
| KCI Solutio      |                    | μmhos/cm)        |                     |               | 1413 at 25°C              | 12880 at 25°                                     |                               | IV.                                          | lodel of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Offic (No.:                        |  |
| Field Temp       | erature °C         |                  |                     |               |                           |                                                  |                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |  |
| Instrument       | Reading            |                  |                     |               |                           |                                                  |                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |  |
| F                |                    | OX CALIBR        | ATION               |               | DISSOLV                   | ED OXYGEN                                        | CALIBRATI                     | ON N                                         | otes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |  |
| Standard S       | Solution (m        |                  |                     |               | Altitude / Salinity %     |                                                  |                               |                                              | -100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |  |
| Field Temp       | oerature °C        |                  |                     |               | Field Temperature °C      |                                                  |                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |  |
| Instrument       | Reading (          | mV)              |                     |               | Instrument Reading (mg/L) |                                                  |                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |  |
| Model or U       | Model or Unit No.: |                  |                     |               |                           | Model or Unit No.:                               |                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |  |



| Well ID: _  | 529                    | MW-              | 3                   |               |                 | Initial Depth to Water:                          |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|-------------|------------------------|------------------|---------------------|---------------|-----------------|--------------------------------------------------|-------------------------------|----------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Sample II   | D:                     | Dup              | licate ID: _        | Dup-          | 2               | Depth to Water after Sampling: 29.82             |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|             | epth:                  |                  |                     | ,             |                 |                                                  | epth to Well                  |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Project a   | nd Task No             | D.: 1570         | 36150               | 060,0         | 04              | Well Dia                                         | ameter:                       | 3 11                                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Project N   | ame:                   | MPA 0            | FC M.               | ne CC         | A               | 1 Casing/Borehole Volume:                        |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Date:       | 8-21                   | +-17             |                     |               |                 | (Circle o                                        |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Sampled     | Ву:                    | CM               |                     |               |                 | 4 Casing (Circle of                              | g/Borehole                    | Volumes: _                                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Method o    | f Purging:             | La               | v flav              | sub           |                 |                                                  | asing/Boreh                   | nole                                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Method o    | f Sampling             | j:               | w flo               | w 5nb         |                 |                                                  | s Removed                     |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Time        | Intake<br>Depth        | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)   | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color, I | Remarks<br>curbidity, and sediment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Low         | Flow Stab              | ilization Cr     | iteria              | +/-3%         | +/- 0.1         | +/- 3%                                           | +/- 10%                       | +/- 10%                                      |           | 7 1 6 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 1010        |                        | ~200             |                     | 35.27         | 4,29            | 8.42                                             | 1,88                          | 279                                          | 247       | Cloudy light                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 1015        |                        |                  |                     | 25.43         | 4,21            | 8.44                                             | 025                           | 293                                          | 332       | Mu Climbing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 1020        |                        |                  |                     | 25,53         | 4.20            | 8.47                                             | 0.62                          | 297                                          | 513       | The state of the s |  |  |
| 1025        |                        |                  |                     | 25,76         | 421             | 848                                              | 0,53                          | 288                                          | 281       | Mr falling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 1030        |                        |                  |                     | 25.94         | 4.21            | 8,45                                             | C.47                          | 300                                          | 129       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 1035        |                        | ,                | 0,6~                | 26,01         | 4.20            | 8.72                                             | 0.44                          | 302                                          | 67.1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|             |                        |                  |                     |               |                 |                                                  | 100                           |                                              |           | cloudy while                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|             |                        |                  | A                   | 1             |                 |                                                  |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|             |                        | 26               | ZIM                 | DE            | 0/              | (1)                                              | 1/2                           | 5                                            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|             |                        | /                | 011                 | J '           | (               |                                                  | 101-                          |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|             |                        |                  |                     |               |                 |                                                  |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|             |                        |                  | 1                   |               |                 |                                                  |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|             |                        |                  | pH CALIB            | -             | hoose two)      |                                                  |                               | M                                            | odel or l | Jnit No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Buffer Sol  |                        |                  |                     | pH 4.0        | pH 7.0          | pH 10.0                                          |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Field Tem   | perature °C            | ;                |                     |               |                 |                                                  |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Instrumen   | t Reading              |                  |                     |               |                 |                                                  |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|             | SPE                    | CIFIC ELEC       | TRICAL C            | ONDUCTA       | NCE (SEC)       | - CALIBRATIO                                     | ON                            | M                                            | odel or l | Jnit No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| KCI Solutio | n (μS/cm= <sub>j</sub> | umhos/cm)        |                     |               | 1413 at 25°C    | 12880 at 25°                                     | С                             |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Field Temp  | erature °C             |                  |                     |               |                 |                                                  |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Instrument  | Reading                |                  |                     |               |                 |                                                  |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 100         | ORP/RED                | OX CALIBR        | ATION               |               | DISSOLV         | ED OXYGEN                                        | CALIBRATI                     | ON N                                         | otes:     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Standard S  | Solution (m            |                  |                     | A             | Iltitude / Sali |                                                  |                               |                                              | 0.77.7.5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Field Tem   | perature °C            |                  |                     |               | ield Temper     | -                                                |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Instrument  | Reading (ı             | mV)              |                     |               |                 | eading (mg/L)                                    |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Model or L  | Model or Unit No.:     |                  |                     |               |                 | No.:                                             |                               |                                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |



|             |                                     |                       | •                   |               |                                         |                                                  |                               |                                               |                | wueeler                             |  |  |
|-------------|-------------------------------------|-----------------------|---------------------|---------------|-----------------------------------------|--------------------------------------------------|-------------------------------|-----------------------------------------------|----------------|-------------------------------------|--|--|
| Well ID: _  | APM                                 | W-1D                  |                     |               |                                         | Initial De                                       | epth to Wat                   | er: <u>/3,</u>                                | 801            |                                     |  |  |
| l           |                                     |                       | licate ID: _        |               |                                         | Depth to                                         | Water afte                    | er Sampling                                   | 9: <u>14</u> 0 | 32'                                 |  |  |
| Sample D    | epth:                               | 40.5                  | ·                   |               | ·                                       | Total De                                         | epth to Well                  | : <u>43.0'</u>                                | <u> </u>       |                                     |  |  |
| Project ar  | nd Task No                          | o.: <u>6706</u> ,     | 150060              | ·             |                                         | Well Dia                                         | ımeter: <u>_ င</u> ်          | , H                                           |                |                                     |  |  |
|             |                                     |                       | bons Creek          | k             |                                         | 1 Casing/Borehole Volume:                        |                               |                                               |                |                                     |  |  |
| l           | ٠.                                  | 14, 2017              |                     |               |                                         | (Circle o                                        | •                             |                                               |                |                                     |  |  |
|             | By: 용서                              |                       | Δ.                  |               |                                         | 4 Casine<br>(Circle c                            | g/Borehole<br>one)            | Volumes: _                                    |                |                                     |  |  |
| Method o    | f Purging:                          | _ 10W                 | Flow                |               |                                         | •                                                | ising/Boreh                   | ole                                           |                |                                     |  |  |
| Method o    | f Sampling                          | j: <u>sub</u> n       | nersible            |               | ·                                       |                                                  | s Removed                     |                                               |                |                                     |  |  |
| Time        | Intake<br>Depth                     | Rate<br>(ml/min)      | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)                           | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV)- | 中国 益 [3]。      | Remarks<br>turbidity, and sediment) |  |  |
| Low         | Flow Stab                           | ilization Cr          | iteria              | +/- 3%        | +/- 0.1                                 | +/- 3%                                           | +/- 10%                       | +/- 10%                                       | NTU            | (                                   |  |  |
| 1040        | 40.5                                | ₩200                  |                     | 25.30         | 6 5.85                                  | 1.83                                             | 1.17                          | 108                                           |                | Slightly cloudy in ador             |  |  |
| 1045        |                                     |                       |                     | 25.5          | 1                                       | 1.85                                             | Ø.53                          | 116                                           | 127            | (/                                  |  |  |
| 1050        |                                     |                       |                     | 25.39         |                                         | 1.86                                             | 0.26                          | 119                                           | 36.5           | i                                   |  |  |
| 1055        |                                     |                       |                     | 25.4          |                                         | 1.86                                             | Ø.11                          | 125                                           | 9.4            | clear                               |  |  |
| 1100        |                                     | V                     | %J.0                | 25.4          | 6 5.74                                  | 1.86                                             | \$.09                         | 128                                           | 5.3            | u                                   |  |  |
|             |                                     |                       |                     |               | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | r ,                                              |                               |                                               |                | Warner                              |  |  |
|             |                                     |                       | am                  | ole           | 5 /                                     | aker                                             | 7                             |                                               |                |                                     |  |  |
|             |                                     | -                     | 1                   | -             |                                         |                                                  | t                             |                                               |                |                                     |  |  |
|             |                                     |                       |                     |               |                                         |                                                  |                               |                                               |                |                                     |  |  |
|             |                                     |                       |                     |               |                                         |                                                  |                               |                                               |                |                                     |  |  |
|             |                                     |                       |                     |               |                                         |                                                  |                               | · · · · · · · · · · · · · · · · · · ·         |                |                                     |  |  |
|             |                                     |                       |                     |               |                                         |                                                  |                               |                                               |                |                                     |  |  |
|             |                                     |                       | pH CALIBI           | RATION (      | choose two)                             |                                                  |                               | V                                             | lodel or       | Unit No.:                           |  |  |
| Buffer Sol  | ution                               |                       |                     | pH 4.0        | pH 7.0                                  | pH 10.0                                          |                               |                                               |                |                                     |  |  |
| Field Tem   | perature °C                         | ;                     |                     |               |                                         |                                                  |                               |                                               |                |                                     |  |  |
| Instrument  | t Reading                           |                       |                     |               |                                         |                                                  |                               |                                               |                |                                     |  |  |
|             | SPE                                 | CIFIC ELEC            | TRICAL CO           | ONDUCTA       | ANCE (SEC)                              | - CALIBRATIO                                     | ON                            | N                                             | odel or        | Unit No.;                           |  |  |
| KCI Solutio | 3 <u>- 41 - 2 - 5 1</u> 5 1 5 5 5 2 | A. A. Sarata, Section |                     |               | 1413 at 25°C                            | 12880 at 25°                                     |                               | <u> </u>                                      | 040,0,         | Jill Ho.,                           |  |  |
| Field Temp  |                                     |                       |                     |               |                                         |                                                  |                               | <u></u>                                       |                |                                     |  |  |
| Instrument  |                                     | ·                     |                     |               |                                         |                                                  |                               |                                               |                |                                     |  |  |
|             | 27 1 24 4 2 4 4 1 1 3               | OX CALIBR             | PATION              |               | DISSOLV                                 | /ED OXYGEN (                                     | CALIBRATI                     | ON N                                          | otes:          |                                     |  |  |
| Standard S  | Solution (m                         | <u> </u>              |                     | <u> </u>      | Altitude / Sali                         |                                                  | CALIDITATI                    |                                               | Oles.          |                                     |  |  |
|             | perature °C                         | ··                    |                     |               | Field Temper                            | <u> </u>                                         |                               |                                               |                |                                     |  |  |
|             | Reading (                           |                       |                     | <del></del>   |                                         | eading (mg/L)                                    | <u> </u>                      |                                               |                |                                     |  |  |
| Model or U  |                                     |                       |                     |               | Model or Unit                           |                                                  |                               |                                               |                |                                     |  |  |
|             |                                     |                       |                     |               | J. 5111.                                | <del>-</del>                                     |                               |                                               |                |                                     |  |  |
| <u> </u>    |                                     |                       |                     |               |                                         |                                                  | ·····                         |                                               |                |                                     |  |  |



| Well ID:                                  | 551                      | M                | N-4                 |                              |                                       | Initial D                                        | enth to Wa                    | tor: 2                                       | 4 51     | wheeler                            |  |
|-------------------------------------------|--------------------------|------------------|---------------------|------------------------------|---------------------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|----------|------------------------------------|--|
|                                           |                          |                  | licate ID: _        |                              | Depth to Water after Sampling: 38.04  |                                                  |                               |                                              |          |                                    |  |
|                                           | epth:                    |                  | illoate ib          |                              |                                       |                                                  | epth to Wel                   |                                              | 9        | Jan                                |  |
| Project a                                 | nd Task No               | .670             | 61500               | 10 0                         | 211                                   | Wall Die                                         | epui to wei                   | 7"                                           |          |                                    |  |
|                                           |                          | MPA /            | . 4                 | e C                          |                                       |                                                  |                               |                                              |          |                                    |  |
| Date:                                     | 8-24                     | -17              | C. 1 4              |                              | 1 Casing/Borehole Volume:(Circle one) |                                                  |                               |                                              |          |                                    |  |
|                                           | Ву:                      | 1                | N                   |                              |                                       | 4 Casin<br>(Circle o                             | g/Borehole<br>one)            | Volumes:                                     |          |                                    |  |
|                                           | f Purging:<br>f Sampling | 1: 201           | Play Fb.            | or orth                      |                                       |                                                  | asing/Borel<br>s Removed      |                                              |          |                                    |  |
| Time                                      | Intake<br>Depth          | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C)                | pH<br>(units)                         | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) |          | Remarks<br>turbidity, and sediment |  |
| Low                                       | Flow Stab                | ilization Cr     | iteria              | +/- 3%                       | 3% +/- 0.1                            | +/- 3%                                           | +/- 10%                       | +/- 10%                                      | _        | 4 1                                |  |
| 1125                                      | 1                        | ~300             | <b>ASS</b>          | 27.75                        | 6.03                                  | 5.45                                             | 1.63                          | 129                                          | 73       | Mastly clear                       |  |
| 1130                                      |                          | 0,1              |                     | 27,50                        | 604                                   | 552                                              | 080                           | 101                                          | 16.8     | very stightly                      |  |
| 1135                                      |                          |                  |                     | 26.18                        | 103                                   | 510                                              | 0.65                          | 87                                           | 20.5     | clearing                           |  |
| 140                                       |                          |                  |                     | 25.82                        | 603                                   | 5.63                                             | 0.49                          | 20                                           | 12.1     | - Corrigion                        |  |
| 1145                                      |                          |                  |                     | 25.97                        | 614                                   | 5.67                                             | 1.43                          | 68                                           | 12.8     | Charing                            |  |
| 1150                                      |                          | _                | 1.5                 | 25.57                        | 605                                   | 5,62                                             | 0.42                          | 61                                           | 18.3     | 1                                  |  |
| 1                                         |                          |                  |                     |                              |                                       | 2102                                             | 0,10                          | 01                                           | 10.10    |                                    |  |
|                                           |                          |                  |                     | 1                            |                                       | IFA                                              |                               |                                              |          |                                    |  |
| 1-                                        | -                        | _                | 2 AMD               | cd/                          | 0                                     | 150                                              |                               |                                              |          |                                    |  |
| 1: =====                                  | 1                        |                  |                     |                              | ,                                     | 109                                              |                               |                                              |          |                                    |  |
|                                           |                          |                  |                     |                              | lu .                                  |                                                  |                               |                                              |          |                                    |  |
|                                           |                          |                  |                     |                              |                                       |                                                  |                               |                                              |          |                                    |  |
|                                           |                          |                  | »U CALIB            | PATION /                     | haara tuus                            |                                                  |                               |                                              |          |                                    |  |
| Dff 0 - 1                                 | i i                      |                  | рп САЦБ             |                              | choose two                            |                                                  |                               | . N                                          | lodel or | Unit No.:                          |  |
| Buffer Sol                                |                          |                  |                     | pH 4.0                       | pH 7.0                                | pH 10.0                                          |                               |                                              |          |                                    |  |
|                                           | perature °C              |                  |                     |                              |                                       |                                                  |                               |                                              |          |                                    |  |
| Instrumen                                 | t Reading                |                  |                     |                              |                                       |                                                  |                               |                                              |          |                                    |  |
| Ü. 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | SPE                      | CIFIC ELEC       | CTRICAL CO          | ONDUCTA                      | NCE (SEC)                             | - CALIBRATION                                    | ON                            | N                                            | lodel or | Unit No.:                          |  |
| KCI Solution                              | on (μS/cm=               | umhos/cm)        |                     |                              | 1413 at 25°C                          | 12880 at 25°                                     | °C                            |                                              |          |                                    |  |
| Field Temp                                | erature °C               |                  |                     |                              |                                       |                                                  |                               |                                              |          |                                    |  |
| Instrument                                | Reading                  |                  |                     |                              |                                       |                                                  |                               |                                              |          |                                    |  |
|                                           | ORP/RED                  | OX CALIBR        | RATION              | DISSOLVED OXYGEN CALIBRATION |                                       |                                                  |                               | ON N                                         | otes:    | 4                                  |  |
| Standard                                  | Solution (m              | V)               |                     | 1                            | Altitude / Sal                        | inity %                                          |                               |                                              | M        | u lawest                           |  |
| Field Temperature °C                      |                          |                  |                     |                              | Field Temperature °C                  |                                                  |                               | 1                                            | 1        | 2                                  |  |
| Instrument Reading (mV)                   |                          |                  |                     |                              | nstrument R                           | eading (mg/L)                                    |                               |                                              |          |                                    |  |
| Model or U                                | Jnit No.:                |                  |                     | r                            | Model or Uni                          | t No.:                                           |                               |                                              |          |                                    |  |



| Sample ID<br>Sample D<br>Project ar<br>Project Na<br>Date: | epth: <u>*</u><br>nd Task No<br>ame: <i>TM</i><br><i>August</i><br>By: <u>B</u> | Dup<br>40.6'<br>o:: <u>6706</u><br>1PA - Gib<br>24, 2017 |                     |               | Total Depth to Well: 43,1'  Well Diameter: 2" |                                                  |                               |                                              |            |                                    |  |
|------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------|---------------------|---------------|-----------------------------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|------------|------------------------------------|--|
| Method o                                                   | f Purging:<br>f Sampling                                                        | 1000 5<br>5001                                           | tlow<br>nersible    |               |                                               |                                                  | sing/Boreh<br>Removed         |                                              | . <u>.</u> |                                    |  |
| Time                                                       | Intake<br>Depth                                                                 | Rate<br>(ml/min)                                         | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)                                 | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color, t  | Remarks<br>urbidity, and sediment) |  |
| Low                                                        | Flow Stab                                                                       | lization Cri                                             | iteria              | +/- 3%        | +/- 0.1                                       | +/- 3%                                           | +/- 10%                       | +/- 10%                                      | NTU        |                                    |  |
| 1149                                                       | X40.6                                                                           | <i>₩250</i>                                              |                     | 25,5          | 6 3.56                                        | 5.32                                             | 1.66                          | 377                                          |            | Slightly cloudy; no co             |  |
| 1154                                                       | -                                                                               |                                                          |                     | 26.03         | 3,56                                          | 5,36                                             | Ø.72                          | 379                                          | 144        | 11                                 |  |
| 1159                                                       |                                                                                 |                                                          |                     | 26.16         | 3,55                                          | 5.34                                             | Ø.44                          | 383                                          | 48.1       | Clearing                           |  |
| 1204                                                       |                                                                                 |                                                          |                     | 26.06         | 3.55                                          | 5.36                                             | \$.27                         | 384                                          | 21.2       | Clear                              |  |
| 1209                                                       |                                                                                 | V                                                        |                     | 26.06         | 3,55                                          | 5.37                                             | Ø.24                          | 385                                          | 7.2        | ч                                  |  |
| /335·                                                      | <b>-</b> E                                                                      | QBK                                                      |                     | 2 mg          |                                               | Tak<br>7 colle                                   | tel                           |                                              |            |                                    |  |
|                                                            |                                                                                 |                                                          | pH CALIBI           | RATION (      | choose two)                                   |                                                  |                               | М                                            | odel or l  | Jnit No.:                          |  |
| Buffer Solu                                                | ution                                                                           |                                                          |                     | pH 4.0        | pH 7.0                                        | pH 10.0                                          |                               |                                              |            | }                                  |  |
| Field Tem                                                  | perature °C                                                                     |                                                          |                     |               |                                               |                                                  |                               |                                              |            |                                    |  |
| Instrument                                                 | t Reading                                                                       | ·                                                        |                     |               |                                               |                                                  | _                             |                                              |            |                                    |  |
|                                                            | SPE                                                                             | CIFIC ELEC                                               | TRICAL CO           | ONDUCTA       | ANCE (SEC)                                    | – CALIBRATIC                                     | ON                            | М                                            | odel or l  | Jnit No.:                          |  |
| KCI Solutio                                                | n (μS/cm≃ <sub>l</sub>                                                          | ımhos/cm)                                                |                     |               | 1413 at 25°C                                  | 12880 at 25°                                     | С                             |                                              |            |                                    |  |
| Field Temp                                                 | erature °C                                                                      |                                                          |                     |               |                                               |                                                  |                               |                                              |            |                                    |  |
| Instrument                                                 | Reading                                                                         |                                                          |                     |               |                                               |                                                  |                               |                                              |            |                                    |  |
|                                                            | ORP/RED                                                                         | OX CALIBR                                                | ATION               |               | DISSOLV                                       | ED OXYGEN                                        | CALIBRATI                     | ON N                                         | otes:      |                                    |  |
| Standard 9                                                 | Solution (m                                                                     | V)                                                       |                     | ,             | Altitude / Sali                               | nity %                                           |                               | 1                                            | DUP        | -3                                 |  |
| Field Tem                                                  | perature °C                                                                     |                                                          |                     |               | Field Temperature °C                          |                                                  |                               |                                              |            |                                    |  |
| Instrument                                                 | t Reading (ı                                                                    | mV)                                                      |                     |               | Instrument Reading (mg/L)                     |                                                  |                               |                                              |            |                                    |  |
| Model or U                                                 | Jnit No.:                                                                       |                                                          |                     |               | Model or Unit                                 | No.:                                             | ,                             |                                              |            |                                    |  |



| W-11 ID     | AP /                       | M ( H            |                     |               |                              |                                                  |                               |                                             | 15.4                | foster<br>wheeler                 |  |
|-------------|----------------------------|------------------|---------------------|---------------|------------------------------|--------------------------------------------------|-------------------------------|---------------------------------------------|---------------------|-----------------------------------|--|
|             |                            |                  | Uant In             |               | _                            |                                                  |                               |                                             | 13.00               | . 7 -11                           |  |
|             |                            | Dup              | licate ID: _        |               |                              |                                                  |                               |                                             | ing:                | 13.76                             |  |
|             | epth:                      | D.: 670          | 6150                | 0600          | 204                          | Total De                                         | epth to Wel                   |                                             |                     |                                   |  |
|             | ame:                       | A .              |                     | Mine of       | R                            |                                                  | ameter:                       |                                             |                     |                                   |  |
|             | 8-24                       |                  | Lot 1               | line          | <u></u> /\                   | 1 Casing<br>(Circle o                            | g/Borehole<br>one)            | Volume:                                     | -                   |                                   |  |
| Sampled     | Ву:                        | SCM              |                     |               |                              | 4 Casing (Circle of                              | g/Borehole                    | Volumes                                     | s:                  |                                   |  |
|             | of Purging:<br>of Sampling | r                | flow :              | 5W.           |                              | Total Casing/Borehole<br>Volumes Removed:        |                               |                                             |                     |                                   |  |
| Time        | Intake<br>Depth            | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C) | pH<br>(units)                | Specific<br>Electrical<br>Conductance<br>(mS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation<br>Reduction<br>Potential<br>(mV) | on<br>al (color, tu | Remarks<br>irbidity, and sediment |  |
| Low         | Flow Stabi                 | ilization Cri    | iteria              | +/- 3%        | +/- 0.1                      | +/- 3%                                           | +/- 10%                       | +/- 10%                                     |                     | 1 1514 1                          |  |
| 1235        |                            | ~20C             |                     | 2453          | 549                          | 4.98                                             | 1,44                          | 83                                          | 66.1                | very light yel                    |  |
| 1240        |                            |                  |                     | 25.30         | 5.48                         | 4,98                                             | 0.64                          | 28                                          | 31.5                | very Mild HK                      |  |
| 1245        |                            |                  |                     | 25,90         | 5.47                         | 4.96                                             | 0.52                          | 88                                          | 13.1                | cleaning                          |  |
| 1250        |                            |                  |                     | 24,90         | 5,46                         | 4.97                                             | 0,43                          | 89                                          | 2,8                 | Amost contal                      |  |
| 1255        |                            |                  |                     | 24.99         | 5,47                         | 4.97                                             | 0.50                          | 29                                          | 1,2                 | 7117                              |  |
| 1300        |                            | V                | 1.5                 | 24,93         | 5.47                         | 4,95                                             | 2.48                          | 87                                          | 0.7                 | crystal clear                     |  |
|             |                            |                  |                     |               |                              |                                                  |                               |                                             |                     |                                   |  |
| -/-         |                            |                  |                     | 1             |                              | ~                                                |                               |                                             |                     |                                   |  |
|             |                            | 7                | TIMO                | led           | 10                           | 13                                               | 00                            |                                             |                     |                                   |  |
|             |                            |                  | onif                | 1-0           |                              | 1                                                | 19                            |                                             |                     |                                   |  |
|             |                            |                  |                     |               |                              |                                                  |                               |                                             |                     |                                   |  |
|             |                            |                  | pH CALIBI           | RATION (c     | hoose two)                   |                                                  |                               |                                             | Model or U          | oit No :                          |  |
| Buffer Sol  | ution                      |                  |                     | pℍ 4.0        | pH 7.0                       | pH 10.0                                          |                               |                                             | model of G          | III NO                            |  |
| Field Tem   | perature °C                |                  |                     |               |                              |                                                  |                               |                                             |                     |                                   |  |
| Instrumen   |                            |                  |                     |               |                              |                                                  |                               |                                             |                     |                                   |  |
| 111         |                            | CIFIC ELEC       | TRICAL CO           | ONDUCTAI      | NCE (SEC)                    | - CALIBRATIO                                     | ON                            |                                             | Model or U          | nit No :                          |  |
| KCI Solutio | n (μS/cm=μ                 |                  |                     |               | 413 at 25°C                  | 12880 at 25°                                     |                               |                                             | odoi oi oi          | nervo                             |  |
|             | erature °C                 |                  |                     |               |                              |                                                  |                               |                                             |                     | 4                                 |  |
| Instrument  | Reading                    |                  |                     |               |                              |                                                  |                               |                                             |                     | 1                                 |  |
|             | ORP/REDO                   | OX CALIBR        | ATION               |               | DISSOLVED OXYGEN CALIBRATION |                                                  |                               | ON                                          | Notes:              |                                   |  |
| Standard S  | Solution (m\               |                  |                     | А             | Ititude / Sali               |                                                  |                               |                                             | <u> </u>            |                                   |  |
| Field Tem   | perature °C                |                  |                     | F             | Field Temperature °C         |                                                  |                               |                                             |                     |                                   |  |
| Instrument  | Reading (n                 | nV)              |                     | In            | Instrument Reading (mg/L)    |                                                  |                               |                                             |                     |                                   |  |
|             | Jnit No.:                  |                  |                     |               | lodel or Unit                | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2          | 1                             |                                             |                     |                                   |  |

-DEQBK/SCM/082417 Taken@1330

|        | V. |
|--------|----|
|        |    |
| amoc   | A  |
| amec   |    |
| wheele | y  |

|   | Well ID:                | M               | VW - 10       | 3                   |          |                           | Initial D                                        | enth to Wa                    | tor 9                                        | . 83       | wheeler                             |  |  |
|---|-------------------------|-----------------|---------------|---------------------|----------|---------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|------------|-------------------------------------|--|--|
|   |                         | 1               | Dup           |                     |          |                           | Initial Depth to Water:                          |                               |                                              |            |                                     |  |  |
|   | Sample D                | epth:           |               |                     |          | 1                         |                                                  | epth to Wel                   |                                              | y          | 1901                                |  |  |
|   | Project a               | nd Task N       | 0.: 67        | 0615                | 2060     | 204                       | Well Di                                          | ameter:                       | 411                                          |            |                                     |  |  |
|   | Project N               | ame: 1          | MPA G         | M'M                 | 3 (C)    | 1 Casing/Borehole Volume: |                                                  |                               |                                              |            |                                     |  |  |
|   | Date:                   | 8-31-           | -17           | ,                   |          |                           | (Circle                                          | one)                          | voidino                                      |            |                                     |  |  |
|   | Sampled                 | Ву:             | SCM           |                     |          |                           | 4 Casin<br>(Circle                               | g/Borehole                    | Volumes:                                     |            |                                     |  |  |
|   | Method o                | f Purging:      | Low           | flor                | cul      |                           |                                                  | one)<br>asing/Borel           | nolo                                         |            |                                     |  |  |
|   | Method o                | f Sampling      | g:            | on fl               | an Su    | <b>&gt;</b>               |                                                  | s Removed                     |                                              |            |                                     |  |  |
|   | Time                    | Intake<br>Depth | Rate (ml/min) | Cum. Vol.<br>(gal.) | Temp.    | pH<br>(units)             | Specific<br>Electrical<br>Conductance<br>(µS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) |            | Remarks<br>turbidity, and sediment) |  |  |
|   | 1325                    |                 | ~150          |                     | 25.78    | 1,20                      | 4.81                                             | 0.80                          | -97                                          | 1.3        | Mild HC oder                        |  |  |
|   | 1330                    |                 |               |                     | 26,03    | 6.68                      | 5.07                                             | 0.10                          | -45                                          | 3,2        | 1 300                               |  |  |
|   | 335                     |                 |               |                     | 25.81    | 6.57                      | 5,24                                             | 0.01                          | -95                                          | 3,7        |                                     |  |  |
| 7 | 1340                    |                 |               |                     | 2653     | 654                       | 5.22                                             | 0.10                          | -94                                          | 3.4        |                                     |  |  |
| 1 | 1345                    |                 | •             | ^1                  | 26.81    | 6.55                      | 5,24                                             | 4.12                          | -93                                          | 3.2        |                                     |  |  |
| 3 | 350                     | •               |               |                     |          |                           |                                                  |                               | ,                                            |            |                                     |  |  |
|   | P                       |                 |               |                     |          |                           |                                                  |                               |                                              |            |                                     |  |  |
|   |                         |                 |               | _                   | 1        | 1                         |                                                  |                               |                                              |            |                                     |  |  |
|   |                         |                 | (             | 1                   | 16       | ) #                       | 50                                               |                               |                                              |            | -                                   |  |  |
| - |                         |                 | 70            | south 1             | 7 (      | 1                         | 11-                                              |                               |                                              |            |                                     |  |  |
| - |                         |                 |               |                     |          | 13                        | 15                                               |                               |                                              |            |                                     |  |  |
| - |                         |                 |               |                     |          |                           |                                                  |                               |                                              |            |                                     |  |  |
|   | Page 1                  |                 |               | 11.041.15           |          |                           |                                                  |                               |                                              |            | -                                   |  |  |
|   | Buffer Soli             | ıtion.          |               | PH CALIB            |          | hoose two)                |                                                  |                               | N                                            | lodel or l | Unit No.:                           |  |  |
| ł |                         |                 |               |                     | pH 4.0   | pH 7.0                    | pH 10.0                                          |                               |                                              |            |                                     |  |  |
| - |                         | oerature °C     | ;             |                     |          |                           |                                                  |                               |                                              |            |                                     |  |  |
| - | Instrumen               | -               |               |                     |          |                           |                                                  |                               |                                              |            |                                     |  |  |
|   |                         |                 |               | TRICAL CO           | ONDUCTA  | NCE (SEC)                 | - CALIBRATIO                                     | NC                            | N                                            | lodel or l | Jnit No.:                           |  |  |
|   | KCI Solution            | n (μS/cm=       | μmhos/cm)     |                     |          | 1413 at 25°C              | 12880 at 25°                                     | С                             |                                              |            | 9 B                                 |  |  |
|   | Field Temp              | erature °C      |               |                     |          |                           |                                                  |                               |                                              |            | ¥.                                  |  |  |
|   | Instrument              | Reading         |               |                     |          |                           |                                                  |                               |                                              |            |                                     |  |  |
|   |                         | ORP/RED         | OX CALIBR     | RATION              | TELLE II | DISSOLV                   | ED OXYGEN                                        | CALIBRATI                     | ON N                                         | otes:      |                                     |  |  |
|   | Standard S              | Solution (m     | V)            |                     | A        | ltitude / Sali            | nity %                                           |                               |                                              |            |                                     |  |  |
|   | Field Tem               | oerature °C     | ,             |                     | F        | ield Temper               | ature °C                                         |                               |                                              |            |                                     |  |  |
|   | Instrument Reading (mV) |                 |               |                     |          | Instrument Reading (mg/L) |                                                  |                               |                                              |            |                                     |  |  |
|   | Model or U              | Init No.:       |               |                     | N        | lodel or Unit             | No.:                                             |                               |                                              |            |                                     |  |  |
|   | Document1               |                 | *             |                     |          |                           |                                                  |                               |                                              |            |                                     |  |  |



|                              | POEI                                                                   | 401            |              |           |                           |                                       |                    |          |             | wheeler                           |  |  |  |
|------------------------------|------------------------------------------------------------------------|----------------|--------------|-----------|---------------------------|---------------------------------------|--------------------|----------|-------------|-----------------------------------|--|--|--|
|                              |                                                                        | MW-            |              |           | 1                         | Initial Depth to Water:               |                    |          |             |                                   |  |  |  |
|                              |                                                                        | Dup            | licate ID: _ | WA-       |                           | Depth to Water after Sampling: 13,96  |                    |          |             |                                   |  |  |  |
| Sample D                     | Depth:                                                                 | 1-20           | 11500        | 10        |                           | Total Depth to Well:                  |                    |          |             |                                   |  |  |  |
| Project a                    | nd Task N                                                              | o.: <u>670</u> | 6 1500       | 160       | 0                         | Well Diameter:                        |                    |          |             |                                   |  |  |  |
|                              | 8-31                                                                   | TMA            | GC P         | line CC   |                           | 1 Casing/Borehole Volume:(Circle one) |                    |          |             |                                   |  |  |  |
|                              | Ву: _                                                                  |                | £1           | 1         |                           | 4 Casin<br>(Circle                    | g/Borehole<br>one) | Volumes: |             |                                   |  |  |  |
|                              | Method of Purging:                                                     |                |              |           |                           |                                       | asing/Borel        |          | 9           |                                   |  |  |  |
| Time                         | Time Intake Depth Rate (ml/min) Cum. Vol. (gal.) Temp. (°C) pH (units) |                |              |           |                           | Specific<br>Electrical<br>Conductance | Dissolved Oxidat   |          |             | Remarks<br>urbidity, and sediment |  |  |  |
| 1800                         |                                                                        | ~200           | 1            | 25.53     | 685                       | 6-13                                  | 1.57               | -12      | 467         | Mild HE ode                       |  |  |  |
| 1805                         |                                                                        |                |              | 25,47     | 130                       | 183                                   | 1.71               | ا س      | 16.8        | Mosingeral                        |  |  |  |
| 1810                         |                                                                        |                |              | 2507      | 618                       | \$ 54                                 | 000                | 45       | 61          | clearer                           |  |  |  |
| 1815                         |                                                                        |                | 150          | 24 94     | 6.14                      | 8 80                                  | 0.00               | 50       | 4.6         |                                   |  |  |  |
| 1820                         |                                                                        |                | -            | 24.95     | 6,12                      | 8,96                                  | 0.00               | 55       | 2.9         | Clearer                           |  |  |  |
| 1825                         |                                                                        |                | いから          | 29.77     | 6.11                      | 9.11                                  | 0.00               | 56       | 2.1         | Cicayo                            |  |  |  |
|                              |                                                                        | 1              | - 1          | 1         |                           |                                       |                    | 9        |             |                                   |  |  |  |
| AND                          |                                                                        | 7 5            | Damp         | ed        | 0                         | 18                                    | 25                 |          |             |                                   |  |  |  |
|                              | X                                                                      | PI             | ) up -       | 15        | ample                     |                                       |                    |          |             |                                   |  |  |  |
|                              |                                                                        |                | pH CALIBI    | RATION (c | hoose two)                |                                       |                    | N        | Model or Ur | it No.:                           |  |  |  |
| Buffer Sol                   | ution                                                                  |                |              | pH 4.0    | pH 7.0                    | pH 10.0                               |                    |          |             |                                   |  |  |  |
| Field Tem                    | perature °C                                                            |                |              |           |                           |                                       |                    |          |             |                                   |  |  |  |
| Instrumen                    | t Reading                                                              |                |              |           | 5                         | N=                                    |                    |          |             |                                   |  |  |  |
|                              | SPE                                                                    | CIFIC ELEC     | TRICAL CO    | ONDUCTA   | NCE (SEC)                 | - CALIBRATION                         | ON                 | V        | lodel or Ur | nit No.:                          |  |  |  |
| KCI Solutio                  | on (μS/cm=                                                             | μmhos/cm)      |              |           | 1413 at 25°C              | 12880 at 25°                          | C                  |          |             |                                   |  |  |  |
| Field Temp                   | oerature °C                                                            |                |              |           |                           |                                       |                    | ,        |             |                                   |  |  |  |
| Instrument                   | Reading                                                                |                |              |           |                           |                                       |                    |          |             |                                   |  |  |  |
| ORP/REDOX CALIBRATION D      |                                                                        |                |              |           |                           | ED OXYGEN                             | CALIBRAT           | ION N    | lotes: 🖈    | 120                               |  |  |  |
| Standard Solution (mV) Altit |                                                                        |                |              |           | ltitude / Sali            | inity %                               |                    |          | SONSMI      | posch!                            |  |  |  |
| Field Temperature °C F       |                                                                        |                |              |           | Field Temperature °C      |                                       |                    |          |             | the state of                      |  |  |  |
| Instrument Reading (mV) Ins  |                                                                        |                |              |           | Instrument Reading (mg/L) |                                       |                    |          |             |                                   |  |  |  |
| Model or l                   | Jnit No.:                                                              |                |              | N         | lodel or Uni              |                                       |                    |          |             |                                   |  |  |  |
| Document1                    |                                                                        |                |              |           |                           |                                       |                    |          |             |                                   |  |  |  |

|        | T. |
|--------|----|
| . 0    |    |
| amec   |    |
| foster | _  |

| Well ID:    | MI                                                    | 1 W- 15    |            |                                                  |                               | Initial Depth to Water: 4,65                 |                                |                                     |           |                                   |  |  |  |  |
|-------------|-------------------------------------------------------|------------|------------|--------------------------------------------------|-------------------------------|----------------------------------------------|--------------------------------|-------------------------------------|-----------|-----------------------------------|--|--|--|--|
| Sample I    | Sample ID: Duplicate ID:                              |            |            |                                                  |                               |                                              | Depth to Water after Sampling: |                                     |           |                                   |  |  |  |  |
| Sample I    | Sample Depth:                                         |            |            |                                                  |                               |                                              | Total Depth to Well:           |                                     |           |                                   |  |  |  |  |
|             |                                                       | o.: 670    |            |                                                  |                               | Well Diameter:                               |                                |                                     |           |                                   |  |  |  |  |
| Project N   | lame:                                                 | MPA G      | C Mil      | ne C                                             | CR                            | 1 Casing/Borehole Volume:                    |                                |                                     |           |                                   |  |  |  |  |
| Date:       | 8-3                                                   | -11        |            |                                                  |                               | (Circle                                      | one)                           |                                     |           |                                   |  |  |  |  |
|             | Ву:                                                   |            | - 1-       |                                                  |                               | 4 Casir<br>(Circle                           | ng/Borehole                    | Volumes:                            |           | 78.8                              |  |  |  |  |
|             |                                                       | Lon        | , , ,      |                                                  |                               |                                              | asing/Bore                     | hole                                |           |                                   |  |  |  |  |
| Method o    | of Sampling                                           | g:         | nw flo     | aw Sn                                            | 2                             | Volume                                       | es Removed                     | l:                                  |           |                                   |  |  |  |  |
| Time        | Time Intake Rate (ml/min) Cum. Vol. (gal.) Temp. (°C) |            | pH (units) | Specific<br>Electrical<br>Conductance<br>(AS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | No.                            | Remarks<br>turbidity, and sediment) |           |                                   |  |  |  |  |
| 1910        |                                                       | ~200       | M .        | 85.68                                            | 3.50                          | 3.12                                         | 0.55                           | 361                                 | 40.6      | Cloudy white                      |  |  |  |  |
| 1915        |                                                       |            |            | 2611                                             | 6 3.38                        | 3.83                                         | 0.09                           | 350                                 | 265       | Moderale HC 00<br>Min clinted tan |  |  |  |  |
| 1934        |                                                       |            |            | 26.0                                             | 100                           | 3187                                         | 0.00                           | 348                                 | 106       | Clearing                          |  |  |  |  |
| 1925        |                                                       |            | 0.1        | 25.8                                             |                               | 3.90                                         | 0.00                           | 344                                 | 41.1      |                                   |  |  |  |  |
| 1750        |                                                       | ~          | 2.0        | 25,64                                            | 3,32                          | 3,90                                         | 0.00                           | 341                                 | 16.1      | clearer but very                  |  |  |  |  |
|             |                                                       |            |            |                                                  |                               |                                              |                                |                                     |           | sightly cloud                     |  |  |  |  |
|             |                                                       | Samp       | led        | 0                                                |                               | 730                                          |                                |                                     |           |                                   |  |  |  |  |
|             |                                                       |            |            |                                                  |                               |                                              |                                |                                     |           | very slow                         |  |  |  |  |
|             |                                                       |            |            |                                                  |                               |                                              |                                | 4                                   | -         | decine                            |  |  |  |  |
|             |                                                       |            |            |                                                  |                               |                                              |                                |                                     |           | below 16.0                        |  |  |  |  |
|             |                                                       |            | pH CALIBR  | RATION (                                         | choose two)                   |                                              |                                | M                                   | odel or l | Unit No.:                         |  |  |  |  |
| Buffer Sol  | ution                                                 |            |            | pH 4.0                                           | pH 7.0                        | pH 10.0                                      |                                |                                     |           | , and the second                  |  |  |  |  |
| Field Tem   | perature °C                                           |            |            |                                                  |                               | /-                                           |                                |                                     |           |                                   |  |  |  |  |
| Instrumen   | t Reading                                             |            |            |                                                  |                               |                                              |                                |                                     |           |                                   |  |  |  |  |
|             | SPEC                                                  | CIFIC ELEC | TRICAL CO  | ONDUCTA                                          | ANCE (SEC)                    | CALIBRATIO                                   | ON                             | M                                   | odel or l | Unit No.:                         |  |  |  |  |
| KCI Solutio | n (μS/cm=μ                                            | ımhos/cm)  |            |                                                  | 1413 at 25°C                  | 12880 at 25°                                 | С                              | 1                                   |           |                                   |  |  |  |  |
| Field Temp  | erature °C                                            |            |            |                                                  |                               |                                              |                                | 1                                   |           |                                   |  |  |  |  |
| Instrument  | Reading                                               |            |            |                                                  |                               |                                              |                                |                                     |           |                                   |  |  |  |  |
|             | ORP/REDO                                              | OX CALIBR  | ATION      | DISSOLV                                          | ED OXYGEN                     | CALIBRATI                                    | ON NO                          | otes:                               |           |                                   |  |  |  |  |
| 0           |                                                       |            |            | Altitude / Salir                                 |                               |                                              | 1                              | 71                                  |           |                                   |  |  |  |  |
| L. Valzar   |                                                       |            |            |                                                  | Field Tempera                 |                                              |                                | 1                                   | , U.      | Ser5al                            |  |  |  |  |
|             |                                                       |            |            |                                                  |                               | eading (mg/L)                                |                                |                                     | assibli   | 41.1                              |  |  |  |  |
|             |                                                       |            |            |                                                  | Model or Unit                 | 7001791 E1101/2 OT                           |                                |                                     |           |                                   |  |  |  |  |
|             |                                                       |            |            |                                                  |                               |                                              |                                | A                                   | Non       | eservative                        |  |  |  |  |
| Document1   |                                                       |            |            |                                                  |                               |                                              |                                | 1 10                                | TOPI      | Cocivalive                        |  |  |  |  |

| 1      |   |
|--------|---|
| 1      | A |
| amec   |   |
| foster |   |
| UStel  |   |

| Wall ID.                                         | SE              | L MW             | -7                  |                 |               | Initial Donth to Woton 1315               |                               |                                              |             |                                   |  |  |
|--------------------------------------------------|-----------------|------------------|---------------------|-----------------|---------------|-------------------------------------------|-------------------------------|----------------------------------------------|-------------|-----------------------------------|--|--|
|                                                  |                 |                  |                     |                 |               | Initial Depth to Water: 12.15             |                               |                                              |             |                                   |  |  |
|                                                  |                 |                  | licate ID: _        |                 |               | Depth to Water after Sampling:            |                               |                                              |             |                                   |  |  |
| Droinet a                                        | epth:           | 610              | 6150                | 1010            | 004           | Total Depth to Well:  Well Diameter:      |                               |                                              |             |                                   |  |  |
| Project M                                        | ame:            | MAGO             | Min                 | 064             | P             | Well Diameter:  1 Casing/Borehole Volume: |                               |                                              |             |                                   |  |  |
| Date:                                            |                 | 17               | 1 (1)               |                 | 1             | (Circle                                   |                               | volume:                                      |             |                                   |  |  |
|                                                  | Ву: 鉽           | M                |                     |                 |               | 4 Casing/Borehole Volumes:                |                               |                                              |             |                                   |  |  |
|                                                  | f Purging:      | 1                | Flaw                | 5ub             |               | (Circle                                   |                               |                                              |             |                                   |  |  |
| Method of Sampling: Low flow Sub                 |                 |                  |                     |                 |               |                                           | asing/Borel<br>s Removed      | l:                                           |             |                                   |  |  |
| Time                                             | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.<br>(°C)   | pH<br>(units) | Specific<br>Electrical<br>Conductance     | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color, t   | Remarks<br>urbidity, and sediment |  |  |
| 1015                                             |                 | ~150             |                     | 22.69           | 6.26          | 6.75                                      | 0,75                          | 11                                           | 28.6        |                                   |  |  |
| 1020                                             |                 |                  |                     | 23.18           | 630           | 204                                       | 0,29                          | 1.5                                          | 240         | Mild HC -                         |  |  |
| 1025                                             |                 |                  |                     | 23,26           |               | 8,58                                      | 0111                          | 35                                           | 15,2        | 1 10 11 - 50                      |  |  |
| 1030                                             |                 |                  | 1                   | 23.29           | 621           | 8.61                                      | 0.00                          | 30                                           | 7.3         | Clearing                          |  |  |
| 1035                                             |                 |                  |                     | 23,33           | 6:24          | 8.87                                      | 0,00                          | 35                                           | 3.4         |                                   |  |  |
| 10 40                                            |                 |                  | 2.0                 | 23,36           | 6,24          | 8,99                                      | 0,00                          | 34                                           | 2.8         | Clear-                            |  |  |
|                                                  |                 |                  |                     |                 |               |                                           |                               |                                              | unc         | oder still MI                     |  |  |
|                                                  |                 |                  | <b>\rightarrow</b>  | Son             | pled          | (a)                                       | 104                           | 0                                            |             |                                   |  |  |
| Buffer Sol                                       | ution           |                  | pH CALIB            | RATION (c       | pH 7.0        | pH 10.0                                   |                               | M                                            | lodel or l  | Jnit No.:                         |  |  |
|                                                  | perature °C     |                  |                     | prino           | pi r.o        | pri 10.0                                  |                               |                                              |             |                                   |  |  |
| Instrumen                                        |                 |                  |                     |                 |               |                                           |                               |                                              |             |                                   |  |  |
| mouumen                                          |                 | CIEIC EL EC      | CTRICAL C           | ONDUCTA         | NCE (SEC)     | CALIDDAT                                  | ON                            |                                              | lodel '     | Init Nin .                        |  |  |
| KCI Solutio                                      | on (μS/cm=      |                  | TRICAL C            |                 | 1413 at 25°C  | - CALIBRATI<br>12880 at 25                |                               | IV                                           | lodel or l  | JHIL NO.:                         |  |  |
|                                                  | perature °C     |                  |                     |                 |               | 12000 at 20                               |                               |                                              |             |                                   |  |  |
|                                                  |                 |                  |                     |                 |               |                                           |                               |                                              |             |                                   |  |  |
| Instrument Reading  ORP/REDOX CALIBRATION  DISSO |                 |                  |                     |                 | DISSOLV       | /ED OXYGEN                                | CALIBRAT                      | ION N                                        | otes:       |                                   |  |  |
|                                                  |                 |                  |                     | Altitude / Sali |               | JALIEN AT                                 |                               | 1 1                                          | ump suging- |                                   |  |  |
|                                                  |                 |                  |                     |                 |               |                                           |                               |                                              | dynolo      | 1                                 |  |  |
|                                                  |                 |                  |                     |                 |               |                                           |                               |                                              |             |                                   |  |  |
|                                                  |                 |                  |                     |                 |               | or Unit No.:                              |                               |                                              |             |                                   |  |  |
|                                                  |                 |                  |                     |                 |               |                                           |                               | 1                                            | Call        | 10                                |  |  |



| Well ID:               | MNW                                                                    | 1-15       |            |            | 30             | Initial D                      | anth to Ma                                               | law.       | En       | wheeler                        |  |  |
|------------------------|------------------------------------------------------------------------|------------|------------|------------|----------------|--------------------------------|----------------------------------------------------------|------------|----------|--------------------------------|--|--|
|                        |                                                                        | Dup        | licate ID: |            | -              | Initial Depth to Water: 5,00   |                                                          |            |          |                                |  |  |
|                        | epth:                                                                  |            | neate ib   |            |                | Depth to Water after Sampling: |                                                          |            |          |                                |  |  |
|                        |                                                                        | 6D         | 61500      | 60.0       | 104            | Well Dismotory                 |                                                          |            |          |                                |  |  |
| Project N              | ame:                                                                   | MPA GO     | Mine       | CCR        | <u> </u>       | 1 Casing/Borehole Volume:      |                                                          |            |          |                                |  |  |
|                        | 9-7-                                                                   |            |            | O C A      | 1              | (Circle                        |                                                          | volume     |          |                                |  |  |
|                        | Ву:                                                                    |            | -(1        | ~ <i>b</i> |                | 4 Casin<br>(Circle o           | g/Borehole<br>one)                                       | Volumes: _ |          |                                |  |  |
|                        |                                                                        | Law        | 11         |            |                |                                | asing/Borel                                              |            |          |                                |  |  |
| Method o               | f Sampling                                                             | j:Law      | flaw s     | V D.       |                |                                | s Removed                                                | :          |          |                                |  |  |
| Time                   | Time Intake Depth Rate (ml/min) Cum. Vol. (gal.) Temp. (°C) pH (units) |            |            |            |                |                                | pecific ectrical ductance Oxygen (mg/L) Oxidation (mg/L) |            |          | (color turbidity and sediment) |  |  |
| 1115                   |                                                                        | ~200       |            | 25,38      | 3,53           | 3,73                           | 0.50                                                     | 356        | 295      | My Climbina                    |  |  |
| 1120                   |                                                                        |            |            | 26.60      | 3.54           | 386                            | 0.01                                                     | 329        | 403      | NTU dropping                   |  |  |
| 1125                   |                                                                        |            |            | 26,77      | 3,54           | 3,87                           | age                                                      | 326        | 226      | " " )                          |  |  |
| 1130                   |                                                                        |            |            | 26.88      | 3.54           | 3.87                           | 0.00                                                     | 327        | 165      | clearing                       |  |  |
| 1135                   |                                                                        |            |            | 26,99      | 3,54           | 3.87                           | 0.00                                                     | 328        | 94.1     |                                |  |  |
| 1140                   |                                                                        |            |            | 27,22      |                | 3.86                           | 0.00                                                     | 328        | 72,1     | clearing                       |  |  |
| 1195                   |                                                                        |            |            | 26.25      | 3,52           | 3.87                           | 0.00                                                     | 317        | 78.6     | Ntu lowest                     |  |  |
| 1150                   |                                                                        |            |            | 25.82      | 3.51           | 3,65                           | 0.00                                                     | 316        | 76.1     | ~75                            |  |  |
| 1155                   |                                                                        |            |            | 25.67      | 3, 98          | 3.82                           | 0,00                                                     | 320        | 74.8     | Very Slaw to                   |  |  |
| 1900                   |                                                                        | 1          | 14.0       | 25.08      | 3.48           | 3.83                           | 0,00                                                     | 321        | 110.1    | 90 lower                       |  |  |
|                        | 1                                                                      | Sar        | pled       | 0          | 120            | 20                             |                                                          |            |          |                                |  |  |
|                        |                                                                        |            | pH CALIB   | RATION (c  | hoose two)     | fiere in                       |                                                          | M          | lodel or | Unit No.:                      |  |  |
| Buffer Sol             | ution                                                                  |            |            | pH 4.0     | pH 7.0         | pH 10.0                        |                                                          |            |          |                                |  |  |
| Field Tem              | perature °C                                                            | ;          |            |            |                |                                |                                                          |            |          |                                |  |  |
| Instrumen              | t Reading                                                              |            |            |            |                |                                |                                                          |            |          |                                |  |  |
| 711-11                 | SPE                                                                    | CIFIC ELEC | TRICAL CO  | ONDUCTAI   | NCE (SEC)      | - CALIBRATIO                   | ON                                                       | M          | lodel or | Unit No.:                      |  |  |
| KCI Solution           | n (μS/cm=į                                                             | μmhos/cm)  |            | 1          | 413 at 25°C    | 12880 at 25°                   | °C                                                       |            |          |                                |  |  |
| Field Temp             | erature °C                                                             |            |            |            |                |                                |                                                          |            |          |                                |  |  |
| Instrument             | Reading                                                                |            |            |            |                |                                |                                                          |            |          | 3.11                           |  |  |
|                        |                                                                        |            |            |            |                | ED OXYGEN                      | CALIBRATI                                                | ION N      | otes;    | MI                             |  |  |
| Standard Solution (mV) |                                                                        |            |            |            | ltitude / Sali | nity %                         |                                                          | (          | limber   | of after                       |  |  |
|                        |                                                                        |            |            |            | ield Temper    | rature °C                      |                                                          | 1          | attoni   | 7 1-11 00                      |  |  |
|                        |                                                                        |            |            |            | strument R     | eading (mg/L)                  |                                                          |            | 110      |                                |  |  |
| Model or U             | Jnit No.:                                                              |            |            | M          | lodel or Unit  | t No.:                         |                                                          |            |          |                                |  |  |
| Document1              |                                                                        |            |            |            |                |                                |                                                          |            |          |                                |  |  |

DEQBKECM/090717 taken@ 1300



| Well ID: Duplicate ID: Sample ID: Duplicate ID: Project and Task No.: 6706150060, 904  Project Name: MA A GC MINE CCR Date: 7-7-17  Sampled By: Sampled By: Method of Purging: fow Sub Method of Sampling: |                 |                  |                     |                                                                                                                          |                                      | Initial Depth to Water:                          |                               |                                              |                          |                                       |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------|-------------------------------|----------------------------------------------|--------------------------|---------------------------------------|--|
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Intake<br>Depth | Rate<br>(ml/min) | Cum. Vol.<br>(gal.) | Temp.                                                                                                                    | pH<br>(units)                        | Specific<br>Electrical<br>Conductance<br>(AS/cm) | Dissolved<br>Oxygen<br>(mg/L) | Oxidation-<br>Reduction<br>Potential<br>(mV) | (color,                  | Remarks<br>, turbidity, and sediment) |  |
| 1335<br>1340<br>1345<br>1350<br>1355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PS              | rample           | DH CALIB            | 23,33<br>23,40<br>24,70<br>24,85<br>24,95                                                                                | 6.37<br>6.41<br>6.44<br>6.46<br>6.47 | 5,10<br>5,16<br>5,23<br>5,23<br>5,23             | 1.51<br>1.13<br>2.79<br>0.71  | -64<br>-66<br>-67<br>-66                     | 5.0<br>4.8<br>4.4<br>4.5 | Mild H adar                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | perature °C     | )                | p. 1 0 1 2 1        | pH 4.0                                                                                                                   | pH 7.0                               | pH 10.0                                          |                               |                                              | oder of                  | Officials.                            |  |
| Instrument Reading  SPECIFIC ELECTRICAL CONDUCTANCE (SE  KCI Solution (μS/cm=μmhos/cm)  1413 at 29  Field Temperature °C  Instrument Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                  |                     |                                                                                                                          | NCE (SEC)<br>1413 at 25°C            | - CALIBRATI<br>12880 at 25                       |                               | N                                            | odel o                   | r Unit No.:                           |  |
| ORP/REDOX CALIBRATION  Standard Solution (mV)  Field Temperature °C  Instrument Reading (mV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                  |                     | DISSOLVED OXYGEN CALIBRATION  Altitude / Salinity %  Field Temperature °C  Instrument Reading (mg/L)  Model or Unit No.: |                                      |                                                  | ION N                         | otes:                                        |                          |                                       |  |

Document1



# APPENDIX C

Laboratory Analytical Reports

#### **ANALYTICAL SUMMARY REPORT**

August 11, 2016

Project Name:

Texas Municipal Power Agency PO Box 7000 Bryan, TX 77805-7000

Work Order: T16060106

CCRR

Quote ID: T3094

Energy Laboratories Inc. College Station TX received the following 5 samples for Texas Municipal Power Agency on 6/21/2016 for analysis.

| Lab ID        | Client Sample ID | Collect Date Receive Date | Matrix      | Test                                                                                                                                                                                                                 |
|---------------|------------------|---------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T16060106-001 | SSP APMW-1       | 06/21/16 16:20 06/21/16   | Groundwater | Metals by ICP/ICPMS, Tot. Rec. Mercury, Total Recoverable Fluoride E300.0 Anions Cations by ICP pH Metals Digestion by EPA 200.2 Radium 226 + Radium 228 Radium 226, Total Radium 228, Total Solids, Total Dissolved |
| T16060106-003 | SSP MW-2         | 06/21/16 13:20 06/21/16   | Groundwater | Same As Above                                                                                                                                                                                                        |
| T16060106-004 | SSP MW-3         | 06/21/16 10:30 06/21/16   | Groundwater | Same As Above                                                                                                                                                                                                        |
| T16060106-005 | SSP MW-4         | 06/21/16 9:10 06/21/16    | Groundwater | Same As Above                                                                                                                                                                                                        |

The analyses presented in this report were performed by Energy Laboratories, Inc., 415 Graham Rd., College Station, TX 77845-9660, unless otherwise noted.

Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

If you have any questions regarding these tests results, please call.

Report Approved By:

College Station, TX 888.690.2218 • Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

**CLIENT:** Texas Municipal Power Agency

Project: CCRR

Work Order: T16060106

Report Date: 08/11/16

**CASE NARRATIVE** 

Tests associated with analyst identified as ELI-B were subcontracted to Energy Laboratories, 1120 S. 27th St., Billings, MT, EPA Number MT00005.

Tests associated with analyst identified as ELI-CA were subcontracted to Energy Laboratories, 2393 Salt Creek Hwy., Casper, WY, EPA Number WY00002 and WY00937.

Prepared by College Station, TX Branch

Client: **Texas Municipal Power Agency** 

**CCRR Project:** Lab ID: T16060106-001 Client Sample ID: SSP APMW-1

**Report Date:** 08/11/16 Collection Date: 06/21/16 16:20 DateReceived: 06/21/16 Matrix: Groundwater

|                                       |        |        |            |       | MCL/ |           |                         |
|---------------------------------------|--------|--------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units  | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| AGRONOMIC PROPERTIES                  |        |        |            |       |      |           |                         |
| pH                                    | 6.8    | s.u.   | Н          | 0.1   |      | A4500-H B | 06/22/16 20:35 / rda    |
| PHYSICAL PROPERTIES                   |        |        |            |       |      |           |                         |
| Solids, Total Dissolved TDS @ 180 C   | 6950   | mg/L   |            | 100   |      | A2540 C   | 06/23/16 14:45 / pwh    |
| MAJOR IONS                            |        | -      |            |       |      |           | ·                       |
| Chloride                              | 1300   | mg/L   | D          | 20    |      | E300.0    | 06/23/16 15:23 / rda    |
| Fluoride                              |        | mg/L   | Ь          | 0.1   |      | A4500-F C | 06/28/16 11:32 / pwh    |
| Sulfate                               |        | mg/L   | D          | 20    |      | E300.0    | 06/23/16 15:23 / rda    |
| Calcium                               |        | mg/L   | D          | 2     |      | E200.7    | 06/24/16 11:12 / jtr    |
| Boron                                 |        | mg/L   | D          | 0.5   |      | E200.7    | 06/24/16 11:12 / jtr    |
| Bolon                                 | 1.1    | IIIg/L | Ь          | 0.5   |      | L200.7    | 00/24/10 11.12/ju       |
| METALS, TOTAL RECOVERABLE             |        |        |            |       |      |           |                         |
| Antimony                              | ND     | mg/L   |            | 0.05  |      | E200.8    | 06/29/16 16:06 / eli-b  |
| Arsenic                               | ND     | mg/L   |            | 0.01  |      | E200.8    | 06/28/16 21:34 / eli-b  |
| Barium                                | 0.05   | mg/L   |            | 0.01  |      | E200.7    | 06/29/16 05:52 / eli-b  |
| Beryllium                             | ND     | mg/L   |            | 0.001 |      | E200.8    | 06/29/16 16:06 / eli-b  |
| Cadmium                               | ND     | mg/L   |            | 0.01  |      | E200.7    | 06/29/16 05:52 / eli-b  |
| Chromium                              | ND     | mg/L   |            | 0.01  |      | E200.8    | 06/28/16 21:34 / eli-b  |
| Cobalt                                | ND     | mg/L   |            | 0.02  |      | E200.8    | 06/29/16 16:06 / eli-b  |
| Lead                                  | ND     | mg/L   |            | 0.01  |      | E200.8    | 06/28/16 21:34 / eli-b  |
| Lithium                               | 1.4    | mg/L   | D          | 0.02  |      | E200.7    | 06/29/16 05:52 / eli-b  |
| Molybdenum                            | ND     | mg/L   |            | 0.05  |      | E200.7    | 06/29/16 05:52 / eli-b  |
| Selenium                              | ND     | mg/L   |            | 0.01  |      | E200.8    | 06/29/16 16:06 / eli-b  |
| Thallium                              | ND     | mg/L   |            | 0.01  |      | E200.8    | 06/28/16 21:34 / eli-b  |
| METALS, TOTAL                         |        |        |            |       |      |           |                         |
| Mercury                               | ND     | mg/L   |            | 0.001 |      | E245.1    | 06/28/16 12:04 / eli-b  |
| RADIONUCLIDES - TOTAL                 |        |        |            |       |      |           |                         |
| Radium 228                            | 2.0    | pCi/L  | U          |       |      | RA-05     | 07/07/16 12:12 / eli-ca |
| Radium 228 precision (±)              | 1.2    | pCi/L  |            |       |      | RA-05     | 07/07/16 12:12 / eli-ca |
| Radium 228 MDC                        |        | pCi/L  |            |       |      | RA-05     | 07/07/16 12:12 / eli-ca |
| Radium 226 + Radium 228               |        | pCi/L  |            |       |      | A7500-RA  | 08/11/16 00:00 / jleb   |
| Radium 226 + Radium 228 precision (±) |        | pCi/L  |            |       |      | A7500-RA  | 08/11/16 00:00 / jleb   |
| Total Radium as Ra226                 |        | pCi/L  |            |       |      | E903.0    | 08/02/16 15:31 / jjc    |
| Total Radium as Ra226 precision (±)   |        | pCi/L  |            |       |      | E903.0    | 08/02/16 15:31 / jjc    |
| Total Radium as Ra226 MDC             | 0.18   | pCi/L  |            |       |      | E903.0    | 08/02/16 15:31 / jjc    |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

U - Not detected at minimum detectable concentration

Prepared by College Station, TX Branch

Client: **Texas Municipal Power Agency** 

**CCRR Project:** Lab ID: T16060106-003

Client Sample ID: SSP MW-2

**Report Date:** 08/11/16 Collection Date: 06/21/16 13:20 DateReceived: 06/21/16

Matrix: Groundwater

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| AGRONOMIC PROPERTIES                  |        |       |            |       |             |           |                         |
| рН                                    | 6.4    | s.u.  | Н          | 0.1   |             | A4500-H B | 06/22/16 20:44 / rda    |
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| Solids, Total Dissolved TDS @ 180 C   | 6690   | mg/L  |            | 100   |             | A2540 C   | 06/23/16 14:46 / pwh    |
| MAJOR IONS                            |        |       |            |       |             |           |                         |
| Chloride                              | 2070   | mg/L  | D          | 20    |             | E300.0    | 06/23/16 16:02 / rda    |
| Fluoride                              | 0.1    | mg/L  |            | 0.1   |             | A4500-F C | 06/28/16 11:57 / pwh    |
| Sulfate                               | 2030   | mg/L  | D          | 20    |             | E300.0    | 06/23/16 16:02 / rda    |
| Calcium                               | 742    | mg/L  | D          | 2     |             | E200.7    | 06/24/16 11:16 / jtr    |
| Boron                                 | 0.8    | mg/L  | D          | 0.5   |             | E200.7    | 06/24/16 11:16 / jtr    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  |             | E200.8    | 06/29/16 16:32 / eli-b  |
| Arsenic                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 06/28/16 21:40 / eli-b  |
| Barium                                | 0.4    | mg/L  |            | 0.01  |             | E200.7    | 06/29/16 06:20 / eli-b  |
| Beryllium                             | 0.009  | mg/L  |            | 0.001 |             | E200.7    | 06/29/16 06:20 / eli-b  |
| Cadmium                               | ND     | mg/L  |            | 0.01  |             | E200.7    | 06/29/16 06:20 / eli-b  |
| Chromium                              | 0.04   | mg/L  |            | 0.01  |             | E200.8    | 06/28/16 21:40 / eli-b  |
| Cobalt                                | 0.06   | mg/L  |            | 0.02  |             | E200.8    | 06/29/16 16:32 / eli-b  |
| Lead                                  | 0.02   | mg/L  |            | 0.01  |             | E200.8    | 06/28/16 21:40 / eli-b  |
| Lithium                               | 0.9    | mg/L  | D          | 0.02  |             | E200.7    | 06/29/16 06:20 / eli-b  |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.7    | 06/29/16 06:20 / eli-b  |
| Selenium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 06/29/16 16:32 / eli-b  |
| Thallium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 06/28/16 21:40 / eli-b  |
| METALS, TOTAL                         |        |       |            |       |             |           |                         |
| Mercury                               | ND     | mg/L  |            | 0.001 |             | E245.1    | 06/28/16 12:14 / eli-b  |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 228                            | 1.7    | pCi/L | U          |       |             | RA-05     | 07/07/16 12:12 / eli-ca |
| Radium 228 precision (±)              | 1.1    | pCi/L |            |       |             | RA-05     | 07/07/16 12:12 / eli-ca |
| Radium 228 MDC                        | 2.4    | pCi/L |            |       |             | RA-05     | 07/07/16 12:12 / eli-ca |
| Radium 226 + Radium 228               |        | pCi/L |            |       |             | A7500-RA  | 08/11/16 00:00 / jleb   |
| Radium 226 + Radium 228 precision (±) | 1.10   | pCi/L |            |       |             | A7500-RA  | 08/11/16 00:00 / jleb   |
| Total Radium as Ra226                 |        | pCi/L |            |       |             | E903.0    | 08/01/16 13:23 / sas    |
| Total Radium as Ra226 precision (±)   |        | pCi/L |            |       |             | E903.0    | 08/01/16 13:23 / sas    |
| Total Radium as Ra226 MDC             |        | pCi/L |            |       |             | E903.0    | 08/01/16 13:23 / sas    |
|                                       |        | •     |            |       |             |           |                         |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

ND - Not detected at the reporting limit. D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

U - Not detected at minimum detectable concentration

Prepared by College Station, TX Branch

Client: **Texas Municipal Power Agency** 

**CCRR Project:** Lab ID: T16060106-004

Client Sample ID: SSP MW-3

**Report Date:** 08/11/16 Collection Date: 06/21/16 10:30 DateReceived: 06/21/16

Matrix: Groundwater

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| AGRONOMIC PROPERTIES                  |        |       |            |       |             |           |                         |
| рН                                    | 5.0    | s.u.  | Н          | 0.1   |             | A4500-H B | 06/22/16 20:48 / rda    |
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| Solids, Total Dissolved TDS @ 180 C   | 6510   | mg/L  |            | 100   |             | A2540 C   | 06/23/16 14:47 / pwh    |
| MAJOR IONS                            |        |       |            |       |             |           |                         |
| Chloride                              | 1560   | mg/L  | D          | 20    |             | E300.0    | 06/23/16 16:21 / rda    |
| Fluoride                              | 0.9    | mg/L  |            | 0.1   |             | A4500-F C | 06/28/16 12:05 / pwh    |
| Sulfate                               | 2400   |       | D          | 20    |             | E300.0    | 06/23/16 16:21 / rda    |
| Calcium                               | 647    | mg/L  | D          | 2     |             | E200.7    | 06/24/16 11:18 / jtr    |
| Boron                                 | 3.2    | mg/L  | D          | 0.5   |             | E200.7    | 06/24/16 11:18 / jtr    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  |             | E200.8    | 06/29/16 16:38 / eli-b  |
| Arsenic                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 06/28/16 21:43 / eli-b  |
| Barium                                | 0.03   | mg/L  |            | 0.01  |             | E200.7    | 06/29/16 06:23 / eli-b  |
| Beryllium                             | 0.1    | mg/L  |            | 0.001 |             | E200.7    | 06/29/16 06:23 / eli-b  |
| Cadmium                               | 0.06   | mg/L  |            | 0.01  |             | E200.7    | 06/29/16 06:23 / eli-b  |
| Chromium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 06/28/16 21:43 / eli-b  |
| Cobalt                                | 0.6    | mg/L  |            | 0.02  |             | E200.7    | 06/29/16 06:23 / eli-b  |
| Lead                                  | ND     | mg/L  |            | 0.01  |             | E200.8    | 06/28/16 21:43 / eli-b  |
| Lithium                               | 0.7    | mg/L  | D          | 0.02  |             | E200.7    | 06/29/16 06:23 / eli-b  |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.7    | 06/29/16 06:23 / eli-b  |
| Selenium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 06/29/16 16:38 / eli-b  |
| Thallium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 06/29/16 16:38 / eli-b  |
| METALS, TOTAL                         |        |       |            |       |             |           |                         |
| Mercury                               | ND     | mg/L  |            | 0.001 |             | E245.1    | 06/28/16 12:16 / eli-b  |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 228                            | 19     | pCi/L |            |       |             | RA-05     | 07/07/16 12:12 / eli-ca |
| Radium 228 precision (±)              | 3.8    | pCi/L |            |       |             | RA-05     | 07/07/16 12:12 / eli-ca |
| Radium 228 MDC                        | 2.1    | pCi/L |            |       |             | RA-05     | 07/07/16 12:12 / eli-ca |
| Radium 226 + Radium 228               | 24.5   | pCi/L |            |       |             | A7500-RA  | 08/11/16 00:00 / jleb   |
| Radium 226 + Radium 228 precision (±) | 3.81   | •     |            |       |             | A7500-RA  | 08/11/16 00:00 / jleb   |
| Total Radium as Ra226                 | 5.1    | pCi/L |            |       |             | E903.0    | 08/01/16 13:23 / sas    |
| Total Radium as Ra226 precision (±)   |        | pCi/L |            |       |             | E903.0    | 08/01/16 13:23 / sas    |
| Total Radium as Ra226 MDC             | 0.15   | pCi/L |            |       |             | E903.0    | 08/01/16 13:23 / sas    |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency

Project: CCRR

Lab ID: T16060106-005 Client Sample ID: SSP MW-4 **Report Date:** 08/11/16 **Collection Date:** 06/21/16 09:10 **DateReceived:** 06/21/16

Matrix: Groundwater

|                                       |        |       |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| AGRONOMIC PROPERTIES                  |        |       |            |       |      |           |                         |
| pH                                    | 7.2    | s.u.  | Н          | 0.1   |      | A4500-H B | 06/22/16 20:53 / rda    |
| ·                                     |        |       |            |       |      |           |                         |
| PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| Solids, Total Dissolved TDS @ 180 C   | 3940   | mg/L  |            | 40    |      | A2540 C   | 06/23/16 14:47 / pwh    |
| MAJOR IONS                            |        |       |            |       |      |           |                         |
| Chloride                              | 1120   | mg/L  | D          | 20    |      | E300.0    | 06/23/16 16:41 / rda    |
| Fluoride                              | 0.1    | mg/L  |            | 0.1   |      | A4500-F C | 06/28/16 12:09 / pwh    |
| Sulfate                               | 1190   | mg/L  | D          | 20    |      | E300.0    | 06/23/16 16:41 / rda    |
| Calcium                               | 399    | mg/L  |            | 1     |      | E200.7    | 06/24/16 11:32 / jtr    |
| Boron                                 | 1.3    | mg/L  | D          | 0.2   |      | E200.7    | 06/24/16 11:32 / jtr    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  |      | E200.8    | 06/29/16 16:43 / eli-b  |
| Arsenic                               |        | mg/L  |            | 0.01  |      | E200.8    | 06/28/16 21:46 / eli-b  |
| Barium                                |        | mg/L  |            | 0.01  |      | E200.7    | 06/29/16 06:27 / eli-b  |
| Beryllium                             |        | mg/L  |            | 0.001 |      | E200.7    | 06/29/16 06:27 / eli-b  |
| Cadmium                               |        | mg/L  |            | 0.01  |      | E200.7    | 06/29/16 06:27 / eli-b  |
| Chromium                              |        | mg/L  |            | 0.01  |      | E200.8    | 06/28/16 21:46 / eli-b  |
| Cobalt                                |        | mg/L  |            | 0.02  |      | E200.8    | 06/29/16 16:43 / eli-b  |
| Lead                                  |        | mg/L  |            | 0.01  |      | E200.8    | 06/28/16 21:46 / eli-b  |
| Lithium                               |        | mg/L  | D          | 0.02  |      | E200.7    | 06/29/16 06:27 / eli-b  |
| Molybdenum                            |        | mg/L  |            | 0.05  |      | E200.7    | 06/29/16 06:27 / eli-b  |
| Selenium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/29/16 16:43 / eli-b  |
| Thallium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/28/16 21:46 / eli-b  |
| METALS, TOTAL                         |        |       |            |       |      |           |                         |
| Mercury                               | ND     | mg/L  |            | 0.001 |      | E245.1    | 06/28/16 12:17 / eli-b  |
| PADIONIICI IDES TOTAL                 |        | Ü     |            |       |      |           |                         |
| RADIONUCLIDES - TOTAL                 | 0.7    | 0://  |            |       |      | DA 05     | 07/07/40 00 45 / -!:    |
| Radium 228                            |        | pCi/L |            |       |      | RA-05     | 07/07/16 08:15 / eli-ca |
| Radium 228 precision (±)              |        | pCi/L |            |       |      | RA-05     | 07/07/16 08:15 / eli-ca |
| Radium 228 MDC                        |        | pCi/L |            |       |      | RA-05     | 07/07/16 08:15 / eli-ca |
| Radium 226 + Radium 228               |        | pCi/L |            |       |      | A7500-RA  | 08/11/16 00:00 / jleb   |
| Radium 226 + Radium 228 precision (±) |        | pCi/L |            |       |      | A7500-RA  | 08/11/16 00:00 / jleb   |
| Total Radium as Ra226                 |        | pCi/L |            |       |      | E903.0    | 08/02/16 15:31 / jjc    |
| Total Radium as Ra226 precision (±)   |        | pCi/L |            |       |      | E903.0    | 08/02/16 15:31 / jjc    |
| Total Radium as Ra226 MDC             | 0.20   | pCi/L |            |       |      | E903.0    | 08/02/16 15:31 / jjc    |

Report RL - Analyte reporting limit.

**Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.



Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency **Report Date:** 08/11/16 Project: CCRR Work Order: T16060106

| Analyte                           | Count | Result       | Units        | RL | %REC | Low Limit  | High Limit | RPD | RPDLimit   | Qual     |
|-----------------------------------|-------|--------------|--------------|----|------|------------|------------|-----|------------|----------|
| Method: A2540 C                   |       |              |              |    |      |            |            |     | Batch: TDS | S160623A |
| Lab ID: MB-1_160623A              | Me    | ethod Blank  |              |    |      | Run: BAL3_ | _160623A   |     | 06/23/     | 16 14:40 |
| Solids, Total Dissolved TDS @ 186 | 0 C   | 9            | mg/L         | 5  |      |            |            |     |            |          |
| Lab ID: LCS-2_160623A             | La    | boratory Cor | ntrol Sample |    |      | Run: BAL3_ | _160623A   |     | 06/23/     | 16 14:40 |
| Solids, Total Dissolved TDS @ 186 | 0 C   | 1090         | mg/L         | 11 | 97   | 90         | 110        |     |            |          |
| Lab ID: T16060098-001A DUP        | Sa    | mple Duplica | ate          |    |      | Run: BAL3_ | _160623A   |     | 06/23/     | 16 14:40 |
| Solids, Total Dissolved TDS @ 180 | 0 C   | 1250         | mg/L         | 10 |      |            |            | 0.2 | 5          |          |

#### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration



Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency **Report Date:** 08/11/16 Project: CCRR Work Order: T16060106

Trust our People. Trust our Data.

www.energylab.com

| Analyte  |                   | Count       | Result       | Units          | RL              | %REC | Low Limit  | High Limit | RPD       | RPDLimit    | Qual      |
|----------|-------------------|-------------|--------------|----------------|-----------------|------|------------|------------|-----------|-------------|-----------|
| Method:  | A4500-F C         |             |              |                |                 |      |            |            | Analytica | l Run: ATT1 | _160628A  |
| Lab ID:  | CCV-F2            | Coi         | ntinuing Cal | ibration Verif | ication Standar | rd   |            |            |           | 06/28       | /16 12:40 |
| Fluoride |                   |             | 1.96         | mg/L           | 0.10            | 98   | 90         | 110        |           |             |           |
| Method:  | A4500-F C         |             |              |                |                 |      |            |            |           | Batch       | n: R68748 |
| Lab ID:  | LCS-F-3733        | Lab         | oratory Cor  | ntrol Sample   |                 |      | Run: ATT1_ | _160628A   |           | 06/28/      | /16 11:20 |
| Fluoride |                   |             | 5.05         | mg/L           | 0.10            | 98   | 90         | 110        |           |             |           |
| Lab ID:  | MBLK              | Me          | thod Blank   |                |                 |      | Run: ATT1_ | _160628A   |           | 06/28       | /16 11:27 |
| Fluoride |                   |             | 0.03         | mg/L           | 0.002           |      |            |            |           |             |           |
| Lab ID:  | T16060106-001AMS  | Sar         | mple Matrix  | Spike          |                 |      | Run: ATT1_ | _160628A   |           | 06/28/      | /16 11:35 |
| Fluoride |                   |             | 5.08         | mg/L           | 0.10            | 96   | 90         | 110        |           |             |           |
| Lab ID:  | T16060106-002ADUF | <b>S</b> aı | mple Duplic  | ate            |                 |      | Run: ATT1_ | _160628A   |           | 06/28       | /16 11:50 |
| Fluoride |                   |             | 0.780        | mg/L           | 0.10            |      |            |            | 5.0       | 10          |           |

#### Qualifiers:

RL - Analyte reporting limit. MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:08/11/16Project:CCRRWork Order:T16060106

| Analyte |                   | Count       | Result         | Units          | RL          | %REC | Low Limit  | High Limit | RPD | RPDLimit | Qual      |
|---------|-------------------|-------------|----------------|----------------|-------------|------|------------|------------|-----|----------|-----------|
| Method: | A4500-H B         |             |                |                |             |      |            |            |     | Batch    | n: R68678 |
| Lab ID: | ICV1-PH12_3890    | Init        | ial Calibratio | n Verification | on Standard |      | Run: ATT1_ | _160622A   |     | 06/22/   | 16 17:03  |
| рН      |                   |             | 12             | s.u.           | 0.1         | 99   | 99         | 101        |     |          |           |
| Lab ID: | ICV2-PH2_3594     | Init        | ial Calibratio | n Verificatio  | on Standard |      | Run: ATT1_ | _160622A   |     | 06/22/   | 16 17:06  |
| рН      |                   |             | 2.1            | s.u.           | 0.1         | 103  | 95         | 105        |     |          |           |
| Lab ID: | ICV/LCS-PH_3840   | Lal         | ooratory Con   | trol Sample    | e           |      | Run: ATT1_ | _160622A   |     | 06/22/   | 16 17:09  |
| рН      |                   |             | 7.0            | s.u.           | 0.1         | 100  | 98         | 102        |     |          |           |
| Lab ID: | T16060108-001ADUF | <b>P</b> Sa | mple Duplica   | ite            |             |      | Run: ATT1_ | _160622A   |     | 06/22/   | 16 17:55  |
| pН      |                   |             | 8.0            | s.u.           | 0.1         |      |            |            | 0.3 | 3        |           |

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:08/11/16Project:CCRRWork Order:T16060106

| Analyte |                     | Count | Result              | Units              | RL      | %REC | Low Limit  | High Limit   | RPD     | RPDLimit   | Qual      |
|---------|---------------------|-------|---------------------|--------------------|---------|------|------------|--------------|---------|------------|-----------|
| Method: | E200.7              |       |                     |                    |         |      |            | Analytic     | al Run: | ICP102-CS_ | 160624A   |
| Lab ID: | Initial Calib Verif | 2     | Initial Calibration | on Verification St | tandard |      |            |              |         | 06/24/     | 16 10:25  |
| Boron   |                     |       | 1.01                | mg/L               | 0.050   | 101  | 95         | 105          |         |            |           |
| Calcium |                     |       | 48.0                | mg/L               | 1.0     | 96   | 95         | 105          |         |            |           |
| Lab ID: | Cont Calib Blank    | 2     | Continuing Cal      | ibration Blank     |         |      |            |              |         | 06/24/     | 16 10:29  |
| Boron   |                     |       | 0.00796             | mg/L               | 0.050   |      |            |              |         |            |           |
| Calcium |                     |       | -0.00125            | mg/L               | 1.0     |      |            |              |         |            |           |
| Method: | E200.7              |       |                     |                    |         |      |            |              |         | Batch      | n: R68725 |
| Lab ID: | IPC                 | 2     | Initial Precisior   | and Recovery       |         |      | Run: ICP10 | 2-CS_160624A |         | 06/24/     | 16 10:32  |
| Boron   |                     |       | 0.988               | mg/L               | 0.050   | 99   | 95         | 105          |         |            |           |
| Calcium |                     |       | 47.9                | mg/L               | 1.0     | 96   | 95         | 105          |         |            |           |
| Lab ID: | LCS-160624          | 2     | Laboratory Cor      | ntrol Sample       |         |      | Run: ICP10 | 2-CS_160624A |         | 06/24/     | 16 10:42  |
| Calcium |                     |       | 47.8                | mg/L               | 1.0     | 95   | 85         | 115          |         |            |           |
| Boron   |                     |       | 0.989               | mg/L               | 0.050   | 98   | 85         | 115          |         |            |           |
| Lab ID: | MB-160624           | 2     | Method Blank        |                    |         |      | Run: ICP10 | 2-CS_160624A |         | 06/24/     | 16 10:46  |
| Calcium |                     |       | 0.08                | mg/L               | 0.08    |      |            |              |         |            |           |
| Boron   |                     |       | 0.006               | mg/L               | 0.001   |      |            |              |         |            |           |
| Lab ID: | T16060106-004ASD    | 2     | Serial Dilution     |                    |         |      | Run: ICP10 | 2-CS_160624A |         | 06/24/     | 16 11:24  |
| Calcium |                     |       | 696                 | mg/L               | 10      |      | 0          | 0            | 7.3     | 10         |           |
| Boron   |                     |       | 3.47                | mg/L               | 2.5     |      | 0          | 0            | 8.8     | 10         |           |
| Lab ID: | T16060106-004AMS    | 2     | Sample Matrix       | Spike              |         |      | Run: ICP10 | 2-CS_160624A |         | 06/24/     | 16 11:26  |
| Calcium |                     |       | 1110                | mg/L               | 2.0     | 93   | 70         | 130          |         |            |           |
| Boron   |                     |       | 13.3                | mg/L               | 0.50    | 101  | 70         | 130          |         |            |           |
| Lab ID: | T16060106-004AMSI   | 2 :   | Sample Matrix       | Spike Duplicate    |         |      | Run: ICP10 | 2-CS_160624A |         | 06/24/     | 16 11:29  |
| Calcium |                     |       | 1120                | mg/L               | 2.0     | 94   | 70         | 130          | 0.4     | 20         |           |
| Boron   |                     |       | 13.2                | mg/L               | 0.50    | 100  | 70         | 130          | 0.5     | 20         |           |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:08/11/16Project:CCRRWork Order:T16060106

| Analyte   |                   | Count         | Result       | Units          | RL              | %REC | Low Limit  | High Limit | RPD      | RPDLimit    | Qual      |
|-----------|-------------------|---------------|--------------|----------------|-----------------|------|------------|------------|----------|-------------|-----------|
| Method:   | E200.7            |               |              |                |                 |      |            |            | Analytic | al Run: SUB | -B263043  |
| Lab ID:   | ICV               | 6 Co          | ntinuing Cal | ibration Verif | ication Standaı | rd   |            |            |          | 06/28       | /16 13:37 |
| Barium    |                   |               | 2.39         | mg/L           | 0.10            | 96   | 95         | 105        |          |             |           |
| Beryllium |                   |               | 1.24         | mg/L           | 0.010           | 99   | 95         | 105        |          |             |           |
| Cadmium   |                   |               | 2.43         | mg/L           | 0.010           | 97   | 95         | 105        |          |             |           |
| Cobalt    |                   |               | 2.43         | mg/L           | 0.020           | 97   | 95         | 105        |          |             |           |
| Lithium   |                   |               | 1.23         | mg/L           | 0.10            | 98   | 95         | 105        |          |             |           |
| Molybdenu | ım                |               | 2.43         | mg/L           | 0.10            | 97   | 95         | 105        |          |             |           |
| Method:   | E200.7            |               |              |                |                 |      |            |            |          | Batch: I    | B_100369  |
| Lab ID:   | MB-100369         | 6 Me          | thod Blank   |                |                 |      | Run: SUB-E | 3263043    |          | 06/29       | /16 05:44 |
| Barium    |                   |               | ND           | mg/L           | 0.0002          |      |            |            |          |             |           |
| Beryllium |                   |               | ND           | mg/L           | 8E-05           |      |            |            |          |             |           |
| Cadmium   |                   |               | ND           | mg/L           | 0.0004          |      |            |            |          |             |           |
| Cobalt    |                   |               | 0.005        | mg/L           | 0.002           |      |            |            |          |             |           |
| Lithium   |                   |               | 0.007        | mg/L           | 0.002           |      |            |            |          |             |           |
| Molybdenu | ım                |               | ND           | mg/L           | 0.003           |      |            |            |          |             |           |
| Lab ID:   | LCS-100369        | 6 La          | boratory Cor | ntrol Sample   |                 |      | Run: SUB-E | 3263043    |          | 06/29       | /16 05:48 |
| Barium    |                   |               | 0.500        | mg/L           | 0.10            | 100  | 85         | 115        |          |             |           |
| Beryllium |                   |               | 0.245        | mg/L           | 0.010           | 98   | 85         | 115        |          |             |           |
| Cadmium   |                   |               | 0.243        | mg/L           | 0.010           | 97   | 85         | 115        |          |             |           |
| Cobalt    |                   |               | 0.496        | mg/L           | 0.050           | 98   | 85         | 115        |          |             |           |
| Lithium   |                   |               | 0.506        | mg/L           | 0.10            | 100  | 85         | 115        |          |             |           |
| Molybdenu | ım                |               | 0.467        | mg/L           | 0.10            | 93   | 85         | 115        |          |             |           |
| Lab ID:   | B16062096-001BMS3 | 6 Sa          | mple Matrix  | Spike          |                 |      | Run: SUB-E | 3263043    |          | 06/29       | /16 06:02 |
| Barium    |                   |               | 0.563        | mg/L           | 0.050           | 103  | 70         | 130        |          |             |           |
| Beryllium |                   |               | 0.257        | mg/L           | 0.0010          | 102  | 70         | 130        |          |             |           |
| Cadmium   |                   |               | 0.244        | mg/L           | 0.0036          | 97   | 70         | 130        |          |             |           |
| Cobalt    |                   |               | 0.540        | mg/L           | 0.016           | 100  | 70         | 130        |          |             |           |
| Lithium   |                   |               | 1.90         | mg/L           | 0.10            | 107  | 70         | 130        |          |             |           |
| Molybdenu | ım                |               | 0.495        | mg/L           | 0.033           | 99   | 70         | 130        |          |             |           |
| Lab ID:   | B16062096-001BMSD | <b>)</b> 6 Sa | mple Matrix  | Spike Duplic   | ate             |      | Run: SUB-E | 3263043    |          | 06/29       | /16 06:13 |
| Barium    |                   |               | 0.585        | mg/L           | 0.050           | 107  | 70         | 130        | 3.9      | 20          |           |
| Beryllium |                   |               | 0.269        | mg/L           | 0.0010          | 107  | 70         | 130        | 4.8      | 20          |           |
| Cadmium   |                   |               | 0.260        | mg/L           | 0.0036          | 104  | 70         | 130        | 6.6      | 20          |           |
| Cobalt    |                   |               | 0.582        | mg/L           | 0.016           | 108  | 70         | 130        | 7.6      | 20          |           |
| Lithium   |                   |               | 1.96         | mg/L           | 0.10            | 120  | 70         | 130        | 3.4      | 20          |           |
| Molybdenu | ım                |               | 0.518        | mg/L           | 0.033           | 104  | 70         | 130        | 4.5      | 20          |           |
| Lab ID:   | B16062133-001AMS3 | 6 Sa          | mple Matrix  | Spike          |                 |      | Run: SUB-E | 3263043    |          | 06/29       | /16 07:26 |
| Barium    |                   |               | 0.675        | mg/L           | 0.050           | 104  | 70         | 130        |          |             |           |
| Beryllium |                   |               | 0.265        | mg/L           | 0.0010          | 106  | 70         | 130        |          |             |           |
| Cadmium   |                   |               | 0.257        | mg/L           | 0.0010          | 103  | 70         | 130        |          |             |           |
| Cobalt    |                   |               | 0.531        | mg/L           | 0.0050          | 104  | 70         | 130        |          |             |           |

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:08/11/16Project:CCRRWork Order:T16060106

| Analyte   |                   | Count          | Result      | Units           | RL     | %REC | Low Limit  | High Limit | RPD | RPDLimit | Qual     |
|-----------|-------------------|----------------|-------------|-----------------|--------|------|------------|------------|-----|----------|----------|
| Method:   | E200.7            |                |             |                 |        |      |            |            |     | Batch: E | 3_100369 |
| Lab ID:   | B16062133-001AMS3 | <b>3</b> 6 Sar | mple Matrix | Spike           |        |      | Run: SUB-E | 3263043    |     | 06/29/   | 16 07:26 |
| Lithium   |                   |                | 0.635       | mg/L            | 0.10   | 104  | 70         | 130        |     |          |          |
| Molybdenu | m                 |                | 0.493       | mg/L            | 0.0065 | 99   | 70         | 130        |     |          |          |
| Lab ID:   | B16062133-001AMSI | O 6 Sar        | mple Matrix | Spike Duplicate |        |      | Run: SUB-E | 3263043    |     | 06/29/   | 16 07:37 |
| Barium    |                   |                | 0.667       | mg/L            | 0.050  | 102  | 70         | 130        | 1.2 | 20       |          |
| Beryllium |                   |                | 0.260       | mg/L            | 0.0010 | 104  | 70         | 130        | 1.9 | 20       |          |
| Cadmium   |                   |                | 0.249       | mg/L            | 0.0010 | 100  | 70         | 130        | 2.8 | 20       |          |
| Cobalt    |                   |                | 0.516       | mg/L            | 0.0050 | 101  | 70         | 130        | 2.8 | 20       |          |
| Lithium   |                   |                | 0.627       | mg/L            | 0.10   | 103  | 70         | 130        | 1.3 | 20       |          |
| Molybdenu | m                 |                | 0.494       | mg/L            | 0.0065 | 99   | 70         | 130        | 0.1 | 20       |          |

#### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:08/11/16Project:CCRRWork Order:T16060106

| Analyte   |                   | Count         | Result         | Units         | RL         | %REC | Low Limit  | High Limit | RPD      | RPDLimit    | Qual      |
|-----------|-------------------|---------------|----------------|---------------|------------|------|------------|------------|----------|-------------|-----------|
| Method:   | E200.8            |               |                |               |            |      |            |            | Analytic | al Run: SUB | -B263102  |
| Lab ID:   | QCS               | 4 Init        | ial Calibratio | n Verificatio | n Standard |      |            |            |          | 06/28/      | /16 20:28 |
| Arsenic   |                   |               | 0.0508         | mg/L          | 0.0050     | 102  | 90         | 110        |          |             |           |
| Chromium  |                   |               | 0.0506         | mg/L          | 0.010      | 101  | 90         | 110        |          |             |           |
| Lead      |                   |               | 0.0499         | mg/L          | 0.010      | 100  | 90         | 110        |          |             |           |
| Thallium  |                   |               | 0.0503         | mg/L          | 0.10       | 101  | 90         | 110        |          |             |           |
| Method:   | E200.8            |               |                |               |            |      |            |            |          | Batch: I    | B_100369  |
| Lab ID:   | MB-100369         | 7 Me          | thod Blank     |               |            |      | Run: SUB-E | 3263102    |          | 06/28/      | /16 21:31 |
| Antimony  |                   |               | ND             | mg/L          | 3E-05      |      |            |            |          |             |           |
| Arsenic   |                   |               | ND             | mg/L          | 7E-05      |      |            |            |          |             |           |
| Beryllium |                   |               | ND             | mg/L          | 9E-06      |      |            |            |          |             |           |
| Chromium  |                   |               | 0.0002         | mg/L          | 4E-05      |      |            |            |          |             |           |
| Lead      |                   |               | 0.0001         | mg/L          | 2E-05      |      |            |            |          |             |           |
| Selenium  |                   |               | ND             | mg/L          | 0.0004     |      |            |            |          |             |           |
| Thallium  |                   |               | ND             | mg/L          | 1.0E-05    |      |            |            |          |             |           |
| Lab ID:   | LCS-100369        | 7 Lat         | oratory Cor    | ntrol Sample  |            |      | Run: SUB-E | 3263102    |          | 06/28/      | /16 22:49 |
| Antimony  |                   |               | 0.505          | mg/L          | 0.0050     | 101  | 85         | 115        |          |             |           |
| Arsenic   |                   |               | 0.493          | mg/L          | 0.0010     | 99   | 85         | 115        |          |             |           |
| Beryllium |                   |               | 0.249          | mg/L          | 0.0010     | 100  | 85         | 115        |          |             |           |
| Chromium  |                   |               | 0.509          | mg/L          | 0.0010     | 102  | 85         | 115        |          |             |           |
| Lead      |                   |               | 0.509          | mg/L          | 0.0010     | 102  | 85         | 115        |          |             |           |
| Selenium  |                   |               | 0.430          | mg/L          | 0.0050     | 86   | 85         | 115        |          |             |           |
| Thallium  |                   |               | 0.439          | mg/L          | 0.0010     | 88   | 85         | 115        |          |             |           |
| Lab ID:   | B16062096-001BMS  | <b>3</b> 7 Sa | mple Matrix    | Spike         |            |      | Run: SUB-E | 3263102    |          | 06/28/      | /16 22:52 |
| Antimony  |                   |               | 0.531          | mg/L          | 0.0010     | 106  | 70         | 130        |          |             |           |
| Arsenic   |                   |               | 0.524          | mg/L          | 0.0010     | 104  | 70         | 130        |          |             |           |
| Beryllium |                   |               | 0.255          | mg/L          | 0.0010     | 102  | 70         | 130        |          |             |           |
| Chromium  |                   |               | 0.519          | mg/L          | 0.0050     | 104  | 70         | 130        |          |             |           |
| Lead      |                   |               | 0.527          | mg/L          | 0.0010     | 105  | 70         | 130        |          |             |           |
| Selenium  |                   |               | 0.526          | mg/L          | 0.0021     | 105  | 70         | 130        |          |             |           |
| Thallium  |                   |               | 0.519          | mg/L          | 0.00050    | 104  | 70         | 130        |          |             |           |
| Lab ID:   | B16062096-001BMSI | D 7 Sa        | mple Matrix    | Spike Duplic  | cate       |      | Run: SUB-E | 3263102    |          | 06/28/      | /16 22:55 |
| Antimony  |                   |               | 0.505          | mg/L          | 0.0010     | 101  | 70         | 130        | 5.1      | 20          |           |
| Arsenic   |                   |               | 0.511          | mg/L          | 0.0010     | 101  | 70         | 130        | 2.6      | 20          |           |
| Beryllium |                   |               | 0.254          | mg/L          | 0.0010     | 101  | 70         | 130        | 0.6      | 20          |           |
| Chromium  |                   |               | 0.510          | mg/L          | 0.0050     | 102  | 70         | 130        | 1.8      | 20          |           |
| Lead      |                   |               | 0.523          | mg/L          | 0.0010     | 104  | 70         | 130        | 0.7      | 20          |           |
| Selenium  |                   |               | 0.555          | mg/L          | 0.0021     | 111  | 70         | 130        | 5.4      | 20          |           |
| Thallium  |                   |               | 0.520          | mg/L          | 0.00050    | 104  | 70         | 130        | 0.2      | 20          |           |

### Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:08/11/16Project:CCRRWork Order:T16060106

| Analyte   |                   | Count  | Result         | Units           | RL         | %REC | Low Limit  | High Limit | RPD I     | RPDLimit   | Qual     |
|-----------|-------------------|--------|----------------|-----------------|------------|------|------------|------------|-----------|------------|----------|
| Method:   | E200.8            |        |                |                 |            |      |            |            | Analytica | l Run: SUB | -B263148 |
| Lab ID:   | QCS               | 5 Init | ial Calibratio | on Verification | n Standard |      |            |            |           | 06/29/     | 16 11:39 |
| Antimony  |                   |        | 0.0508         | mg/L            | 0.050      | 101  | 90         | 110        |           |            |          |
| Beryllium |                   |        | 0.0252         | mg/L            | 0.0010     | 101  | 90         | 110        |           |            |          |
| Cobalt    |                   |        | 0.0502         | mg/L            | 0.010      | 100  | 90         | 110        |           |            |          |
| Selenium  |                   |        | 0.0512         | mg/L            | 0.0050     | 102  | 90         | 110        |           |            |          |
| Thallium  |                   |        | 0.0488         | mg/L            | 0.10       | 98   | 90         | 110        |           |            |          |
| Method:   | E200.8            |        |                |                 |            |      |            |            |           | Batch: E   | 3_100369 |
| Lab ID:   | MB-100369         | 8 Me   | thod Blank     |                 |            |      | Run: SUB-E | 3263148    |           | 06/29/     | 16 16:00 |
| Antimony  |                   |        | 7E-05          | mg/L            | 4E-05      |      |            |            |           |            |          |
| Arsenic   |                   |        | 7E-05          | mg/L            | 6E-05      |      |            |            |           |            |          |
| Beryllium |                   |        | ND             | mg/L            | 6E-06      |      |            |            |           |            |          |
| Chromium  |                   |        | ND             | mg/L            | 0.0002     |      |            |            |           |            |          |
| Cobalt    |                   |        | ND             | mg/L            | 1E-05      |      |            |            |           |            |          |
| Lead      |                   |        | 0.0003         | mg/L            | 3E-05      |      |            |            |           |            |          |
| Selenium  |                   |        | ND             | mg/L            | 0.0002     |      |            |            |           |            |          |
| Thallium  |                   |        | 2E-05          | mg/L            | 1E-05      |      |            |            |           |            |          |
| Lab ID:   | LCS-100369        | 8 Lal  | ooratory Cor   | ntrol Sample    |            |      | Run: SUB-E | 3263148    |           | 06/29/     | 16 18:08 |
| Antimony  |                   |        | 0.544          | mg/L            | 0.0050     | 109  | 85         | 115        |           |            |          |
| Arsenic   |                   |        | 0.478          | mg/L            | 0.0010     | 96   | 85         | 115        |           |            |          |
| Beryllium |                   |        | 0.279          | mg/L            | 0.0010     | 112  | 85         | 115        |           |            |          |
| Chromium  |                   |        | 0.476          | mg/L            | 0.0010     | 95   | 85         | 115        |           |            |          |
| Cobalt    |                   |        | 0.483          | mg/L            | 0.0010     | 97   | 85         | 115        |           |            |          |
| Lead      |                   |        | 0.494          | mg/L            | 0.0010     | 99   | 85         | 115        |           |            |          |
| Selenium  |                   |        | 0.470          | mg/L            | 0.0050     | 94   | 85         | 115        |           |            |          |
| Thallium  |                   |        | 0.470          | mg/L            | 0.0010     | 94   | 85         | 115        |           |            |          |
| Lab ID:   | B16062096-001BMS3 | 3 8 Sa | mple Matrix    | Spike           |            |      | Run: SUB-F | 3263148    |           | 06/29/     | 16 18:13 |
| Antimony  |                   |        | 0.534          | mg/L            | 0.0010     | 107  | 70         | 130        |           |            |          |
| Arsenic   |                   |        | 0.501          | mg/L            | 0.0010     | 99   | 70         | 130        |           |            |          |
| Beryllium |                   |        | 0.269          | mg/L            | 0.0010     | 107  | 70         | 130        |           |            |          |
| Chromium  |                   |        | 0.504          | mg/L            | 0.0050     | 101  | 70         | 130        |           |            |          |
| Cobalt    |                   |        | 0.504          | mg/L            | 0.0050     | 100  | 70         | 130        |           |            |          |
| Lead      |                   |        | 0.511          | mg/L            | 0.0010     | 102  | 70         | 130        |           |            |          |
| Selenium  |                   |        | 0.484          | mg/L            | 0.0012     | 97   | 70         | 130        |           |            |          |
| Thallium  |                   |        | 0.491          | mg/L            | 0.00050    | 98   | 70         | 130        |           |            |          |
| Lab ID:   | B16062096-001BMSI | D 8 Sa | mple Matrix    | Spike Dupli     | cate       |      | Run: SUB-E | 3263148    |           | 06/29/     | 16 18:18 |
| Antimony  |                   |        | 0.526          | mg/L            | 0.0010     | 105  | 70         | 130        | 1.5       | 20         |          |
| Arsenic   |                   |        | 0.502          | mg/L            | 0.0010     | 100  | 70         | 130        | 0.2       | 20         |          |
| Beryllium |                   |        | 0.275          | mg/L            | 0.0010     | 109  | 70         | 130        | 2.2       | 20         |          |
| Chromium  |                   |        | 0.498          | mg/L            | 0.0050     | 100  | 70         | 130        | 1.2       | 20         |          |
| Cobalt    |                   |        | 0.506          | mg/L            | 0.0050     | 101  | 70         | 130        | 0.5       | 20         |          |
| Lead      |                   |        | 0.522          | mg/L            | 0.0010     | 104  | 70         | 130        | 2.2       | 20         |          |
| Selenium  |                   |        | 0.485          | mg/L            | 0.0012     | 97   | 70         | 130        | 0.1       | 20         |          |

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

MDC - Minimum detectable concentration

Billings, MT 800.735.4489 • Casper, WY 888.235.0515
College Station, TX 888.690.2218 • Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

### **QA/QC Summary Report**

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:08/11/16Project:CCRRWork Order:T16060106

| Analyte  |                  | Coun       | nt Result     | Units      | RL      | %REC Lo | w Limit Hi  | igh Limit | RPD | RPDLimit | Qual     |
|----------|------------------|------------|---------------|------------|---------|---------|-------------|-----------|-----|----------|----------|
| Method:  | E200.8           |            |               |            |         |         |             |           |     | Batch: E | 3_100369 |
| Lab ID:  | B16062096-001BMS | <b>D</b> 8 | Sample Matrix | Spike Dupl | icate   | Ru      | ın: SUB-B26 | 3148      |     | 06/29/   | 16 18:18 |
| Thallium |                  |            | 0.496         | ma/L       | 0.00050 | 99      | 70          | 130       | 1.1 | 20       |          |

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:08/11/16Project:CCRRWork Order:T16060106

| Analyte |                   | Count        | Result         | Units        | RL            | %REC | Low Limit  | High Limit | RPD      | RPDLimit Qual       |
|---------|-------------------|--------------|----------------|--------------|---------------|------|------------|------------|----------|---------------------|
| Method: | E245.1            |              |                |              |               |      |            |            | Analytic | al Run: SUB-B263056 |
| Lab ID: | ICV               | Initi        | al Calibration | on Verificat | tion Standard |      |            |            |          | 06/28/16 11:45      |
| Mercury |                   |              | 0.0021         | mg/L         | 0.00010       | 103  | 90         | 110        |          |                     |
| Method: | E245.1            |              |                |              |               |      |            |            |          | Batch: B_100383     |
| Lab ID: | MB-100383         | Met          | thod Blank     |              |               |      | Run: SUB-E | 3263056    |          | 06/28/16 11:51      |
| Mercury |                   |              | ND             | mg/L         | 4E-06         |      |            |            |          |                     |
| Lab ID: | LCS-100383        | Lab          | oratory Co     | ntrol Samp   | le            |      | Run: SUB-E | 3263056    |          | 06/28/16 11:53      |
| Mercury |                   |              | 0.0022         | mg/L         | 0.00010       | 109  | 85         | 115        |          |                     |
| Lab ID: | B16062090-024BMS  | Sar          | nple Matrix    | Spike        |               |      | Run: SUB-E | 3263056    |          | 06/28/16 11:59      |
| Mercury |                   |              | 0.0021         | mg/L         | 0.00010       | 107  | 70         | 130        |          |                     |
| Lab ID: | B16062090-024BMS  | <b>D</b> Sar | nple Matrix    | Spike Dup    | licate        |      | Run: SUB-E | 3263056    |          | 06/28/16 12:01      |
| Mercury |                   |              | 0.0022         | mg/L         | 0.00010       | 109  | 70         | 130        | 1.4      | 30                  |
| Lab ID: | T16060113-006B    | Sar          | nple Matrix    | Spike        |               |      | Run: SUB-E | 3263056    |          | 06/28/16 12:34      |
| Mercury |                   |              | 0.0021         | mg/L         | 0.00010       | 103  | 70         | 130        |          |                     |
| Lab ID: | T16060113-006B    | Sar          | nple Matrix    | Spike Dup    | licate        |      | Run: SUB-E | 3263056    |          | 06/28/16 12:36      |
| Mercury |                   |              | 0.0021         | mg/L         | 0.00010       | 104  | 70         | 130        | 0.7      | 30                  |
| Method: | E245.1            |              |                |              |               |      |            |            |          | Batch: B_100426     |
| Lab ID: | MB-100426         | Met          | thod Blank     |              |               |      | Run: SUB-E | 3263056    |          | 06/28/16 16:35      |
| Mercury |                   |              | ND             | mg/L         | 4E-06         |      |            |            |          |                     |
| Lab ID: | LCS-100426        | Lab          | oratory Co     | ntrol Samp   | le            |      | Run: SUB-E | 3263056    |          | 06/28/16 16:37      |
| Mercury |                   |              | 0.0020         | mg/L         | 0.00010       | 102  | 85         | 115        |          |                     |
| Lab ID: | B16061967-001AMS  | Sar          | nple Matrix    | Spike        |               |      | Run: SUB-E | 3263056    |          | 06/28/16 16:41      |
| Mercury |                   |              | 0.0021         | mg/L         | 0.00010       | 100  | 70         | 130        |          |                     |
| Lab ID: | B16061967-001AMSI | <b>D</b> Sar | nple Matrix    | Spike Dup    | licate        |      | Run: SUB-E | 3263056    |          | 06/28/16 16:43      |
| Mercury |                   |              | 0.0021         | mg/L         | 0.00010       | 99   | 70         | 130        | 0.6      | 30                  |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:08/11/16Project:CCRRWork Order:T16060106

| Analyte  |                   | Count         | Result          | Units        | RL              | %REC | Low Limit  | High Limit | RPD      | RPDLimit     | Qual      |
|----------|-------------------|---------------|-----------------|--------------|-----------------|------|------------|------------|----------|--------------|-----------|
| Method:  | E300.0            |               |                 |              |                 |      |            |            | Analytic | cal Run: IC1 | _160623A  |
| Lab ID:  | ICV/LCS-W-3770    | 2 Ini         | tial Calibratio | on Verificat | tion Standard   |      |            |            |          | 06/23        | /16 10:44 |
| Chloride |                   |               | 98.8            | mg/L         | 2.0             | 99   | 90         | 110        |          |              |           |
| Sulfate  |                   |               | 97.8            | mg/L         | 2.0             | 98   | 90         | 110        |          |              |           |
| Lab ID:  | ICB2              | 2 Ini         | tial Calibratio | on Blank, Ir | nstrument Blank |      |            |            |          | 06/23        | /16 12:02 |
| Chloride |                   |               | 0.269           | mg/L         | 1.0             |      | 0          | 0          |          |              |           |
| Sulfate  |                   |               | ND              | mg/L         | 1.0             |      | 0          | 0          |          |              |           |
| Method:  | E300.0            |               |                 |              |                 |      |            |            |          | Batch        | n: R68700 |
| Lab ID:  | ICB               | 2 Me          | ethod Blank     |              |                 |      | Run: IC1_1 | 60623A     |          | 06/23        | /16 11:04 |
| Chloride |                   |               | 0.3             | mg/L         | 0.05            |      |            |            |          |              |           |
| Sulfate  |                   |               | ND              | mg/L         | 0.03            |      |            |            |          |              |           |
| Lab ID:  | LFB-3733          | 2 La          | boratory For    | tified Blank | (               |      | Run: IC1_1 | 60623A     |          | 06/23        | /16 11:23 |
| Chloride |                   |               | 22.8            | mg/L         | 1.0             | 90   | 90         | 110        |          |              |           |
| Sulfate  |                   |               | 23.3            | mg/L         | 1.0             | 93   | 90         | 110        |          |              |           |
| Lab ID:  | LFBD-3733         | 2 La          | boratory For    | tified Blank | Duplicate       |      | Run: IC1_1 | 60623A     |          | 06/23        | /16 11:43 |
| Chloride |                   |               | 23.2            | mg/L         | 1.0             | 92   | 90         | 110        | 1.8      | 10           |           |
| Sulfate  |                   |               | 23.2            | mg/L         | 1.0             | 93   | 90         | 110        | 0.4      | 10           |           |
| Lab ID:  | T16060107-002AMS  | 2 Sa          | mple Matrix     | Spike        |                 |      | Run: IC1_1 | 60623A     |          | 06/23        | /16 18:18 |
| Chloride |                   |               | 191             | mg/L         | 5.0             | 101  | 90         | 110        |          |              |           |
| Sulfate  |                   |               | 181             | mg/L         | 5.0             | 99   | 90         | 110        |          |              |           |
| Lab ID:  | T16060107-002AMSI | <b>)</b> 2 Sa | mple Matrix     | Spike Dup    | licate          |      | Run: IC1_1 | 60623A     |          | 06/23        | /16 18:38 |
| Chloride |                   |               | 192             | mg/L         | 5.0             | 102  | 90         | 110        | 0.6      | 10           |           |
| Sulfate  |                   |               | 183             | mg/L         | 5.0             | 101  | 90         | 110        | 1.4      | 10           |           |

#### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:08/11/16Project:CCRRWork Order:T16060106

| Analyte    |                       | Count | Result        | Units           | RL | %REC | Low Limit | High Limit    | RPD | RPDLimit  | Qual      |
|------------|-----------------------|-------|---------------|-----------------|----|------|-----------|---------------|-----|-----------|-----------|
| Method:    | E903.0                |       |               |                 |    |      |           |               |     | Batch: RA | 226-0136  |
| Lab ID:    | MB-RA226-0136         | 3 M   | ethod Blank   |                 |    |      | Run: RAD1 | 04-CS_160726A |     | 08/01     | /16 13:23 |
| Total Radi | um as Ra226           |       | 0.04          | pCi/L           |    |      |           |               |     |           | U         |
| Total Radi | um as Ra226 precision | (±)   | 0.1           | pCi/L           |    |      |           |               |     |           |           |
| Total Radi | um as Ra226 MDC       |       | 0.2           | pCi/L           |    |      |           |               |     |           |           |
| Lab ID:    | LCS-RA226-0136        | L     | aboratory Cor | ntrol Sample    |    |      | Run: RAD1 | 04-CS_160726A |     | 08/01     | /16 13:23 |
| Radium 22  | 26                    |       | 55            | pCi/L           |    | 102  | 80        | 120           |     |           |           |
| Lab ID:    | TapWater1MS           | S     | ample Matrix  | Spike           |    |      | Run: RAD1 | 04-CS_160726A |     | 08/01     | /16 13:23 |
| Radium 22  | 26                    |       | 100           | pCi/L           |    | 97   | 70        | 130           |     |           |           |
| Lab ID:    | TapWater1MSD          | S     | ample Matrix  | Spike Duplicate |    |      | Run: RAD1 | 04-CS_160726A |     | 08/01     | /16 13:23 |
| Radium 22  | 26                    |       | 110           | pCi/L           |    | 102  | 70        | 130           | 5.4 | 29.3      |           |
| Method:    | E903.0                |       |               |                 |    |      |           |               |     | Batch: RA | 226-0137  |
| Lab ID:    | MB-RA226-0137         | 3 M   | ethod Blank   |                 |    |      | Run: RAD1 | 04-CS_160726B |     | 08/02     | /16 15:31 |
| Total Radi | um as Ra226           |       | 0.007         | pCi/L           |    |      |           |               |     |           | U         |
| Total Radi | um as Ra226 precision | (±)   | 0.02          | pCi/L           |    |      |           |               |     |           |           |
| Total Radi | um as Ra226 MDC       |       | 0.03          | pCi/L           |    |      |           |               |     |           |           |
| Lab ID:    | LCS-RA226-0137        | L     | aboratory Cor | ntrol Sample    |    |      | Run: RAD1 | 04-CS_160726B |     | 08/02     | /16 15:31 |
| Radium 22  | 26                    |       | 51            | pCi/L           |    | 96   | 80        | 120           |     |           |           |
| Lab ID:    | TapWater1MS           | S     | ample Matrix  | Spike           |    |      | Run: RAD1 | 04-CS_160726B |     | 08/02     | /16 15:31 |
| Radium 22  | 26                    |       | 96            | pCi/L           |    | 90   | 70        | 130           |     |           |           |
| Lab ID:    | TapWater1MSD          | S     | ample Matrix  | Spike Duplicate |    |      | Run: RAD1 | 04-CS_160726B |     | 08/02     | /16 15:31 |
| Radium 22  |                       |       | 94            | pCi/L           |    |      | 70        | 130           |     |           |           |

#### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:08/11/16Project:CCRRWork Order:T16060106

| Analyte   |                    | Count        | Result      | Units           | RL | %REC | Low Limit  | High Limit | RPD | RPDLimit    | Qual      |
|-----------|--------------------|--------------|-------------|-----------------|----|------|------------|------------|-----|-------------|-----------|
| Method:   | RA-05              |              |             |                 |    |      |            |            |     | Batch: C_RA | 228-5258  |
| Lab ID:   | LCS-228-RA226-8159 | <b>)</b> Lab | oratory Cor | ntrol Sample    |    |      | Run: SUB-0 | C213222    |     | 07/07       | /16 08:15 |
| Radium 22 | 28                 |              | 7.4         | pCi/L           |    | 102  | 80         | 120        |     |             |           |
| Lab ID:   | MB-RA226-8159      | 3 Me         | thod Blank  |                 |    |      | Run: SUB-0 | C213222    |     | 07/07       | /16 08:15 |
| Radium 22 | 28                 |              | 0.5         | pCi/L           |    |      |            |            |     |             | U         |
| Radium 22 | 28 precision (±)   |              | 0.8         | pCi/L           |    |      |            |            |     |             |           |
| Radium 22 | 28 MDC             |              | 1           | pCi/L           |    |      |            |            |     |             |           |
| Lab ID:   | C16060931-005CMS   | Saı          | mple Matrix | Spike           |    |      | Run: SUB-0 | C213222    |     | 07/07       | /16 12:12 |
| Radium 22 | 28                 |              | 19          | pCi/L           |    | 98   | 70         | 130        |     |             |           |
| Lab ID:   | C16060931-005CMSE  | <b>)</b> Sar | mple Matrix | Spike Duplicate |    |      | Run: SUB-0 | C213222    |     | 07/07       | /16 12:12 |
| Radium 22 | 28                 |              | 22          | pCi/L           |    | 115  | 70         | 130        | 14  | 55.1        |           |

#### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

| Workorder | Sample         | Recovery |        |
|-----------|----------------|----------|--------|
| T16060106 |                |          | 1      |
|           | T16060106-001C | 100.53%  | Ra-228 |
|           | T16060106-001C | 102.52%  | Ra-226 |
|           | T16060106-002C | 107.64%  | Ra-228 |
|           | T16060106-002C | 108.74%  | Ra-226 |
|           | T16060106-003C | 90.05%   | Ra-228 |
|           | T16060106-003C | 92.43%   | Ra-226 |
|           | T16060106-004C | 103.73%  | Ra-228 |
|           | T16060106-004C | 107.38%  | Ra-226 |
|           | T16060106-005C | 103.30%  | Ra-228 |
|           | T16060106-005C | 105.51%  | Ra-226 |

# **Work Order Receipt Checklist**

### **Texas Municipal Power Agency**

Login completed by: Alisha D. Griffin

### T16060106

Date Received: 6/21/2016

| 0 ,                                                                                         |                                 |                    |          |                     |
|---------------------------------------------------------------------------------------------|---------------------------------|--------------------|----------|---------------------|
| Reviewed by:                                                                                | BL2000\ssuchar                  |                    | Re       | ceived by: trr      |
| Reviewed Date:                                                                              | 6/24/2016                       |                    | Car      | rier name: Hand Del |
| Shipping container/cooler in                                                                | good condition?                 | Yes [√]            | No 🖂     | Not Present ☐       |
| Chipping Containon/Cooler in                                                                | good containon.                 | 100 🚺              |          | THE THOUSE _        |
| Custody seals intact on all s                                                               | hipping container(s)/cooler(s)? | Yes                | No 🗌     | Not Present ✓       |
| Custody seals intact on all s                                                               | ample bottles?                  | Yes                | No 🗌     | Not Present ✓       |
| Chain of custody present?                                                                   |                                 | Yes 🗸              | No 🗌     |                     |
| Chain of custody signed who                                                                 | en relinquished and received?   | Yes 🗸              | No 🗌     |                     |
| Chain of custody agrees with                                                                | h sample labels?                | Yes                | No 🗹     |                     |
| Samples in proper container                                                                 | /bottle?                        | Yes 🗸              | No 🗌     |                     |
| Sample containers intact?                                                                   |                                 | Yes 🗸              | No 🗌     |                     |
| Sufficient sample volume for                                                                | r indicated test?               | Yes 🗸              | No 🗌     |                     |
| All samples received within I<br>(Exclude analyses that are c<br>such as pH, DO, Res CI, Su | considered field parameters     | Yes √              | No 🗌     |                     |
| Temp Blank received in all s                                                                | hipping container(s)/cooler(s)? | Yes 🗸              | No 🗌     | Not Applicable      |
| Container/Temp Blank temp                                                                   | erature:                        | 13.2°C On Ice - Fi | om Field |                     |
| Water - VOA vials have zero                                                                 | headspace?                      | Yes                | No 🗌     | Not Applicable      |
| Water - pH acceptable upon                                                                  | receipt?                        | Yes 🗸              | No 🗌     | Not Applicable      |
|                                                                                             |                                 |                    |          |                     |

### **Standard Reporting Procedures:**

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

#### **Contact and Corrective Action Comments:**

pH check of applicable preserved fractions acceptable (Lot#3633). Sample 004, COC and Sample Container have different collection times. Per Protocol, logging in per earliest collection time (listed on COC). Only 1-2L received for C fraction on all samples. Receipt temperature checked with IR3: read temperature = 10.3°C; corrected temperature = 13.2°C. ADG 160622 12:46

| ENERGY CHain of Custody                                                      |                                                         | and Analytical Request Record SE PRINT (Provide as much information as possible.)                                                                                                                                                                                                 | cord possible.)                                                                                           | Pageof                 |
|------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------|
| 1                                                                            | Project Name, F                                         | in .                                                                                                                                                                                                                                                                              | Sample Origin                                                                                             | EPA/State Compliance:  |
| Report Mail Address:                                                         | Contact Name:                                           | S Darney<br>Phone Fax:                                                                                                                                                                                                                                                            | Email:                                                                                                    | oler: (Ple             |
|                                                                              |                                                         |                                                                                                                                                                                                                                                                                   |                                                                                                           | DBH/SM                 |
| Invoice Address:                                                             | Invoice Contact                                         | Contact & Phone:                                                                                                                                                                                                                                                                  | Purchase Order:                                                                                           |                        |
| Special Report/Formats:                                                      |                                                         | ANALYSIS REQUESTED                                                                                                                                                                                                                                                                | Contact ELI prior to RUSH sample submittal                                                                | r to<br>ubmittal       |
|                                                                              | iners<br>olids<br>y <u>O</u> ther<br>ater               | d=                                                                                                                                                                                                                                                                                | for charges and scheduling – See                                                                          | Cooler ID(s).          |
| DW EDD/EDT (Electronic Data)                                                 | stno)<br>2 W /<br>8/slio<br>sessoi                      |                                                                                                                                                                                                                                                                                   | =                                                                                                         | Receipt Temp           |
|                                                                              | heer of<br>Mater gig<br>Brion gig<br>S think            |                                                                                                                                                                                                                                                                                   | HI                                                                                                        | On ice: (Y) N          |
| Other:                                                                       | muM<br>F əlqms2<br>7 i <u>A</u><br>51999 <u>V</u><br>WQ | ZEE                                                                                                                                                                                                                                                                               | T brishris<br>S<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D | P                      |
| SAMPLE IDENTIFICATION Collection Collection (Name, Location, Interval, etc.) | MATRIX 50                                               |                                                                                                                                                                                                                                                                                   | 90109091 <u>T</u>                                                                                         | Signature Y N Match    |
| 19                                                                           | Se X                                                    |                                                                                                                                                                                                                                                                                   | ×                                                                                                         | 100-                   |
| ,                                                                            | X -                                                     |                                                                                                                                                                                                                                                                                   | ×                                                                                                         | Z000-005               |
| MW-2                                                                         |                                                         |                                                                                                                                                                                                                                                                                   | ×                                                                                                         | 1                      |
| 0 MW-3                                                                       |                                                         |                                                                                                                                                                                                                                                                                   | X                                                                                                         | F00-SM                 |
| 555 mw-4 1 910                                                               | ^<br>>                                                  | ×                                                                                                                                                                                                                                                                                 | ×                                                                                                         | 200-W                  |
| 9                                                                            |                                                         |                                                                                                                                                                                                                                                                                   |                                                                                                           |                        |
| 8                                                                            |                                                         |                                                                                                                                                                                                                                                                                   |                                                                                                           | VY                     |
| 6                                                                            |                                                         |                                                                                                                                                                                                                                                                                   |                                                                                                           | ) av                   |
| 10                                                                           |                                                         |                                                                                                                                                                                                                                                                                   |                                                                                                           | 7                      |
| Custody, Relinemented Monthly Date/Films                                     | Signature:                                              | Received by (print):                                                                                                                                                                                                                                                              | Date/Time:                                                                                                | Signature:             |
| Record Reinquished by (print): Date/fime:                                    | Signature:                                              |                                                                                                                                                                                                                                                                                   | Date/Time:                                                                                                | Signature:             |
| Signed Sample Disposal: Return to Client:                                    | Lab Disposal:                                           | Received by Labora and                                                                                                                                                                                                                                                            | Deterime 17                                                                                               | 25 Monday of           |
| In certain circumstances, samp                                               | ergy Laboratories, Ir                                   | oles submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to co                                                                                                                                                                   | atories in order to complete the                                                                          | ne analysis requested. |
| Visit our web site at <u>w</u>                                               | ww.energylab.com f                                      | Ints serves as notice of this possibility. All sub-contract data will be crearly notice of 1704 analysis of possibility. Visit our web site at <a href="https://www.energylab.com">www.energylab.com</a> for additional information, downloadable fee schedule, forms, and links. | edule, forms, and links.                                                                                  |                        |

The results represented within this report relate only to the samples as submitted. This report may not be reproduced except in full. NELAP Certificate #T104704347-15-11

### ANALYTICAL SUMMARY REPORT

August 11, 2016

Texas Municipal Power Agency PO Box 7000 Bryan, TX 77805-7000

Work Order: T16060113

Quote ID: T3094

Project Name: CCRR

Energy Laboratories Inc. College Station TX received the following 7 samples for Texas Municipal Power Agency on 6/22/2016 for analysis.

| Lab ID        | Client Sample ID | Collect Date Re  | ceive Date | Matrix      | Test                                                                                                                                                                                                                 |
|---------------|------------------|------------------|------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T16060113-002 | AP MW-4          | 06/22/16 10:22 ( | 06/22/16   | Groundwater | Metals by ICP/ICPMS, Tot. Rec. Mercury, Total Recoverable Fluoride E300.0 Anions Cations by ICP pH Metals Digestion by EPA 200.2 Radium 226 + Radium 228 Radium 226, Total Radium 228, Total Solids, Total Dissolved |
| T16060113-003 | AP MW-5          | 06/22/16 12:10   | 06/22/16   | Groundwater | Same As Above                                                                                                                                                                                                        |
| T16060113-004 | AP MW-1D         | 06/22/16 14:40 ( | 06/22/16   | Groundwater | Same As Above                                                                                                                                                                                                        |
| T16060113-005 | AP MW-3          | 06/22/16 16:02 ( | 06/22/16   | Groundwater | Same As Above                                                                                                                                                                                                        |
| T16060113-006 | Dup-1            | 06/22/16 12:00 ( | 06/22/16   | Groundwater | Same As Above                                                                                                                                                                                                        |
| T16060113-007 | EQ-Blank-1       | 06/22/16 15:25 ( | 06/22/16   | Water       | Same As Above                                                                                                                                                                                                        |

The analyses presented in this report were performed by Energy Laboratories, Inc., 415 Graham Rd., College Station, TX 77845-9660, unless otherwise noted.

Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

If you have any questions regarding these tests results, please call.

Report Approved By:

College Station, TX 888.690.2218 • Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

**Report Date:** 08/11/16

**CLIENT:** Texas Municipal Power Agency

Project: CCRR

Work Order: T16060113 CASE NARRATIVE

Tests associated with analyst identified as ELI-B were subcontracted to Energy Laboratories, 1120 S. 27th St., Billings, MT, EPA Number MT00005.

Tests associated with analyst identified as ELI-CA were subcontracted to Energy Laboratories, 2393 Salt Creek Hwy., Casper, WY, EPA Number WY00002 and WY00937.

Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency

Project: CCRR
Lab ID: T16060113-002
Client Sample ID: AP MW-4

**Report Date:** 08/11/16 **Collection Date:** 06/22/16 10:22 **DateReceived:** 06/22/16

Matrix: Groundwater

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| 7.11.11,000                           | resuit | Omio  | Qualificis |       |             | mounou    | / undiffere Date / Dy   |
| AGRONOMIC PROPERTIES                  |        |       |            |       |             |           |                         |
| рН                                    | 6.6    | s.u.  | Н          | 0.1   |             | A4500-H B | 06/23/16 17:59 / rda    |
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| Solids, Total Dissolved TDS @ 180 C   | 4130   | mg/L  |            | 40    |             | A2540 C   | 06/23/16 15:08 / jjc    |
| MAJOR IONS                            |        |       |            |       |             |           |                         |
| Chloride                              | 485    | mg/L  | D          | 20    |             | E300.0    | 06/24/16 01:06 / rda    |
| Fluoride                              |        | mg/L  | 2          | 0.1   |             | A4500-F C | 06/28/16 12:20 / pwh    |
| Sulfate                               |        | mg/L  | D          | 20    |             | E300.0    | 06/24/16 01:06 / rda    |
| Calcium                               |        | mg/L  |            | 1     |             | E200.7    | 06/24/16 12:18 / jtr    |
| Boron                                 |        | mg/L  | D          | 0.2   |             | E200.7    | 06/24/16 12:18 / jtr    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  |             | E200.8    | 06/29/16 16:53 / eli-b  |
| Arsenic                               |        | mg/L  |            | 0.01  |             | E200.8    | 06/28/16 22:01 / eli-b  |
| Barium                                |        | mg/L  |            | 0.01  |             | E200.7    | 06/29/16 06:34 / eli-b  |
| Beryllium                             |        | mg/L  |            | 0.001 |             | E200.7    | 06/29/16 06:34 / eli-b  |
| Cadmium                               | ND     | mg/L  |            | 0.01  |             | E200.7    | 06/29/16 06:34 / eli-b  |
| Chromium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 06/28/16 22:01 / eli-b  |
| Cobalt                                | ND     | mg/L  |            | 0.02  |             | E200.8    | 06/29/16 16:53 / eli-b  |
| Lead                                  | ND     | mg/L  |            | 0.01  |             | E200.8    | 06/28/16 22:01 / eli-b  |
| Lithium                               | 1      | mg/L  |            | 0.01  |             | E200.7    | 06/29/16 06:34 / eli-b  |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.7    | 06/29/16 06:34 / eli-b  |
| Selenium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 06/29/16 16:53 / eli-b  |
| Thallium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 06/28/16 22:01 / eli-b  |
| METALS, TOTAL                         |        |       |            |       |             |           |                         |
| Mercury                               | ND     | mg/L  |            | 0.001 |             | E245.1    | 06/28/16 12:21 / eli-b  |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 228                            | 1.4    | pCi/L | U          |       |             | RA-05     | 07/07/16 12:12 / eli-ca |
| Radium 228 precision (±)              | 1.0    | pCi/L |            |       |             | RA-05     | 07/07/16 12:12 / eli-ca |
| Radium 228 MDC                        | 2.1    | pCi/L |            |       |             | RA-05     | 07/07/16 12:12 / eli-ca |
| Radium 226 + Radium 228               | 1.98   | pCi/L |            |       |             | A7500-RA  | 08/11/16 00:00 / jleb   |
| Radium 226 + Radium 228 precision (±) | 1.04   | pCi/L |            |       |             | A7500-RA  | 08/11/16 00:00 / jleb   |
| Total Radium as Ra226                 | 0.53   | pCi/L |            |       |             | E903.0    | 08/01/16 13:23 / sas    |
| Total Radium as Ra226 precision (±)   | 0.18   | pCi/L |            |       |             | E903.0    | 08/01/16 13:23 / sas    |
| Total Radium as Ra226 MDC             | 0.15   | pCi/L |            |       |             | E903.0    | 08/01/16 13:23 / sas    |

Report RL - Analyte reporting limit.

**Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

U - Not detected at minimum detectable concentration

Prepared by College Station, TX Branch

Client: **Texas Municipal Power Agency** 

**CCRR Project:** Lab ID: T16060113-003 Client Sample ID: AP MW-5

Collection Date: 06/22/16 12:10 DateReceived: 06/22/16 Matrix: Groundwater

**Report Date:** 08/11/16

| Analyses   Result Units   Qualifiers   RL   QCL   Method   Analysis Date / By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Andreas                               | _      |       |            | ъ.    | MCL/ | Marth a 1 | Analysis Box 15         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| pH         3.8 s.u.         H         0.1         A4500-H B         06/23/16 18:02 / rda           PHYSICAL PROPERTIES           Solids, Total Dissolved TDS @ 180 C         4170 mg/L         40         A2540 C         06/23/16 15:10 / jic           MAJOR IONS           Chloride         410 mg/L         D         20         E300.0         06/24/16 01:26 / rda           Fluoride         1.5 mg/L         0.1         A4500-F C         06/24/16 10:26 / rda           Sulfate         2640 mg/L         D         20         E300.0         06/24/16 10:26 / rda           Calcium         387 mg/L         D         20         E300.0         06/24/16 10:26 / rda           Calcium         387 mg/L         D         20         E300.0         06/24/16 10:26 / rda           Calcium         387 mg/L         D         20         E300.0         06/24/16 10:26 / rda           Calcium         387 mg/L         D         20         E300.0         06/24/16 16:29 / rda           METALS, TOTAL RECOVERABLE           Antimony         ND         mg/L         0.05         E200.8         06/29/16 16:59 / ell-b           Ase                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Analyses                              | Result | Units | Qualifiers | KL    | QCL  | wethod    | Analysis Date / By      |
| PHYSICAL PROPERTIES   Solids, Total Dissolved TDS @ 180 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AGRONOMIC PROPERTIES                  |        |       |            |       |      |           |                         |
| Solids, Total Dissolved TDS @ 180 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | рН                                    | 3.8    | s.u.  | Н          | 0.1   |      | A4500-H B | 06/23/16 18:02 / rda    |
| MAJOR IONS           Chloride         410 mg/L         D         20         E300.0         06/24/16 01:26 / rda           Fluoride         1.5 mg/L         0.1         A4500-F C         06/28/16 12:27 / pwh           Sulfate         2640 mg/L         D         20         E300.0         06/24/16 12:27 / pwh           Calcium         387 mg/L         1         E200.7         06/24/16 12:20 / jtr           Boron         3.3 mg/L         D         0.2         E200.7         06/24/16 12:20 / jtr           METALS, TOTAL RECOVERABLE           Antimony         ND         mg/L         0.05         E200.8         06/29/16 16:59 / eli-b           Arsenic         0.02 mg/L         0.01         E200.8         06/29/16 06:37 / eli-b           Barlum         0.01 mg/L         0.01         E200.7         06/29/16 06:37 / eli-b           Beryllium         0.08 mg/L         0.01         E200.7         06/29/16 06:37 / eli-b           Cadmium         ND mg/L         0.01         E200.7         06/29/16 06:37 / eli-b           Chromium         ND mg/L         0.01         E200.7         06/29/16 06:37 / eli-b           Cobalt         0.1 mg/L         0.02         E200.8         06/29/16 06:37                                                                                                                                                                                                                                                                                                                                                                        | PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| Chloride         410 mg/L         D         20         E300.0         06/24/16 01:26 / rda           Fluoride         1.5 mg/L         0.1         A4500-F C         06/28/16 12:27 / pwh           Sulfate         2640 mg/L         D         20         E300.0         06/24/16 12:27 / pwh           Calcium         387 mg/L         D         20         E300.0         06/24/16 12:20 / jtr           Boron         33 mg/L         D         0.2         E200.7         06/24/16 12:20 / jtr           METALS, TOTAL RECOVERABLE           Antimony         ND         mg/L         0.05         E200.8         06/29/16 16:59 / eli-b           Arsenic         0.02 mg/L         0.01         E200.8         06/29/16 16:59 / eli-b           Barium         0.01 mg/L         0.01         E200.8         06/29/16 06:37 / eli-b           Beryllium         0.08 mg/L         0.01         E200.7         06/29/16 06:37 / eli-b           Cadmium         ND mg/L         0.01         E200.7         06/29/16 06:37 / eli-b           Chromium         ND mg/L         0.01         E200.7         06/29/16 06:37 / eli-b           Choalt         0.1 mg/L         0.01         E200.8         06/29/16 06:37 / eli-b                                                                                                                                                                                                                                                                                                                                                                           | Solids, Total Dissolved TDS @ 180 C   | 4170   | mg/L  |            | 40    |      | A2540 C   | 06/23/16 15:10 / jjc    |
| Fluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MAJOR IONS                            |        |       |            |       |      |           |                         |
| Sulfate         2640 mg/L         D         20         E300.0         06/24/16 01:26 / rda           Calcium         387 mg/L         1         E200.7         06/24/16 12:20 / jtr           Boron         3.3 mg/L         D         0.2         E200.7         06/24/16 12:20 / jtr           METALS, TOTAL RECOVERABLE           Antimony         ND         mg/L         0.05         E200.8         06/29/16 16:59 / eli-b           Arsenic         0.02 mg/L         0.01         E200.8         06/29/16 16:59 / eli-b           Barium         0.01 mg/L         0.01         E200.8         06/29/16 06:37 / eli-b           Beryllium         0.03 mg/L         0.01         E200.7         06/29/16 06:37 / eli-b           Cadmium         ND mg/L         0.01         E200.7         06/29/16 06:37 / eli-b           Chromium         ND mg/L         0.01         E200.7         06/29/16 06:37 / eli-b           Chromium         ND mg/L         0.01         E200.8         06/28/16 22:04 / eli-b           Chobalt         0.1 mg/L         0.02         E200.8         06/28/16 16:59 / eli-b           Chobalt         0.1 mg/L         0.01         E200.8         06/29/16 06:37 / eli-b           Lead         ND mg/L <td>Chloride</td> <td>410</td> <td>mg/L</td> <td>D</td> <td>20</td> <td></td> <td>E300.0</td> <td>06/24/16 01:26 / rda</td>                                                                                                                                                                                                                                 | Chloride                              | 410    | mg/L  | D          | 20    |      | E300.0    | 06/24/16 01:26 / rda    |
| Calcium   Sa7 mg/L   D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fluoride                              | 1.5    | mg/L  |            | 0.1   |      | A4500-F C | 06/28/16 12:27 / pwh    |
| Boron   3.3 mg/L   D   0.2   E200.7   06/24/16 12:20 / jtr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sulfate                               | 2640   | mg/L  | D          | 20    |      | E300.0    | 06/24/16 01:26 / rda    |
| METALS, TOTAL RECOVERABLE           Antimony         ND mg/L         0.05         E200.8         06/29/16 16:59 / eli-b           Arsenic         0.02 mg/L         0.01         E200.8         06/28/16 22:04 / eli-b           Barium         0.01 mg/L         0.01         E200.7         06/29/16 06:37 / eli-b           Beryllium         0.08 mg/L         0.001         E200.7         06/29/16 06:37 / eli-b           Cadmium         ND mg/L         0.01         E200.7         06/29/16 06:37 / eli-b           Cadmium         ND mg/L         0.01         E200.7         06/29/16 06:37 / eli-b           Chromium         ND mg/L         0.01         E200.7         06/29/16 06:37 / eli-b           Cobalt         0.1 mg/L         0.02         E200.8         06/29/16 06:37 / eli-b           Cobalt         0.1 mg/L         0.02         E200.8         06/29/16 16:59 / eli-b           Lead         ND mg/L         0.01         E200.8         06/29/16 06:37 / eli-b           Lead         ND mg/L         0.01         E200.7         06/29/16 06:37 / eli-b           Molybdenum         0.5 mg/L         0.01         E200.7         06/29/16 06:37 / eli-b           Selenium         ND mg/L         0.05         E200.7 </td <td>Calcium</td> <td>387</td> <td>mg/L</td> <td></td> <td>1</td> <td></td> <td>E200.7</td> <td>06/24/16 12:20 / jtr</td>                                                                                                                                                                                                                     | Calcium                               | 387    | mg/L  |            | 1     |      | E200.7    | 06/24/16 12:20 / jtr    |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Boron                                 | 3.3    | mg/L  | D          | 0.2   |      | E200.7    | 06/24/16 12:20 / jtr    |
| Arsenic 0.02 mg/L 0.01 E200.8 06/28/16 22:04 / eli-b Barium 0.01 mg/L 0.01 E200.7 06/29/16 06:37 / eli-b Beryllium 0.08 mg/L 0.001 E200.7 06/29/16 06:37 / eli-b Beryllium 0.08 mg/L 0.001 E200.7 06/29/16 06:37 / eli-b Cadmium ND mg/L 0.01 E200.7 06/29/16 06:37 / eli-b Chromium ND mg/L 0.01 E200.8 06/28/16 22:04 / eli-b Cobalt 0.1 mg/L 0.02 E200.8 06/28/16 12:204 / eli-b Cobalt 0.1 mg/L 0.01 E200.8 06/28/16 12:204 / eli-b Lithium 0.5 mg/L 0.01 E200.8 06/28/16 12:204 / eli-b Lithium 0.5 mg/L 0.01 E200.8 06/28/16 22:04 / eli-b Lithium 0.5 mg/L 0.01 E200.8 06/28/16 06:37 / eli-b Molybdenum ND mg/L 0.05 E200.7 06/29/16 06:37 / eli-b Molybdenum ND mg/L 0.05 E200.7 06/29/16 06:37 / eli-b Molybdenum ND mg/L 0.01 E200.8 06/28/16 22:04 / eli-b Thallium ND mg/L 0.01 E200.8 06/28/16 22:04 / eli-b METALS, TOTAL ND mg/L 0.01 E200.8 06/28/16 22:04 / eli-b METALS, TOTAL ND mg/L 0.01 E200.8 06/28/16 22:04 / eli-b METALS, TOTAL ND mg/L 0.001 E245.1 06/28/16 12:27 / eli-b METALS, TOTAL ND mg/L 0.001 E245.1 06/28/16 12:27 / eli-b RADIONUCLIDES - TOTAL Radium 228 precision (±) 1.6 pCi/L RA-05 07/07/16 12:12 / eli-ca Radium 228 precision (±) 1.6 pCi/L RA-05 07/07/16 12:12 / eli-ca Radium 228 PRAdium 228 precision (±) 1.6 pCi/L RA-05 07/07/16 12:12 / eli-ca Radium 226 + Radium 228 precision (±) 1.6 pCi/L RA-05 08/11/16 00:00 / jleb Radium 226 + Radium 228 precision (±) 1.6 pCi/L RA-05 08/11/16 00:00 / jleb Radium 226 + Radium 228 precision (±) 1.6 pCi/L RA-05 08/11/16 00:00 / jleb Radium as Ra226 precision (±) 0.35 pCi/L E903.0 08/01/16 13:23 / sas | METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Barium         0.01 mg/L         0.01 mg/L         E200.7 06/29/16 06:37 / eli-b           Beryllium         0.08 mg/L         0.001 E200.7 06/29/16 06:37 / eli-b           Cadmium         ND mg/L         0.01 E200.7 06/29/16 06:37 / eli-b           Chromium         ND mg/L         0.01 E200.7 06/29/16 06:37 / eli-b           Chromium         ND mg/L         0.01 E200.8 06/28/16 22:04 / eli-b           Cobalt         0.1 mg/L         0.02 E200.8 06/29/16 16:59 / eli-b           Lead         ND mg/L         0.01 E200.8 06/28/16 22:04 / eli-b           Lithium         0.5 mg/L         0.01 E200.8 06/28/16 22:04 / eli-b           Molybdenum         ND mg/L         0.01 E200.7 06/29/16 06:37 / eli-b           Selenium         ND mg/L         0.05 E200.7 06/29/16 06:37 / eli-b           Selenium         ND mg/L         0.01 E200.8 06/29/16 16:59 / eli-b           Thallium         ND mg/L         0.01 E200.8 06/29/16 16:59 / eli-b           METALS, TOTAL           Mercury         ND mg/L         0.01 E200.8 06/28/16 12:27 / eli-b           RADIONUCLIDES - TOTAL           Radium 228         2.6 pCi/L         RA-05 07/07/16 12:12 / eli-ca           Radium 228 precision (±)         1.6 pCi/L         RA-05 07/07/16 12:12 / eli-ca           Radium 226 + Radium 228 prec                                                                                                                                                                                                                                                                                 | Antimony                              | ND     | mg/L  |            | 0.05  |      | E200.8    | 06/29/16 16:59 / eli-b  |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Arsenic                               | 0.02   | mg/L  |            | 0.01  |      | E200.8    | 06/28/16 22:04 / eli-b  |
| Cadmium         ND mg/L         0.01         E200.7         06/29/16 06:37 / eli-b           Chromium         ND mg/L         0.01         E200.8         06/28/16 22:04 / eli-b           Cobalt         0.1 mg/L         0.02         E200.8         06/29/16 16:59 / eli-b           Lead         ND mg/L         0.01         E200.8         06/29/16 16:59 / eli-b           Lithium         0.5 mg/L         0.01         E200.7         06/29/16 06:37 / eli-b           Molybdenum         ND mg/L         0.05         E200.7         06/29/16 06:37 / eli-b           Selenium         ND mg/L         0.01         E200.8         06/29/16 06:37 / eli-b           Selenium         ND mg/L         0.05         E200.7         06/29/16 06:37 / eli-b           METALS, TOTAL         ND mg/L         0.01         E200.8         06/29/16 16:59 / eli-b           METALS, TOTAL           METALS, TOTAL           Mercury         ND mg/L         0.001         E245.1         06/28/16 12:27 / eli-b           RADIONUCLIDES - TOTAL           Radium 228         2.6 pCi/L         RA-05         07/07/16 12:12 / eli-ca           Radium 228 precision (±)         1.6 pCi/L         RA-05         07/07/16 12:12 / eli-ca <td>Barium</td> <td>0.01</td> <td>mg/L</td> <td></td> <td>0.01</td> <td></td> <td>E200.7</td> <td>06/29/16 06:37 / eli-b</td>                                                                                                                                                                                                                                       | Barium                                | 0.01   | mg/L  |            | 0.01  |      | E200.7    | 06/29/16 06:37 / eli-b  |
| Chromium         ND         mg/L         0.01         E200.8         06/28/16 22:04 / eli-b           Cobalt         0.1         mg/L         0.02         E200.8         06/29/16 16:59 / eli-b           Lead         ND         mg/L         0.01         E200.8         06/28/16 22:04 / eli-b           Lithium         0.5         mg/L         0.01         E200.7         06/29/16 06:37 / eli-b           Molybdenum         ND         mg/L         0.05         E200.7         06/29/16 06:37 / eli-b           Selenium         ND         mg/L         0.01         E200.8         06/29/16 06:37 / eli-b           Thallium         ND         mg/L         0.01         E200.8         06/29/16 06:37 / eli-b           Thallium         ND         mg/L         0.01         E200.8         06/29/16 06:37 / eli-b           METALS, TOTAL           METALS, TOTAL           Mercury         ND         mg/L         0.001         E245.1         06/28/16 12:27 / eli-b           RADIONUCLIDES - TOTAL           Radium 228         2.6         pCi/L         RA-05         07/07/16 12:12 / eli-ca           Radium 228 precision (±)         1.6         pCi/L         RA-05         07/07/16 12                                                                                                                                                                                                                                                                                                                                                                                           | Beryllium                             | 0.08   | mg/L  |            | 0.001 |      | E200.7    | 06/29/16 06:37 / eli-b  |
| Cobalt         0.1 mg/L         0.02         E200.8         06/29/16 16:59 / eli-b           Lead         ND mg/L         0.01         E200.8         06/28/16 22:04 / eli-b           Lithium         0.5 mg/L         0.01         E200.7         06/29/16 06:37 / eli-b           Molybdenum         ND mg/L         0.05         E200.7         06/29/16 06:37 / eli-b           Selenium         ND mg/L         0.01         E200.8         06/29/16 16:59 / eli-b           Thallium         ND mg/L         0.01         E200.8         06/29/16 16:59 / eli-b           METALS, TOTAL           Mercury         ND mg/L         0.01         E200.8         06/28/16 22:04 / eli-b           RADIONUCLIDES - TOTAL           Radium 228         2.6 pCi/L         0.001         E245.1         06/28/16 12:27 / eli-b           Radium 228 precision (±)         1.6 pCi/L         RA-05         07/07/16 12:12 / eli-ca           Radium 228 MDC         1.7 pCi/L         RA-05         07/07/16 12:12 / eli-ca           Radium 226 + Radium 228 precision (±)         4.55 pCi/L         A7500-RA         08/11/16 00:00 / jleb           Radium 226 + Radium 228 precision (±)         1.60 pCi/L         A7500-RA         08/11/16 00:00 / jleb                                                                                                                                                                                                                                                                                                                                                 | Cadmium                               | ND     | mg/L  |            | 0.01  |      | E200.7    | 06/29/16 06:37 / eli-b  |
| Lead       ND mg/L       0.01       E200.8       06/28/16 22:04 / eli-b         Lithium       0.5 mg/L       0.01       E200.7       06/29/16 06:37 / eli-b         Molybdenum       ND mg/L       0.05       E200.7       06/29/16 06:37 / eli-b         Selenium       ND mg/L       0.01       E200.8       06/29/16 16:59 / eli-b         Thallium       ND mg/L       0.01       E200.8       06/28/16 12:20 / eli-b         METALS, TOTAL         Mercury       ND mg/L       0.001       E245.1       06/28/16 12:27 / eli-b         RADIONUCLIDES - TOTAL         Radium 228       2.6 pCi/L       RA-05       07/07/16 12:12 / eli-ca         Radium 228 precision (±)       1.6 pCi/L       RA-05       07/07/16 12:12 / eli-ca         Radium 228 MDC       1.7 pCi/L       RA-05       07/07/16 12:12 / eli-ca         Radium 228 Radium 228 precision (±)       1.60 pCi/L       A7500-RA       08/11/16 00:00 / jleb         Radium 226 + Radium 228 precision (±)       1.60 pCi/L       A7500-RA       08/01/16 13:23 / sas         Total Radium as Ra226 precision (±)       0.35 pCi/L       E903.0       08/01/16 13:23 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chromium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/28/16 22:04 / eli-b  |
| Lithium       0.5 mg/L       0.01       E200.7       06/29/16 06:37 / eli-b         Molybdenum       ND mg/L       0.05       E200.7       06/29/16 06:37 / eli-b         Selenium       ND mg/L       0.01       E200.8       06/29/16 16:59 / eli-b         Thallium       ND mg/L       0.01       E200.8       06/28/16 22:04 / eli-b         METALS, TOTAL         Mercury       ND mg/L       0.001       E245.1       06/28/16 12:27 / eli-b         RADIONUCLIDES - TOTAL         Radium 228       2.6 pCi/L       RA-05       07/07/16 12:12 / eli-ca         Radium 228 precision (±)       1.6 pCi/L       RA-05       07/07/16 12:12 / eli-ca         Radium 228 MDC       1.7 pCi/L       RA-05       07/07/16 12:12 / eli-ca         Radium 226 + Radium 228       4.55 pCi/L       A7500-RA       08/11/16 00:00 / jleb         Radium 226 + Radium 228 precision (±)       1.60 pCi/L       A7500-RA       08/11/16 00:00 / jleb         Total Radium as Ra226       1.9 pCi/L       E903.0       08/01/16 13:23 / sas         Total Radium as Ra226 precision (±)       0.35 pCi/L       E903.0       08/01/16 13:23 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cobalt                                | 0.1    | mg/L  |            | 0.02  |      | E200.8    | 06/29/16 16:59 / eli-b  |
| Molybdenum         ND mg/L         0.05         E200.7         06/29/16 06:37 / eli-b           Selenium         ND mg/L         0.01         E200.8         06/29/16 16:59 / eli-b           Thallium         ND mg/L         0.01         E200.8         06/28/16 22:04 / eli-b           METALS, TOTAL           Mercury         ND mg/L         0.001         E245.1         06/28/16 12:27 / eli-b           RADIONUCLIDES - TOTAL           Radium 228         2.6 pCi/L         RA-05         07/07/16 12:12 / eli-ca           Radium 228 precision (±)         1.6 pCi/L         RA-05         07/07/16 12:12 / eli-ca           Radium 228 MDC         1.7 pCi/L         RA-05         07/07/16 12:12 / eli-ca           Radium 226 + Radium 228         4.55 pCi/L         A7500-RA         08/11/16 00:00 / jleb           Radium 226 + Radium 228 precision (±)         1.60 pCi/L         A7500-RA         08/11/16 00:00 / jleb           Total Radium as Ra226 precision (±)         0.35 pCi/L         E903.0         08/01/16 13:23 / sas           Total Radium as Ra226 precision (±)         0.35 pCi/L         E903.0         08/01/16 13:23 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lead                                  | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/28/16 22:04 / eli-b  |
| Selenium         ND mg/L         0.01         E200.8         06/29/16 16:59 / eli-b           Thallium         ND mg/L         0.01         E200.8         06/28/16 22:04 / eli-b           METALS, TOTAL           Mercury         ND mg/L         0.001         E245.1         06/28/16 12:27 / eli-b           RADIONUCLIDES - TOTAL           Radium 228         2.6 pCi/L         RA-05         07/07/16 12:12 / eli-ca           Radium 228 precision (±)         1.6 pCi/L         RA-05         07/07/16 12:12 / eli-ca           Radium 228 MDC         1.7 pCi/L         RA-05         07/07/16 12:12 / eli-ca           Radium 226 + Radium 228         4.55 pCi/L         RA-05         07/07/16 12:12 / eli-ca           Radium 226 + Radium 228 precision (±)         1.60 pCi/L         A7500-RA         08/11/16 00:00 / jleb           Total Radium as Ra226         1.9 pCi/L         E903.0         08/01/16 13:23 / sas           Total Radium as Ra226 precision (±)         0.35 pCi/L         E903.0         08/01/16 13:23 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lithium                               | 0.5    | mg/L  |            | 0.01  |      | E200.7    | 06/29/16 06:37 / eli-b  |
| METALS, TOTAL         ND mg/L         0.01         E200.8         06/28/16 22:04 / eli-b           Mercury         ND mg/L         0.001         E245.1         06/28/16 12:27 / eli-b           RADIONUCLIDES - TOTAL           Radium 228         2.6 pCi/L         RA-05         07/07/16 12:12 / eli-ca           Radium 228 precision (±)         1.6 pCi/L         RA-05         07/07/16 12:12 / eli-ca           Radium 228 MDC         1.7 pCi/L         RA-05         07/07/16 12:12 / eli-ca           Radium 226 + Radium 228         4.55 pCi/L         RA-05         07/07/16 12:12 / eli-ca           Radium 226 + Radium 228 precision (±)         1.60 pCi/L         A7500-RA         08/11/16 00:00 / jleb           Total Radium as Ra226         1.9 pCi/L         E903.0         08/01/16 13:23 / sas           Total Radium as Ra226 precision (±)         0.35 pCi/L         E903.0         08/01/16 13:23 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Molybdenum                            | ND     | mg/L  |            | 0.05  |      | E200.7    | 06/29/16 06:37 / eli-b  |
| METALS, TOTAL           Mercury         ND mg/L         0.001         E245.1         06/28/16 12:27 / eli-b           RADIONUCLIDES - TOTAL           Radium 228         2.6 pCi/L         RA-05         07/07/16 12:12 / eli-ca           Radium 228 precision (±)         1.6 pCi/L         RA-05         07/07/16 12:12 / eli-ca           Radium 228 MDC         1.7 pCi/L         RA-05         07/07/16 12:12 / eli-ca           Radium 226 + Radium 228         4.55 pCi/L         RA-05         07/07/16 12:12 / eli-ca           Radium 226 + Radium 228 precision (±)         1.60 pCi/L         A7500-RA         08/11/16 00:00 / jleb           Total Radium as Ra226         1.9 pCi/L         E903.0         08/01/16 13:23 / sas           Total Radium as Ra226 precision (±)         0.35 pCi/L         E903.0         08/01/16 13:23 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Selenium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/29/16 16:59 / eli-b  |
| Mercury         ND         mg/L         0.001         E245.1         06/28/16 12:27 / eli-b           RADIONUCLIDES - TOTAL           Radium 228         2.6         pCi/L         RA-05         07/07/16 12:12 / eli-ca           Radium 228 precision (±)         1.6         pCi/L         RA-05         07/07/16 12:12 / eli-ca           Radium 228 MDC         1.7         pCi/L         RA-05         07/07/16 12:12 / eli-ca           Radium 226 + Radium 228         4.55         pCi/L         A7500-RA         08/11/16 00:00 / jleb           Radium 226 + Radium 228 precision (±)         1.60         pCi/L         A7500-RA         08/11/16 00:00 / jleb           Total Radium as Ra226         1.9         pCi/L         E903.0         08/01/16 13:23 / sas           Total Radium as Ra226 precision (±)         0.35         pCi/L         E903.0         08/01/16 13:23 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Thallium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/28/16 22:04 / eli-b  |
| RADIONUCLIDES - TOTAL         Radium 228       2.6 pCi/L       RA-05       07/07/16 12:12 / eli-ca         Radium 228 precision (±)       1.6 pCi/L       RA-05       07/07/16 12:12 / eli-ca         Radium 228 MDC       1.7 pCi/L       RA-05       07/07/16 12:12 / eli-ca         Radium 226 + Radium 228       4.55 pCi/L       A7500-RA       08/11/16 00:00 / jleb         Radium 226 + Radium 228 precision (±)       1.60 pCi/L       A7500-RA       08/11/16 00:00 / jleb         Total Radium as Ra226       1.9 pCi/L       E903.0       08/01/16 13:23 / sas         Total Radium as Ra226 precision (±)       0.35 pCi/L       E903.0       08/01/16 13:23 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | METALS, TOTAL                         |        |       |            |       |      |           |                         |
| Radium 228       2.6       pCi/L       RA-05       07/07/16 12:12 / eli-ca         Radium 228 precision (±)       1.6       pCi/L       RA-05       07/07/16 12:12 / eli-ca         Radium 228 MDC       1.7       pCi/L       RA-05       07/07/16 12:12 / eli-ca         Radium 226 + Radium 228       4.55       pCi/L       A7500-RA       08/11/16 00:00 / jleb         Radium 226 + Radium 228 precision (±)       1.60       pCi/L       A7500-RA       08/01/16 10:00 / jleb         Total Radium as Ra226       1.9       pCi/L       E903.0       08/01/16 13:23 / sas         Total Radium as Ra226 precision (±)       0.35       pCi/L       E903.0       08/01/16 13:23 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mercury                               | ND     | mg/L  |            | 0.001 |      | E245.1    | 06/28/16 12:27 / eli-b  |
| Radium 228 precision (±)       1.6 pCi/L       RA-05       07/07/16 12:12 / eli-ca         Radium 228 MDC       1.7 pCi/L       RA-05       07/07/16 12:12 / eli-ca         Radium 226 + Radium 228       4.55 pCi/L       A7500-RA       08/11/16 00:00 / jleb         Radium 226 + Radium 228 precision (±)       1.60 pCi/L       A7500-RA       08/11/16 00:00 / jleb         Total Radium as Ra226       1.9 pCi/L       E903.0       08/01/16 13:23 / sas         Total Radium as Ra226 precision (±)       0.35 pCi/L       E903.0       08/01/16 13:23 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 228 MDC       1.7 pCi/L       RA-05       07/07/16 12:12 / eli-ca         Radium 226 + Radium 228       4.55 pCi/L       A7500-RA       08/11/16 00:00 / jleb         Radium 226 + Radium 228 precision (±)       1.60 pCi/L       A7500-RA       08/11/16 00:00 / jleb         Total Radium as Ra226       1.9 pCi/L       E903.0       08/01/16 13:23 / sas         Total Radium as Ra226 precision (±)       0.35 pCi/L       E903.0       08/01/16 13:23 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Radium 228                            | 2.6    | pCi/L |            |       |      | RA-05     | 07/07/16 12:12 / eli-ca |
| Radium 226 + Radium 228       4.55 pCi/L       A7500-RA       08/11/16 00:00 / jleb         Radium 226 + Radium 228 precision (±)       1.60 pCi/L       A7500-RA       08/11/16 00:00 / jleb         Total Radium as Ra226       1.9 pCi/L       E903.0       08/01/16 13:23 / sas         Total Radium as Ra226 precision (±)       0.35 pCi/L       E903.0       08/01/16 13:23 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Radium 228 precision (±)              | 1.6    | pCi/L |            |       |      | RA-05     | 07/07/16 12:12 / eli-ca |
| Radium 226 + Radium 228       4.55 pCi/L       A7500-RA       08/11/16 00:00 / jleb         Radium 226 + Radium 228 precision (±)       1.60 pCi/L       A7500-RA       08/11/16 00:00 / jleb         Total Radium as Ra226       1.9 pCi/L       E903.0       08/01/16 13:23 / sas         Total Radium as Ra226 precision (±)       0.35 pCi/L       E903.0       08/01/16 13:23 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | 1.7    | •     |            |       |      | RA-05     | 07/07/16 12:12 / eli-ca |
| Total Radium as Ra226       1.9 pCi/L       E903.0       08/01/16 13:23 / sas         Total Radium as Ra226 precision (±)       0.35 pCi/L       E903.0       08/01/16 13:23 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Radium 226 + Radium 228               | 4.55   | •     |            |       |      | A7500-RA  | 08/11/16 00:00 / jleb   |
| Total Radium as Ra226       1.9 pCi/L       E903.0       08/01/16 13:23 / sas         Total Radium as Ra226 precision (±)       0.35 pCi/L       E903.0       08/01/16 13:23 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Radium 226 + Radium 228 precision (±) | 1.60   | pCi/L |            |       |      | A7500-RA  | 08/11/16 00:00 / jleb   |
| Total Radium as Ra226 precision (±) 0.35 pCi/L E903.0 08/01/16 13:23 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |        | •     |            |       |      | E903.0    | •                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total Radium as Ra226 precision (±)   |        |       |            |       |      | E903.0    | 08/01/16 13:23 / sas    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |        | •     |            |       |      | E903.0    | 08/01/16 13:23 / sas    |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

Prepared by College Station, TX Branch

Client: **Texas Municipal Power Agency** 

**CCRR Project:** Lab ID: T16060113-004

Client Sample ID: AP MW-1D

**Report Date:** 08/11/16 Collection Date: 06/22/16 14:40 DateReceived: 06/22/16

Matrix: Groundwater

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| AGRONOMIC PROPERTIES                  |        |       |            |       |             |           |                         |
| рН                                    | 6.3    | s.u.  | Н          | 0.1   |             | A4500-H B | 06/23/16 18:07 / rda    |
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| Solids, Total Dissolved TDS @ 180 C   | 1490   | mg/L  |            | 20    |             | A2540 C   | 06/23/16 15:10 / jjc    |
| MAJOR IONS                            |        |       |            |       |             |           |                         |
| Chloride                              |        | mg/L  | D          | 10    |             | E300.0    | 06/24/16 01:45 / rda    |
| Fluoride                              |        | mg/L  |            | 0.1   |             | A4500-F C | 06/28/16 12:32 / pwh    |
| Sulfate                               | 664    | mg/L  | D          | 10    |             | E300.0    | 06/24/16 01:45 / rda    |
| Calcium                               | 88     | mg/L  |            | 1     |             | E200.7    | 06/24/16 12:23 / jtr    |
| Boron                                 | 4.9    | mg/L  | D          | 0.1   |             | E200.7    | 06/24/16 12:23 / jtr    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  |             | E200.8    | 06/29/16 17:04 / eli-b  |
| Arsenic                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 06/28/16 22:07 / eli-b  |
| Barium                                | 0.02   | mg/L  |            | 0.01  |             | E200.7    | 06/29/16 06:41 / eli-b  |
| Beryllium                             | ND     | mg/L  |            | 0.001 |             | E200.7    | 06/29/16 06:41 / eli-b  |
| Cadmium                               | ND     | mg/L  |            | 0.01  |             | E200.7    | 06/29/16 06:41 / eli-b  |
| Chromium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 06/28/16 22:07 / eli-b  |
| Cobalt                                | ND     | mg/L  |            | 0.02  |             | E200.8    | 06/29/16 17:04 / eli-b  |
| Lead                                  | ND     | mg/L  |            | 0.01  |             | E200.8    | 06/28/16 22:07 / eli-b  |
| Lithium                               | 0.07   | mg/L  |            | 0.01  |             | E200.7    | 06/29/16 06:41 / eli-b  |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.7    | 06/29/16 06:41 / eli-b  |
| Selenium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 06/29/16 17:04 / eli-b  |
| Thallium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 06/28/16 22:07 / eli-b  |
| METALS, TOTAL                         |        |       |            |       |             |           |                         |
| Mercury                               | ND     | mg/L  |            | 0.001 |             | E245.1    | 06/28/16 12:29 / eli-b  |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 228                            | 1.6    | pCi/L | U          |       |             | RA-05     | 07/07/16 12:12 / eli-ca |
| Radium 228 precision (±)              | 1.1    | pCi/L |            |       |             | RA-05     | 07/07/16 12:12 / eli-ca |
| Radium 228 MDC                        | 2.2    | pCi/L |            |       |             | RA-05     | 07/07/16 12:12 / eli-ca |
| Radium 226 + Radium 228               |        | pCi/L |            |       |             | A7500-RA  | 08/11/16 00:00 / jleb   |
| Radium 226 + Radium 228 precision (±) |        | pCi/L |            |       |             | A7500-RA  | 08/11/16 00:00 / jleb   |
| Total Radium as Ra226                 |        | pCi/L |            |       |             | E903.0    | 08/01/16 13:23 / sas    |
| Total Radium as Ra226 precision (±)   | 0.19   | pCi/L |            |       |             | E903.0    | 08/01/16 13:23 / sas    |
| Total Radium as Ra226 MDC             |        | pCi/L |            |       |             | E903.0    | 08/01/16 13:23 / sas    |
|                                       |        |       |            |       |             |           |                         |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level. ND - Not detected at the reporting limit. D - RL increased due to sample matrix.

H - Analysis performed past recommended holding time.

U - Not detected at minimum detectable concentration

Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency

**CCRR Project:** Lab ID: T16060113-005

Client Sample ID: AP MW-3

**Report Date:** 08/11/16 Collection Date: 06/22/16 16:02 DateReceived: 06/22/16 Matrix: Groundwater

|                                                             |        |        |            |       | MCL/ |           |                         |
|-------------------------------------------------------------|--------|--------|------------|-------|------|-----------|-------------------------|
| Analyses                                                    | Result | Units  | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| AGRONOMIC PROPERTIES                                        |        |        |            |       |      |           |                         |
| pH                                                          | 6.3    | s.u.   | Н          | 0.1   |      | A4500-H B | 06/23/16 18:11 / rda    |
| ·                                                           |        |        |            |       |      |           |                         |
| PHYSICAL PROPERTIES Solids, Total Dissolved TDS @ 180 C     | 1300   | mg/L   |            | 10    |      | A2540 C   | 06/23/16 15:11 / jjc    |
| Solids, Total Dissolved TDS @ Too C                         | 1390   | IIIg/L |            | 10    |      | A2340 C   | 00/23/10 13.11/ jjc     |
| MAJOR IONS                                                  |        |        |            |       |      |           |                         |
| Chloride                                                    |        | mg/L   | D          | 10    |      | E300.0    | 06/24/16 02:05 / rda    |
| Fluoride                                                    |        | mg/L   |            | 0.1   |      | A4500-F C | 06/28/16 12:37 / pwh    |
| Sulfate                                                     |        | mg/L   | D          | 10    |      | E300.0    | 06/24/16 02:05 / rda    |
| Calcium                                                     |        | mg/L   |            | 1     |      | E200.7    | 06/24/16 12:27 / jtr    |
| Boron                                                       | 3.7    | mg/L   | D          | 0.1   |      | E200.7    | 06/24/16 12:27 / jtr    |
| METALS, TOTAL RECOVERABLE                                   |        |        |            |       |      |           |                         |
| Antimony                                                    | ND     | mg/L   |            | 0.05  |      | E200.7    | 06/29/16 06:44 / eli-b  |
| Arsenic                                                     | ND     | mg/L   |            | 0.01  |      | E200.8    | 06/28/16 22:10 / eli-b  |
| Barium                                                      |        | mg/L   |            | 0.01  |      | E200.7    | 06/29/16 06:44 / eli-b  |
| Beryllium                                                   | 0.002  | mg/L   |            | 0.001 |      | E200.7    | 06/29/16 06:44 / eli-b  |
| Cadmium                                                     | ND     | mg/L   |            | 0.01  |      | E200.7    | 06/29/16 06:44 / eli-b  |
| Chromium                                                    | ND     | mg/L   |            | 0.01  |      | E200.7    | 06/29/16 06:44 / eli-b  |
| Cobalt                                                      | 0.05   | mg/L   |            | 0.02  |      | E200.8    | 06/29/16 17:09 / eli-b  |
| Lead                                                        | ND     | mg/L   |            | 0.01  |      | E200.8    | 06/28/16 22:10 / eli-b  |
| Lithium                                                     |        | mg/L   |            | 0.01  |      | E200.7    | 06/29/16 06:44 / eli-b  |
| Molybdenum                                                  | ND     | mg/L   |            | 0.05  |      | E200.7    | 06/29/16 06:44 / eli-b  |
| Selenium                                                    | ND     | mg/L   |            | 0.01  |      | E200.8    | 06/29/16 17:09 / eli-b  |
| Thallium                                                    |        | mg/L   |            | 0.01  |      | E200.8    | 06/28/16 22:10 / eli-b  |
| METALS, TOTAL                                               |        |        |            |       |      |           |                         |
| Mercury                                                     | ND     | mg/L   |            | 0.001 |      | E245.1    | 06/28/16 12:31 / eli-b  |
| RADIONUCLIDES - TOTAL                                       |        |        |            |       |      |           |                         |
| Radium 228                                                  | 0.47   | pCi/L  | U          |       |      | RA-05     | 07/07/16 12:12 / eli-ca |
| Radium 228 precision (±)                                    |        | pCi/L  | U          |       |      | RA-05     | 07/07/16 12:12 / eli-ca |
| Radium 228 MDC                                              |        | pCi/L  |            |       |      | RA-05     | 07/07/16 12:12 / eli-ca |
| Radium 226 + Radium 228                                     |        | pCi/L  |            |       |      | A7500-RA  | 08/11/16 00:00 / jleb   |
|                                                             |        | •      |            |       |      |           | •                       |
| Radium 226 + Radium 228 precision (±) Total Radium as Ra226 |        | pCi/L  |            |       |      | A7500-RA  | 08/11/16 00:00 / jleb   |
|                                                             |        | pCi/L  |            |       |      | E903.0    | 08/01/16 13:23 / sas    |
| Total Radium as Ra226 precision (±)                         |        | pCi/L  |            |       |      | E903.0    | 08/01/16 13:23 / sas    |
| Total Radium as Ra226 MDC                                   | 0.16   | pCi/L  |            |       |      | E903.0    | 08/01/16 13:23 / sas    |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

U - Not detected at minimum detectable concentration

Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency

Project: CCRR

**Lab ID:** T16060113-006

Client Sample ID: Dup-1

**Report Date:** 08/11/16 **Collection Date:** 06/22/16 12:00

**DateReceived:** 06/22/16 **Matrix:** Groundwater

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| AGRONOMIC PROPERTIES                  |        |       |            |       |             |           |                         |
| рН                                    | 6.3    | s.u.  | Н          | 0.1   |             | A4500-H B | 06/23/16 18:15 / rda    |
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| Solids, Total Dissolved TDS @ 180 C   | 1460   | mg/L  |            | 20    |             | A2540 C   | 06/23/16 15:11 / jjc    |
| MAJOR IONS                            |        |       |            |       |             |           |                         |
| Chloride                              | 218    | mg/L  | D          | 10    |             | E300.0    | 06/24/16 13:43 / rda    |
| Fluoride                              |        | mg/L  |            | 0.1   |             | A4500-F C | 06/28/16 12:44 / pwh    |
| Sulfate                               |        | mg/L  | D          | 10    |             | E300.0    | 06/24/16 13:43 / rda    |
| Calcium                               |        | mg/L  |            | 1     |             | E200.7    | 06/24/16 12:40 / jtr    |
| Boron                                 | 4.8    | mg/L  | D          | 0.1   |             | E200.7    | 06/24/16 12:40 / jtr    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  |             | E200.7    | 06/29/16 06:55 / eli-b  |
| Arsenic                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 06/28/16 22:13 / eli-b  |
| Barium                                | 0.02   | mg/L  |            | 0.01  |             | E200.7    | 06/29/16 06:55 / eli-b  |
| Beryllium                             | ND     | mg/L  |            | 0.001 |             | E200.7    | 06/29/16 06:55 / eli-b  |
| Cadmium                               | ND     | mg/L  |            | 0.01  |             | E200.7    | 06/29/16 06:55 / eli-b  |
| Chromium                              | ND     | mg/L  |            | 0.01  |             | E200.7    | 06/29/16 06:55 / eli-b  |
| Cobalt                                | ND     | mg/L  |            | 0.02  |             | E200.8    | 06/29/16 17:14 / eli-b  |
| Lead                                  | ND     | mg/L  |            | 0.01  |             | E200.8    | 06/28/16 22:13 / eli-b  |
| Lithium                               | 0.05   | mg/L  |            | 0.01  |             | E200.7    | 06/29/16 06:55 / eli-b  |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.7    | 06/29/16 06:55 / eli-b  |
| Selenium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 06/29/16 17:14 / eli-b  |
| Thallium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 06/28/16 22:13 / eli-b  |
| METALS, TOTAL                         |        |       |            |       |             |           |                         |
| Mercury                               | ND     | mg/L  |            | 0.001 |             | E245.1    | 06/28/16 12:33 / eli-b  |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 228                            | 2.9    | pCi/L |            |       |             | RA-05     | 07/07/16 12:12 / eli-ca |
| Radium 228 precision (±)              | 1.3    | pCi/L |            |       |             | RA-05     | 07/07/16 12:12 / eli-ca |
| Radium 228 MDC                        | 2.2    | pCi/L |            |       |             | RA-05     | 07/07/16 12:12 / eli-ca |
| Radium 226 + Radium 228               | 3.40   | pCi/L |            |       |             | A7500-RA  | 08/11/16 00:00 / jleb   |
| Radium 226 + Radium 228 precision (±) |        | pCi/L |            |       |             | A7500-RA  | 08/11/16 00:00 / jleb   |
| Total Radium as Ra226                 |        | pCi/L |            |       |             | E903.0    | 08/01/16 13:23 / sas    |
| Total Radium as Ra226 precision (±)   |        | pCi/L |            |       |             | E903.0    | 08/01/16 13:23 / sas    |
| Total Radium as Ra226 MDC             |        | pCi/L |            |       |             | E903.0    | 08/01/16 13:23 / sas    |
|                                       |        | -     |            |       |             |           |                         |

Report RL - Analyte reporting limit.

**Definitions:** QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency

**Project: CCRR** T16060113-007 Lab ID: Client Sample ID: EQ-Blank-1

**Report Date:** 08/11/16 Collection Date: 06/22/16 15:25 DateReceived: 06/22/16

Matrix: Water

MCL/ QCL **Analyses Result Units** Qualifiers RL Method Analysis Date / By **AGRONOMIC PROPERTIES** Hq 5.7 s.u. Н 0.1 A4500-H B 06/23/16 18:20 / rda **PHYSICAL PROPERTIES** Solids, Total Dissolved TDS @ 180 C 10 A2540 C 06/24/16 14:46 / adg ND mg/L **MAJOR IONS** Chloride ND mg/L 1 E300.0 06/24/16 14:21 / rda Fluoride ND mg/L 0.1 A4500-F C 06/28/16 12:56 / pwh Sulfate mg/L E300.0 06/24/16 14:21 / rda ND 1 Calcium ND mg/L 1 E200.7 06/24/16 12:48 / jtr 0.05 E200.7 06/24/16 12:48 / jtr Boron ND mg/L **METALS, TOTAL RECOVERABLE** 0.05 E200.7 06/29/16 06:59 / eli-b Antimony ND mg/L E200.8 06/28/16 22:16 / eli-b Arsenic ND mg/L 0.01 Barium ND mg/L 0.01 E200.7 06/29/16 06:59 / eli-b Beryllium ND mg/L 0.001 E200.7 06/29/16 06:59 / eli-b Cadmium ND mg/L 0.01 E200.7 06/29/16 06:59 / eli-b Chromium ND mg/L 0.01 E200.8 06/28/16 22:16 / eli-b Cobalt 0.02 E200.8 06/29/16 17:36 / eli-b ND mg/L 0.01 F2008 I ead ND mg/L 06/28/16 22·16 / eli-b Lithium 0.01 mg/L 0.01E200.7 06/29/16 06:59 / eli-b Molybdenum mg/L 0.05 E200.7 06/29/16 06:59 / eli-b Selenium ND mg/L 0.01 E200.8 06/29/16 17:36 / eli-b F200 8 **Thallium** ND mg/L 0.01 06/28/16 22:16 / eli-b **METALS, TOTAL** Mercury ND mg/L 0.001 E245.1 06/28/16 12:38 / eli-b **RADIONUCLIDES - TOTAL** Radium 228 2.1 pCi/L **RA-05** 07/07/16 12:12 / eli-ca **RA-05** Radium 228 precision (±) 1.4 pCi/L 07/07/16 12:12 / eli-ca Radium 228 MDC 2.0 pCi/L **RA-05** 07/07/16 12:12 / eli-ca Radium 226 + Radium 228 2.36 pCi/L A7500-RA 08/11/16 00:00 / ileb Radium 226 + Radium 228 precision (±) 1.38 pCi/L A7500-RA 08/11/16 00:00 / jleb Total Radium as Ra226 0.26 pCi/L E903.0 08/01/16 13:23 / sas Total Radium as Ra226 precision (±) 0.15 pCi/L E903.0 08/01/16 13:23 / sas Total Radium as Ra226 MDC 0.16 pCi/L E903.0 08/01/16 13:23 / sas

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date: 08/11/16Project:CCRRWork Order: T16060113

| Analyte                         | Count         | Result       | Units        | RL | %REC | Low Limit  | High Limit | RPD | RPDLimit   | Qual     |
|---------------------------------|---------------|--------------|--------------|----|------|------------|------------|-----|------------|----------|
| Method: A2540 C                 |               |              |              |    |      |            |            |     | Batch: TDS | 3160623B |
| Lab ID: MB-1_160623B            | Me            | ethod Blank  |              |    |      | Run: BAL3_ | _160623E   |     | 06/23/     | 16 15:06 |
| Solids, Total Dissolved TDS @ 1 | 80 C          | ND           | mg/L         | 5  |      |            |            |     |            |          |
| Lab ID: LCS-2_160623B           | La            | boratory Con | ntrol Sample | e  |      | Run: BAL3_ | _160623E   |     | 06/23/     | 16 15:06 |
| Solids, Total Dissolved TDS @ 1 | 80 C          | 1000         | mg/L         | 10 | 100  | 90         | 110        |     |            |          |
| Lab ID: T16060113-004A DU       | I <b>P</b> Sa | mple Duplica | ate          |    |      | Run: BAL3_ | _160623E   |     | 06/23/     | 16 15:10 |
| Solids, Total Dissolved TDS @ 1 | 80 C          | 1470         | mg/L         | 20 |      |            |            | 1.1 | 5          |          |
| Method: A2540 C                 |               |              |              |    |      |            |            |     | Batch: TDS | 3160624A |
| Lab ID: MB-1_160624A            | Me            | ethod Blank  |              |    |      | Run: BAL3_ | _160624A   |     | 06/24/     | 16 14:44 |
| Solids, Total Dissolved TDS @ 1 | 80 C          | ND           | mg/L         | 5  |      |            |            |     |            |          |
| Lab ID: LCS-2_160624A           | La            | boratory Con | ntrol Sample | e  |      | Run: BAL3_ | _160624A   |     | 06/24/     | 16 14:45 |
| Solids, Total Dissolved TDS @ 1 | 80 C          | 983          | mg/L         | 10 | 98   | 90         | 110        |     |            |          |
| Lab ID: T16060097-005A DU       | I <b>P</b> Sa | mple Duplica | ate          |    |      | Run: BAL3_ | _160624A   |     | 06/24/     | 16 14:46 |
| Solids, Total Dissolved TDS @ 1 | 80 C          | 2670         | mg/L         | 20 |      |            |            | 1.0 | 5          |          |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency **Report Date:** 08/11/16 Project: CCRR Work Order: T16060113

| Analyte  |                   | Count       | Result       | Units          | RL             | %REC | Low Limit | High Limit | RPD       | RPDLimit    | Qual      |
|----------|-------------------|-------------|--------------|----------------|----------------|------|-----------|------------|-----------|-------------|-----------|
| Method:  | A4500-F C         |             |              |                |                |      |           |            | Analytica | l Run: ATT1 | _160628A  |
| Lab ID:  | CCV-F2            | Coi         | ntinuing Cal | ibration Verif | cation Standar | rd   |           |            |           | 06/28       | /16 12:40 |
| Fluoride |                   |             | 1.96         | mg/L           | 0.10           | 98   | 90        | 110        |           |             |           |
| Method:  | A4500-F C         |             |              |                |                |      |           |            |           | Batch       | n: R68748 |
| Lab ID:  | LCS-F-3733        | Lab         | oratory Cor  | ntrol Sample   |                |      | Run: ATT1 | _160628A   |           | 06/28/      | /16 11:20 |
| Fluoride |                   |             | 5.05         | mg/L           | 0.10           | 98   | 90        | 110        |           |             |           |
| Lab ID:  | MBLK              | Me          | thod Blank   |                |                |      | Run: ATT1 | _160628A   |           | 06/28       | /16 11:27 |
| Fluoride |                   |             | 0.03         | mg/L           | 0.002          |      |           |            |           |             |           |
| Lab ID:  | T16060106-001AMS  | Sar         | mple Matrix  | Spike          |                |      | Run: ATT1 | _160628A   |           | 06/28/      | /16 11:35 |
| Fluoride |                   |             | 5.08         | mg/L           | 0.10           | 96   | 90        | 110        |           |             |           |
| Lab ID:  | T16060113-006ADUF | <b>S</b> aı | mple Duplic  | ate            |                |      | Run: ATT1 | _160628A   |           | 06/28       | /16 12:49 |
| Fluoride |                   |             | 0.560        | mg/L           | 0.10           |      |           |            | 0.0       | 10          |           |

Qualifiers:

RL - Analyte reporting limit. MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date: 08/11/16Project:CCRRWork Order: T16060113

| Analyte |                   | Count  | Result        | Units       | RL           | %REC | Low Limit | High Limit | RPD       | RPDLimit     | Qual      |
|---------|-------------------|--------|---------------|-------------|--------------|------|-----------|------------|-----------|--------------|-----------|
| Method: | A4500-H B         |        |               |             |              |      |           |            | Analytica | l Run: ATT1_ | _160623A  |
| Lab ID: | ICV/LCS-PH-3840   | Initia | al Calibratio | n Verificat | ion Standard |      |           |            |           | 06/23/       | 16 14:49  |
| рН      |                   |        | 7.0           | s.u.        | 0.1          | 100  | 98        | 102        |           |              |           |
| Method: | A4500-H B         |        |               |             |              |      |           |            |           | Batch        | n: R68708 |
| Lab ID: | ICV1-PH12_3890    | Initia | al Calibratio | n Verificat | ion Standard |      | Run: ATT1 | _160623A   |           | 06/23/       | 16 14:33  |
| рН      |                   |        | 12            | s.u.        | 0.1          | 99   | 99        | 101        |           |              |           |
| Lab ID: | ICV2-PH2_3594     | Initia | al Calibratio | n Verificat | ion Standard |      | Run: ATT1 | _160623A   |           | 06/23/       | 16 14:45  |
| pН      |                   |        | 2.1           | s.u.        | 0.1          | 104  | 95        | 105        |           |              |           |
| Lab ID: | T16060113-001ADUF | P Sam  | ple Duplica   | ite         |              |      | Run: ATT1 | _160623A   |           | 06/23/       | 16 17:54  |
| рН      |                   |        | 4.6           | s.u.        | 0.1          |      |           |            | 1.1       | 3            |           |

#### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date: 08/11/16Project:CCRRWork Order: T16060113

| Analyte |                     | Count | Result             | Units              | RL     | %REC | Low Limit  | High Limit    | RPD     | RPDLimit   | Qual      |
|---------|---------------------|-------|--------------------|--------------------|--------|------|------------|---------------|---------|------------|-----------|
| Method: | E200.7              |       |                    |                    |        |      |            | Analytic      | al Run: | ICP102-CS_ | 160624A   |
| Lab ID: | Initial Calib Verif | 2     | nitial Calibration | on Verification St | andard |      |            |               |         | 06/24/     | 16 10:25  |
| Boron   |                     |       | 1.01               | mg/L               | 0.050  | 101  | 95         | 105           |         |            |           |
| Calcium |                     |       | 48.0               | mg/L               | 1.0    | 96   | 95         | 105           |         |            |           |
| Lab ID: | Cont Calib Blank    | 2 (   | Continuing Cal     | ibration Blank     |        |      |            |               |         | 06/24/     | 16 10:29  |
| Boron   |                     |       | 0.00796            | mg/L               | 0.050  |      |            |               |         |            |           |
| Calcium |                     |       | -0.00125           | mg/L               | 1.0    |      |            |               |         |            |           |
| Method: | E200.7              |       |                    |                    |        |      |            |               |         | Batch      | n: R68725 |
| Lab ID: | IPC                 | 2     | nitial Precisior   | and Recovery       |        |      | Run: ICP10 | 2-CS_160624A  |         | 06/24/     | 16 10:32  |
| Boron   |                     |       | 0.988              | mg/L               | 0.050  | 99   | 95         | 105           |         |            |           |
| Calcium |                     |       | 47.9               | mg/L               | 1.0    | 96   | 95         | 105           |         |            |           |
| Lab ID: | LCS-160624          | 2 L   | _aboratory Cor     | ntrol Sample       |        |      | Run: ICP10 | 2-CS_160624A  |         | 06/24/     | 16 10:42  |
| Calcium |                     |       | 47.8               | mg/L               | 1.0    | 95   | 85         | 115           |         |            |           |
| Boron   |                     |       | 0.989              | mg/L               | 0.050  | 98   | 85         | 115           |         |            |           |
| Lab ID: | MB-160624           | 2 1   | Method Blank       |                    |        |      | Run: ICP10 | 02-CS_160624A |         | 06/24/     | 16 10:46  |
| Calcium |                     |       | 0.08               | mg/L               | 0.08   |      |            |               |         |            |           |
| Boron   |                     |       | 0.006              | mg/L               | 0.001  |      |            |               |         |            |           |
| Lab ID: | T16060113-005ASD    | 2 8   | Serial Dilution    |                    |        |      | Run: ICP10 | 02-CS_160624A |         | 06/24/     | 16 12:30  |
| Calcium |                     |       | 145                | mg/L               | 2.0    |      | 0          | 0             | 4.9     | 10         |           |
| Boron   |                     |       | 3.64               | mg/L               | 0.50   |      | 0          | 0             | 1.8     | 10         |           |
| Lab ID: | T16060113-005AMS    | 2 8   | Sample Matrix      | Spike              |        |      | Run: ICP10 | 02-CS_160624A |         | 06/24/     | 16 12:32  |
| Calcium |                     |       | 224                | mg/L               | 1.0    | 87   | 70         | 130           |         |            |           |
| Boron   |                     |       | 5.61               | mg/L               | 0.10   | 95   | 70         | 130           |         |            |           |
| Lab ID: | T16060113-005AMSI   | 2 9   | Sample Matrix      | Spike Duplicate    |        |      | Run: ICP10 | 02-CS_160624A |         | 06/24/     | 16 12:36  |
| Calcium |                     |       | 228                | mg/L               | 1.0    | 91   | 70         | 130           | 1.7     | 20         |           |
| Boron   |                     |       | 5.67               | mg/L               | 0.10   | 98   | 70         | 130           | 1.1     | 20         |           |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date: 08/11/16Project:CCRRWork Order: T16060113

| Analyte   |                   | Count        | Result       | Units            | RL           | %REC | Low Limit  | High Limit | RPD RPDLin        | nit (   | Qual    |
|-----------|-------------------|--------------|--------------|------------------|--------------|------|------------|------------|-------------------|---------|---------|
| Method:   | E200.7            |              |              |                  |              |      |            |            | Analytical Run: S | SUB-B   | 263043  |
| Lab ID:   | ICV               | 7 Co         | ntinuing Cal | ibration Verific | ation Standa | rd   |            |            | 06                | 3/28/16 | 6 13:37 |
| Antimony  |                   |              | 2.43         | mg/L             | 0.050        | 97   | 95         | 105        |                   |         |         |
| Barium    |                   |              | 2.39         | mg/L             | 0.10         | 96   | 95         | 105        |                   |         |         |
| Beryllium |                   |              | 1.24         | mg/L             | 0.010        | 99   | 95         | 105        |                   |         |         |
| Cadmium   |                   |              | 2.43         | mg/L             | 0.010        | 97   | 95         | 105        |                   |         |         |
| Chromium  |                   |              | 2.40         | mg/L             | 0.050        | 96   | 95         | 105        |                   |         |         |
| Lithium   |                   |              | 1.23         | mg/L             | 0.10         | 98   | 95         | 105        |                   |         |         |
| Molybdenu | ım                |              | 2.43         | mg/L             | 0.10         | 97   | 95         | 105        |                   |         |         |
| Method:   | E200.7            |              |              |                  |              |      |            |            | Bat               | ch: B_  | 100369  |
| Lab ID:   | MB-100369         | 7 Me         | thod Blank   |                  |              |      | Run: SUB-E | 3263043    | 06                | 3/29/16 | 6 05:44 |
| Antimony  |                   |              | ND           | mg/L             | 0.01         |      |            |            |                   |         |         |
| Barium    |                   |              | ND           | mg/L             | 0.0002       |      |            |            |                   |         |         |
| Beryllium |                   |              | ND           | mg/L             | 8E-05        |      |            |            |                   |         |         |
| Cadmium   |                   |              | ND           | mg/L             | 0.0004       |      |            |            |                   |         |         |
| Chromium  |                   |              | ND           | mg/L             | 0.003        |      |            |            |                   |         |         |
| Lithium   |                   |              | 0.007        | mg/L             | 0.002        |      |            |            |                   |         |         |
| Molybdenu | ım                |              | ND           | mg/L             | 0.003        |      |            |            |                   |         |         |
| Lab ID:   | LCS-100369        | 7 Lab        | oratory Co   | ntrol Sample     |              |      | Run: SUB-E | 3263043    | 06                | 3/29/16 | 6 05:48 |
| Antimony  |                   |              | 0.495        | mg/L             | 0.10         | 99   | 85         | 115        |                   |         |         |
| Barium    |                   |              | 0.500        | mg/L             | 0.10         | 100  | 85         | 115        |                   |         |         |
| Beryllium |                   |              | 0.245        | mg/L             | 0.010        | 98   | 85         | 115        |                   |         |         |
| Cadmium   |                   |              | 0.243        | mg/L             | 0.010        | 97   | 85         | 115        |                   |         |         |
| Chromium  |                   |              | 0.490        | mg/L             | 0.050        | 98   | 85         | 115        |                   |         |         |
| Lithium   |                   |              | 0.506        | mg/L             | 0.10         | 100  | 85         | 115        |                   |         |         |
| Molybdenu | ım                |              | 0.467        | mg/L             | 0.10         | 93   | 85         | 115        |                   |         |         |
| Lab ID:   | B16062096-001BMS3 | 3 7 Sai      | mple Matrix  | Spike            |              |      | Run: SUB-E | 3263043    | 06                | 3/29/16 | 6 06:02 |
| Antimony  |                   |              | 0.477        | mg/L             | 0.13         | 95   | 70         | 130        |                   |         |         |
| Barium    |                   |              | 0.563        | mg/L             | 0.050        | 103  | 70         | 130        |                   |         |         |
| Beryllium |                   |              | 0.257        | mg/L             | 0.0010       | 102  | 70         | 130        |                   |         |         |
| Cadmium   |                   |              | 0.244        | mg/L             | 0.0036       | 97   | 70         | 130        |                   |         |         |
| Chromium  |                   |              | 0.470        | mg/L             | 0.032        | 94   | 70         | 130        |                   |         |         |
| Lithium   |                   |              | 1.90         | mg/L             | 0.10         | 107  | 70         | 130        |                   |         |         |
| Molybdenu | ım                |              | 0.495        | mg/L             | 0.033        | 99   | 70         | 130        |                   |         |         |
| Lab ID:   | B16062096-001BMSE | <b>7</b> Sai | mple Matrix  | Spike Duplica    | te           |      | Run: SUB-E | 3263043    | 06                | 3/29/16 | 6 06:13 |
| Antimony  |                   |              | 0.388        | mg/L             | 0.13         | 78   | 70         | 130        | 21 2              | 20      | R       |
| Barium    |                   |              | 0.585        | mg/L             | 0.050        | 107  | 70         | 130        | 3.9               | 20      |         |
| Beryllium |                   |              | 0.269        | mg/L             | 0.0010       | 107  | 70         | 130        | 4.8               | 20      |         |
| Cadmium   |                   |              | 0.260        | mg/L             | 0.0036       | 104  | 70         | 130        | 6.6               | 20      |         |
| Chromium  |                   |              | 0.491        | mg/L             | 0.032        | 98   | 70         | 130        | 4.4               | 20      |         |
| Lithium   |                   |              | 1.96         | mg/L             | 0.10         | 120  | 70         | 130        | 3.4               | 20      |         |
| Molybdenu | ım                |              | 0.518        | mg/L             | 0.033        | 104  | 70         | 130        | 4.5               | 20      |         |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

R - RPD exceeds advisory limit.

College Station, TX 888.690.2218 • Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

## **QA/QC Summary Report**

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date: 08/11/16Project:CCRRWork Order: T16060113

| Analyte   |                   | Count        | Result      | Units           | RL     | %REC | Low Limit  | High Limit | RPD | RPDLimit | Qual     |
|-----------|-------------------|--------------|-------------|-----------------|--------|------|------------|------------|-----|----------|----------|
| Method:   | E200.7            |              |             |                 |        |      |            |            |     | Batch: E | 3_100369 |
| Lab ID:   | B16062133-001AMS3 | 3 7 Sai      | mple Matrix | Spike           |        |      | Run: SUB-E | 3263043    |     | 06/29/   | 16 07:26 |
| Antimony  |                   |              | 0.464       | mg/L            | 0.025  | 93   | 70         | 130        |     |          |          |
| Barium    |                   |              | 0.675       | mg/L            | 0.050  | 104  | 70         | 130        |     |          |          |
| Beryllium |                   |              | 0.265       | mg/L            | 0.0010 | 106  | 70         | 130        |     |          |          |
| Cadmium   |                   |              | 0.257       | mg/L            | 0.0010 | 103  | 70         | 130        |     |          |          |
| Chromium  |                   |              | 0.507       | mg/L            | 0.0064 | 101  | 70         | 130        |     |          |          |
| Lithium   |                   |              | 0.635       | mg/L            | 0.10   | 104  | 70         | 130        |     |          |          |
| Molybdenu | ım                |              | 0.493       | mg/L            | 0.0065 | 99   | 70         | 130        |     |          |          |
| Lab ID:   | B16062133-001AMSI | <b>7</b> Sai | mple Matrix | Spike Duplicate |        |      | Run: SUB-E | 3263043    |     | 06/29/   | 16 07:37 |
| Antimony  |                   |              | 0.476       | mg/L            | 0.025  | 95   | 70         | 130        | 2.5 | 20       |          |
| Barium    |                   |              | 0.667       | mg/L            | 0.050  | 102  | 70         | 130        | 1.2 | 20       |          |
| Beryllium |                   |              | 0.260       | mg/L            | 0.0010 | 104  | 70         | 130        | 1.9 | 20       |          |
| Cadmium   |                   |              | 0.249       | mg/L            | 0.0010 | 100  | 70         | 130        | 2.8 | 20       |          |
| Chromium  |                   |              | 0.498       | mg/L            | 0.0064 | 100  | 70         | 130        | 1.9 | 20       |          |
| Lithium   |                   |              | 0.627       | mg/L            | 0.10   | 103  | 70         | 130        | 1.3 | 20       |          |
| Molybdenu | ım                |              | 0.494       | mg/L            | 0.0065 | 99   | 70         | 130        | 0.1 | 20       |          |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency **Report Date:** 08/11/16 Project: CCRR Work Order: T16060113

| Analyte  |                   | Count         | Result         | Units          | RL          | %REC | Low Limit  | High Limit | RPD       | RPDLimit   | Qual     |
|----------|-------------------|---------------|----------------|----------------|-------------|------|------------|------------|-----------|------------|----------|
| Method:  | E200.8            |               |                |                |             |      |            |            | Analytica | l Run: SUB | -B263102 |
| Lab ID:  | QCS               | 4 Init        | ial Calibratio | on Verificatio | on Standard |      |            |            |           | 06/28/     | 16 20:28 |
| Arsenic  |                   |               | 0.0508         | mg/L           | 0.0050      | 102  | 90         | 110        |           |            |          |
| Chromium |                   |               | 0.0506         | mg/L           | 0.010       | 101  | 90         | 110        |           |            |          |
| Lead     |                   |               | 0.0499         | mg/L           | 0.010       | 100  | 90         | 110        |           |            |          |
| Thallium |                   |               | 0.0503         | mg/L           | 0.10        | 101  | 90         | 110        |           |            |          |
| Method:  | E200.8            |               |                |                |             |      |            |            |           | Batch: I   | 3_100369 |
| Lab ID:  | MB-100369         | 6 Me          | thod Blank     |                |             |      | Run: SUB-  | 3263102    |           | 06/28/     | 16 21:31 |
| Antimony |                   |               | ND             | mg/L           | 3E-05       |      |            |            |           |            |          |
| Arsenic  |                   |               | ND             | mg/L           | 7E-05       |      |            |            |           |            |          |
| Chromium |                   |               | 0.0002         | mg/L           | 4E-05       |      |            |            |           |            |          |
| Lead     |                   |               | 0.0001         | mg/L           | 2E-05       |      |            |            |           |            |          |
| Selenium |                   |               | ND             | mg/L           | 0.0004      |      |            |            |           |            |          |
| Thallium |                   |               | ND             | mg/L           | 1.0E-05     |      |            |            |           |            |          |
| Lab ID:  | LCS-100369        | 6 Lal         | ooratory Co    | ntrol Sample   | <b>:</b>    |      | Run: SUB-l | 3263102    |           | 06/28/     | 16 22:49 |
| Antimony |                   |               | 0.505          | mg/L           | 0.0050      | 101  | 85         | 115        |           |            |          |
| Arsenic  |                   |               | 0.493          | mg/L           | 0.0010      | 99   | 85         | 115        |           |            |          |
| Chromium |                   |               | 0.509          | mg/L           | 0.0010      | 102  | 85         | 115        |           |            |          |
| Lead     |                   |               | 0.509          | mg/L           | 0.0010      | 102  | 85         | 115        |           |            |          |
| Selenium |                   |               | 0.430          | mg/L           | 0.0050      | 86   | 85         | 115        |           |            |          |
| Thallium |                   |               | 0.439          | mg/L           | 0.0010      | 88   | 85         | 115        |           |            |          |
| Lab ID:  | B16062096-001BMS  | <b>3</b> 6 Sa | mple Matrix    | Spike          |             |      | Run: SUB-l | 3263102    |           | 06/28/     | 16 22:52 |
| Antimony |                   |               | 0.531          | mg/L           | 0.0010      | 106  | 70         | 130        |           |            |          |
| Arsenic  |                   |               | 0.524          | mg/L           | 0.0010      | 104  | 70         | 130        |           |            |          |
| Chromium |                   |               | 0.519          | mg/L           | 0.0050      | 104  | 70         | 130        |           |            |          |
| Lead     |                   |               | 0.527          | mg/L           | 0.0010      | 105  | 70         | 130        |           |            |          |
| Selenium |                   |               | 0.526          | mg/L           | 0.0021      | 105  | 70         | 130        |           |            |          |
| Thallium |                   |               | 0.519          | mg/L           | 0.00050     | 104  | 70         | 130        |           |            |          |
| Lab ID:  | B16062096-001BMSI | <b>D</b> 6 Sa | mple Matrix    | Spike Dupli    | cate        |      | Run: SUB-I | 3263102    |           | 06/28/     | 16 22:55 |
| Antimony |                   |               | 0.505          | mg/L           | 0.0010      | 101  | 70         | 130        | 5.1       | 20         |          |
| Arsenic  |                   |               | 0.511          | mg/L           | 0.0010      | 101  | 70         | 130        | 2.6       | 20         |          |
| Chromium |                   |               | 0.510          | mg/L           | 0.0050      | 102  | 70         | 130        | 1.8       | 20         |          |
| Lead     |                   |               | 0.523          | mg/L           | 0.0010      | 104  | 70         | 130        | 0.7       | 20         |          |
| Selenium |                   |               | 0.555          | mg/L           | 0.0021      | 111  | 70         | 130        | 5.4       | 20         |          |
| Thallium |                   |               | 0.520          | mg/L           | 0.00050     | 104  | 70         | 130        | 0.2       | 20         |          |

### Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date: 08/11/16Project:CCRRWork Order: T16060113

| Project. | JOININ           |                |                 |               |             |      |            | 4401       | ik Order. 110000  | J110         |
|----------|------------------|----------------|-----------------|---------------|-------------|------|------------|------------|-------------------|--------------|
| Analyte  |                  | Count          | Result          | Units         | RL          | %REC | Low Limit  | High Limit | RPD RPDLim        | nit Qual     |
| Method:  | E200.8           |                |                 |               |             |      |            |            | Analytical Run: S | UB-B263148   |
| Lab ID:  | QCS              | 3 Init         | ial Calibration | on Verificati | on Standard |      |            |            | 06                | /29/16 11:39 |
| Antimony |                  |                | 0.0508          | mg/L          | 0.050       | 101  | 90         | 110        |                   |              |
| Cobalt   |                  |                | 0.0502          | mg/L          | 0.010       | 100  | 90         | 110        |                   |              |
| Selenium |                  |                | 0.0512          | mg/L          | 0.0050      | 102  | 90         | 110        |                   |              |
| Method:  | E200.8           |                |                 |               |             |      |            |            | Bato              | h: B_100369  |
| Lab ID:  | MB-100369        | 7 Me           | thod Blank      |               |             |      | Run: SUB-l | 3263148    | 06                | /29/16 16:00 |
| Antimony |                  |                | 7E-05           | mg/L          | 4E-05       |      |            |            |                   |              |
| Arsenic  |                  |                | 7E-05           | mg/L          | 6E-05       |      |            |            |                   |              |
| Chromium |                  |                | ND              | mg/L          | 0.0002      |      |            |            |                   |              |
| Cobalt   |                  |                | ND              | mg/L          | 1E-05       |      |            |            |                   |              |
| Lead     |                  |                | 0.0003          | mg/L          | 3E-05       |      |            |            |                   |              |
| Selenium |                  |                | ND              | mg/L          | 0.0002      |      |            |            |                   |              |
| Thallium |                  |                | 2E-05           | mg/L          | 1E-05       |      |            |            |                   |              |
| Lab ID:  | LCS-100369       | 7 Lal          | ooratory Co     | ntrol Sampl   | e           |      | Run: SUB-l | 3263148    | 06                | /29/16 18:08 |
| Antimony |                  |                | 0.544           | mg/L          | 0.0050      | 109  | 85         | 115        |                   |              |
| Arsenic  |                  |                | 0.478           | mg/L          | 0.0010      | 96   | 85         | 115        |                   |              |
| Chromium |                  |                | 0.476           | mg/L          | 0.0010      | 95   | 85         | 115        |                   |              |
| Cobalt   |                  |                | 0.483           | mg/L          | 0.0010      | 97   | 85         | 115        |                   |              |
| Lead     |                  |                | 0.494           | mg/L          | 0.0010      | 99   | 85         | 115        |                   |              |
| Selenium |                  |                | 0.470           | mg/L          | 0.0050      | 94   | 85         | 115        |                   |              |
| Thallium |                  |                | 0.470           | mg/L          | 0.0010      | 94   | 85         | 115        |                   |              |
| Lab ID:  | B16062096-001BMS | <b>3</b> 7 Sai | mple Matrix     | Spike         |             |      | Run: SUB-l | 3263148    | 06                | /29/16 18:13 |
| Antimony |                  |                | 0.534           | mg/L          | 0.0010      | 107  | 70         | 130        |                   |              |
| Arsenic  |                  |                | 0.501           | mg/L          | 0.0010      | 99   | 70         | 130        |                   |              |
| Chromium |                  |                | 0.504           | mg/L          | 0.0050      | 101  | 70         | 130        |                   |              |
| Cobalt   |                  |                | 0.504           | mg/L          | 0.0050      | 100  | 70         | 130        |                   |              |
| Lead     |                  |                | 0.511           | mg/L          | 0.0010      | 102  | 70         | 130        |                   |              |
| Selenium |                  |                | 0.484           | mg/L          | 0.0012      | 97   | 70         | 130        |                   |              |
| Thallium |                  |                | 0.491           | mg/L          | 0.00050     | 98   | 70         | 130        |                   |              |
| Lab ID:  | B16062096-001BMS | <b>D</b> 7 Sa  | mple Matrix     | Spike Dupl    | icate       |      | Run: SUB-l | 3263148    | 06                | /29/16 18:18 |
| Antimony |                  |                | 0.526           | mg/L          | 0.0010      | 105  | 70         | 130        | 1.5 2             | .0           |
| Arsenic  |                  |                | 0.502           | mg/L          | 0.0010      | 100  | 70         | 130        | 0.2 2             | .0           |
| Chromium |                  |                | 0.498           | mg/L          | 0.0050      | 100  | 70         | 130        | 1.2 2             |              |
| Cobalt   |                  |                | 0.506           | mg/L          | 0.0050      | 101  | 70         | 130        | 0.5 2             |              |
| Lead     |                  |                | 0.522           | mg/L          | 0.0010      | 104  | 70         | 130        | 2.2 2             |              |
| Selenium |                  |                | 0.485           | mg/L          | 0.0012      | 97   | 70         | 130        | 0.1 2             |              |
| Thallium |                  |                | 0.496           | mg/L          | 0.00050     | 99   | 70         | 130        |                   | .0           |
|          |                  |                |                 | J             |             |      |            |            |                   |              |

#### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date: 08/11/16Project:CCRRWork Order: T16060113

| Analyte |                   | Count Resu    | lt Units         | RL           | %REC | Low Limit  | High Limit | RPD      | RPDLimit    | Qual     |
|---------|-------------------|---------------|------------------|--------------|------|------------|------------|----------|-------------|----------|
| Method: | E245.1            |               |                  |              |      |            |            | Analytic | al Run: SUB | -B263056 |
| Lab ID: | ICV               | Initial Calib | ration Verificat | ion Standard |      |            |            |          | 06/28/      | 16 11:45 |
| Mercury |                   | 0.002         | 21 mg/L          | 0.00010      | 103  | 90         | 110        |          |             |          |
| Method: | E245.1            |               |                  |              |      |            |            |          | Batch: I    | 3_100383 |
| Lab ID: | MB-100383         | Method Bla    | ank              |              |      | Run: SUB-l | B263056    |          | 06/28/      | 16 11:51 |
| Mercury |                   | N             | D mg/L           | 4E-06        |      |            |            |          |             |          |
| Lab ID: | LCS-100383        | Laboratory    | Control Sampl    | е            |      | Run: SUB-l | B263056    |          | 06/28/      | 16 11:53 |
| Mercury |                   | 0.002         | 22 mg/L          | 0.00010      | 109  | 85         | 115        |          |             |          |
| Lab ID: | B16062090-024BMS  | Sample Ma     | atrix Spike      |              |      | Run: SUB-I | B263056    |          | 06/28/      | 16 11:59 |
| Mercury |                   | 0.002         | 21 mg/L          | 0.00010      | 107  | 70         | 130        |          |             |          |
| Lab ID: | B16062090-024BMSI | D Sample Ma   | atrix Spike Dup  | licate       |      | Run: SUB-  | B263056    |          | 06/28/      | 16 12:01 |
| Mercury |                   | 0.002         | 22 mg/L          | 0.00010      | 109  | 70         | 130        | 1.4      | 30          |          |
| Lab ID: | T16060113-006B    | Sample Ma     | atrix Spike      |              |      | Run: SUB-  | B263056    |          | 06/28/      | 16 12:34 |
| Mercury |                   | 0.002         | 21 mg/L          | 0.00010      | 103  | 70         | 130        |          |             |          |
| Lab ID: | T16060113-006B    | Sample Ma     | atrix Spike Dup  | licate       |      | Run: SUB-l | B263056    |          | 06/28/      | 16 12:36 |
| Mercury |                   | 0.002         | 21 mg/L          | 0.00010      | 104  | 70         | 130        | 0.7      | 30          |          |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:08/11/16Project:CCRRWork Order:T16060113

| Analyte    |                              | Coun       | t Result          | Units           | RL           | %REC | Low Limit  | High Limit | RPD      | RPDLimit     | Qual      |
|------------|------------------------------|------------|-------------------|-----------------|--------------|------|------------|------------|----------|--------------|-----------|
| Method:    | E300.0                       |            |                   |                 |              |      |            |            | Analytic | cal Run: IC1 | _160623A  |
| Lab ID:    | ICV/LCS-W-3770               | 2          | Initial Calibrati | on Verification | n Standard   |      |            |            |          | 06/23        | /16 10:44 |
| Chloride   |                              |            | 98.8              | mg/L            | 2.0          | 99   | 90         | 110        |          |              |           |
| Sulfate    |                              |            | 97.8              | mg/L            | 2.0          | 98   | 90         | 110        |          |              |           |
| Lab ID:    | ICB2                         | 2          | Initial Calibrati | on Blank, Inst  | rument Blank |      |            |            |          | 06/23        | /16 12:02 |
| Chloride   |                              |            | 0.269             | mg/L            | 1.0          |      | 0          | 0          |          |              |           |
| Sulfate    |                              |            | ND                | mg/L            | 1.0          |      | 0          | 0          |          |              |           |
| Method:    | E300.0                       |            |                   |                 |              |      |            |            |          | Batc         | h: R68700 |
| Lab ID:    | ICB                          | 2          | Method Blank      |                 |              |      | Run: IC1_1 | 60623A     |          | 06/23        | /16 11:04 |
| Chloride   |                              |            | 0.3               | mg/L            | 0.05         |      | _          |            |          |              |           |
| Sulfate    |                              |            | ND                | mg/L            | 0.03         |      |            |            |          |              |           |
| Lab ID:    | LFB-3733                     | 2          | Laboratory Fo     | rtified Blank   |              |      | Run: IC1_1 | 60623A     |          | 06/23        | /16 11:23 |
| Chloride   |                              |            | 22.8              | mg/L            | 1.0          | 90   | 90         | 110        |          |              |           |
| Sulfate    |                              |            | 23.3              | mg/L            | 1.0          | 93   | 90         | 110        |          |              |           |
| Lab ID:    | LFBD-3733                    | 2          | Laboratory Fo     | rtified Blank D | uplicate     |      | Run: IC1_1 | 60623A     |          | 06/23        | /16 11:43 |
| Chloride   |                              |            | 23.2              | mg/L            | 1.0          | 92   | 90         | 110        | 1.8      | 10           |           |
| Sulfate    |                              |            | 23.2              | mg/L            | 1.0          | 93   | 90         | 110        | 0.4      | 10           |           |
| Lab ID:    | T16060109-004AMS             | 2          | Sample Matrix     | Spike           |              |      | Run: IC1_1 | 60623A     |          | 06/23        | /16 22:50 |
| Chloride   |                              |            | 511               | mg/L            | 10           | 109  | 90         | 110        |          |              |           |
| Sulfate    |                              |            | 1640              | mg/L            | 10           |      | 90         | 110        |          |              | AE        |
| - Low spik | e recovery due to matrix int | erferend   | ce                |                 |              |      |            |            |          |              |           |
| Lab ID:    | T16060109-004AMSI            | <b>D</b> 2 | Sample Matrix     | Spike Duplica   | ate          |      | Run: IC1_1 | 60623A     |          | 06/23        | /16 23:10 |
| Chloride   |                              |            | 492               | mg/L            | 10           | 102  | 90         | 110        | 3.6      | 10           |           |
| Sulfate    |                              |            | 1580              | mg/L            | 10           |      | 90         | 110        | 3.6      | 10           | AE        |
| - Low spik | e recovery due to matrix int | erferend   | ce                |                 |              |      |            |            |          |              |           |

#### Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:08/11/16Project:CCRRWork Order:T16060113

| Analyte  |                   | Count  | Result         | Units             | RL       | %REC | Low Limit  | High Limit | RPD      | RPDLimit    | Qual      |
|----------|-------------------|--------|----------------|-------------------|----------|------|------------|------------|----------|-------------|-----------|
| Method:  | E300.0            |        |                |                   |          |      |            |            | Analytic | al Run: IC1 | _160624A  |
| Lab ID:  | ICV/LCS-W-3770    | 2 Init | ial Calibratio | on Verification S | Standard |      |            |            |          | 06/24       | /16 10:44 |
| Chloride |                   |        | 96.9           | mg/L              | 2.0      | 97   | 90         | 110        |          |             |           |
| Sulfate  |                   |        | 95.5           | mg/L              | 2.0      | 96   | 90         | 110        |          |             |           |
| Method:  | E300.0            |        |                |                   |          |      |            |            |          | Batch       | n: R68710 |
| Lab ID:  | ICB               | 2 Me   | thod Blank     |                   |          |      | Run: IC1_1 | 60624A     |          | 06/24       | /16 11:03 |
| Chloride |                   |        | 0.3            | mg/L              | 0.05     |      |            |            |          |             |           |
| Sulfate  |                   |        | ND             | mg/L              | 0.03     |      |            |            |          |             |           |
| Lab ID:  | LFB-3733          | 2 Lal  | boratory For   | tified Blank      |          |      | Run: IC1_1 | 60624A     |          | 06/24       | /16 11:22 |
| Chloride |                   |        | 23.1           | mg/L              | 1.0      | 91   | 90         | 110        |          |             |           |
| Sulfate  |                   |        | 23.2           | mg/L              | 1.0      | 93   | 90         | 110        |          |             |           |
| Lab ID:  | T16060118-001AMS  | 2 Sa   | mple Matrix    | Spike             |          |      | Run: IC1_1 | 60624A     |          | 06/24       | /16 12:01 |
| Chloride |                   |        | 1610           | mg/L              | 50       | 97   | 90         | 110        |          |             |           |
| Sulfate  |                   |        | 4300           | mg/L              | 50       | 91   | 90         | 110        |          |             |           |
| Lab ID:  | T16060118-001AMSE | 2 Sa   | mple Matrix    | Spike Duplicate   | Э        |      | Run: IC1_1 | 60624A     |          | 06/24       | /16 12:21 |
| Chloride |                   |        | 1610           | mg/L              | 50       | 97   | 90         | 110        | 0.0      | 10          |           |
| Sulfate  |                   |        | 4290           | mg/L              | 50       | 90   | 90         | 110        | 0.3      | 10          |           |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date: 08/11/16Project:CCRRWork Order: T16060113

| Analyte    |                        | Count | Result        | Units           | RL | %REC | Low Limit | High Limit    | RPD | RPDLimit  | Qual      |
|------------|------------------------|-------|---------------|-----------------|----|------|-----------|---------------|-----|-----------|-----------|
| Method:    | E903.0                 |       |               |                 |    |      |           |               |     | Batch: RA | 226-0136  |
| Lab ID:    | MB-RA226-0136          | 3 M   | lethod Blank  |                 |    |      | Run: RAD1 | 04-CS_160726A |     | 08/01     | /16 13:23 |
| Total Radi | um as Ra226            |       | 0.04          | pCi/L           |    |      |           |               |     |           | U         |
| Total Radi | ium as Ra226 precision | (±)   | 0.1           | pCi/L           |    |      |           |               |     |           |           |
| Total Radi | um as Ra226 MDC        |       | 0.2           | pCi/L           |    |      |           |               |     |           |           |
| Lab ID:    | LCS-RA226-0136         | L     | aboratory Cor | ntrol Sample    |    |      | Run: RAD1 | 04-CS_160726A |     | 08/01     | /16 13:23 |
| Radium 22  | 26                     |       | 55            | pCi/L           |    | 102  | 80        | 120           |     |           |           |
| Lab ID:    | TapWater1MS            | S     | ample Matrix  | Spike           |    |      | Run: RAD1 | 04-CS_160726A |     | 08/01     | /16 13:23 |
| Radium 22  | 26                     |       | 100           | pCi/L           |    | 97   | 70        | 130           |     |           |           |
| Lab ID:    | TapWater1MSD           | S     | ample Matrix  | Spike Duplicate |    |      | Run: RAD1 | 04-CS_160726A |     | 08/01     | /16 13:23 |
| Radium 22  | 26                     |       | 110           | pCi/L           |    | 102  | 70        | 130           | 5.4 | 29.3      |           |
| Method:    | E903.0                 |       |               |                 |    |      |           |               |     | Batch: RA | 226-0137  |
| Lab ID:    | MB-RA226-0137          | 3 M   | lethod Blank  |                 |    |      | Run: RAD1 | 04-CS_160726B |     | 08/02     | /16 15:31 |
| Total Radi | um as Ra226            |       | 0.007         | pCi/L           |    |      |           |               |     |           | U         |
| Total Radi | um as Ra226 precision  | (±)   | 0.02          | pCi/L           |    |      |           |               |     |           |           |
| Total Radi | ium as Ra226 MDC       |       | 0.03          | pCi/L           |    |      |           |               |     |           |           |
| Lab ID:    | LCS-RA226-0137         | L     | aboratory Cor | ntrol Sample    |    |      | Run: RAD1 | 04-CS_160726B |     | 08/02     | /16 15:31 |
| Total Radi | um as Ra226            |       | 51            | pCi/L           |    | 0    | 80        | 120           |     |           |           |
| Lab ID:    | TapWater1MS            | S     | ample Matrix  | Spike           |    |      | Run: RAD1 | 04-CS_160726B |     | 08/02     | /16 15:31 |
| Total Radi | um as Ra226            |       | 96            | pCi/L           |    | 0    | 70        | 130           |     |           |           |
| Lab ID:    | TapWater1MSD           | S     | ample Matrix  | Spike Duplicate |    |      | Run: RAD1 | 04-CS_160726B |     | 08/02     | /16 15:31 |
| Lab ID.    |                        |       |               | - p p           |    |      |           |               |     |           |           |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date: 08/11/16Project:CCRRWork Order: T16060113

| Analyte   |                    | Count        | Result      | Units           | RL | %REC | Low Limit  | High Limit | RPD | RPDLimit    | Qual      |
|-----------|--------------------|--------------|-------------|-----------------|----|------|------------|------------|-----|-------------|-----------|
| Method:   | RA-05              |              |             |                 |    |      |            |            |     | Batch: C_RA | 228-5258  |
| Lab ID:   | LCS-228-RA226-8159 | <b>)</b> Lab | oratory Cor | itrol Sample    |    |      | Run: SUB-0 | C213222    |     | 07/07/      | /16 08:15 |
| Radium 22 | 28                 |              | 7.4         | pCi/L           |    | 102  | 80         | 120        |     |             |           |
| Lab ID:   | MB-RA226-8159      | 3 Me         | thod Blank  |                 |    |      | Run: SUB-0 | C213222    |     | 07/07/      | /16 08:15 |
| Radium 22 | 28                 |              | 0.5         | pCi/L           |    |      |            |            |     |             | U         |
| Radium 22 | 28 precision (±)   |              | 8.0         | pCi/L           |    |      |            |            |     |             |           |
| Radium 22 | 28 MDC             |              | 1           | pCi/L           |    |      |            |            |     |             |           |
| Lab ID:   | C16060931-005CMS   | Sar          | mple Matrix | Spike           |    |      | Run: SUB-0 | C213222    |     | 07/07/      | /16 12:12 |
| Radium 22 | 28                 |              | 19          | pCi/L           |    | 98   | 70         | 130        |     |             |           |
| Lab ID:   | C16060931-005CMSE  | <b>)</b> Sar | mple Matrix | Spike Duplicate |    |      | Run: SUB-0 | C213222    |     | 07/07/      | /16 12:12 |
| Radium 22 | 28                 |              | 22          | pCi/L           |    | 115  | 70         | 130        | 14  | 55.1        |           |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

| Workorder | Sample         | Recovery |        |
|-----------|----------------|----------|--------|
| T16060113 |                |          |        |
|           | T16060113-001C | 100.58%  | Ra-228 |
|           | T16060113-001C | 101.07%  | Ra-226 |
|           | T16060113-002C | 101.42%  | Ra-228 |
|           | T16060113-002C | 104.08%  | Ra-226 |
|           | T16060113-003C | 124.00%  | Ra-228 |
|           | T16060113-003C | 126.64%  | Ra-226 |
|           | T16060113-004C | 94.96%   | Ra-228 |
|           | T16060113-004C | 96.98%   | Ra-226 |
|           | T16060113-005C | 101.74%  | Ra-228 |
|           | T16060113-005C | 103.91%  | Ra-226 |
|           | T16060113-006C | 96.35%   | Ra-228 |
|           | T16060113-006C | 98.40%   | Ra-226 |
|           | T16060113-007C | 101.04%  | Ra-228 |
|           | T16060113-007C | 103.20%  | Ra-226 |

T16060113

# **Work Order Receipt Checklist**

### Texas Municipal Power Agency

| Login completed by:                                                                          | Alisha D. Griffin               |                   | Date       | Received: 6/22/2016  |
|----------------------------------------------------------------------------------------------|---------------------------------|-------------------|------------|----------------------|
| Reviewed by:                                                                                 | BL2000\ssuchar                  |                   | Re         | eceived by: trr      |
| Reviewed Date:                                                                               | 6/24/2016                       |                   | Ca         | rrier name: Hand Del |
| Shipping container/cooler in                                                                 | good condition?                 | Yes ✓             | No 🗌       | Not Present          |
| Custody seals intact on all sh                                                               | nipping container(s)/cooler(s)? | Yes               | No 🗌       | Not Present ✓        |
| Custody seals intact on all sa                                                               | ample bottles?                  | Yes               | No 🗌       | Not Present ✓        |
| Chain of custody present?                                                                    |                                 | Yes 🗸             | No 🗌       |                      |
| Chain of custody signed whe                                                                  | en relinquished and received?   | Yes √             | No 🗌       |                      |
| Chain of custody agrees with                                                                 | sample labels?                  | Yes               | No 🗹       |                      |
| Samples in proper container/                                                                 | bottle?                         | Yes √             | No 🗌       |                      |
| Sample containers intact?                                                                    |                                 | Yes √             | No 🗌       |                      |
| Sufficient sample volume for                                                                 | indicated test?                 | Yes 🗸             | No 🗌       |                      |
| All samples received within h<br>(Exclude analyses that are co<br>such as pH, DO, Res Cl, Su | onsidered field parameters      | Yes 🗹             | No 🗌       |                      |
| Temp Blank received in all sl                                                                | nipping container(s)/cooler(s)? | Yes               | No 🔽       | Not Applicable       |
| Container/Temp Blank tempe                                                                   | erature:                        | 16.2°C On Ice - F | From Field |                      |
| Water - VOA vials have zero                                                                  | headspace?                      | Yes               | No 🗌       | Not Applicable 🗸     |
| Water - pH acceptable upon                                                                   | receipt?                        | Yes √             | No 🗌       | Not Applicable       |

### **Standard Reporting Procedures:**

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

#### **Contact and Corrective Action Comments:**

pH check of applicable preserved fractions acceptable (Lot#3633). Sample -002 and -007 collection times different from the container to COC. Per protocol, logging in per earliest collection time (listed on bottle). Receipt temperature checked with IR3: read temperature = 13.3°C; corrected temperature = 16.2°C. ADG 160623 09:00

| Formats:  Signature:  Sample Disposal:  Ridress:  Rock E C F W T M P A Contact Name: Pwos.  Contact Name: Project Name: Project Name: Pwos.  Contact Name: Contact & Ph. C | Formatis:    Contact Name, PWS, Permit, Etc.   Sample Origin   Prove Fax.   Sample Origin   Sample Origin   Prove Fax.   Sample Orig | ENERGY (E) ABORATORIES                                 | Chain of Custody  | of Cust      | 0,1                                                               |               | (Provide as much information as possible.) | Reccon as pos | ord<br>ssible.)  |                                                | Page 1 of 1           |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------|--------------|-------------------------------------------------------------------|---------------|--------------------------------------------|---------------|------------------|------------------------------------------------|-----------------------|---|
| Sumpler (Preses Print Stronger Contact & Prone)  WITH Commats:    ENDIFECTION Collection to Data   Prone)   Prone   Pr | Sumptice Deposite Name  Contact Name  Morf 155 Zeurcy  Sumptice Contact & Prone Fax.  ENTECATION  Confection  Morf 155 Zeurcy  Contact & Prone Fax.  ENTECATION  Confection  Morf 155 Zeurcy  Mor | Company Name:                                          | TMP               | +            | Project Nam                                                       | ró            | Etc.                                       |               | Sample Ol State: |                                                | 4/State Compliance:   |   |
| Service Degrees. Return to Client Content.  Sample Degrees. Return to Client  Sample Degrees. Sample Degree Sample Degrees. Sample Degrees. Sample Degrees | St.  WITHOUT CONTROL & Prone.  DETAIL SM.  DETAI | Report Mail Address:                                   |                   |              | Contact Nar                                                       |               | hone/Fax:                                  |               | Email:           | Sal                                            | npler: (Please Print) |   |
| Purchase Order:   Counter Buffer Order:   Counter Bu   | Purchase Order:   Contract & Phone:   Purchase Order:   Contract Ell pror to the property of   |                                                        |                   |              | Morris                                                            | (77           | -                                          |               |                  | 17                                             | 1                     |   |
| WITP Contact EL piror to Superior Materials (Contact EL piror to Superior Materials)  WITP Contact EL piror to Superior Materials (Contact EL piror to Superior Materials)  WITP Contact EL piror to Superior Materials (Contact EL piror to Superior Materials)  WITP Contact EL piror to Superior Materials (Contact EL piror to Superior Materials)  WITP Contact EL piror to Superior Materials (Contact EL piror to Superior Materials)  WITP Contact EL piror to Superior Materials (Contact EL piror to Superior Materials)  WITP Contact EL piror to Superior Materials (Contact EL piror to Superior Materials)  WITP Contact EL piror to Superior Materials (Contact EL piror to Superior Materials)  WITP Contact EL piror to Superior Materials (Contact EL piror to Superior Materials)  WITP Contact EL piror to Superior Materials (Contact EL piror to Superior S | WITP Contact EL prior to Suppose by part in the contact EL prior to Suppose by part in the contact EL prior to Suppose by part in the contact EL prior to Suppose by part in the contact EL prior to Suppose by part in the contact EL prior to Suppose by part in the contact EL prior to Suppose by part in the contact EL prior to Suppose by part in the contact EL prior to Suppose by part in the contact EL prior to Suppose by part in the contact EL prior to Suppose by part in the contact EL prior to Suppose by the contact EL prior to Suppose by part in the contact EL prior to Suppose by part in the contact EL prior to Suppose by part in the contact EL prior to Suppose by part in the contact EL prior to Suppose by part in the contact EL prior to Suppose by part in the contact EL prior to Suppose by part in the contact EL prior to Suppose by part in the contact EL prior to Suppose by part in the contact Suppose by part in the | Invoice Address:                                       |                   | 9-11-98. TUS | Invoice Con                                                       | tact & Phone: |                                            |               | Purchase         |                                                | ote/Bottle Order:     |   |
| WTP EDD/EDT (Electronic Data) Triangles and consumption of the control of the con | WITH FOUNDATION Collection Collection MATRIX No. 1 Collection Collection Collection MATRIX No. 2 Corrected Collection Collection Collection MATRIX No. 2 Corrected Collection Co | Special Report/Formats:                                |                   |              | MC                                                                |               |                                            |               | \$ B             | ntact ELI prior to SH sample submit            |                       |   |
| NEAC   Comments   Co   | WTP   Formatt:   Comments:     | MA                                                     | T END/ENT/EI      |              | ntainers<br>S V B O [<br>s/Solids<br>ssay <u>O</u> ther<br>Water  | 7             |                                            |               |                  | charges and<br>reduling – See<br>truction Page |                       |   |
| NELAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Designation   Collection   Collection   MATRIX   | POTWWWTP State:                                        | Format:           |              | er of Col<br>pe: W A<br>ater <u>Soils</u><br>ion <u>B</u> ioas    | + T           |                                            | -             |                  | mments:                                        | i n                   |   |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Semple Disposal: Return to Clerct.   Calection   Collection   Collection   Collection   Collection   Time   | Other:                                                 | JNELAC            |              | Numb<br>VI əlqms2<br>Wir <u>M</u> ir <u>Q</u><br>Vegetati<br>- WQ |               |                                            |               |                  | 书月                                             | - Wilder - In III     |   |
| MU-2 6-22-16 0912 GW X  W-5 1210 X  W-5 1240 X  W-5 1240 X  W-5 1240 X  W-7 1250 WKc X  I 1260 X X  I 1260 X X  Reinquished by form; DaterTime: Signalure: | M - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SAMPLE IDENTIFICATION (Name, Location, Interval, etc.) | Collection        | Collection   | MATRIX                                                            | 79            |                                            | 215           |                  | 0000113                                        |                       |   |
| W - 5   120   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W—5 1032 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AP MW-2                                                | 91-86-9           | 0            | GW                                                                | X             |                                            |               |                  |                                                | -00-M                 |   |
| W - 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | W—3 1603 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AP                                                     |                   | 0            |                                                                   | X             |                                            |               |                  |                                                | Z-00-Z                |   |
| W - 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | W - 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 AP MW-5                                              |                   | 1210         |                                                                   | X             |                                            |               |                  |                                                | [M, 003               |   |
| Plank-1 (1530 CMc X Received by (print): Date/Time: Signature: Received by (print): Date/Time: Signature: Signature: Received by (print): Date/Time: Signature: Signature: Received by (print): Date/Time: Signature: Signat | Pacor   X   Pacor   X   Pacor   X   Pacor      | AP MW-TD                                               |                   | 1440         |                                                                   | X             |                                            |               |                  |                                                | 400-MSM               | 1 |
| Beinetringed by James: Signature: | Plan K - 1   1 300   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SAP MW-3                                               |                   | 1603         |                                                                   | X             |                                            |               |                  |                                                | S00-70                |   |
| Baimquished by Jampi: Date/Time: Signature:  | Beinquisted by Imp.  Sample Disposal: Return to Client:  Lab Disposal:  Certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in ordinal definition of this contract data will be clearly coursed on your analysis or | Jup - 7                                                |                   | 1200         | 1                                                                 | X             |                                            |               |                  |                                                | 900-00                | 1 |
| Received by (print): Date/Time: Signature: S | Signature:  Received by (print):  Received by (print):  Received by (print):  Received by (print):  Signature:  Si | EQ-BI                                                  | -                 | 1530         | Office                                                            | X             |                                            |               |                  |                                                | 100-001               |   |
| Received by (print): Date/Time: Signature: S | Received by print):  Received by (print):  Received by (print):  Signature:  S | 80 0                                                   | 7                 |              |                                                                   |               |                                            |               |                  |                                                |                       |   |
| Received by (print): Date/Time: Signature: Signature: Signature: Signature: Signature: Signature: Signature: Received by (print): Date/Time: Date/Time: Signature: Si | Signature: Sample Disposal: This can be submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to learn and the clearly some analytical report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                     |                   |              |                                                                   |               |                                            |               |                  |                                                |                       |   |
| Relinquished by (print):  Received by (print):  Date/Time:  Lab Disposal:  Lab Disposal:  Lab Disposal:  Date/Time:  Date/Date/Time:  Date/Date/Time:  Date/Date/Date/Date/Date/Date/Date/Date/                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Signature:  Received by (print):  Date/Time:  Sample Disposal:  Lab Disposal:  La |                                                        | Date/Tir          | 1/2-/        | Signa                                                             | ture:         | Received by (print):                       |               | ate/Time:        |                                                | signature:            | 1 |
| Sample Disposal: Return to Client: Lab Disposal:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sample Disposal: Return to Client: Lab Disposal: Lab Dispo | A                                                      | Sate) in          | al har law   | Signa                                                             | ture:         | Received by (print):                       |               | ate/Time:        |                                                | ignature:             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in ordinal configuration and the analysis requested.  This cause as action of this constraint All sub-contract data will be clearly acted on your analytical report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        | Return to Client: |              | Lab Dispos                                                        | sal:          | TWOOD ART                                  | Seal          | Le 1886          | 16 MONT ON                                     | ignature:             | D |

The results represented within this report relate only to the samples as submitted. This report may not be reproduced except in full. NELAP Certificate #T104704347-15-11

### **ANALYTICAL SUMMARY REPORT**

August 11, 2016

Texas Municipal Power Agency PO Box 7000 Bryan, TX 77805-7000

Work Order: T16060120

Quote ID: T3094

Project Name: CCRR

Energy Laboratories Inc. College Station TX received the following 8 samples for Texas Municipal Power Agency on 6/23/2016 for analysis.

| Lab ID        | Client Sample ID | Collect Date Receive Date | Matrix      | Test                                                                                                                                                                                                              |
|---------------|------------------|---------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T16060120-001 | SFL MW-3         | 06/23/16 11:10 06/23/16   | Groundwater | Metals by ICP/ICPMS, Tot. Rec. Mercury, Total Recoverable Fluoride E300.0 Anions Cations by ICP Metals Digestion by EPA 200.2 Radium 226 + Radium 228 Radium 226, Total Radium 228, Total Solids, Total Dissolved |
| T16060120-003 | SFL MW-4         | 06/23/16 12:29 06/23/16   | Groundwater | Same As Above                                                                                                                                                                                                     |
| T16060120-004 | SFL MW-2         | 06/23/16 14:12 06/23/16   | Groundwater | Same As Above                                                                                                                                                                                                     |
| T16060120-005 | SFL MW-5         | 06/23/16 15:11 06/23/16   | Groundwater | Same As Above                                                                                                                                                                                                     |
| T16060120-006 | SFL MW-6         | 06/23/16 15:58 06/23/16   | Groundwater | Same As Above                                                                                                                                                                                                     |
| T16060120-007 | Dup-2            | 06/23/16 12:00 06/23/16   | Groundwater | Same As Above                                                                                                                                                                                                     |
| T16060120-008 | EQ Blank-2       | 06/23/16 8:20 06/23/16    | Groundwater | Same As Above                                                                                                                                                                                                     |
|               |                  |                           |             |                                                                                                                                                                                                                   |

The analyses presented in this report were performed by Energy Laboratories, Inc., 415 Graham Rd., College Station, TX 77845-9660, unless otherwise noted.

Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

If you have any questions regarding these tests results, please call.

Report Approved By:

College Station, TX 888.690.2218 • Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

**Report Date:** 08/11/16

**CLIENT:** Texas Municipal Power Agency

Project: CCRR

Work Order: T16060120 CASE NARRATIVE

Tests associated with analyst identified as ELI-B were subcontracted to Energy Laboratories, 1120 S. 27th St., Billings, MT, EPA Number MT00005.

Tests associated with analyst identified as ELI-CA were subcontracted to Energy Laboratories, 2393 Salt Creek Hwy., Casper, WY, EPA Number WY00002 and WY00937.

Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency

Project: CCRR
Lab ID: T16060120-002
Client Sample ID: SFL MW-3

Report Date: 08/11/16
Collection Date: 06/23/16 11:10
DateReceived: 06/23/16
Matrix: Groundwater

MCL/ QCL **Analyses Result Units** Qualifiers RL Method Analysis Date / By PHYSICAL PROPERTIES Solids, Total Dissolved TDS @ 180 C 5940 mg/L 100 A2540 C 06/24/16 14:49 / adg **MAJOR IONS** Chloride D 50 1560 mg/L F300 0 06/30/16 19:51 / pwh Fluoride 0.8 mg/L 0.1 A4500-F C 06/28/16 13:15 / pwh Sulfate D 50 E300.0 2220 mg/L 06/30/16 19:51 / pwh Calcium 687 mg/L D 2 E200.7 06/27/16 15:08 / jtr D 2.4 mg/L 0.5 E200.7 06/27/16 15:08 / jtr Boron **METALS, TOTAL RECOVERABLE** 0.05 E200.7 07/05/16 12:57 / eli-b Antimony ND mg/L Arsenic ND mg/L 0.01 E200.8 07/06/16 15:09 / eli-b Barium 0.04 mg/L 0.01 E200.7 07/05/16 12:57 / eli-b Beryllium 0.04 mg/L 0.001 E200.7 07/05/16 12:57 / eli-b 0.01 Cadmium ND mg/L E200.7 07/05/16 12:57 / eli-b Chromium 0.01 E200.7 ND mg/L 07/05/16 12:57 / eli-b 0.07 mg/L 0.02 E200.8 07/05/16 13:17 / eli-b Cobalt Lead 0.02 mg/L 0.01 E200.8 07/05/16 13:17 / eli-b Lithium 0.4 mg/L 0.01 E200.7 07/05/16 12:57 / eli-b 0.05 Molybdenum ND mg/L F200 7 07/05/16 12:57 / eli-b E200.8 07/05/16 13:17 / eli-b Selenium ND mg/L 0.01 **Thallium** ND mg/L 0.01 E200.8 07/05/16 13:17 / eli-b **METALS, TOTAL** 0.001 F245 1 Mercury 0.003 mg/L 07/05/16 17:33 / eli-b **RADIONUCLIDES - TOTAL RA-05** Radium 228 6.3 pCi/L 07/08/16 08:26 / eli-ca Radium 228 precision (±) 1.5 pCi/L **RA-05** 07/08/16 08:26 / eli-ca Radium 228 MDC 1.3 pCi/L **RA-05** 07/08/16 08:26 / eli-ca Radium 226 + Radium 228 8.19 pCi/L A7500-RA 08/11/16 00:00 / jleb Radium 226 + Radium 228 precision (±) 1.54 pCi/L A7500-RA 08/11/16 00:00 / jleb Total Radium as Ra226 1.9 pCi/L E903.0 08/01/16 15:06 / sas Total Radium as Ra226 precision (±) 0.35 pCi/L E903.0 08/01/16 15:06 / sas Total Radium as Ra226 MDC 0.15 pCi/L E903.0 08/01/16 15:06 / sas

Report RL - Analyte reporting limit.

**Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency

**CCRR** Project: Lab ID: T16060120-003

Client Sample ID: SFL MW-4

**Report Date:** 08/11/16 Collection Date: 06/23/16 12:29 DateReceived: 06/23/16

Matrix: Groundwater

| Amalyana                              | D!     | l laste - | 0          | D.    | MCL/<br>QCL Method | Analysis Data / Da      |
|---------------------------------------|--------|-----------|------------|-------|--------------------|-------------------------|
| Analyses                              | Result | Units     | Qualifiers | RL    | QCL Method         | Analysis Date / By      |
| PHYSICAL PROPERTIES                   |        |           |            |       |                    |                         |
| Solids, Total Dissolved TDS @ 180 C   | 6200   | mg/L      |            | 100   | A2540 C            | 06/24/16 14:50 / adg    |
| MAJOR IONS                            |        |           |            |       |                    |                         |
| Chloride                              | 1690   | mg/L      | D          | 20    | E300.0             | 06/30/16 20:11 / pwh    |
| Fluoride                              | 0.1    | mg/L      |            | 0.1   | A4500-F            | C 06/28/16 13:20 / pwh  |
| Sulfate                               | 2150   | mg/L      | D          | 20    | E300.0             | 06/30/16 20:11 / pwh    |
| Calcium                               | 799    | mg/L      |            | 1     | E200.7             | 06/27/16 15:10 / jtr    |
| Boron                                 | 0.6    | mg/L      | D          | 0.2   | E200.7             | 06/27/16 15:10 / jtr    |
| METALS, TOTAL RECOVERABLE             |        |           |            |       |                    |                         |
| Antimony                              | ND     | mg/L      |            | 0.05  | E200.7             | 07/05/16 13:01 / eli-b  |
| Arsenic                               | ND     | mg/L      |            | 0.01  | E200.8             | 07/06/16 15:15 / eli-b  |
| Barium                                | 0.04   | mg/L      |            | 0.01  | E200.7             | 07/05/16 13:01 / eli-b  |
| Beryllium                             | ND     | mg/L      |            | 0.001 | E200.7             | 07/05/16 13:01 / eli-b  |
| Cadmium                               | ND     | mg/L      |            | 0.01  | E200.7             | 07/05/16 13:01 / eli-b  |
| Chromium                              | ND     | mg/L      |            | 0.01  | E200.7             | 07/05/16 13:01 / eli-b  |
| Cobalt                                | ND     | mg/L      |            | 0.02  | E200.8             | 07/05/16 13:20 / eli-b  |
| ead                                   | ND     | mg/L      |            | 0.01  | E200.8             | 07/05/16 13:20 / eli-b  |
| ithium                                | 0.5    | mg/L      |            | 0.01  | E200.7             | 07/05/16 13:01 / eli-b  |
| Nolybdenum                            | ND     | mg/L      |            | 0.05  | E200.7             | 07/05/16 13:01 / eli-b  |
| Selenium                              | ND     | mg/L      |            | 0.01  | E200.8             | 07/05/16 13:20 / eli-b  |
| hallium                               | ND     | mg/L      |            | 0.01  | E200.8             | 07/05/16 13:20 / eli-b  |
| METALS, TOTAL                         |        |           |            |       |                    |                         |
| Mercury                               | ND     | mg/L      |            | 0.001 | E245.1             | 07/01/16 16:23 / eli-b  |
| RADIONUCLIDES - TOTAL                 |        |           |            |       |                    |                         |
| Radium 228                            | 6.4    | pCi/L     |            |       | RA-05              | 07/08/16 08:26 / eli-ca |
| Radium 228 precision (±)              | 1.6    | pCi/L     |            |       | RA-05              | 07/08/16 08:26 / eli-ca |
| Radium 228 MDC                        | 1.3    | pCi/L     |            |       | RA-05              | 07/08/16 08:26 / eli-ca |
| Radium 226 + Radium 228               | 6.85   | pCi/L     |            |       | A7500-RA           | 08/11/16 00:00 / jleb   |
| Radium 226 + Radium 228 precision (±) | 1.61   | pCi/L     |            |       | A7500-RA           | 08/11/16 00:00 / jleb   |
| otal Radium as Ra226                  | 0.43   | pCi/L     |            |       | E903.0             | 08/01/16 15:06 / sas    |
| otal Radium as Ra226 precision (±)    | 0.17   | pCi/L     |            |       | E903.0             | 08/01/16 15:06 / sas    |
| otal Radium as Ra226 MDC              | 0.15   | pCi/L     |            |       | E903.0             | 08/01/16 15:06 / sas    |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency

 Project:
 CCRR

 Lab ID:
 T16060120-004

Client Sample ID: SFL MW-2

**Report Date:** 08/11/16 **Collection Date:** 06/23/16 14:12 **DateReceived:** 06/23/16

Matrix: Groundwater

|                                       |        |       |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| Solids, Total Dissolved TDS @ 180 C   | 7950   | mg/L  |            | 100   |      | A2540 C   | 06/24/16 14:50 / adg    |
| MAJOR IONS                            |        |       |            |       |      |           |                         |
| Chloride                              | 2900   | mg/L  | D          | 50    |      | E300.0    | 06/30/16 20:30 / pwh    |
| Fluoride                              | 0.3    | mg/L  |            | 0.1   |      | A4500-F C | 06/28/16 13:25 / pwh    |
| Sulfate                               | 2010   | mg/L  | D          | 50    |      | E300.0    | 06/30/16 20:30 / pwh    |
| Calcium                               | 797    | mg/L  | D          | 2     |      | E200.7    | 06/27/16 15:12 / jtr    |
| Boron                                 | 0.52   | mg/L  |            | 0.05  |      | E200.7    | 06/30/16 18:46 / jtr    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  |      | E200.7    | 07/05/16 13:05 / eli-b  |
| Arsenic                               | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/06/16 15:20 / eli-b  |
| Barium                                | 0.03   | mg/L  |            | 0.01  |      | E200.7    | 07/05/16 13:05 / eli-b  |
| Beryllium                             | 0.002  | mg/L  |            | 0.001 |      | E200.7    | 07/05/16 13:05 / eli-b  |
| Cadmium                               | ND     | mg/L  |            | 0.01  |      | E200.7    | 07/05/16 13:05 / eli-b  |
| Chromium                              | ND     | mg/L  |            | 0.01  |      | E200.7    | 07/05/16 13:05 / eli-b  |
| Cobalt                                | 0.02   | mg/L  |            | 0.02  |      | E200.8    | 07/05/16 13:23 / eli-b  |
| _ead                                  | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/05/16 13:23 / eli-b  |
| Lithium                               | 0.5    | mg/L  |            | 0.01  |      | E200.7    | 07/05/16 13:05 / eli-b  |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |      | E200.7    | 07/05/16 13:05 / eli-b  |
| Selenium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/05/16 13:23 / eli-b  |
| Γhallium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/05/16 13:23 / eli-b  |
| METALS, TOTAL                         |        |       |            |       |      |           |                         |
| Mercury                               | ND     | mg/L  |            | 0.001 |      | E245.1    | 07/01/16 16:25 / eli-b  |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 228                            | 7.7    | pCi/L |            |       |      | RA-05     | 07/08/16 08:26 / eli-ca |
| Radium 228 precision (±)              | 1.8    | pCi/L |            |       |      | RA-05     | 07/08/16 08:26 / eli-ca |
| Radium 228 MDC                        | 1.3    | pCi/L |            |       |      | RA-05     | 07/08/16 08:26 / eli-ca |
| Radium 226 + Radium 228               | 11.0   | pCi/L |            |       |      | A7500-RA  | 08/11/16 00:00 / jleb   |
| Radium 226 + Radium 228 precision (±) | 1.83   | pCi/L |            |       |      | A7500-RA  | 08/11/16 00:00 / jleb   |
| Րotal Radium as Ra226                 | 3.3    | pCi/L |            |       |      | E903.0    | 08/01/16 15:06 / sas    |
| Total Radium as Ra226 precision (±)   | 0.50   | pCi/L |            |       |      | E903.0    | 08/01/16 15:06 / sas    |
| Total Radium as Ra226 MDC             | 0.16   | pCi/L |            |       |      | E903.0    | 08/01/16 15:06 / sas    |

Report RL - Analyte reporting limit.

**Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency

Project: CCRR
Lab ID: T16060120-005
Client Sample ID: SFL MW-5

Report Date: 08/11/16

Collection Date: 06/23/16 15:11

DateReceived: 06/23/16

Matrix: Groundwater

| PHYSICAL PROPERTIES           Solids, Total Dissolved TDS @ 180 C         8350 mg/L         100         A2540 C         06/24/16 14:50 / adg           MAJOR IONS           Chloride         2990 mg/L         D         50         E300.0         06/30/16 20:50 / pwh           Fluoride         0.2 mg/L         0.1         A4500-F C         06/28/16 13:31 / pwh           Sulfate         2150 mg/L         D         50         E300.0         06/30/16 20:50 / pwh           Calcium         878 mg/L         D         2         E200.7         06/27/16 15:13 / jtr           Boron         3.5 mg/L         D         0.5         E200.7         06/27/16 15:13 / jtr           METALS, TOTAL RECOVERABLE           Antimony         ND mg/L         0.05         E200.7         07/05/16 13:16 / eli-b           Arsenic         ND mg/L         0.01         E200.8         07/06/16 15:25 / eli-b           Barium         0.04 mg/L         0.01         E200.7         07/05/16 13:16 / eli-b           Beryllium         0.008 mg/L         0.001         E200.7         07/05/16 13:16 / eli-b | Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| Solids, Total Dissolved TDS @ 180 C       8350 mg/L       100       A2540 C       06/24/16 14:50 / adg         MAJOR IONS         Chloride       2990 mg/L       D       50       E300.0       06/30/16 20:50 / pwh         Fluoride       0.2 mg/L       D       50       E300.0       06/28/16 13:31 / pwh         Sulfate       2150 mg/L       D       50       E300.0       06/30/16 20:50 / pwh         Calcium       878 mg/L       D       2       E200.7       06/27/16 15:13 / jtr         Boron       3.5 mg/L       D       0.5       E200.7       06/27/16 15:13 / jtr         METALS, TOTAL RECOVERABLE         Antimony       ND mg/L       0.05       E200.7       07/05/16 13:16 / eli-b         Arsenic       ND mg/L       0.01       E200.8       07/06/16 15:25 / eli-b         Barium       0.04 mg/L       0.01       E200.7       07/05/16 13:16 / eli-b         Beryllium       0.008 mg/L       0.001       E200.7       07/05/16 13:16 / eli-b                                                                                                                                         |                                       |        |       |            |       |             |           |                         |
| MAJOR IONS         Chloride       2990 mg/L       D       50       E300.0       06/30/16 20:50 / pwh         Fluoride       0.2 mg/L       0.1       A4500-F C       06/28/16 13:31 / pwh         Sulfate       2150 mg/L       D       50       E300.0       06/30/16 20:50 / pwh         Calcium       878 mg/L       D       2       E200.7       06/27/16 15:13 / jtr         Boron       3.5 mg/L       D       0.5       E200.7       06/27/16 15:13 / jtr         METALS, TOTAL RECOVERABLE         Antimony       ND mg/L       0.05       E200.7       07/05/16 13:16 / eli-b         Arsenic       ND mg/L       0.01       E200.8       07/06/16 15:25 / eli-b         Barium       0.04 mg/L       0.01       E200.7       07/05/16 13:16 / eli-b         Beryllium       0.008 mg/L       0.001       E200.7       07/05/16 13:16 / eli-b                                                                                                                                                                                                                                                            | PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| Chloride         2990 mg/L         D         50         E300.0         06/30/16 20:50 / pwh           Fluoride         0.2 mg/L         0.1         A4500-F C         06/28/16 13:31 / pwh           Sulfate         2150 mg/L         D         50         E300.0         06/30/16 20:50 / pwh           Calcium         878 mg/L         D         2         E200.7         06/27/16 15:13 / jtr           Boron         3.5 mg/L         D         0.5         E200.7         06/27/16 15:13 / jtr           METALS, TOTAL RECOVERABLE           Antimony         ND mg/L         0.05         E200.7         07/05/16 13:16 / eli-b           Arsenic         ND mg/L         0.01         E200.8         07/06/16 15:25 / eli-b           Barium         0.04 mg/L         0.01         E200.7         07/05/16 13:16 / eli-b           Beryllium         0.008 mg/L         0.001         E200.7         07/05/16 13:16 / eli-b                                                                                                                                                                             | Solids, Total Dissolved TDS @ 180 C   | 8350   | mg/L  |            | 100   |             | A2540 C   | 06/24/16 14:50 / adg    |
| Fluoride 0.2 mg/L 0.1 A4500-F C 06/28/16 13:31 / pwh Sulfate 2150 mg/L D 50 E300.0 06/30/16 20:50 / pwh Calcium 878 mg/L D 2 E200.7 06/27/16 15:13 / jtr Boron 3.5 mg/L D 0.5 E200.7 06/27/16 15:13 / jtr   METALS, TOTAL RECOVERABLE  Antimony ND mg/L 0.05 E200.7 07/05/16 13:16 / eli-b Arsenic ND mg/L 0.01 E200.8 07/06/16 15:25 / eli-b Barium 0.04 mg/L 0.01 E200.7 07/05/16 13:16 / eli-b Beryllium 0.008 mg/L 0.001 E200.7 07/05/16 13:16 / eli-b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MAJOR IONS                            |        |       |            |       |             |           |                         |
| Sulfate         2150 mg/L         D         50         E300.0         06/30/16 20:50 / pwh           Calcium         878 mg/L         D         2         E200.7         06/27/16 15:13 / jtr           Boron         3.5 mg/L         D         0.5         E200.7         06/27/16 15:13 / jtr           METALS, TOTAL RECOVERABLE           Antimony         ND mg/L         0.05         E200.7         07/05/16 13:16 / eli-b           Arsenic         ND mg/L         0.01         E200.8         07/06/16 15:25 / eli-b           Barium         0.04 mg/L         0.01         E200.7         07/05/16 13:16 / eli-b           Beryllium         0.008 mg/L         0.001         E200.7         07/05/16 13:16 / eli-b                                                                                                                                                                                                                                                                                                                                                                                  | Chloride                              | 2990   | mg/L  | D          | 50    |             | E300.0    | 06/30/16 20:50 / pwh    |
| Calcium         878 mg/L         D         2         E200.7         06/27/16 15:13 / jtr           Boron         3.5 mg/L         D         0.5         E200.7         06/27/16 15:13 / jtr           METALS, TOTAL RECOVERABLE           Antimony         ND mg/L         0.05         E200.7         07/05/16 13:16 / eli-b           Arsenic         ND mg/L         0.01         E200.8         07/06/16 15:25 / eli-b           Barium         0.04 mg/L         0.01         E200.7         07/05/16 13:16 / eli-b           Beryllium         0.008 mg/L         0.001         E200.7         07/05/16 13:16 / eli-b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fluoride                              | 0.2    | mg/L  |            | 0.1   |             | A4500-F C | 06/28/16 13:31 / pwh    |
| Boron         3.5 mg/L         D         0.5         E200.7         06/27/16 15:13 / jtr           METALS, TOTAL RECOVERABLE           Antimony         ND mg/L         0.05         E200.7         07/05/16 13:16 / eli-b           Arsenic         ND mg/L         0.01         E200.8         07/06/16 15:25 / eli-b           Barium         0.04 mg/L         0.01         E200.7         07/05/16 13:16 / eli-b           Beryllium         0.008 mg/L         0.001         E200.7         07/05/16 13:16 / eli-b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sulfate                               | 2150   | mg/L  | D          | 50    |             | E300.0    | 06/30/16 20:50 / pwh    |
| METALS, TOTAL RECOVERABLE           Antimony         ND mg/L         0.05         E200.7         07/05/16 13:16 / eli-b           Arsenic         ND mg/L         0.01         E200.8         07/06/16 15:25 / eli-b           Barium         0.04 mg/L         0.01         E200.7         07/05/16 13:16 / eli-b           Beryllium         0.008 mg/L         0.001         E200.7         07/05/16 13:16 / eli-b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Calcium                               | 878    | mg/L  | D          | 2     |             | E200.7    | 06/27/16 15:13 / jtr    |
| Antimony         ND         mg/L         0.05         E200.7         07/05/16 13:16 / eli-b           Arsenic         ND         mg/L         0.01         E200.8         07/06/16 15:25 / eli-b           Barium         0.04         mg/L         0.01         E200.7         07/05/16 13:16 / eli-b           Beryllium         0.008         mg/L         0.001         E200.7         07/05/16 13:16 / eli-b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Boron                                 | 3.5    | mg/L  | D          | 0.5   |             | E200.7    | 06/27/16 15:13 / jtr    |
| Arsenic         ND mg/L         0.01         E200.8         07/06/16 15:25 / eli-b           Barium         0.04 mg/L         0.01         E200.7         07/05/16 13:16 / eli-b           Beryllium         0.008 mg/L         0.001         E200.7         07/05/16 13:16 / eli-b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Barium         0.04 mg/L         0.01         E200.7         07/05/16 13:16 / eli-b           Beryllium         0.008 mg/L         0.001         E200.7         07/05/16 13:16 / eli-b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Antimony                              | ND     | mg/L  |            | 0.05  |             | E200.7    | 07/05/16 13:16 / eli-b  |
| Beryllium 0.008 mg/L 0.001 E200.7 07/05/16 13:16 / eli-b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Arsenic                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 07/06/16 15:25 / eli-b  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Barium                                | 0.04   | mg/L  |            | 0.01  |             | E200.7    | 07/05/16 13:16 / eli-b  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Beryllium                             | 0.008  | mg/L  |            | 0.001 |             | E200.7    | 07/05/16 13:16 / eli-b  |
| Cadmium ND mg/L 0.01 E200.7 07/05/16 13:16 / eli-b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cadmium                               | ND     | mg/L  |            | 0.01  |             | E200.7    | 07/05/16 13:16 / eli-b  |
| Chromium ND mg/L 0.01 E200.7 07/05/16 13:16 / eli-b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chromium                              | ND     | mg/L  |            | 0.01  |             | E200.7    | 07/05/16 13:16 / eli-b  |
| Cobalt 0.07 mg/L 0.02 E200.8 07/05/16 13:26 / eli-b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cobalt                                | 0.07   | mg/L  |            | 0.02  |             | E200.8    | 07/05/16 13:26 / eli-b  |
| Lead ND mg/L 0.01 E200.8 07/05/16 13:26 / eli-b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lead                                  | ND     | mg/L  |            | 0.01  |             | E200.8    | 07/05/16 13:26 / eli-b  |
| Lithium 0.7 mg/L 0.01 E200.7 07/05/16 13:16 / eli-b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lithium                               | 0.7    | mg/L  |            | 0.01  |             | E200.7    | 07/05/16 13:16 / eli-b  |
| Molybdenum ND mg/L 0.05 E200.7 07/05/16 13:16 / eli-b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Molybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.7    | 07/05/16 13:16 / eli-b  |
| Selenium ND mg/L 0.01 E200.8 07/05/16 13:26 / eli-b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Selenium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 07/05/16 13:26 / eli-b  |
| Thallium ND mg/L 0.01 E200.8 07/05/16 13:26 / eli-b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Thallium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 07/05/16 13:26 / eli-b  |
| METALS, TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | METALS, TOTAL                         |        |       |            |       |             |           |                         |
| Mercury ND mg/L 0.001 E245.1 07/01/16 16:27 / eli-b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mercury                               | ND     | mg/L  |            | 0.001 |             | E245.1    | 07/01/16 16:27 / eli-b  |
| RADIONUCLIDES - TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 228 5.9 pCi/L RA-05 07/08/16 08:26 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Radium 228                            | 5.9    | pCi/L |            |       |             | RA-05     | 07/08/16 08:26 / eli-ca |
| Radium 228 precision (±) 1.4 pCi/L RA-05 07/08/16 08:26 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Radium 228 precision (±)              | 1.4    | pCi/L |            |       |             | RA-05     | 07/08/16 08:26 / eli-ca |
| Radium 228 MDC 1.3 pCi/L RA-05 07/08/16 08:26 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Radium 228 MDC                        | 1.3    | pCi/L |            |       |             | RA-05     | 07/08/16 08:26 / eli-ca |
| Radium 226 + Radium 228 7.52 pCi/L A7500-RA 08/11/16 00:00 / jleb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Radium 226 + Radium 228               | 7.52   | pCi/L |            |       |             | A7500-RA  | 08/11/16 00:00 / jleb   |
| Radium 226 + Radium 228 precision (±) 1.48 pCi/L A7500-RA 08/11/16 00:00 / jleb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Radium 226 + Radium 228 precision (±) | 1.48   | pCi/L |            |       |             | A7500-RA  | 08/11/16 00:00 / jleb   |
| Total Radium as Ra226 1.6 pCi/L E903.0 08/01/16 15:06 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | 1.6    | pCi/L |            |       |             | E903.0    | 08/01/16 15:06 / sas    |
| Total Radium as Ra226 precision (±) 0.30 pCi/L E903.0 08/01/16 15:06 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total Radium as Ra226 precision (±)   | 0.30   | pCi/L |            |       |             | E903.0    | 08/01/16 15:06 / sas    |
| Total Radium as Ra226 MDC 0.13 pCi/L E903.0 08/01/16 15:06 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Total Radium as Ra226 MDC             | 0.13   | pCi/L |            |       |             | E903.0    | 08/01/16 15:06 / sas    |

Report RL - Analyte reporting limit.

**Definitions:** QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency

Project: CCRR
Lab ID: T16060120-006
Client Sample ID: SFL MW-6

| Power Agency | Report Date: 08/11/16 |
| Collection Date: 06/23/16 15:58 |
| DateReceived: 06/23/16 |

Matrix: Groundwater

| PhySiCal Properties   Solids, Total Dissolved TDS @ 180 C   8650 mg/L   100   A2540 C   06/28/16 16:03 / pwh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |        |       |            |       | MCL/ |           |                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------|-------|------------|-------|------|-----------|---------------------------------------|
| MAJOR IONS   MAJOR IONS   Major   Ma   | Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By                    |
| MAJOR IONS   MAJOR IONS   Major   Ma   | PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                                       |
| Chloride   3350 mg/L   D   50   E300.0   06/30/16 21:48 / pwh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Solids, Total Dissolved TDS @ 180 C   | 8650   | mg/L  |            | 100   |      | A2540 C   | 06/28/16 16:03 / pwh                  |
| Fluoride 0.7 mg/L 0.1 A4500-F C 06/28/16 13:39 / pwh Sulfate 2230 mg/L D 50 E300.0 06/30/16 21:48 / pwh Calcium 910 mg/L D 2 E200.7 06/27/16 15:15 / jtr Boron 0.50 mg/L D 0.5 E200.7 06/30/16 18:48 / jtr METALS, TOTAL RECOVERABLE  Antimony ND mg/L 0.05 E200.7 07/05/16 13:20 / eli-b Arsenic 0.02 mg/L 0.01 E200.8 07/06/16 15:31 / eli-b Barium 0.3 mg/L 0.01 E200.8 07/06/16 15:31 / eli-b Beryllium 0.03 mg/L 0.001 E200.7 07/05/16 13:20 / eli-b Cadmium ND mg/L 0.01 E200.7 07/05/16 13:20 / eli-b Cadmium ND mg/L 0.01 E200.7 07/05/16 13:20 / eli-b Chromium 0.01 mg/L 0.01 E200.7 07/05/16 13:20 / eli-b Chromium 0.01 mg/L 0.01 E200.7 07/05/16 13:20 / eli-b Choalt 0.00 mg/L 0.01 E200.7 07/05/16 13:20 / eli-b Choalt 0.00 mg/L 0.01 E200.7 07/05/16 13:20 / eli-b Choalt 0.0 mg/L 0.01 E200.7 07/05/16 13:20 / eli-b Choalt 0.0 mg/L 0.01 E200.7 07/05/16 13:20 / eli-b Choalt 0.0 mg/L 0.01 E200.7 07/05/16 13:20 / eli-b Choalt 0.0 mg/L 0.01 E200.7 07/05/16 13:20 / eli-b Choalt 0.0 mg/L 0.01 E200.8 07/05/16 13:29 / eli-b Lithium 0.6 mg/L 0.01 E200.8 07/05/16 13:29 / eli-b Choalt 0.0 mg/L 0.01 E200.8 07/05/16 13:29 / eli-b Choalt 0.0 mg/L 0.01 E200.8 07/05/16 13:20 / eli-b Choalt 0.0 mg/L 0.01 E200.8 07/05/16 13:20 / eli-b Choalt 0.0 mg/L 0.01 E200.8 07/05/16 13:20 / eli-b Choalt 0.0 mg/L 0.01 E200.8 07/05/16 13:20 / eli-b Choalt 0.0 mg/L 0.01 E200.8 07/05/16 13:20 / eli-b Choalt 0.0 mg/L 0.01 E200.8 07/05/16 13:20 / eli-b Choalt 0.0 mg/L 0.01 E200.8 07/05/16 13:20 / eli-b Choalt 0.0 mg/L 0.01 E200.8 07/05/16 13:20 / eli-b Choalt 0.0 mg/L 0.01 E200.8 07/05/16 13:20 / eli-b Choalt 0.0 mg/L 0.01 E200.8 07/05/16 13:20 / eli-b Choalt 0.0 mg/L 0 | MAJOR IONS                            |        |       |            |       |      |           |                                       |
| Sulfate         2230 mg/L         D         50         E300.0         06/30/16 21:48 / pwh           Calcium         910 mg/L         D         2         E200.7         06/27/16 15:15 / jtr           Boron         0.50 mg/L         0.05         E200.7         06/30/16 15:15 / jtr           METALS, TOTAL RECOVERABLE           Antimony         ND mg/L         0.05         E200.7         07/05/16 13:20 / eli-b           Arsenic         0.02 mg/L         0.01         E200.8         07/06/16 15:31 / eli-b           Barium         0.3 mg/L         0.01         E200.7         07/05/16 13:20 / eli-b           Beryllium         0.03 mg/L         0.001         E200.7         07/05/16 13:20 / eli-b           Cadmium         ND mg/L         0.01         E200.7         07/05/16 13:20 / eli-b           Chromium         0.01 mg/L         0.01         E200.7         07/05/16 13:20 / eli-b           Chromium         0.01 mg/L         0.01         E200.7         07/05/16 13:20 / eli-b           Chobalt         0.1 mg/L         0.01         E200.7         07/05/16 13:20 / eli-b           Chobalt         0.1 mg/L         0.01         E200.8         07/05/16 13:20 / eli-b           Lead         0.6 mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chloride                              | 3350   | mg/L  | D          | 50    |      | E300.0    | 06/30/16 21:48 / pwh                  |
| Sulfate         2230 mg/L         D         50         E300.0         06/30/16 21:48 / pwh           Calcium         910 mg/L         D         2         E200.7         06/27/16 15:15 / jtr           Boron         0.50 mg/L         0.05         E200.7         06/30/16 15:15 / jtr           METALS, TOTAL RECOVERABLE           Antimony         ND mg/L         0.05         E200.7         07/05/16 13:20 / eli-b           Arsenic         0.02 mg/L         0.01         E200.8         07/06/16 15:31 / eli-b           Barium         0.3 mg/L         0.01         E200.7         07/05/16 13:20 / eli-b           Beryllium         0.03 mg/L         0.001         E200.7         07/05/16 13:20 / eli-b           Cadmium         ND mg/L         0.01         E200.7         07/05/16 13:20 / eli-b           Chromium         0.01 mg/L         0.01         E200.7         07/05/16 13:20 / eli-b           Chobalt         0.1 mg/L         0.01         E200.7         07/05/16 13:20 / eli-b           Chobalt         0.1 mg/L         0.01         E200.7         07/05/16 13:20 / eli-b           Lead         0.06 mg/L         0.01         E200.7         07/05/16 13:20 / eli-b           Molybdenum         ND mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fluoride                              | 0.7    | mg/L  |            | 0.1   |      | A4500-F C | 06/28/16 13:39 / pwh                  |
| Calcium         910 mg/L         D         2         E200.7 (06/27/16 15:15 / jtr born)         Born         0.50 mg/L         0.05         E200.7 (06/30/16 15:15 / jtr born)         Born         0.05 mg/L         0.05         E200.7 (06/30/16 18:48 / jtr br)         METALS, TOTAL RECOVERABLE           Antimony         ND mg/L         0.05         E200.7 (07/05/16 13:20 / eli-b br)         0.00 mg/L         0.01         E200.8 (07/06/16 15:31 / eli-b br)         0.00 for ibronium         0.01 (0.01 mg/L br)         0.01 (0.01 mg/L br)         0.00 for ibronium         0.01 mg/L br)         0.00 for ibronium         0.00 for ibronium         0.01 mg/L br)         0.00 for ibronium         0.00 for ibronium         0.01 mg/L br)         0.00 for ibronium         0.00 for ibronium         0.01 mg/L br)         0.00 for ibronium         0.01 mg/L br)         0.00 for ibronium         0.01 mg/L br)         0.00 for ibronium         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sulfate                               |        | •     | D          | 50    |      | E300.0    | 06/30/16 21:48 / pwh                  |
| Boron   0.50 mg/L   0.05   E200.7   06/30/16 18:48 / jtr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Calcium                               |        | -     | D          | 2     |      | E200.7    | •                                     |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Boron                                 |        | •     |            | 0.05  |      | E200.7    | · · · · · · · · · · · · · · · · · · · |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                                       |
| Barium 0.3 mg/L 0.01 E200.7 07/05/16 13:20 / eli-b Beryllium 0.03 mg/L 0.001 E200.7 07/05/16 13:20 / eli-b Cadmium ND mg/L 0.01 E200.7 07/05/16 13:20 / eli-b Chromium 0.01 mg/L 0.01 E200.7 07/05/16 13:20 / eli-b Chromium 0.01 mg/L 0.01 E200.7 07/05/16 13:20 / eli-b Chromium 0.01 mg/L 0.02 E200.8 07/05/16 13:20 / eli-b Cobalt 0.1 mg/L 0.02 E200.8 07/05/16 13:29 / eli-b Lead 0.06 mg/L 0.01 E200.8 07/05/16 13:29 / eli-b Lithium 0.6 mg/L 0.01 E200.7 07/05/16 13:29 / eli-b Lithium 0.6 mg/L 0.01 E200.7 07/05/16 13:20 / eli-b Molybdenum ND mg/L 0.05 E200.7 07/05/16 13:20 / eli-b Selenium ND mg/L 0.05 E200.7 07/05/16 13:20 / eli-b Thallium ND mg/L 0.01 E200.8 07/05/16 13:29 / eli-b Thallium ND mg/L 0.01 E200.8 07/05/16 13:29 / eli-b  METALS, TOTAL Mercury ND mg/L 0.001 E245.1 07/01/16 16:29 / eli-b  RADIONUCLIDES - TOTAL Radium 228 precision (±) 2.4 pCi/L RA-05 07/08/16 08:26 / eli-ca Radium 228 precision (±) 2.4 pCi/L RA-05 07/08/16 08:26 / eli-ca Radium 228 PROS 07/08/16 08:26 / eli-ca                                                                                                                                                                                                                                                             | Antimony                              | ND     | mg/L  |            | 0.05  |      | E200.7    | 07/05/16 13:20 / eli-b                |
| Barium 0.3 mg/L 0.01 E200.7 07/05/16 13:20 / eli-b Beryllium 0.03 mg/L 0.001 E200.7 07/05/16 13:20 / eli-b Cadmium ND mg/L 0.01 E200.7 07/05/16 13:20 / eli-b Chromium 0.01 mg/L 0.01 E200.7 07/05/16 13:20 / eli-b Chromium 0.01 mg/L 0.01 E200.7 07/05/16 13:20 / eli-b Chromium 0.01 mg/L 0.02 E200.8 07/05/16 13:20 / eli-b Cobalt 0.1 mg/L 0.02 E200.8 07/05/16 13:29 / eli-b Lead 0.06 mg/L 0.01 E200.8 07/05/16 13:29 / eli-b Lithium 0.6 mg/L 0.01 E200.7 07/05/16 13:29 / eli-b Lithium 0.6 mg/L 0.01 E200.7 07/05/16 13:20 / eli-b Molybdenum ND mg/L 0.05 E200.7 07/05/16 13:20 / eli-b Selenium ND mg/L 0.05 E200.7 07/05/16 13:20 / eli-b Thallium ND mg/L 0.01 E200.8 07/05/16 13:29 / eli-b Thallium ND mg/L 0.01 E200.8 07/05/16 13:29 / eli-b  METALS, TOTAL Mercury ND mg/L 0.001 E245.1 07/01/16 16:29 / eli-b  RADIONUCLIDES - TOTAL Radium 228 precision (±) 2.4 pCi/L RA-05 07/08/16 08:26 / eli-ca Radium 228 precision (±) 2.4 pCi/L RA-05 07/08/16 08:26 / eli-ca Radium 228 PROS 07/08/16 08:26 / eli-ca                                                                                                                                                                                                                                                             | Arsenic                               | 0.02   | mg/L  |            | 0.01  |      | E200.8    | 07/06/16 15:31 / eli-b                |
| Cadmium         ND mg/L         0.01         E200.7         07/05/16 13:20 / eli-b           Chromium         0.01 mg/L         0.01         E200.7         07/05/16 13:20 / eli-b           Cobalt         0.1 mg/L         0.02         E200.8         07/05/16 13:29 / eli-b           Lead         0.06 mg/L         0.01         E200.8         07/05/16 13:29 / eli-b           Lithium         0.6 mg/L         0.01         E200.7         07/05/16 13:20 / eli-b           Molybdenum         ND mg/L         0.05         E200.7         07/05/16 13:20 / eli-b           Selenium         ND mg/L         0.01         E200.8         07/05/16 13:20 / eli-b           Thallium         ND mg/L         0.01         E200.7         07/05/16 13:20 / eli-b           METALS, TOTAL           METALS, TOTAL           Mercury         ND mg/L         0.001         E245.1         07/01/16 16:29 / eli-b           RADIONUCLIDES - TOTAL           Radium 228 precision (±)         2.4 pCi/L         RA-05         07/08/16 08:26 / eli-ca           Radium 228 precision (±)         2.4 pCi/L         RA-05         07/08/16 08:26 / eli-ca           Radium 228 precision (±)         2.43 pCi/L         A7500-RA         08/11/16 00:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Barium                                |        | -     |            | 0.01  |      | E200.7    | 07/05/16 13:20 / eli-b                |
| Chromium 0.01 mg/L 0.01 E200.7 07/05/16 13:20 / eli-b Cobalt 0.1 mg/L 0.02 E200.8 07/05/16 13:20 / eli-b Lead 0.06 mg/L 0.01 E200.8 07/05/16 13:29 / eli-b Lithium 0.6 mg/L 0.01 E200.8 07/05/16 13:29 / eli-b Lithium 0.6 mg/L 0.01 E200.7 07/05/16 13:29 / eli-b Molybdenum ND mg/L 0.05 E200.7 07/05/16 13:20 / eli-b Molybdenum ND mg/L 0.05 E200.7 07/05/16 13:20 / eli-b Selenium ND mg/L 0.01 E200.8 07/05/16 13:29 / eli-b Thallium ND mg/L 0.01 E200.8 07/05/16 13:29 / eli-b METALS, TOTAL  METALS, TOTAL  Mercury ND mg/L 0.001 E245.1 07/01/16 16:29 / eli-b METALS, TOTAL  Radium 228 ND mg/L 0.001 E245.1 07/01/16 16:29 / eli-b METALS, TOTAL  Radium 228 Precision (±) 2.4 pCi/L RA-05 07/08/16 08:26 / eli-ca Radium 228 MDC 1.6 pCi/L RA-05 07/08/16 08:26 / eli-ca Radium 228 H1.6 pCi/L RA-05 07/08/16 08:26 / eli-ca Radium 228 Precision (±) 2.43 pCi/L A7500-RA 08/11/16 00:00 / jleb Radium 226 + Radium 228 precision (±) 2.43 pCi/L A7500-RA 08/11/16 00:00 / jleb Total Radium as Ra226 0.63 pCi/L E903.0 08/01/16 15:06 / sas Total Radium as Ra226 precision (±) 0.11 pCi/L E903.0 08/01/16 15:06 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Beryllium                             | 0.03   | mg/L  |            | 0.001 |      | E200.7    | 07/05/16 13:20 / eli-b                |
| Cobalt 0.1 mg/L 0.02 E200.8 07/05/16 13:29 / eli-b Lead 0.06 mg/L 0.01 E200.8 07/05/16 13:29 / eli-b Lithium 0.6 mg/L 0.01 E200.7 07/05/16 13:29 / eli-b Lithium 0.6 mg/L 0.01 E200.7 07/05/16 13:20 / eli-b Molybdenum ND mg/L 0.05 E200.7 07/05/16 13:20 / eli-b Selenium ND mg/L 0.01 E200.8 07/05/16 13:20 / eli-b Thallium ND mg/L 0.01 E200.8 07/05/16 13:29 / eli-b Thallium ND mg/L 0.01 E200.8 07/05/16 13:29 / eli-b  METALS, TOTAL Mercury ND mg/L 0.001 E245.1 07/01/16 16:29 / eli-b  RADIONUCLIDES - TOTAL Radium 228 TOTAL Radium 228 Precision (±) 2.4 pCi/L RA-05 07/08/16 08:26 / eli-ca Radium 228 MDC 1.6 pCi/L RA-05 07/08/16 08:26 / eli-ca Radium 228 MDC 1.6 pCi/L RA-05 07/08/16 08:26 / eli-ca Radium 228 H26 + Radium 228 precision (±) 2.43 pCi/L A7500-RA 08/11/16 00:00 / jleb Radium 226 + Radium 228 precision (±) 2.43 pCi/L A7500-RA 08/11/16 00:00 / jleb Total Radium as Ra226 precision (±) 0.11 pCi/L E903.0 08/01/16 15:06 / sas Total Radium as Ra226 precision (±) 0.11 pCi/L E903.0 08/01/16 15:06 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cadmium                               | ND     | mg/L  |            | 0.01  |      | E200.7    | 07/05/16 13:20 / eli-b                |
| Lead       0.06 mg/L       0.01       E200.8       07/05/16 13:29 / eli-b         Lithium       0.6 mg/L       0.01       E200.7       07/05/16 13:20 / eli-b         Molybdenum       ND mg/L       0.05       E200.7       07/05/16 13:20 / eli-b         Selenium       ND mg/L       0.01       E200.8       07/05/16 13:29 / eli-b         METALS, TOTAL         Mercury       ND mg/L       0.001       E245.1       07/01/16 16:29 / eli-b         RADIONUCLIDES - TOTAL         Radium 228       11 pCi/L       RA-05       07/08/16 08:26 / eli-ca         Radium 228 precision (±)       2.4 pCi/L       RA-05       07/08/16 08:26 / eli-ca         Radium 228 MDC       1.6 pCi/L       RA-05       07/08/16 08:26 / eli-ca         Radium 226 + Radium 228       11.6 pCi/L       RA-05       07/08/16 08:26 / eli-ca         Radium 226 + Radium 228 precision (±)       2.43 pCi/L       A7500-RA       08/11/16 00:00 / jleb         Total Radium as Ra226       0.63 pCi/L       E903.0       08/01/16 15:06 / sas         Total Radium as Ra226 precision (±)       0.11 pCi/L       E903.0       08/01/16 15:06 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chromium                              | 0.01   | mg/L  |            | 0.01  |      | E200.7    | 07/05/16 13:20 / eli-b                |
| Lithium 0.6 mg/L 0.01 E200.7 07/05/16 13:20 / eli-b Molybdenum ND mg/L 0.05 E200.7 07/05/16 13:20 / eli-b Selenium ND mg/L 0.01 E200.8 07/05/16 13:29 / eli-b Thallium ND mg/L 0.01 E200.8 07/05/16 13:29 / eli-b Thallium ND mg/L 0.01 E200.8 07/05/16 13:29 / eli-b NETALS, TOTAL  Mercury ND mg/L 0.001 E245.1 07/01/16 16:29 / eli-b NETALS, TOTAL  RADIONUCLIDES - TOTAL  Radium 228 11 pCi/L RA-05 07/08/16 08:26 / eli-ca Radium 228 precision (±) 2.4 pCi/L RA-05 07/08/16 08:26 / eli-ca Radium 228 H26 + Radium 228 11.6 pCi/L RA-05 07/08/16 08:26 / eli-ca Radium 226 + Radium 228 precision (±) 2.43 pCi/L A7500-RA 08/11/16 00:00 / jleb Radium 226 precision (±) 2.43 pCi/L A7500-RA 08/11/16 00:00 / jleb Total Radium as Ra226 0.63 pCi/L E903.0 08/01/16 15:06 / sas Total Radium as Ra226 precision (±) 0.11 pCi/L E903.0 08/01/16 15:06 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cobalt                                | 0.1    | mg/L  |            | 0.02  |      | E200.8    | 07/05/16 13:29 / eli-b                |
| Molybdenum         ND mg/L         0.05         E200.7         07/05/16 13:20 / eli-b           Selenium         ND mg/L         0.01         E200.8         07/05/16 13:29 / eli-b           Thallium         ND mg/L         0.01         E200.8         07/05/16 13:29 / eli-b           METALS, TOTAL           Mercury         ND mg/L         0.001         E245.1         07/01/16 16:29 / eli-b           RADIONUCLIDES - TOTAL           Radium 228         11         pCi/L         RA-05         07/08/16 08:26 / eli-ca           Radium 228 precision (±)         2.4         pCi/L         RA-05         07/08/16 08:26 / eli-ca           Radium 226 + Radium 228         11.6         pCi/L         RA-05         07/08/16 08:26 / eli-ca           Radium 226 + Radium 228 precision (±)         2.43         pCi/L         A7500-RA         08/11/16 00:00 / jleb           Total Radium as Ra226         0.63         pCi/L         E903.0         08/01/16 15:06 / sas           Total Radium as Ra226 precision (±)         0.11         pCi/L         E903.0         08/01/16 15:06 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lead                                  | 0.06   | mg/L  |            | 0.01  |      | E200.8    | 07/05/16 13:29 / eli-b                |
| Selenium         ND mg/L         0.01         E200.8         07/05/16 13:29 / eli-b           Thallium         ND mg/L         0.01         E200.8         07/05/16 13:29 / eli-b           METALS, TOTAL           Mercury         ND mg/L         0.001         E245.1         07/01/16 16:29 / eli-b           RADIONUCLIDES - TOTAL           Radium 228         11 pCi/L         RA-05         07/08/16 08:26 / eli-ca           Radium 228 precision (±)         2.4 pCi/L         RA-05         07/08/16 08:26 / eli-ca           Radium 228 MDC         1.6 pCi/L         RA-05         07/08/16 08:26 / eli-ca           Radium 226 + Radium 228         11.6 pCi/L         A7500-RA         08/11/16 00:00 / jleb           Radium 226 + Radium 228 precision (±)         2.43 pCi/L         A7500-RA         08/11/16 00:00 / jleb           Total Radium as Ra226         0.63 pCi/L         E903.0         08/01/16 15:06 / sas           Total Radium as Ra226 precision (±)         0.11 pCi/L         E903.0         08/01/16 15:06 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lithium                               | 0.6    | mg/L  |            | 0.01  |      | E200.7    | 07/05/16 13:20 / eli-b                |
| METALS, TOTAL         ND mg/L         0.01         E200.8         07/05/16 13:29 / eli-b           Mercury         ND mg/L         0.001         E245.1         07/01/16 16:29 / eli-b           RADIONUCLIDES - TOTAL           Radium 228         11 pCi/L         RA-05         07/08/16 08:26 / eli-ca           Radium 228 precision (±)         2.4 pCi/L         RA-05         07/08/16 08:26 / eli-ca           Radium 228 MDC         1.6 pCi/L         RA-05         07/08/16 08:26 / eli-ca           Radium 226 + Radium 228         11.6 pCi/L         RA-05         07/08/16 08:26 / eli-ca           Radium 226 + Radium 228 precision (±)         2.43 pCi/L         A7500-RA         08/11/16 00:00 / jleb           Total Radium as Ra226         0.63 pCi/L         E903.0         08/01/16 15:06 / sas           Total Radium as Ra226 precision (±)         0.11 pCi/L         E903.0         08/01/16 15:06 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Molybdenum                            | ND     | mg/L  |            | 0.05  |      | E200.7    | 07/05/16 13:20 / eli-b                |
| METALS, TOTAL           Mercury         ND mg/L         0.001         E245.1         07/01/16 16:29 / eli-b           RADIONUCLIDES - TOTAL           Radium 228         11 pCi/L         RA-05         07/08/16 08:26 / eli-ca           Radium 228 precision (±)         2.4 pCi/L         RA-05         07/08/16 08:26 / eli-ca           Radium 228 MDC         1.6 pCi/L         RA-05         07/08/16 08:26 / eli-ca           Radium 226 + Radium 228         11.6 pCi/L         A7500-RA         08/11/16 00:00 / jleb           Radium 226 + Radium 228 precision (±)         2.43 pCi/L         A7500-RA         08/11/16 00:00 / jleb           Total Radium as Ra226         0.63 pCi/L         E903.0         08/01/16 15:06 / sas           Total Radium as Ra226 precision (±)         0.11 pCi/L         E903.0         08/01/16 15:06 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Selenium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/05/16 13:29 / eli-b                |
| Mercury         ND mg/L         0.001         E245.1         07/01/16 16:29 / eli-b           RADIONUCLIDES - TOTAL           Radium 228         11 pCi/L         RA-05         07/08/16 08:26 / eli-ca           Radium 228 precision (±)         2.4 pCi/L         RA-05         07/08/16 08:26 / eli-ca           Radium 228 MDC         1.6 pCi/L         RA-05         07/08/16 08:26 / eli-ca           Radium 226 + Radium 228         11.6 pCi/L         A7500-RA         08/11/16 00:00 / jleb           Radium 226 + Radium 228 precision (±)         2.43 pCi/L         A7500-RA         08/11/16 00:00 / jleb           Total Radium as Ra226         0.63 pCi/L         E903.0         08/01/16 15:06 / sas           Total Radium as Ra226 precision (±)         0.11 pCi/L         E903.0         08/01/16 15:06 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Thallium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/05/16 13:29 / eli-b                |
| RADIONUCLIDES - TOTAL         Radium 228       11 pCi/L       RA-05       07/08/16 08:26 / eli-ca         Radium 228 precision (±)       2.4 pCi/L       RA-05       07/08/16 08:26 / eli-ca         Radium 228 MDC       1.6 pCi/L       RA-05       07/08/16 08:26 / eli-ca         Radium 226 + Radium 228       11.6 pCi/L       A7500-RA       08/11/16 00:00 / jleb         Radium 226 + Radium 228 precision (±)       2.43 pCi/L       A7500-RA       08/11/16 00:00 / jleb         Total Radium as Ra226       0.63 pCi/L       E903.0       08/01/16 15:06 / sas         Total Radium as Ra226 precision (±)       0.11 pCi/L       E903.0       08/01/16 15:06 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | METALS, TOTAL                         |        |       |            |       |      |           |                                       |
| Radium 228       11 pCi/L       RA-05       07/08/16 08:26 / eli-ca         Radium 228 precision (±)       2.4 pCi/L       RA-05       07/08/16 08:26 / eli-ca         Radium 228 MDC       1.6 pCi/L       RA-05       07/08/16 08:26 / eli-ca         Radium 226 + Radium 228       11.6 pCi/L       A7500-RA       08/11/16 00:00 / jleb         Radium 226 + Radium 228 precision (±)       2.43 pCi/L       A7500-RA       08/11/16 00:00 / jleb         Total Radium as Ra226       0.63 pCi/L       E903.0       08/01/16 15:06 / sas         Total Radium as Ra226 precision (±)       0.11 pCi/L       E903.0       08/01/16 15:06 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mercury                               | ND     | mg/L  |            | 0.001 |      | E245.1    | 07/01/16 16:29 / eli-b                |
| Radium 228 precision (±)       2.4 pCi/L       RA-05       07/08/16 08:26 / eli-ca         Radium 228 MDC       1.6 pCi/L       RA-05       07/08/16 08:26 / eli-ca         Radium 226 + Radium 228       11.6 pCi/L       A7500-RA       08/11/16 00:00 / jleb         Radium 226 + Radium 228 precision (±)       2.43 pCi/L       A7500-RA       08/11/16 00:00 / jleb         Total Radium as Ra226       0.63 pCi/L       E903.0       08/01/16 15:06 / sas         Total Radium as Ra226 precision (±)       0.11 pCi/L       E903.0       08/01/16 15:06 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                                       |
| Radium 228 MDC       1.6 pCi/L       RA-05       07/08/16 08:26 / eli-ca         Radium 226 + Radium 228       11.6 pCi/L       A7500-RA       08/11/16 00:00 / jleb         Radium 226 + Radium 228 precision (±)       2.43 pCi/L       A7500-RA       08/11/16 00:00 / jleb         Total Radium as Ra226       0.63 pCi/L       E903.0       08/01/16 15:06 / sas         Total Radium as Ra226 precision (±)       0.11 pCi/L       E903.0       08/01/16 15:06 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Radium 228                            | 11     | pCi/L |            |       |      | RA-05     | 07/08/16 08:26 / eli-ca               |
| Radium 226 + Radium 228       11.6 pCi/L       A7500-RA       08/11/16 00:00 / jleb         Radium 226 + Radium 228 precision (±)       2.43 pCi/L       A7500-RA       08/11/16 00:00 / jleb         Total Radium as Ra226       0.63 pCi/L       E903.0       08/01/16 15:06 / sas         Total Radium as Ra226 precision (±)       0.11 pCi/L       E903.0       08/01/16 15:06 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Radium 228 precision (±)              | 2.4    | pCi/L |            |       |      | RA-05     | 07/08/16 08:26 / eli-ca               |
| Radium 226 + Radium 228 precision (±)       2.43 pCi/L       A7500-RA       08/11/16 00:00 / jleb         Total Radium as Ra226       0.63 pCi/L       E903.0       08/01/16 15:06 / sas         Total Radium as Ra226 precision (±)       0.11 pCi/L       E903.0       08/01/16 15:06 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Radium 228 MDC                        | 1.6    | pCi/L |            |       |      | RA-05     | 07/08/16 08:26 / eli-ca               |
| Total Radium as Ra226       0.63 pCi/L       E903.0       08/01/16 15:06 / sas         Total Radium as Ra226 precision (±)       0.11 pCi/L       E903.0       08/01/16 15:06 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Radium 226 + Radium 228               | 11.6   | pCi/L |            |       |      | A7500-RA  | 08/11/16 00:00 / jleb                 |
| Total Radium as Ra226 precision (±) 0.11 pCi/L E903.0 08/01/16 15:06 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Radium 226 + Radium 228 precision (±) | 2.43   | pCi/L |            |       |      | A7500-RA  | 08/11/16 00:00 / jleb                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total Radium as Ra226                 | 0.63   | pCi/L |            |       |      | E903.0    | 08/01/16 15:06 / sas                  |
| Total Radium as Ra226 MDC 0.06 pCi/L E903.0 08/01/16 15:06 / sas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total Radium as Ra226 precision (±)   | 0.11   | pCi/L |            |       |      | E903.0    | 08/01/16 15:06 / sas                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total Radium as Ra226 MDC             | 0.06   | pCi/L |            |       |      | E903.0    | 08/01/16 15:06 / sas                  |

<sup>-</sup> Total Radium as Ra226: Sample matrix interference resulted in high chemical recoveries which can bias the results low.

Report RL - Analyte reporting limit.

**Definitions:** QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency

Project: CCRR

**Lab ID:** T16060120-007

Client Sample ID: Dup-2

Report Date: 08/11/16

Collection Date: 06/23/16 12:00

DateReceived: 06/23/16

Matrix: Groundwater

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
|                                       |        |       |            |       |             |           | ,                       |
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| Solids, Total Dissolved TDS @ 180 C   | 5710   | mg/L  |            | 100   |             | A2540 C   | 06/28/16 16:03 / pwh    |
| MAJOR IONS                            |        |       |            |       |             |           |                         |
| Chloride                              | 1520   | mg/L  | D          | 50    |             | E300.0    | 06/30/16 22:46 / pwh    |
| Fluoride                              | 0.8    | mg/L  |            | 0.1   |             | A4500-F C | 06/28/16 13:46 / pwh    |
| Sulfate                               | 2190   | mg/L  | D          | 50    |             | E300.0    | 06/30/16 22:46 / pwh    |
| Calcium                               | 688    | mg/L  | D          | 2     |             | E200.7    | 06/27/16 15:17 / jtr    |
| Boron                                 | 2.4    | mg/L  | D          | 0.5   |             | E200.7    | 06/27/16 15:17 / jtr    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  |             | E200.7    | 07/05/16 13:24 / eli-b  |
| Arsenic                               |        | mg/L  |            | 0.01  |             | E200.8    | 07/05/16 14:13 / eli-b  |
| Barium                                |        | mg/L  |            | 0.01  |             | E200.7    | 07/05/16 13:24 / eli-b  |
| Beryllium                             | 0.04   | mg/L  |            | 0.001 |             | E200.7    | 07/05/16 13:24 / eli-b  |
| Cadmium                               | ND     | mg/L  |            | 0.01  |             | E200.7    | 07/05/16 13:24 / eli-b  |
| Chromium                              | ND     | mg/L  |            | 0.01  |             | E200.7    | 07/05/16 13:24 / eli-b  |
| Cobalt                                | 0.07   | mg/L  |            | 0.02  |             | E200.8    | 07/05/16 14:13 / eli-b  |
| Lead                                  | 0.02   | mg/L  |            | 0.01  |             | E200.8    | 07/05/16 14:13 / eli-b  |
| Lithium                               | 0.3    | mg/L  |            | 0.01  |             | E200.7    | 07/05/16 13:24 / eli-b  |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.7    | 07/05/16 13:24 / eli-b  |
| Selenium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 07/05/16 14:13 / eli-b  |
| Thallium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 07/05/16 14:13 / eli-b  |
| METALS, TOTAL                         |        |       |            |       |             |           |                         |
| Mercury                               | 0.003  | mg/L  |            | 0.001 |             | E245.1    | 07/05/16 17:35 / eli-b  |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 228                            | 3.4    | pCi/L |            |       |             | RA-05     | 07/08/16 09:59 / eli-ca |
| Radium 228 precision (±)              |        | pCi/L |            |       |             | RA-05     | 07/08/16 09:59 / eli-ca |
| Radium 228 MDC                        |        | pCi/L |            |       |             | RA-05     | 07/08/16 09:59 / eli-ca |
| Radium 226 + Radium 228               |        | pCi/L |            |       |             | A7500-RA  | 08/11/16 00:00 / jleb   |
| Radium 226 + Radium 228 precision (±) |        | pCi/L |            |       |             | A7500-RA  | 08/11/16 00:00 / jleb   |
| Total Radium as Ra226                 |        | pCi/L |            |       |             | E903.0    | 08/01/16 15:06 / sas    |
| Total Radium as Ra226 precision (±)   |        | pCi/L |            |       |             | E903.0    | 08/01/16 15:06 / sas    |
| Total Radium as Ra226 MDC             |        | pCi/L |            |       |             | E903.0    | 08/01/16 15:06 / sas    |

Report RL - Analyte reporting limit.

**Definitions:** QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency

**CCRR Project:** Lab ID: T16060120-008

Client Sample ID: EQ Blank-2

**Report Date:** 08/11/16 Collection Date: 06/23/16 08:20 DateReceived: 06/23/16

Matrix: Groundwater

| Analyses                              | Result | Unite  | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|--------|------------|-------|-------------|-----------|-------------------------|
| analyses                              | Result | Ullits | Qualifiers | IXE.  | WOL         | Wietiloa  | Allalysis Date / By     |
| PHYSICAL PROPERTIES                   |        |        |            |       |             |           |                         |
| Solids, Total Dissolved TDS @ 180 C   | ND     | mg/L   |            | 10    |             | A2540 C   | 06/27/16 16:15 / jjc    |
| MAJOR IONS                            |        |        |            |       |             |           |                         |
| Chloride                              | ND     | mg/L   |            | 1     |             | E300.0    | 06/30/16 23:06 / pwh    |
| Fluoride                              | ND     | mg/L   |            | 0.1   |             | A4500-F C | 06/28/16 14:06 / pwh    |
| Sulfate                               | ND     | mg/L   |            | 1     |             | E300.0    | 06/30/16 23:06 / pwh    |
| Calcium                               | ND     | mg/L   |            | 1     |             | E200.7    | 06/30/16 18:51 / jtr    |
| Boron                                 | ND     | mg/L   |            | 0.05  |             | E200.7    | 06/30/16 18:51 / jtr    |
| METALS, TOTAL RECOVERABLE             |        |        |            |       |             |           |                         |
| Antimony                              | ND     | mg/L   |            | 0.05  |             | E200.7    | 07/05/16 13:28 / eli-b  |
| Arsenic                               | ND     | mg/L   |            | 0.01  |             | E200.8    | 07/05/16 14:16 / eli-b  |
| Barium                                | ND     | mg/L   |            | 0.01  |             | E200.7    | 07/05/16 13:28 / eli-b  |
| Beryllium                             | ND     | mg/L   |            | 0.001 |             | E200.7    | 07/05/16 13:28 / eli-b  |
| Cadmium                               | ND     | mg/L   |            | 0.01  |             | E200.7    | 07/05/16 13:28 / eli-b  |
| Chromium                              | ND     | mg/L   |            | 0.01  |             | E200.7    | 07/05/16 13:28 / eli-b  |
| Cobalt                                | ND     | mg/L   |            | 0.02  |             | E200.8    | 07/05/16 14:16 / eli-b  |
| ead                                   | ND     | mg/L   |            | 0.01  |             | E200.8    | 07/05/16 14:16 / eli-b  |
| ithium                                | ND     | mg/L   |            | 0.01  |             | E200.7    | 07/05/16 13:28 / eli-b  |
| Nolybdenum                            | ND     | mg/L   |            | 0.05  |             | E200.7    | 07/05/16 13:28 / eli-b  |
| Selenium                              | ND     | mg/L   |            | 0.01  |             | E200.8    | 07/05/16 14:16 / eli-b  |
| hallium                               | ND     | mg/L   |            | 0.01  |             | E200.8    | 07/05/16 14:16 / eli-b  |
| METALS, TOTAL                         |        |        |            |       |             |           |                         |
| Mercury                               | ND     | mg/L   |            | 0.001 |             | E245.1    | 07/01/16 16:32 / eli-b  |
| RADIONUCLIDES - TOTAL                 |        |        |            |       |             |           |                         |
| Radium 228                            | 0.80   | pCi/L  | U          |       |             | RA-05     | 07/08/16 09:59 / eli-ca |
| Radium 228 precision (±)              | 1.0    | pCi/L  |            |       |             | RA-05     | 07/08/16 09:59 / eli-ca |
| Radium 228 MDC                        | 1.6    | pCi/L  |            |       |             | RA-05     | 07/08/16 09:59 / eli-ca |
| Radium 226 + Radium 228               | 0.828  | pCi/L  |            |       |             | A7500-RA  | 08/11/16 00:00 / jleb   |
| Radium 226 + Radium 228 precision (±) | 1.01   | pCi/L  |            |       |             | A7500-RA  | 08/11/16 00:00 / jleb   |
| otal Radium as Ra226                  | 0.03   | pCi/L  | U          |       |             | E903.0    | 08/01/16 15:06 / sas    |
| otal Radium as Ra226 precision (±)    | 0.1    | pCi/L  |            |       |             | E903.0    | 08/01/16 15:06 / sas    |
| otal Radium as Ra226 MDC              | 0.18   | pCi/L  |            |       |             | E903.0    | 08/01/16 15:06 / sas    |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date: 08/11/16Project:CCRRWork Order: T16060120

| Analyte     |                        | Count | Result        | Units        | RL  | %REC | Low Limit  | High Limit | RPD | RPDLimit   | Qual     |
|-------------|------------------------|-------|---------------|--------------|-----|------|------------|------------|-----|------------|----------|
| Method:     | A2540 C                |       |               |              |     |      |            |            |     | Batch: TDS | 3160624A |
| Lab ID:     | MB-1_160624A           | M     | ethod Blank   |              |     |      | Run: BAL3_ | _160624A   |     | 06/24/     | 16 14:44 |
| Solids, Tot | al Dissolved TDS @ 180 | 0 C   | ND            | mg/L         | 5   |      |            |            |     |            |          |
| Lab ID:     | LCS-2_160624A          | La    | boratory Cor  | ntrol Sample | e   |      | Run: BAL3_ | _160624A   |     | 06/24/     | 16 14:45 |
| Solids, Tot | al Dissolved TDS @ 180 | 0 C   | 983           | mg/L         | 10  | 98   | 90         | 110        |     |            |          |
| Lab ID:     | T16060097-005A DUP     | Sa    | ample Duplica | ate          |     |      | Run: BAL3  | _160624A   |     | 06/24/     | 16 14:46 |
| Solids, Tot | al Dissolved TDS @ 180 | 0 C   | 2670          | mg/L         | 20  |      |            |            | 1.0 | 5          |          |
| Method:     | A2540 C                |       |               |              |     |      |            |            |     | Batch: TDS | 3160627A |
| Lab ID:     | MB-2_160627A           | M     | ethod Blank   |              |     |      | Run: BAL3_ | _160627A   |     | 06/27/     | 16 16:15 |
| Solids, Tot | al Dissolved TDS @ 180 | 0 C   | ND            | mg/L         | 5   |      |            |            |     |            |          |
| Lab ID:     | LCS-3_160627A          | La    | boratory Cor  | ntrol Sample | e   |      | Run: BAL3  | _160627A   |     | 06/27/     | 16 16:15 |
| Solids, Tot | al Dissolved TDS @ 180 | ) C   | 1130          | mg/L         | 11  | 101  | 90         | 110        |     |            |          |
| Lab ID:     | T16060120-008A DUP     | Sa    | ample Duplica | ate          |     |      | Run: BAL3_ | _160627A   |     | 06/27/     | 16 16:16 |
| Solids, Tot | al Dissolved TDS @ 180 | 0 C   | ND            | mg/L         | 10  |      |            |            |     | 5          |          |
| Method:     | A2540 C                |       |               |              |     |      |            |            |     | Batch: TDS | 3160628A |
| Lab ID:     | MB-1_160628A           | M     | ethod Blank   |              |     |      | Run: BAL3_ | _160628B   |     | 06/28/     | 16 16:02 |
| Solids, Tot | al Dissolved TDS @ 180 | 0 C   | ND            | mg/L         | 5   |      |            |            |     |            |          |
| Lab ID:     | LCS-2_160628A          | La    | boratory Cor  | ntrol Sample | e   |      | Run: BAL3_ | _160628B   |     | 06/28/     | 16 16:02 |
| Solids, Tot | al Dissolved TDS @ 180 | 0 C   | 1110          | mg/L         | 11  | 100  | 90         | 110        |     |            |          |
| Lab ID:     | T16060120-006A DUP     | ' Sa  | ample Duplica | ate          |     |      | Run: BAL3  | _160628B   |     | 06/28/     | 16 16:03 |
| Solids, Tot | al Dissolved TDS @ 180 | 0 C   | 8790          | mg/L         | 100 |      |            |            | 1.6 | 5          |          |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency **Report Date:** 08/11/16 Project: CCRR Work Order: T16060120

| Analyte  |                   | Count        | Result       | Units         | RL               | %REC | Low Limit | High Limit | RPD       | RPDLimit     | Qual      |
|----------|-------------------|--------------|--------------|---------------|------------------|------|-----------|------------|-----------|--------------|-----------|
| Method:  | A4500-F C         |              |              |               |                  |      |           |            | Analytica | l Run: ATT1_ | _160628A  |
| Lab ID:  | CCV-F2            | Co           | ntinuing Cal | ibration Veri | fication Standar | ·d   |           |            |           | 06/28/       | /16 13:50 |
| Fluoride |                   |              | 1.98         | mg/L          | 0.10             | 99   | 90        | 110        |           |              |           |
| Method:  | A4500-F C         |              |              |               |                  |      |           |            |           | Batch        | n: R68748 |
| Lab ID:  | LCS-F-3733        | Lab          | ooratory Cor | ntrol Sample  | <b>;</b>         |      | Run: ATT1 | _160628A   |           | 06/28/       | /16 13:53 |
| Fluoride |                   |              | 4.82         | mg/L          | 0.10             | 94   | 90        | 110        |           |              |           |
| Lab ID:  | MBLK              | Me           | thod Blank   |               |                  |      | Run: ATT1 | _160628A   |           | 06/28/       | /16 14:00 |
| Fluoride |                   |              | 0.04         | mg/L          | 0.002            |      |           |            |           |              |           |
| Lab ID:  | T16060120-008ADUF | <b>P</b> Sai | mple Duplic  | ate           |                  |      | Run: ATT1 | _160628A   |           | 06/28/       | /16 14:11 |
| Fluoride |                   |              | 0.0200       | mg/L          | 0.10             |      |           |            |           | 10           |           |
| Lab ID:  | T16060120-008AMS  | Sai          | mple Matrix  | Spike         |                  |      | Run: ATT1 | _160628A   |           | 06/28/       | /16 14:14 |
| Fluoride |                   |              | 4.71         | mg/L          | 0.10             | 92   | 90        | 110        |           |              |           |

### Qualifiers:

RL - Analyte reporting limit. MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency **Report Date:** 08/11/16 Project: CCRR Work Order: T16060120

| Analyte |                     | Coun       | t Result            | Units              | RL     | %REC | Low Limit  | High Limit   | RPD    | RPDLimit  | Qual      |
|---------|---------------------|------------|---------------------|--------------------|--------|------|------------|--------------|--------|-----------|-----------|
| Method: | E200.7              |            |                     |                    |        |      |            | Analytic     | al Run | ICP102-CS | _160627A  |
| Lab ID: | Initial Calib Verif | 2          | Initial Calibration | on Verification St | andard |      |            |              |        | 06/27/    | 16 14:42  |
| Boron   |                     |            | 1.02                | mg/L               | 0.050  | 102  | 95         | 105          |        |           |           |
| Calcium |                     |            | 49.1                | mg/L               | 1.0    | 98   | 95         | 105          |        |           |           |
| Lab ID: | Cont Calib Blank    | 2          | Continuing Cal      | ibration Blank     |        |      |            |              |        | 06/27/    | 16 14:44  |
| Boron   |                     |            | -0.00360            | mg/L               | 0.050  |      |            |              |        |           |           |
| Calcium |                     |            | -0.000971           | mg/L               | 1.0    |      |            |              |        |           |           |
| Method: | E200.7              |            |                     |                    |        |      |            |              |        | Batch     | n: R68741 |
| Lab ID: | IPC                 | 2          | Initial Precision   | and Recovery       |        |      | Run: ICP10 | 2-CS_160627A |        | 06/27/    | 16 14:49  |
| Boron   |                     |            | 1.00                | mg/L               | 0.050  | 100  | 95         | 105          |        |           |           |
| Calcium |                     |            | 50.3                | mg/L               | 1.0    | 101  | 95         | 105          |        |           |           |
| Lab ID: | LCS-160627          | 2          | Laboratory Cor      | ntrol Sample       |        |      | Run: ICP10 | 2-CS_160627A |        | 06/27/    | 16 14:54  |
| Calcium |                     |            | 49.3                | mg/L               | 1.0    | 99   | 85         | 115          |        |           |           |
| Boron   |                     |            | 1.03                | mg/L               | 0.050  | 103  | 85         | 115          |        |           |           |
| Lab ID: | MB-160627           | 2          | Method Blank        |                    |        |      | Run: ICP10 | 2-CS_160627A |        | 06/27/    | 16 14:56  |
| Calcium |                     |            | ND                  | mg/L               | 0.08   |      |            |              |        |           |           |
| Boron   |                     |            | ND                  | mg/L               | 0.001  |      |            |              |        |           |           |
| Lab ID: | T16060120-001ASD    | 2          | Serial Dilution     |                    |        |      | Run: ICP10 | 2-CS_160627A |        | 06/27/    | 16 14:59  |
| Calcium |                     |            | 1010                | mg/L               | 10     |      | 0          | 0            | 9.4    | 10        |           |
| Boron   |                     |            | 0.196               | mg/L               | 2.5    |      | 0          | 0            |        | 10        | N         |
| Lab ID: | T16060120-001AMS    | 2          | Sample Matrix       | Spike              |        |      | Run: ICP10 | 2-CS_160627A |        | 06/27/    | 16 15:01  |
| Calcium |                     |            | 1440                | mg/L               | 2.0    | 103  | 70         | 130          |        |           |           |
| Boron   |                     |            | 10.9                | mg/L               | 0.50   | 105  | 70         | 130          |        |           |           |
| Lab ID: | T16060120-001AMS    | <b>)</b> 2 | Sample Matrix       | Spike Duplicate    |        |      | Run: ICP10 | 2-CS_160627A |        | 06/27/    | 16 15:03  |
| Calcium |                     |            | 1430                | mg/L               | 2.0    | 102  | 70         | 130          | 0.4    | 20        |           |
| Boron   |                     |            | 11.0                | mg/L               | 0.50   | 105  | 70         | 130          | 0.2    | 20        |           |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

N - The analyte concentration was not sufficiently high to calculate a RPD for the serial dilution test.

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date: 08/11/16Project:CCRRWork Order: T16060120

| Analyte |                     | Count | Result              | Units             | RL      | %REC | Low Limit  | High Limit   | RPD     | RPDLimit   | Qual      |
|---------|---------------------|-------|---------------------|-------------------|---------|------|------------|--------------|---------|------------|-----------|
| Method: | E200.7              |       |                     |                   |         |      |            | Analytic     | al Run: | ICP102-CS_ | 160630E   |
| Lab ID: | Initial Calib Verif | 2     | Initial Calibration | on Verification S | tandard |      |            |              |         | 06/30/     | 16 18:12  |
| Boron   |                     |       | 0.997               | mg/L              | 0.050   | 100  | 95         | 105          |         |            |           |
| Calcium |                     |       | 49.5                | mg/L              | 1.0     | 99   | 95         | 105          |         |            |           |
| Lab ID: | Cont Calib Blank    | 2 (   | Continuing Cal      | ibration Blank    |         |      |            |              |         | 06/30/     | 16 18:14  |
| Boron   |                     |       | 0.00156             | mg/L              | 0.050   |      |            |              |         |            |           |
| Calcium |                     |       | -0.00112            | mg/L              | 1.0     |      |            |              |         |            |           |
| Method: | E200.7              |       |                     |                   |         |      |            |              |         | Batch      | n: R68816 |
| Lab ID: | IPC                 | 2     | Initial Precisior   | and Recovery      |         |      | Run: ICP10 | 2-CS_160630E |         | 06/30/     | 16 18:18  |
| Boron   |                     |       | 0.976               | mg/L              | 0.050   | 98   | 95         | 105          |         |            |           |
| Calcium |                     |       | 48.7                | mg/L              | 1.0     | 97   | 95         | 105          |         |            |           |
| Lab ID: | LCS-160630          | 2     | Laboratory Cor      | ntrol Sample      |         |      | Run: ICP10 | 2-CS_160630E |         | 06/30/     | 16 18:25  |
| Calcium |                     |       | 49.5                | mg/L              | 1.0     | 99   | 85         | 115          |         |            |           |
| Boron   |                     |       | 0.985               | mg/L              | 0.050   | 98   | 85         | 115          |         |            |           |
| Lab ID: | MB-160630           | 2     | Method Blank        |                   |         |      | Run: ICP10 | 2-CS_160630E |         | 06/30/     | 16 18:27  |
| Calcium |                     |       | ND                  | mg/L              | 0.08    |      |            |              |         |            |           |
| Boron   |                     |       | 0.001               | mg/L              | 0.001   |      |            |              |         |            |           |
| Lab ID: | T16060109-001ASD    | 2 :   | Serial Dilution     |                   |         |      | Run: ICP10 | 2-CS_160630E |         | 06/30/     | 16 18:31  |
| Calcium |                     |       | 38.0                | mg/L              | 1.0     |      | 0          | 0            | 4.1     | 10         |           |
| Boron   |                     |       | 0.0822              | mg/L              | 0.25    |      | 0          | 0            |         | 10         |           |
| Lab ID: | T16060109-001AMS    | 2 :   | Sample Matrix       | Spike             |         |      | Run: ICP10 | 2-CS_160630E |         | 06/30/     | 16 18:33  |
| Calcium |                     |       | 86.5                | mg/L              | 1.0     | 100  | 70         | 130          |         |            |           |
| Boron   |                     |       | 1.11                | mg/L              | 0.050   | 103  | 70         | 130          |         |            |           |
| Lab ID: | T16060109-001AMS    | 2 :   | Sample Matrix       | Spike Duplicate   |         |      | Run: ICP10 | 2-CS_160630E |         | 06/30/     | 16 18:35  |
| Calcium |                     |       | 86.4                | mg/L              | 1.0     | 100  | 70         | 130          | 0.1     | 20         |           |
| Boron   |                     |       | 1.12                | mg/L              | 0.050   | 104  | 70         | 130          | 0.7     | 20         |           |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:08/11/16Project:CCRRWork Order:T16060120

| Analyte   |                | Count | Result       | Units          | RL             | %REC | Low Limit  | High Limit | RPD      | RPDLimit    | Qual      |
|-----------|----------------|-------|--------------|----------------|----------------|------|------------|------------|----------|-------------|-----------|
| Method:   | E200.7         |       |              |                |                |      |            |            | Analytic | al Run: SUB | -B263344  |
| ₋ab ID:   | ICV            | 7 Co  | ntinuing Cal | ibration Verif | ication Standa | rd   |            |            |          | 07/05/      | /16 11:41 |
| Antimony  |                |       | 2.45         | mg/L           | 0.050          | 98   | 95         | 105        |          |             |           |
| Barium    |                |       | 2.53         | mg/L           | 0.10           | 101  | 95         | 105        |          |             |           |
| Beryllium |                |       | 1.25         | mg/L           | 0.010          | 100  | 95         | 105        |          |             |           |
| Cadmium   |                |       | 2.46         | mg/L           | 0.010          | 98   | 95         | 105        |          |             |           |
| Chromium  |                |       | 2.51         | mg/L           | 0.050          | 100  | 95         | 105        |          |             |           |
| Lithium   |                |       | 1.26         | mg/L           | 0.10           | 101  | 95         | 105        |          |             |           |
| Molybdenu | ım             |       | 2.46         | mg/L           | 0.10           | 99   | 95         | 105        |          |             |           |
| Method:   | E200.7         |       |              |                |                |      |            |            |          | Batch: I    | B_100518  |
| .ab ID:   | MB-100518      | 7 Me  | thod Blank   |                |                |      | Run: SUB-E | 3263344    |          | 07/05/      | /16 12:31 |
| Antimony  |                |       | ND           | mg/L           | 0.01           |      |            |            |          |             |           |
| Barium    |                |       | ND           | mg/L           | 0.0002         |      |            |            |          |             |           |
| Beryllium |                |       | ND           | mg/L           | 8E-05          |      |            |            |          |             |           |
| Cadmium   |                |       | ND           | mg/L           | 0.0004         |      |            |            |          |             |           |
| Chromium  |                |       | ND           | mg/L           | 0.003          |      |            |            |          |             |           |
| Lithium   |                |       | 0.004        | mg/L           | 0.002          |      |            |            |          |             |           |
| Molybdenu | ım             |       | 0.005        | mg/L           | 0.003          |      |            |            |          |             |           |
| ab ID:    | LCS-100518     | 7 Lat | boratory Co  | ntrol Sample   |                |      | Run: SUB-E | 3263344    |          | 07/05/      | /16 12:35 |
| Antimony  |                |       | 0.520        | mg/L           | 0.10           | 104  | 85         | 115        |          |             |           |
| Barium    |                |       | 0.532        | mg/L           | 0.10           | 106  | 85         | 115        |          |             |           |
| Beryllium |                |       | 0.262        | mg/L           | 0.010          | 105  | 85         | 115        |          |             |           |
| Cadmium   |                |       | 0.258        | mg/L           | 0.010          | 103  | 85         | 115        |          |             |           |
| Chromium  |                |       | 0.527        | mg/L           | 0.050          | 105  | 85         | 115        |          |             |           |
| Lithium   |                |       | 0.535        | mg/L           | 0.10           | 106  | 85         | 115        |          |             |           |
| Molybdenu | ım             |       | 0.520        | mg/L           | 0.10           | 103  | 85         | 115        |          |             |           |
| ab ID:    | T16060120-001B | 7 Sa  | mple Matrix  | Spike          |                |      | Run: SUB-E | 3263344    |          | 07/05/      | /16 12:50 |
| Antimony  |                |       | 0.506        | mg/L           | 0.025          | 101  | 70         | 130        |          |             |           |
| Barium    |                |       | 0.540        | mg/L           | 0.050          | 103  | 70         | 130        |          |             |           |
| Beryllium |                |       | 0.295        | mg/L           | 0.0010         | 102  | 70         | 130        |          |             |           |
| Cadmium   |                |       | 0.250        | mg/L           | 0.0010         | 97   | 70         | 130        |          |             |           |
| Chromium  |                |       | 0.505        | mg/L           | 0.0050         | 99   | 70         | 130        |          |             |           |
| Lithium   |                |       | 1.15         | mg/L           | 0.10           | 106  | 70         | 130        |          |             |           |
| Molybdenu | ım             |       | 0.505        | mg/L           | 0.0065         | 99   | 70         | 130        |          |             |           |
| .ab ID:   | T16060120-001B | 7 Sa  | mple Matrix  | Spike Duplic   | ate            |      | Run: SUB-E | 3263344    |          | 07/05/      | /16 12:54 |
| Antimony  |                |       | 0.491        | mg/L           | 0.025          | 98   | 70         | 130        | 3.0      | 20          |           |
| Barium    |                |       | 0.558        | mg/L           | 0.050          | 107  | 70         | 130        | 3.2      | 20          |           |
| Beryllium |                |       | 0.305        | mg/L           | 0.0010         | 106  | 70         | 130        | 3.4      | 20          |           |
| Cadmium   |                |       | 0.252        | mg/L           | 0.0010         | 97   | 70         | 130        | 0.7      | 20          |           |
| Chromium  |                |       | 0.515        | mg/L           | 0.0050         | 101  | 70         | 130        | 1.8      | 20          |           |
|           |                |       | 1.17         | mg/L           | 0.10           | 111  | 70         | 130        | 2.2      | 20          |           |
| Lithium   |                |       |              |                |                |      |            |            |          |             |           |

### Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date: 08/11/16Project:CCRRWork Order: T16060120

| Analyte   |                   | Count          | Result      | Units           | RL     | %REC | Low Limit  | High Limit | RPD | RPDLimit | Qual     |
|-----------|-------------------|----------------|-------------|-----------------|--------|------|------------|------------|-----|----------|----------|
| Method:   | E200.7            |                |             |                 |        |      |            |            |     | Batch: E | 3_100518 |
| Lab ID:   | B16062493-001BMS3 | 7 Sar          | mple Matrix | Spike           |        |      | Run: SUB-E | 3263344    |     | 07/05/   | 16 13:49 |
| Antimony  |                   |                | 0.495       | mg/L            | 0.015  | 99   | 70         | 130        |     |          |          |
| Barium    |                   |                | 0.530       | mg/L            | 0.050  | 104  | 70         | 130        |     |          |          |
| Beryllium |                   |                | 0.253       | mg/L            | 0.0010 | 101  | 70         | 130        |     |          |          |
| Cadmium   |                   |                | 0.251       | mg/L            | 0.0010 | 100  | 70         | 130        |     |          |          |
| Chromium  |                   |                | 0.505       | mg/L            | 0.0050 | 101  | 70         | 130        |     |          |          |
| Lithium   |                   |                | 0.539       | mg/L            | 0.10   | 107  | 70         | 130        |     |          |          |
| Molybdenu | m                 |                | 0.515       | mg/L            | 0.0048 | 103  | 70         | 130        |     |          |          |
| Lab ID:   | B16062493-001BMSE | <b>)</b> 7 Sar | mple Matrix | Spike Duplicate |        |      | Run: SUB-E | 3263344    |     | 07/05/   | 16 13:59 |
| Antimony  |                   |                | 0.532       | mg/L            | 0.015  | 106  | 70         | 130        | 7.2 | 20       |          |
| Barium    |                   |                | 0.544       | mg/L            | 0.050  | 107  | 70         | 130        | 2.7 | 20       |          |
| Beryllium |                   |                | 0.256       | mg/L            | 0.0010 | 103  | 70         | 130        | 1.3 | 20       |          |
| Cadmium   |                   |                | 0.257       | mg/L            | 0.0010 | 103  | 70         | 130        | 2.4 | 20       |          |
| Chromium  |                   |                | 0.514       | mg/L            | 0.0050 | 103  | 70         | 130        | 1.9 | 20       |          |
| Lithium   |                   |                | 0.555       | mg/L            | 0.10   | 110  | 70         | 130        | 2.9 | 20       |          |
| Molybdenu | m                 |                | 0.517       | mg/L            | 0.0048 | 103  | 70         | 130        | 0.4 | 20       |          |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:08/11/16Project:CCRRWork Order:T16060120

| Analyte                        |                | Count Re      | esult                   | Units                | RL                        | %REC             | Low Limit      | High Limit        | RPD RPDLimit       | Qual       |
|--------------------------------|----------------|---------------|-------------------------|----------------------|---------------------------|------------------|----------------|-------------------|--------------------|------------|
| Method:                        | E200.8         |               |                         |                      |                           |                  |                |                   | Analytical Run: SU | B-B263348  |
| Lab ID:                        | QCS            | 11 Initial Ca | alibratio               | n Verificatio        | on Standard               |                  |                |                   | 07/0               | 5/16 11:42 |
| Antimony                       |                | 0.0           | 0507                    | mg/L                 | 0.050                     | 101              | 90             | 110               |                    |            |
| Arsenic                        |                | 0.0           | 0503                    | mg/L                 | 0.0050                    | 101              | 90             | 110               |                    |            |
| Barium                         |                | 0.0           | 0489                    | mg/L                 | 0.10                      | 98               | 90             | 110               |                    |            |
| Beryllium                      |                | 0.0           | 0269                    | mg/L                 | 0.0010                    | 107              | 90             | 110               |                    |            |
| Cadmium                        |                | 0.0           | 0255                    | mg/L                 | 0.0010                    | 102              | 90             | 110               |                    |            |
| Chromium                       | ı              | 0.0           | 0497                    | mg/L                 | 0.010                     | 99               | 90             | 110               |                    |            |
| Cobalt                         |                | 0.0           | 0500                    | mg/L                 | 0.010                     | 100              | 90             | 110               |                    |            |
| Lead                           |                | 0.0           | 0492                    | mg/L                 | 0.010                     | 98               | 90             | 110               |                    |            |
| Molybdenu                      | um             | 0.0           | 0489                    | mg/L                 | 0.0050                    | 98               | 90             | 110               |                    |            |
| Selenium                       |                | 0.0           | 0484                    | mg/L                 | 0.0050                    | 97               | 90             | 110               |                    |            |
| Thallium                       |                | 0.0           | 0492                    | mg/L                 | 0.10                      | 98               | 90             | 110               |                    |            |
| Lab ID:                        | QCS            | 11 Initial Ca | alibratio               | n Verificatio        | on Standard               |                  |                |                   | 07/0               | 5/16 14:01 |
| Antimony                       |                | 0.0           | 0498                    | mg/L                 | 0.050                     | 100              | 90             | 110               |                    |            |
| Arsenic                        |                | 0.0           | 0501                    | mg/L                 | 0.0050                    | 100              | 90             | 110               |                    |            |
| Barium                         |                | 0.0           | 0489                    | mg/L                 | 0.10                      | 98               | 90             | 110               |                    |            |
| Beryllium                      |                | 0.0           | 0255                    | mg/L                 | 0.0010                    | 102              | 90             | 110               |                    |            |
| Cadmium                        |                | 0.0           | 0253                    | mg/L                 | 0.0010                    | 101              | 90             | 110               |                    |            |
| Chromium                       | 1              |               | 0497                    | mg/L                 | 0.010                     | 99               | 90             | 110               |                    |            |
| Cobalt                         |                | 0.0           | 0499                    | mg/L                 | 0.010                     | 100              | 90             | 110               |                    |            |
| Lead                           |                | 0.0           | 0487                    | mg/L                 | 0.010                     | 97               | 90             | 110               |                    |            |
| Molybdenu                      | um             | 0.0           | 0485                    | mg/L                 | 0.0050                    | 97               | 90             | 110               |                    |            |
| Selenium                       |                | 0.0           | 0500                    | mg/L                 | 0.0050                    | 100              | 90             | 110               |                    |            |
| Thallium                       |                |               | 0489                    | mg/L                 | 0.10                      | 98               | 90             | 110               |                    |            |
| Method:                        | E200.8         |               |                         |                      |                           |                  |                |                   | Batch              | : B_100518 |
| Lab ID:                        | MB-100518      | 11 Method     | Blank                   |                      |                           |                  | Run: SUB-F     | 3263348           | 07/0               | 5/16 12:42 |
| Antimony                       |                | 0.0           | 0002                    | mg/L                 | 3E-05                     |                  |                |                   |                    |            |
| Arsenic                        |                |               | ND                      | mg/L                 | 7E-05                     |                  |                |                   |                    |            |
| Barium                         |                |               | ND                      | mg/L                 | 9E-05                     |                  |                |                   |                    |            |
| Beryllium                      |                |               | ND                      | mg/L                 | 9E-06                     |                  |                |                   |                    |            |
| Cadmium                        |                | 2             | E-05                    | mg/L                 | 2E-05                     |                  |                |                   |                    |            |
| Chromium                       | 1              |               | 0002                    | mg/L                 | 4E-05                     |                  |                |                   |                    |            |
| Cobalt                         |                |               | ND                      | mg/L                 | 8E-06                     |                  |                |                   |                    |            |
| Lead                           |                | 3             | E-05                    | mg/L                 | 2E-05                     |                  |                |                   |                    |            |
| Molybdenu                      | um             |               | 0002                    | mg/L                 | 3E-05                     |                  |                |                   |                    |            |
| Selenium                       |                |               | ND                      | mg/L                 | 0.0004                    |                  |                |                   |                    |            |
| Thallium                       |                |               | ND                      | mg/L                 | 1.0E-05                   |                  |                |                   |                    |            |
|                                | T16060120-001B | 11 Sample     | Matrix S                | Spike                |                           |                  | Run: SUB-E     | 3263348           | 07/0               | 5/16 13:02 |
|                                |                |               | ).544                   | mg/L                 | 0.0010                    | 109              | 70             | 130               |                    |            |
| Lab ID:                        |                | U             |                         | -                    |                           |                  |                |                   |                    |            |
|                                |                |               | .529                    | mg/L                 | 0.0010                    | 105              | 70             | 130               |                    |            |
| Lab ID:<br>Antimony<br>Arsenic |                | 0             | ).529<br>).540          | mg/L<br>mg/L         | 0.0010<br>0.050           | 105<br>103       | 70<br>70       | 130<br>130        |                    |            |
| Lab ID:<br>Antimony            |                | 0             | ).529<br>).540<br>).286 | mg/L<br>mg/L<br>mg/L | 0.0010<br>0.050<br>0.0010 | 105<br>103<br>97 | 70<br>70<br>70 | 130<br>130<br>130 |                    |            |

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:08/11/16Project:CCRRWork Order:T16060120

| Analyte    |                   | Count   | Result      | Units        | RL      | %REC | Low Limit  | High Limit | RPD | RPDLimit | Qual     |
|------------|-------------------|---------|-------------|--------------|---------|------|------------|------------|-----|----------|----------|
| Method:    | E200.8            |         |             |              |         |      |            |            |     | Batch: E | 3_100518 |
| Lab ID:    | T16060120-001B    | 11 Sa   | mple Matrix | Spike        |         |      | Run: SUB-  | 3263348    |     | 07/05/   | 16 13:02 |
| Chromium   |                   |         | 0.503       | mg/L         | 0.0050  | 100  | 70         | 130        |     |          |          |
| Cobalt     |                   |         | 0.591       | mg/L         | 0.0050  | 97   | 70         | 130        |     |          |          |
| Lead       |                   |         | 0.667       | mg/L         | 0.0010  | 128  | 70         | 130        |     |          |          |
| Molybdenu  | m                 |         | 0.579       | mg/L         | 0.0010  | 116  | 70         | 130        |     |          |          |
| Selenium   |                   |         | 0.514       | mg/L         | 0.0010  | 102  | 70         | 130        |     |          |          |
| Thallium   |                   |         | 0.619       | mg/L         | 0.00050 | 123  | 70         | 130        |     |          |          |
| Lab ID:    | T16060120-001B    | 11 Sa   | mple Matrix | Spike Dupli  | cate    |      | Run: SUB-l | B263348    |     | 07/05/   | 16 13:05 |
| Antimony   |                   |         | 0.556       | mg/L         | 0.0010  | 111  | 70         | 130        | 2.2 | 20       |          |
| Arsenic    |                   |         | 0.535       | mg/L         | 0.0010  | 106  | 70         | 130        | 1.2 | 20       |          |
| Barium     |                   |         | 0.552       | mg/L         | 0.050   | 105  | 70         | 130        | 2.2 | 20       |          |
| Beryllium  |                   |         | 0.292       | mg/L         | 0.0010  | 100  | 70         | 130        | 2.4 | 20       |          |
| Cadmium    |                   |         | 0.270       | mg/L         | 0.0010  | 104  | 70         | 130        | 1.5 | 20       |          |
| Chromium   |                   |         | 0.518       | mg/L         | 0.0050  | 103  | 70         | 130        | 2.9 | 20       |          |
| Cobalt     |                   |         | 0.603       | mg/L         | 0.0050  | 100  | 70         | 130        | 2.1 | 20       |          |
| Lead       |                   |         | 0.729       | mg/L         | 0.0010  | 140  | 70         | 130        | 8.8 | 20       | S        |
| Molybdenui | m                 |         | 0.588       | mg/L         | 0.0010  | 118  | 70         | 130        | 1.7 | 20       |          |
| Selenium   |                   |         | 0.540       | mg/L         | 0.0010  | 108  | 70         | 130        | 5.0 | 20       |          |
| Thallium   |                   |         | 0.679       | mg/L         | 0.00050 | 135  | 70         | 130        | 9.2 | 20       | S        |
| Lab ID:    | LCS-100518        | 11 Lat  | ooratory Co | ntrol Sample | )       |      | Run: SUB-l | 3263348    |     | 07/05/   | 16 13:08 |
| Antimony   |                   |         | 0.563       | mg/L         | 0.0050  | 113  | 85         | 115        |     |          |          |
| Arsenic    |                   |         | 0.507       | mg/L         | 0.0010  | 101  | 85         | 115        |     |          |          |
| Barium     |                   |         | 0.501       | mg/L         | 0.010   | 100  | 85         | 115        |     |          |          |
| Beryllium  |                   |         | 0.274       | mg/L         | 0.0010  | 110  | 85         | 115        |     |          |          |
| Cadmium    |                   |         | 0.265       | mg/L         | 0.0010  | 106  | 85         | 115        |     |          |          |
| Chromium   |                   |         | 0.508       | mg/L         | 0.0010  | 102  | 85         | 115        |     |          |          |
| Cobalt     |                   |         | 0.489       | mg/L         | 0.0010  | 98   | 85         | 115        |     |          |          |
| Lead       |                   |         | 0.558       | mg/L         | 0.0010  | 112  | 85         | 115        |     |          |          |
| Molybdenui | m                 |         | 0.541       | mg/L         | 0.0050  | 108  | 85         | 115        |     |          |          |
| Selenium   |                   |         | 0.501       | mg/L         | 0.0050  | 100  | 85         | 115        |     |          |          |
| Thallium   |                   |         | 0.541       | mg/L         | 0.0010  | 108  | 85         | 115        |     |          |          |
| Lab ID:    | B16062493-001BMS3 | 3 11 Sa | mple Matrix | Spike        |         |      | Run: SUB-l | 3263348    |     | 07/05/   | 16 14:25 |
| Antimony   |                   |         | 0.543       | mg/L         | 0.0010  | 109  | 70         | 130        |     |          |          |
| Arsenic    |                   |         | 0.502       | mg/L         | 0.0010  | 100  | 70         | 130        |     |          |          |
| Barium     |                   |         | 0.511       | mg/L         | 0.050   | 100  | 70         | 130        |     |          |          |
| Beryllium  |                   |         | 0.247       | mg/L         | 0.0010  | 99   | 70         | 130        |     |          |          |
| Cadmium    |                   |         | 0.257       | mg/L         | 0.0010  | 103  | 70         | 130        |     |          |          |
| Chromium   |                   |         | 0.508       | mg/L         | 0.0050  | 102  | 70         | 130        |     |          |          |
| Cobalt     |                   |         | 0.479       | mg/L         | 0.0050  | 96   | 70         | 130        |     |          |          |
| Lead       |                   |         | 0.558       | mg/L         | 0.0010  | 111  | 70         | 130        |     |          |          |
| Molybdenu  | m                 |         | 0.512       | mg/L         | 0.0010  | 102  | 70         | 130        |     |          |          |
| Selenium   |                   |         | 0.510       | mg/L         | 0.0010  | 102  | 70         | 130        |     |          |          |
| Thallium   |                   |         | 0.542       | mg/L         | 0.00050 | 108  | 70         | 130        |     |          |          |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

 $\ensuremath{\mathsf{ND}}$  -  $\ensuremath{\mathsf{Not}}$  detected at the reporting limit.

S - Spike recovery outside of advisory limits.

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date: 08/11/16Project:CCRRWork Order: T16060120

| Analyte   |                   | Count  | Result      | Units           | RL      | %REC | Low Limit  | High Limit | RPD | RPDLimit | Qual     |
|-----------|-------------------|--------|-------------|-----------------|---------|------|------------|------------|-----|----------|----------|
| Method:   | E200.8            |        |             |                 |         |      |            |            |     | Batch: E | 3_100518 |
| Lab ID:   | B16062493-001BMS3 | 11 Sam | nple Matrix | Spike           |         |      | Run: SUB-l | 3263348    |     | 07/05/   | 16 14:25 |
| Lab ID:   | B16062493-001BMSE | 11 Sam | nple Matrix | Spike Duplicate |         |      | Run: SUB-I | 3263348    |     | 07/05/   | 16 14:28 |
| Antimony  |                   |        | 0.550       | mg/L            | 0.0010  | 110  | 70         | 130        | 1.3 | 20       |          |
| Arsenic   |                   |        | 0.512       | mg/L            | 0.0010  | 102  | 70         | 130        | 2.0 | 20       |          |
| Barium    |                   |        | 0.529       | mg/L            | 0.050   | 104  | 70         | 130        | 3.5 | 20       |          |
| Beryllium |                   |        | 0.253       | mg/L            | 0.0010  | 101  | 70         | 130        | 2.2 | 20       |          |
| Cadmium   |                   |        | 0.261       | mg/L            | 0.0010  | 105  | 70         | 130        | 1.6 | 20       |          |
| Chromium  |                   |        | 0.527       | mg/L            | 0.0050  | 105  | 70         | 130        | 3.6 | 20       |          |
| Cobalt    |                   |        | 0.482       | mg/L            | 0.0050  | 96   | 70         | 130        | 0.6 | 20       |          |
| Lead      |                   |        | 0.568       | mg/L            | 0.0010  | 113  | 70         | 130        | 1.8 | 20       |          |
| Molybdenu | ım                |        | 0.513       | mg/L            | 0.0010  | 103  | 70         | 130        | 0.2 | 20       |          |
| Selenium  |                   |        | 0.524       | mg/L            | 0.0010  | 105  | 70         | 130        | 2.7 | 20       |          |
| Thallium  |                   |        | 0.555       | mg/L            | 0.00050 | 111  | 70         | 130        | 2.4 | 20       |          |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:08/11/16Project:CCRRWork Order:T16060120

| Analyte   |                   | Count   | Result           | Units         | RL         | %REC | Low Limit  | High Limit | RPD      | RPDLimit    | Qual     |
|-----------|-------------------|---------|------------------|---------------|------------|------|------------|------------|----------|-------------|----------|
| Method:   | E200.8            |         |                  |               |            |      |            |            | Analytic | al Run: SUB | -B26340  |
| Lab ID:   | QCS               | In      | itial Calibratio | n Verificatio | n Standard |      |            |            |          | 07/06/      | 16 12:07 |
| Arsenic   |                   |         | 0.0492           | mg/L          | 0.0050     | 98   | 90         | 110        |          |             |          |
| Method:   | E200.8            |         |                  |               |            |      |            |            |          | Batch: E    | 3_100518 |
| Lab ID:   | MB-100518         | 11 M    | ethod Blank      |               |            |      | Run: SUB-E | 3263404    |          |             | _<br>'16 |
| Antimony  |                   |         | ND               | mg/L          | 4E-05      |      |            |            |          |             |          |
| Arsenic   |                   |         | ND               | mg/L          | 6E-05      |      |            |            |          |             |          |
| Barium    |                   |         | ND               | mg/L          | 5E-05      |      |            |            |          |             |          |
| Beryllium |                   |         | ND               | mg/L          | 6E-06      |      |            |            |          |             |          |
| Cadmium   |                   |         | ND               | mg/L          | 2E-05      |      |            |            |          |             |          |
| Chromium  |                   |         | ND               | mg/L          | 0.0002     |      |            |            |          |             |          |
| Cobalt    |                   |         | ND               | mg/L          | 1E-05      |      |            |            |          |             |          |
| Lead      |                   |         | ND               | mg/L          | 3E-05      |      |            |            |          |             |          |
| Molybdenu | m                 |         | 0.0001           | mg/L          | 3E-05      |      |            |            |          |             |          |
| Selenium  | III               |         | 0.0001<br>ND     | _             | 0.0002     |      |            |            |          |             |          |
| Thallium  |                   |         | 4E-05            | mg/L          | 1E-05      |      |            |            |          |             |          |
| maillum   |                   |         | 4E-05            | mg/L          | 1E-05      |      |            |            |          |             |          |
| Lab ID:   | LCS-100518        | 11 La   | aboratory Cor    | ntrol Sample  |            |      | Run: SUB-  | 3263404    |          | 07/06/      | 16 16:08 |
| Antimony  |                   |         | 0.520            | mg/L          | 0.0050     | 104  | 85         | 115        |          |             |          |
| Arsenic   |                   |         | 0.481            | mg/L          | 0.0010     | 96   | 85         | 115        |          |             |          |
| Barium    |                   |         | 0.470            | mg/L          | 0.010      | 94   | 85         | 115        |          |             |          |
| Beryllium |                   |         | 0.281            | mg/L          | 0.0010     | 112  | 85         | 115        |          |             |          |
| Cadmium   |                   |         | 0.259            | mg/L          | 0.0010     | 103  | 85         | 115        |          |             |          |
| Chromium  |                   |         | 0.461            | mg/L          | 0.0010     | 92   | 85         | 115        |          |             |          |
| Cobalt    |                   |         | 0.448            | mg/L          | 0.0010     | 90   | 85         | 115        |          |             |          |
| Lead      |                   |         | 0.482            | mg/L          | 0.0010     | 96   | 85         | 115        |          |             |          |
| Molybdenu | m                 |         | 0.551            | mg/L          | 0.0050     | 110  | 85         | 115        |          |             |          |
| Selenium  |                   |         | 0.497            | mg/L          | 0.0050     | 99   | 85         | 115        |          |             |          |
| Thallium  |                   |         | 0.463            | mg/L          | 0.0010     | 93   | 85         | 115        |          |             |          |
| Lab ID:   | B16062493-001BMS3 | 3 11 Sa | ample Matrix     | Spike         |            |      | Run: SUB-E | 3263404    |          | 07/06/      | 16 16:13 |
| Antimony  |                   |         | 0.522            | mg/L          | 0.0010     | 104  | 70         | 130        |          |             |          |
| Arsenic   |                   |         | 0.502            | mg/L          | 0.0010     | 100  | 70         | 130        |          |             |          |
| Barium    |                   |         | 0.478            | mg/L          | 0.050      | 94   | 70         | 130        |          |             |          |
| Beryllium |                   |         | 0.276            | mg/L          | 0.0010     | 110  | 70         | 130        |          |             |          |
| Cadmium   |                   |         | 0.260            | mg/L          | 0.0010     | 104  | 70         | 130        |          |             |          |
| Chromium  |                   |         | 0.494            | mg/L          | 0.0050     | 99   | 70         | 130        |          |             |          |
| Cobalt    |                   |         | 0.483            | mg/L          | 0.0050     | 97   | 70         | 130        |          |             |          |
| Lead      |                   |         | 0.499            | mg/L          | 0.0010     | 100  | 70         | 130        |          |             |          |
| Molybdenu | m                 |         | 0.499            | mg/L          | 0.0010     | 109  | 70         | 130        |          |             |          |
| Selenium  | 111               |         | 0.523            | mg/L          | 0.0010     | 105  | 70         | 130        |          |             |          |
| Thallium  |                   |         | 0.323            | mg/L          | 0.0012     | 94   | 70         | 130        |          |             |          |
|           | B4000405 554555   | . 44 =  |                  | _             |            |      |            |            |          |             |          |
| Lab ID:   | B16062493-001BMSI | 11 Sa   |                  |               |            | 405  | Run: SUB-E |            | 0.4      |             | 16 16:18 |
| Antimony  |                   |         | 0.523            | mg/L          | 0.0010     | 105  | 70         | 130        | 0.1      | 20          |          |
| Arsenic   |                   |         | 0.512            | mg/L          | 0.0010     | 103  | 70         | 130        | 2.1      | 20          |          |

### Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

MDC - Minimum detectable concentration

### College Station, TX 888.690.2218 • Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

# **QA/QC Summary Report**

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date: 08/11/16Project:CCRRWork Order: T16060120

| Analyte   |                   | Count           | Result      | Units           | RL      | %REC | Low Limit | High Limit | RPD | RPDLimit | Qual     |
|-----------|-------------------|-----------------|-------------|-----------------|---------|------|-----------|------------|-----|----------|----------|
| Method:   | E200.8            |                 |             |                 |         |      |           |            |     | Batch: E | 3_100518 |
| Lab ID:   | B16062493-001BMSI | <b>)</b> 11 San | nple Matrix | Spike Duplicate |         |      | Run: SUB- | 3263404    |     | 07/06/   | 16 16:18 |
| Barium    |                   |                 | 0.486       | mg/L            | 0.050   | 96   | 70        | 130        | 1.8 | 20       |          |
| Beryllium |                   |                 | 0.282       | mg/L            | 0.0010  | 113  | 70        | 130        | 2.3 | 20       |          |
| Cadmium   |                   |                 | 0.265       | mg/L            | 0.0010  | 106  | 70        | 130        | 1.9 | 20       |          |
| Chromium  |                   |                 | 0.511       | mg/L            | 0.0050  | 102  | 70        | 130        | 3.4 | 20       |          |
| Cobalt    |                   |                 | 0.494       | mg/L            | 0.0050  | 99   | 70        | 130        | 2.2 | 20       |          |
| Lead      |                   |                 | 0.520       | mg/L            | 0.0010  | 104  | 70        | 130        | 3.9 | 20       |          |
| Molybdenu | m                 |                 | 0.546       | mg/L            | 0.0010  | 109  | 70        | 130        | 0.2 | 20       |          |
| Selenium  |                   |                 | 0.520       | mg/L            | 0.0012  | 104  | 70        | 130        | 0.6 | 20       |          |
| Thallium  |                   |                 | 0.500       | mg/L            | 0.00050 | 100  | 70        | 130        | 6.0 | 20       |          |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:08/11/16Project:CCRRWork Order:T16060120

| Method:<br>Lab ID:<br>Mercury<br>Method: | E245.1            |             |           |            |              |     |            |         |          |             |           |
|------------------------------------------|-------------------|-------------|-----------|------------|--------------|-----|------------|---------|----------|-------------|-----------|
| Mercury                                  | ICV               |             |           |            |              |     |            |         | Analytic | al Run: SUB | -B263296  |
|                                          | -                 | Initial Cal | libration | Verificati | ion Standard |     |            |         |          | 07/01/      | /16 15:49 |
| Method:                                  |                   | 0.00        | 020       | mg/L       | 0.00010      | 101 | 90         | 110     |          |             |           |
|                                          | E245.1            |             |           |            |              |     |            |         |          | Batch: B    | 3_100530  |
| Lab ID:                                  | MB-100530         | Method B    | Blank     |            |              |     | Run: SUB-E | 3263296 |          | 07/01/      | /16 15:54 |
| Mercury                                  |                   |             | ND        | mg/L       | 4E-06        |     |            |         |          |             |           |
| Lab ID:                                  | LCS-100530        | Laborato    | ry Conti  | rol Sampl  | е            |     | Run: SUB-E | 3263296 |          | 07/01/      | /16 15:56 |
| Mercury                                  |                   | 0.00        | 020       | mg/L       | 0.00010      | 101 | 85         | 115     |          |             |           |
| Lab ID:                                  | B16062389-001BMS  | Sample N    | ∕latrix S | pike       |              |     | Run: SUB-E | 3263296 |          | 07/01/      | /16 16:02 |
| Mercury                                  |                   | 0.00        | 020       | mg/L       | 0.00010      | 98  | 70         | 130     |          |             |           |
| Lab ID:                                  | B16062389-001BMSI | Sample N    | Иatrix S  | pike Dupl  | licate       |     | Run: SUB-E | 3263296 |          | 07/01/      | /16 16:04 |
| Mercury                                  |                   | 0.00        | 020       | mg/L       | 0.00010      | 100 | 70         | 130     | 1.6      | 30          |           |
| Lab ID:                                  | B16062472-001CMS  | Sample N    | Matrix S  | pike       |              |     | Run: SUB-E | 3263296 |          | 07/01/      | /16 16:36 |
| Mercury                                  |                   | 0.00        | 020       | mg/L       | 0.00010      | 102 | 70         | 130     |          |             |           |
| Lab ID:                                  | B16062472-001CMSI | Sample N    | Matrix S  | pike Dupl  | licate       |     | Run: SUB-E | 3263296 |          | 07/01/      | /16 16:38 |
| Mercury                                  |                   | 0.00        | 020       | mg/L       | 0.00010      | 102 | 70         | 130     | 0.8      | 30          |           |
| Method:                                  | E245.1            |             |           |            |              |     |            |         | Analytic | al Run: SUB | -B263366  |
| Lab ID:                                  | ICV               | Initial Cal | libration | verificati | ion Standard |     |            |         |          | 07/05/      | /16 16:32 |
| Mercury                                  |                   | 0.00        | 022       | mg/L       | 0.00010      | 110 | 90         | 110     |          |             |           |
| Method:                                  | E245.1            |             |           |            |              |     |            |         |          | Batch: B    | 3_100575  |
| Lab ID:                                  | MB-100575         | Method E    |           |            |              |     | Run: SUB-E | 3263366 |          | 07/05/      | /16 16:59 |
| Mercury                                  |                   |             | ND        | mg/L       | 3E-06        |     |            |         |          |             |           |
| Lab ID:                                  | LCS-100575        | Laborato    | ry Conti  | rol Sampl  | е            |     | Run: SUB-E | 3263366 |          | 07/05/      | /16 17:01 |
| Mercury                                  |                   | 0.00        | 022       | mg/L       | 0.00010      | 108 | 85         | 115     |          |             |           |
| Lab ID:                                  | T16060120-007B    | Sample N    | Matrix S  | pike       |              |     | Run: SUB-E | 3263366 |          | 07/05/      | /16 17:37 |
| Mercury                                  |                   | 0.00        | 049       | mg/L       | 0.00010      | 93  | 70         | 130     |          |             |           |
| Lab ID:                                  | T16060120-007B    | Sample N    | Иatrix S  | pike Dupl  | licate       |     | Run: SUB-E | 3263366 |          | 07/05/      | /16 17:38 |
| Mercury                                  |                   |             | 048       | mg/L       | 0.00010      | 88  | 70         | 130     | 2.3      | 30          |           |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date: 08/11/16Project:CCRRWork Order: T16060120

| Analyte     |                               | Count     | Result            | Units             | RL      | %REC | Low Limit  | High Limit | RPD      | RPDLimit     | Qual      |
|-------------|-------------------------------|-----------|-------------------|-------------------|---------|------|------------|------------|----------|--------------|-----------|
| Method:     | E300.0                        |           |                   |                   |         |      |            |            | Analytic | cal Run: IC1 | _160630A  |
| Lab ID:     | ICV/LCS-W-3770                | 2         | nitial Calibratio | on Verification S | tandard |      |            |            |          | 06/30        | /16 16:17 |
| Chloride    |                               |           | 103               | mg/L              | 2.0     | 103  | 90         | 110        |          |              |           |
| Sulfate     |                               |           | 102               | mg/L              | 2.0     | 102  | 90         | 110        |          |              |           |
| Method:     | E300.0                        |           |                   |                   |         |      |            |            |          | Batc         | h: R68818 |
| Lab ID:     | ICB                           | 2 1       | Method Blank      |                   |         |      | Run: IC1_1 | 60630A     |          | 06/30        | /16 16:37 |
| Chloride    |                               |           | 0.4               | mg/L              | 0.05    |      |            |            |          |              |           |
| Sulfate     |                               |           | ND                | mg/L              | 0.03    |      |            |            |          |              |           |
| Lab ID:     | LFB-3733                      | 2 L       | aboratory For     | tified Blank      |         |      | Run: IC1_1 | 60630A     |          | 06/30        | /16 16:56 |
| Chloride    |                               |           | 23.7              | mg/L              | 1.0     | 93   | 90         | 110        |          |              |           |
| Sulfate     |                               |           | 23.8              | mg/L              | 1.0     | 95   | 90         | 110        |          |              |           |
| Lab ID:     | T16060120-006AMS              | 2 8       | Sample Matrix     | Spike             |         |      | Run: IC1_1 | 60630A     |          | 06/30        | /16 22:07 |
| Chloride    |                               |           | 4360              | mg/L              | 50      | 81   | 90         | 110        |          |              | S         |
| Sulfate     |                               |           | 3410              | mg/L              | 50      | 95   | 90         | 110        |          |              |           |
| - Low spike | e recovery due to matrix into | erference |                   |                   |         |      |            |            |          |              |           |
| Lab ID:     | T16060120-006AMSE             | 2 9       | Sample Matrix     | Spike Duplicate   |         |      | Run: IC1_1 | 60630A     |          | 06/30        | /16 22:27 |
| Chloride    |                               |           | 4400              | mg/L              | 50      | 83   | 90         | 110        | 8.0      | 10           | S         |
| Sulfate     |                               |           | 3470              | mg/L              | 50      | 99   | 90         | 110        | 1.5      | 10           |           |

<sup>-</sup> Low spike recovery due to matrix interference

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.
S - Spike recovery outside of advisory limits.

Billings, MT 800.735.4489 • Casper, WY 888.235.0515

### College Station, TX 888.690.2218 • Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

### **QA/QC Summary Report**

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date: 08/11/16Project:CCRRWork Order: T16060120

| Analyte     |                       | Count | Result      | Units           | RL | %REC | Low Limit | High Limit   | RPD | RPDLimit  | Qual     |
|-------------|-----------------------|-------|-------------|-----------------|----|------|-----------|--------------|-----|-----------|----------|
| Method:     | E903.0                |       |             |                 |    |      |           |              |     | Batch: RA | 226-0136 |
| Lab ID:     | MB-RA226-0136         | 3 Me  | thod Blank  |                 |    |      | Run: RAD1 | 04-CS_160726 | 6A  | 08/01/    | 16 13:23 |
| Total Radio | um as Ra226           |       | 0.04        | pCi/L           |    |      |           |              |     |           | U        |
| Total Radio | um as Ra226 precision | (±)   | 0.1         | pCi/L           |    |      |           |              |     |           |          |
| Total Radio | um as Ra226 MDC       |       | 0.2         | pCi/L           |    |      |           |              |     |           |          |
| Lab ID:     | LCS-RA226-0136        | Lab   | oratory Cor | itrol Sample    |    |      | Run: RAD1 | 04-CS_160726 | 6A  | 08/01/    | 16 13:23 |
| Radium 22   | 26                    |       | 55          | pCi/L           |    | 102  | 80        | 120          |     |           |          |
| Lab ID:     | TapWater1MS           | Sar   | mple Matrix | Spike           |    |      | Run: RAD1 | 04-CS_160726 | 6A  | 08/01/    | 16 13:23 |
| Radium 22   | 26                    |       | 100         | pCi/L           |    | 97   | 70        | 130          |     |           |          |
| Lab ID:     | TapWater1MSD          | Sar   | mple Matrix | Spike Duplicate |    |      | Run: RAD1 | 04-CS_160726 | 6A  | 08/01/    | 16 13:23 |
| Radium 22   | 26                    |       | 110         | pCi/L           |    | 102  | 70        | 130          | 5.4 | 29.3      |          |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

College Station, TX 888.690.2218 • Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

### **QA/QC Summary Report**

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date: 08/11/16Project:CCRRWork Order: T16060120

| Analyte                    | Count        | Result       | Units           | RL | %REC | Low Limit  | High Limit | RPD | RPDLimit    | Qual      |
|----------------------------|--------------|--------------|-----------------|----|------|------------|------------|-----|-------------|-----------|
| Method: RA-05              |              |              |                 |    |      |            |            |     | Batch: C_RA | 228-5259  |
| Lab ID: LCS-228-RA226-8160 | <b>0</b> Lal | boratory Cor | ntrol Sample    |    |      | Run: SUB-0 | C213224    |     | 07/08       | /16 08:26 |
| Radium 228                 |              | 8.6          | pCi/L           |    | 95   | 80         | 120        |     |             |           |
| Lab ID: MB-RA226-8160      | 3 Me         | thod Blank   |                 |    |      | Run: SUB-0 | C213224    |     | 07/08       | /16 08:26 |
| Radium 228                 |              | 2            | pCi/L           |    |      |            |            |     |             |           |
| Radium 228 precision (±)   |              | 0.9          | pCi/L           |    |      |            |            |     |             |           |
| Radium 228 MDC             |              | 1            | pCi/L           |    |      |            |            |     |             |           |
| Lab ID: C16060982-003AMS   | Sa           | mple Matrix  | Spike           |    |      | Run: SUB-0 | C213224    |     | 07/08       | /16 08:26 |
| Radium 228                 |              | 42           | pCi/L           |    | 117  | 70         | 130        |     |             |           |
| Lab ID: C16060982-003AMSI  | <b>D</b> Sa  | mple Matrix  | Spike Duplicate |    |      | Run: SUB-0 | C213224    |     | 07/08       | /16 08:26 |
| Radium 228                 |              | 46           | pCi/L           |    | 142  | 70         | 130        | 8.8 | 47.1        | S         |

<sup>-</sup> Spike response is outside of the acceptance range for this analysis. Since the LCS and the RPD recoveries are acceptable, the response is considered to be matrix related The batch is approved.

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit. S - Spike recovery outside of advisory limits.

| Workorder | Sample         | Recovery |        |
|-----------|----------------|----------|--------|
| T16060120 |                |          |        |
|           | T16060120-001C | 94.67%   | Ra-228 |
|           | T16060120-001C | 114.76%  | Ra-226 |
|           | T16060120-002C | 98.76%   | Ra-228 |
|           | T16060120-002C | 106.21%  | Ra-226 |
|           | T16060120-003C | 100.00%  | Ra-228 |
|           | T16060120-003C | 102.52%  | Ra-226 |
|           | T16060120-004C | 95.53%   | Ra-228 |
|           | T16060120-004C | 100.53%  | Ra-226 |
|           | T16060120-005C | 96.45%   | Ra-228 |
|           | T16060120-005C | 115.15%  | Ra-226 |
|           | T16060120-006C | 84.55%   | Ra-228 |
|           | T16060120-006C | 261.36%  | Ra-226 |
|           | T16060120-007C | 102.49%  | Ra-228 |
|           | T16060120-007C | 106.60%  | Ra-226 |
|           | T16060120-008C | 95.56%   | Ra-228 |
|           | T16060120-008C | 96.70%   | Ra-226 |

# **Work Order Receipt Checklist**

### Texas Municipal Power Agency

Login completed by: Alisha D. Griffin

T16060120

Date Received: 6/23/2016

| 0 ,                                                                                         |                                 |                    |           |                     |
|---------------------------------------------------------------------------------------------|---------------------------------|--------------------|-----------|---------------------|
| Reviewed by:                                                                                | BL2000\ssuchar                  |                    | Re        | ceived by: sas      |
| Reviewed Date:                                                                              | 6/24/2016                       |                    | Car       | rier name: Hand Del |
| Shipping container/cooler in                                                                | good condition?                 | Yes [√]            | No 🖂      | Not Present ☐       |
| Shipping container/cooler in                                                                | good condition:                 | ies [V]            |           | Not Flesent         |
| Custody seals intact on all s                                                               | hipping container(s)/cooler(s)? | Yes                | No 🗌      | Not Present ✓       |
| Custody seals intact on all s                                                               | ample bottles?                  | Yes                | No 🗌      | Not Present ✓       |
| Chain of custody present?                                                                   |                                 | Yes 🗸              | No 🗌      |                     |
| Chain of custody signed who                                                                 | en relinquished and received?   | Yes 🗸              | No 🗌      |                     |
| Chain of custody agrees with                                                                | h sample labels?                | Yes 🗸              | No 🗌      |                     |
| Samples in proper container                                                                 | /bottle?                        | Yes 🗸              | No 🗌      |                     |
| Sample containers intact?                                                                   |                                 | Yes 🗸              | No 🗌      |                     |
| Sufficient sample volume for                                                                | r indicated test?               | Yes 🗸              | No 🗌      |                     |
| All samples received within I<br>(Exclude analyses that are c<br>such as pH, DO, Res CI, Su | considered field parameters     | Yes √              | No 🗌      |                     |
| Temp Blank received in all s                                                                | hipping container(s)/cooler(s)? | Yes 🔽              | No 🗌      | Not Applicable      |
| Container/Temp Blank temp                                                                   | erature:                        | 10.6°C On Ice - Fi | rom Field |                     |
| Water - VOA vials have zero                                                                 | headspace?                      | Yes                | No 🗌      | Not Applicable      |
| Water - pH acceptable upon                                                                  | receipt?                        | Yes                | No 🗹      | Not Applicable      |
|                                                                                             |                                 |                    |           |                     |

### **Standard Reporting Procedures:**

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

#### **Contact and Corrective Action Comments:**

pH check of applicable preserved fractions acceptable (Lot#3633), except for sample -006. 15mL of HNO3 (PRESA39) added to sample -006. Initial pH ok. 24hr pH hold needed. Receipt temperature checked with Thermo 1211: read temperature = 10.6°C; no corrections. ADG 160624 11:19

| Formats:    EDD/EDT(Electronic Data)   Format:   Collection   LEVEL IV   Collection   Time   Time   Collection   Collectio | MATRIX Scholar Solids Sample Type: Av 8 V 8 D DW Sample Type: Av 8 V 8 D DW Air Waster Soils/Soilds  Vegetation Bioassay Other DW - Drinking Water  AATRIX Scholar Soils | SEE ATTACHED | Email:  Purchase Order:  Contact ELI prior to  Rush sample submittal for charges and scheduling – See Instruction Page Comments:  Comments:  Leta, 1210  S  Leta Preserv, Tibobol20 | Sample DAH Quote/ Quote/ Lo bmittal |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| MW-7  MW-3  MW-5  MW-6  1511  MW-6  1511  AW-6  1511  AW-6  1511  AW-6  Blank-Time: 1200  Blank-Time: 1200  Blank-Time: 1200  Blank-Time: 1200  Blank-Time: 1200  Blank-Time: 1200  Batter Time: 1200  Sample Disposal: Return to Client: 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Signature:  Signature:  Signature:  Received by (print)  Received by (print)  Received by (print)  Received by (print)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S X X X X    | Filme:                                                                                                                                                                              | Signature:                          |

mples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested. This serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report. Visit our web site at <a href="https://www.energylab.com">www.energylab.com</a> for additional information, downloadable fee schedule, forms, and links.

### ANALYTICAL SUMMARY REPORT

September 21, 2016

Texas Municipal Power Agency PO Box 7000 Bryan, TX 77805-7000

Work Order: T16080082

Project Name: CCRR

6080082 Quote ID: T3094

Energy Laboratories Inc. College Station TX received the following 8 samples for Texas Municipal Power Agency on 8/23/2016 for analysis.

| Lab ID        | Client Sample ID | Collect Date Receive Date | e Matrix    | Test                                                                                                                                                                                                                 |
|---------------|------------------|---------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T16080082-001 | SSP/AP MW-1      | 08/23/16 10:28 08/23/16   | Groundwater | Metals by ICP/ICPMS, Tot. Rec. Mercury, Total Recoverable Fluoride E300.0 Anions Cations by ICP pH Metals Digestion by EPA 200.2 Radium 226 + Radium 228 Radium 226, Total Radium 228, Total Solids, Total Dissolved |
| T16080082-002 | SSP MW-2         | 08/23/16 11:25 08/23/16   | Groundwater | Same As Above                                                                                                                                                                                                        |
| T16080082-003 | SSP MW-3         | 08/23/16 12:20 08/23/16   | Groundwater | Same As Above                                                                                                                                                                                                        |
| T16080082-004 | SSP MW-4         | 08/23/16 13:27 08/23/16   | Groundwater | Same As Above                                                                                                                                                                                                        |
| T16080082-007 | DUP-1            | 08/23/16 0:00 08/23/16    | Groundwater | Same As Above                                                                                                                                                                                                        |
| T16080082-008 | EQBK 8-23        | 08/23/16 16:24 08/23/16   | Groundwater | Same As Above                                                                                                                                                                                                        |

The analyses presented in this report were performed by Energy Laboratories, Inc., 415 Graham Rd., College Station, TX 77845-9660, unless otherwise noted.

Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

If you have any questions regarding these tests results, please call.

Report Approved By:



**CLIENT:** Texas Municipal Power Agency

Project: CCRR

Work Order: T16080082

**Report Date:** 09/21/16

**CASE NARRATIVE** 

Tests associated with analyst identified as ELI-CA were subcontracted to Energy Laboratories, 2393 Salt Creek Hwy., Casper, WY, EPA Number WY00002 and WY00937.

Tests associated with analyst identified as ELI-B were subcontracted to Energy Laboratories, 1120 S. 27th St., Billings, MT, EPA Number MT00005.

Prepared by College Station, TX Branch

Client: **Texas Municipal Power Agency** 

**CCRR Project:** Lab ID: T16080082-001 Client Sample ID: SSP/AP MW-1

**Report Date:** 09/21/16 Collection Date: 08/23/16 10:28 DateReceived: 08/23/16 Matrix: Groundwater

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL Method | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|--------------------|-------------------------|
| AGRONOMIC PROPERTIES                  |        |       |            |       |                    |                         |
| рН                                    | 6.7    | s.u.  | Н          | 0.1   | A4500-H B          | 08/24/16 14:55 / rda    |
| PHYSICAL PROPERTIES                   |        |       |            |       |                    |                         |
| Solids, Total Dissolved TDS @ 180 C   | 6800   | mg/L  |            | 100   | A2540 C            | 08/24/16 16:15 / rda    |
| MAJOR IONS                            |        |       |            |       |                    |                         |
| Chloride                              | 1460   | mg/L  | D          | 20    | E300.0             | 08/24/16 22:10 / pwh    |
| Fluoride                              | 0.2    | mg/L  |            | 0.1   | A4500-F C          | 08/25/16 13:34 / pwh    |
| Sulfate                               | 2950   | mg/L  | D          | 20    | E300.0             | 08/24/16 22:10 / pwh    |
| Calcium                               | 683    | mg/L  |            | 1     | E200.7             | 08/25/16 14:28 / jtr    |
| Magnesium                             | 147    | mg/L  |            | 1     | E200.7             | 08/25/16 14:28 / jtr    |
| Potassium                             | 64     | mg/L  |            | 1     | E200.7             | 08/25/16 14:28 / jtr    |
| Sodium                                | 1200   | mg/L  |            | 1     | E200.7             | 08/25/16 14:28 / jtr    |
| Boron                                 | 1.0    | mg/L  | D          | 0.2   | E200.7             | 08/25/16 14:28 / jtr    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |                    |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  | E200.8             | 08/31/16 14:29 / eli-b  |
| Arsenic                               | ND     | mg/L  |            | 0.01  | E200.8             | 08/31/16 14:29 / eli-b  |
| Barium                                | 0.05   | mg/L  |            | 0.01  | E200.8             | 08/31/16 14:29 / eli-b  |
| Beryllium                             | ND     | mg/L  |            | 0.001 | E200.7             | 09/01/16 08:30 / eli-b  |
| Cadmium                               | ND     | mg/L  |            | 0.01  | E200.8             | 08/31/16 14:29 / eli-b  |
| Chromium                              | ND     | mg/L  |            | 0.01  | E200.8             | 08/31/16 14:29 / eli-b  |
| Cobalt                                | ND     | mg/L  |            | 0.02  | E200.8             | 08/31/16 14:29 / eli-b  |
| Lead                                  | ND     | mg/L  |            | 0.01  | E200.8             | 08/31/16 14:29 / eli-b  |
| Lithium                               | 1.2    | mg/L  |            | 0.01  | E200.7             | 09/01/16 08:30 / eli-b  |
| Molybdenum                            | ND     | mg/L  |            | 0.05  | E200.8             | 08/31/16 14:29 / eli-b  |
| Selenium                              | ND     | mg/L  |            | 0.01  | E200.8             | 08/31/16 14:29 / eli-b  |
| Thallium                              | ND     | mg/L  |            | 0.01  | E200.8             | 08/31/16 14:29 / eli-b  |
| METALS, TOTAL                         |        |       |            |       |                    |                         |
| Mercury                               | ND     | mg/L  |            | 0.001 | E245.1             | 08/30/16 15:34 / eli-b  |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |                    |                         |
| Radium 228                            | 1.3    | pCi/L | U          |       | RA-05              | 09/06/16 13:48 / eli-ca |
| Radium 228 precision (±)              | 1.1    | pCi/L |            |       | RA-05              | 09/06/16 13:48 / eli-ca |
| Radium 228 MDC                        | 2.1    | pCi/L |            |       | RA-05              | 09/06/16 13:48 / eli-ca |
| Radium 226 + Radium 228               | 2.92   | pCi/L |            |       | A7500-RA           | 09/20/16 00:00 / ajm    |
| Radium 226 + Radium 228 precision (±) | 1.18   | pCi/L |            |       | A7500-RA           | 09/20/16 00:00 / ajm    |
| Total Radium as Ra226                 | 1.6    | pCi/L |            |       | E903.0             | 09/02/16 10:43 / jjc    |
| Total Radium as Ra226 precision (±)   | 0.33   | pCi/L |            |       | E903.0             | 09/02/16 10:43 / jjc    |
| Total Radium as Ra226 MDC             | 0.17   | pCi/L |            |       | E903.0             | 09/02/16 10:43 / jjc    |

Report RL - Analyte reporting limit.

**Definitions:** 

QCL - Quality control limit.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit. D - RL increased due to sample matrix.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

U - Not detected at minimum detectable concentration

Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency

 Project:
 CCRR

 Lab ID:
 T16080082-002

Client Sample ID: SSP MW-2

Report Date: 09/21/16

Collection Date: 08/23/16 11:25

DateReceived: 08/23/16

Matrix: Groundwater

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL Method | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|--------------------|-------------------------|
| AGRONOMIC PROPERTIES                  |        |       |            |       |                    |                         |
|                                       |        |       |            | 0.4   | A 4500 LLD         | 00/04/40 45:00 /        |
| рН                                    | 0.2    | s.u.  | Н          | 0.1   | A4500-H B          | 08/24/16 15:00 / rda    |
| PHYSICAL PROPERTIES                   |        |       |            |       |                    |                         |
| Solids, Total Dissolved TDS @ 180 C   | 7070   | mg/L  |            | 100   | A2540 C            | 08/24/16 16:15 / rda    |
| MAJOR IONS                            |        |       |            |       |                    |                         |
| Chloride                              | 2470   | mg/L  | D          | 50    | E300.0             | 08/24/16 23:08 / pwh    |
| Fluoride                              | 0.2    | mg/L  |            | 0.1   | A4500-F C          | 08/25/16 13:48 / pwh    |
| Sulfate                               | 2070   | mg/L  | D          | 50    | E300.0             | 08/24/16 23:08 / pwh    |
| Calcium                               | 838    | mg/L  |            | 1     | E200.7             | 08/25/16 14:29 / jtr    |
| Magnesium                             | 187    | mg/L  |            | 1     | E200.7             | 08/25/16 14:29 / jtr    |
| Potassium                             | 72     | mg/L  |            | 1     | E200.7             | 08/25/16 14:29 / jtr    |
| Sodium                                | 1110   | mg/L  |            | 1     | E200.7             | 08/25/16 14:29 / jtr    |
| Boron                                 | 0.6    | mg/L  | D          | 0.2   | E200.7             | 08/25/16 14:29 / jtr    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |                    |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  | E200.8             | 08/31/16 14:32 / eli-b  |
| Arsenic                               | ND     | mg/L  |            | 0.01  | E200.8             | 08/31/16 14:32 / eli-b  |
| Barium                                | 0.04   | mg/L  |            | 0.01  | E200.8             | 08/31/16 14:32 / eli-b  |
| Beryllium                             | 0.006  | mg/L  |            | 0.001 | E200.7             | 09/01/16 08:34 / eli-b  |
| Cadmium                               | ND     | mg/L  |            | 0.01  | E200.8             | 08/31/16 14:32 / eli-b  |
| Chromium                              | ND     | mg/L  |            | 0.01  | E200.8             | 08/31/16 14:32 / eli-b  |
| Cobalt                                | 0.05   | mg/L  |            | 0.02  | E200.8             | 08/31/16 14:32 / eli-b  |
| Lead                                  | ND     | mg/L  |            | 0.01  | E200.8             | 08/31/16 14:32 / eli-b  |
| Lithium                               | 0.8    | mg/L  |            | 0.01  | E200.7             | 09/01/16 08:34 / eli-b  |
| Molybdenum                            | ND     | mg/L  |            | 0.05  | E200.8             | 08/31/16 14:32 / eli-b  |
| Selenium                              | ND     | mg/L  |            | 0.01  | E200.8             | 08/31/16 14:32 / eli-b  |
| Thallium                              | ND     | mg/L  |            | 0.01  | E200.8             | 08/31/16 14:32 / eli-b  |
| METALS, TOTAL                         |        |       |            |       |                    |                         |
| Mercury                               | ND     | mg/L  |            | 0.001 | E245.1             | 08/30/16 15:36 / eli-b  |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |                    |                         |
| Radium 228                            | 1.7    | pCi/L |            |       | RA-05              | 09/06/16 13:48 / eli-ca |
| Radium 228 precision (±)              | 1.0    | pCi/L |            |       | RA-05              | 09/06/16 13:48 / eli-ca |
| Radium 228 MDC                        |        | pCi/L |            |       | RA-05              | 09/06/16 13:48 / eli-ca |
| Radium 226 + Radium 228               | 3.11   | pCi/L |            |       | A7500-RA           | 09/20/16 00:00 / ajm    |
| Radium 226 + Radium 228 precision (±) | 1.05   | pCi/L |            |       | A7500-RA           | 09/20/16 00:00 / ajm    |
| Total Radium as Ra226                 | 1.5    | pCi/L |            |       | E903.0             | 09/02/16 10:43 / jjc    |
| Total Radium as Ra226 precision (±)   | 0.32   | pCi/L |            |       | E903.0             | 09/02/16 10:43 / jjc    |
| Total Radium as Ra226 MDC             | 0.18   | pCi/L |            |       | E903.0             | 09/02/16 10:43 / jjc    |

Report RL - Analyte reporting limit.

**Definitions:** QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.ND - Not detected at the reporting limit.

Matrix: Groundwater

#### LABORATORY ANALYTICAL REPORT

Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency

Project: **CCRR** T16080082-003 Lab ID:

Client Sample ID: SSP MW-3

Report Date: 09/21/16 Collection Date: 08/23/16 12:20 DateReceived: 08/23/16

MCL/ QCL **Analyses Result Units** Qualifiers RL Method Analysis Date / By **AGRONOMIC PROPERTIES** Hq 4.9 s.u. Н 0.1 A4500-H B 08/24/16 15:08 / rda **PHYSICAL PROPERTIES** Solids, Total Dissolved TDS @ 180 C 100 08/24/16 16:15 / rda 6610 mg/L A2540 C **MAJOR IONS** Chloride 1790 mg/L D 20 E300.0 08/25/16 00:07 / pwh 0.8 mg/L Fluoride 0.1 A4500-F C 08/25/16 14:02 / pwh Sulfate D 20 E300.0 08/25/16 00:07 / pwh 2500 mg/L Calcium 693 mg/L 1 E200.7 08/25/16 14:31 / jtr E200.7 08/25/16 14:31 / jtr Magnesium 172 mg/L 1 Potassium 58 mg/L E200.7 08/25/16 14:31 / jtr 1 Sodium 1060 mg/L F200 7 08/25/16 14:31 / jtr 1 Boron 2.9 mg/L D 0.2 E200.7 08/25/16 14:31 / jtr **METALS, TOTAL RECOVERABLE** E200.8 08/31/16 14:34 / eli-b Antimony ND mg/L 0.05 Arsenic ND mg/L 0.01 E200.8 08/31/16 14:34 / eli-b **Barium** 0.05 mg/L 0.01 E200.8 08/31/16 14:34 / eli-b 0.001 E200.7 09/01/16 08:38 / eli-b Beryllium 0.1 mg/L 0.01 Cadmium 0.05 mg/L F2008 08/31/16 14:34 / eli-b Chromium ND mg/L 0.01 F200 8 08/31/16 14:34 / eli-b Cobalt 0.6 mg/L 0.02 E200.8 08/31/16 14:34 / eli-b Lead ND mg/L 0.01 E200.8 08/31/16 14:34 / eli-b 0.6 Lithium mg/L 0.01 E200.7 09/01/16 08:38 / eli-b Molybdenum ND mg/L 0.05 F2008 08/31/16 14:34 / eli-b Selenium ND mg/L 0.01 E200.8 08/31/16 14:34 / eli-b Thallium ND mg/L 0.01 E200.8 08/31/16 14:34 / eli-b **METALS, TOTAL** 0.001 E245.1 08/30/16 15:41 / eli-b Mercury ND mg/L **RADIONUCLIDES - TOTAL** Radium 228 30 pCi/L **RA-05** 09/06/16 13:48 / eli-ca Radium 228 precision (±) 5.7 pCi/L **RA-05** 09/06/16 13:48 / eli-ca Radium 228 MDC 2.1 pCi/L **RA-05** 09/06/16 13:48 / eli-ca Radium 226 + Radium 228 49.8 pCi/L A7500-RA 09/20/16 00:00 / ajm Radium 226 + Radium 228 precision (±) 6.07 pCi/L A7500-RA 09/20/16 00:00 / ajm 20 pCi/L Total Radium as Ra226 E903.0 09/02/16 10:43 / jjc Total Radium as Ra226 precision (±) 2.1 pCi/L E903.0 09/02/16 10:43 / jjc Total Radium as Ra226 MDC 0.19 pCi/L E903.0 09/02/16 10:43 / jjc

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency

**Project:** CCRR **Lab ID:** T16080082-004

**Client Sample ID:** SSP MW-4

Report Date: 09/21/16

Collection Date: 08/23/16 13:27

DateReceived: 08/23/16

Matrix: Groundwater

MCL/ QCL **Analyses Result Units** Qualifiers RL Method Analysis Date / By **AGRONOMIC PROPERTIES** Hq 7.1 s.u. Н 0.1 A4500-H B 08/24/16 15:13 / rda **PHYSICAL PROPERTIES** Solids, Total Dissolved TDS @ 180 C 08/24/16 16:16 / rda 3880 mg/L 40 A2540 C **MAJOR IONS** Chloride 1110 mg/L D 20 E300.0 08/25/16 00:26 / pwh 0.1 mg/L Fluoride 0.1 A4500-F C 08/25/16 14:05 / pwh 1140 mg/L Sulfate D 20 E300.0 08/25/16 00:26 / pwh Calcium 395 mg/L 1 E200.7 08/25/16 14:42 / jtr E200.7 08/25/16 14:42 / jtr Magnesium 81 mg/L 1 Potassium 63 mg/L E200.7 08/25/16 14:42 / jtr 1 Sodium 708 mg/L F200 7 08/25/16 14:42 / jtr 1 Boron 1.3 mg/L D 0.2 E200.7 08/25/16 14:42 / jtr METALS, TOTAL RECOVERABLE E200.8 08/31/16 14:37 / eli-b Antimony ND mg/L 0.05 ND mg/L Arsenic 0.01 E200.8 08/31/16 14:37 / eli-b **Barium** 0.04 mg/L 0.01 E200.8 08/31/16 14:37 / eli-b ND 0.001 E200.7 09/01/16 08:42 / eli-b Beryllium mg/L 0.01 Cadmium ND mg/L F2008 08/31/16 14:37 / eli-b Chromium ND mg/L 0.01 F200 8 08/31/16 14:37 / eli-b Cobalt ND mg/L 0.02 E200.8 08/31/16 14:37 / eli-b Lead ND mg/L 0.01 E200.8 08/31/16 14:37 / eli-b Lithium 0.9 mg/L 0.01 E200.7 09/01/16 08:42 / eli-b Molybdenum ND mg/L 0.05 F2008 08/31/16 14:37 / eli-b Selenium ND mg/L 0.01 E200.8 08/31/16 14:37 / eli-b Thallium ND mg/L 0.01 E200.8 08/31/16 14:37 / eli-b **METALS, TOTAL** 0.001 E245.1 08/30/16 15:43 / eli-b Mercury ND mg/L **RADIONUCLIDES - TOTAL** Radium 228 2.7 pCi/L **RA-05** 09/06/16 13:48 / eli-ca Radium 228 precision (±) 1.3 pCi/L **RA-05** 09/06/16 13:48 / eli-ca Radium 228 MDC 1.5 pCi/L **RA-05** 09/06/16 13:48 / eli-ca Radium 226 + Radium 228 6.82 pCi/L A7500-RA 09/20/16 00:00 / ajm Radium 226 + Radium 228 precision (±) 1.41 pCi/L A7500-RA 09/20/16 00:00 / ajm Total Radium as Ra226 4.2 pCi/L E903.0 09/02/16 10:43 / jjc Total Radium as Ra226 precision (±) 0.64 pCi/L E903.0 09/02/16 10:43 / jjc

Report RL - Analyte reporting limit.

Total Radium as Ra226 MDC

**Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

E903.0

0.20 pCi/L

09/02/16 10:43 / jjc

Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency

Project: CCRR

**Lab ID:** T16080082-007

Client Sample ID: DUP-1

Report Date: 09/21/16
Collection Date: 08/23/16
DateReceived: 08/23/16

Matrix: Groundwater

|                                       |        |              |            |              | MCL/ |                  |                                                  |
|---------------------------------------|--------|--------------|------------|--------------|------|------------------|--------------------------------------------------|
| Analyses                              | Result | Units        | Qualifiers | RL           | QCL  | Method           | Analysis Date / By                               |
| AGRONOMIC PROPERTIES                  |        |              |            |              |      |                  |                                                  |
| pH                                    | 7 1    | s.u.         | Н          | 0.1          |      | A4500-H B        | 08/24/16 15:26 / rda                             |
| pri                                   | 7.1    | S.u.         | - 11       | 0.1          |      | A4300-11 B       | 00/24/10 13.20 / Ida                             |
| PHYSICAL PROPERTIES                   |        |              |            |              |      |                  |                                                  |
| Solids, Total Dissolved TDS @ 180 C   | 3900   | mg/L         |            | 40           |      | A2540 C          | 08/24/16 16:17 / rda                             |
| MAJOR IONS                            |        |              |            |              |      |                  |                                                  |
| Chloride                              | 1170   | mg/L         | D          | 20           |      | E300.0           | 08/25/16 01:25 / pwh                             |
| Fluoride                              |        | mg/L         | Б          | 0.1          |      | A4500-F C        | 08/25/16 14:17 / pwh                             |
| Sulfate                               |        | mg/L         | D          | 20           |      | E300.0           | 08/25/16 01:25 / pwh                             |
| Calcium                               |        | mg/L         | J          | 1            |      | E200.7           | 08/25/16 14:48 / jtr                             |
| Magnesium                             |        | mg/L         |            | 1            |      | E200.7           | 08/25/16 14:48 / jtr                             |
| Potassium                             |        | mg/L         |            | 1            |      | E200.7           | 08/25/16 14:48 / jtr                             |
| Sodium                                |        | mg/L         |            | 1            |      | E200.7           | 08/25/16 14:48 / jtr                             |
| Boron                                 |        | mg/L         | D          | 0.2          |      | E200.7           | 08/25/16 14:48 / jtr                             |
|                                       |        | Ü            |            |              |      |                  | ,                                                |
| METALS, TOTAL RECOVERABLE             |        |              |            |              |      |                  |                                                  |
| Antimony                              |        | mg/L         |            | 0.05         |      | E200.8           | 08/31/16 14:44 / eli-b                           |
| Arsenic                               |        | mg/L         |            | 0.01         |      | E200.8           | 08/31/16 14:44 / eli-b                           |
| Barium                                |        | mg/L         |            | 0.01         |      | E200.8           | 08/31/16 14:44 / eli-b                           |
| Beryllium                             |        | mg/L         |            | 0.001        |      | E200.7           | 09/01/16 09:04 / eli-b                           |
| Cadmium                               |        | mg/L         |            | 0.01         |      | E200.8           | 08/31/16 14:44 / eli-b                           |
| Chromium<br>Cobalt                    |        | mg/L         |            | 0.01         |      | E200.8           | 08/31/16 14:44 / eli-b                           |
| Lead                                  |        | mg/L         |            | 0.02         |      | E200.8           | 08/31/16 14:44 / eli-b<br>08/31/16 14:44 / eli-b |
| Lead<br>Lithium                       |        | mg/L<br>mg/L |            | 0.01<br>0.01 |      | E200.8<br>E200.7 | 09/01/16 09:04 / eli-b                           |
| Molybdenum                            |        | mg/L         |            | 0.01         |      | E200.7<br>E200.8 | 08/31/16 14:44 / eli-b                           |
| Selenium                              |        | mg/L         |            | 0.03         |      | E200.8           | 08/31/16 14:44 / eli-b                           |
| Thallium                              |        | mg/L         |            | 0.01         |      | E200.8           | 08/31/16 14:44 / eli-b                           |
| manam                                 | ND     | mg/L         |            | 0.01         |      | L200.0           | 00/01/10 14.44 / 011-0                           |
| METALS, TOTAL                         |        |              |            |              |      |                  |                                                  |
| Mercury                               | ND     | mg/L         |            | 0.001        |      | E245.1           | 08/30/16 15:49 / eli-b                           |
| RADIONUCLIDES - TOTAL                 |        |              |            |              |      |                  |                                                  |
| Radium 228                            | 4.0    | pCi/L        |            |              |      | RA-05            | 09/06/16 13:48 / eli-ca                          |
| Radium 228 precision (±)              |        | pCi/L        |            |              |      | RA-05            | 09/06/16 13:48 / eli-ca                          |
| Radium 228 MDC                        |        | pCi/L        |            |              |      | RA-05            | 09/06/16 13:48 / eli-ca                          |
| Radium 226 + Radium 228               |        | pCi/L        |            |              |      | A7500-RA         | 09/20/16 00:00 / ajm                             |
| Radium 226 + Radium 228 precision (±) |        | pCi/L        |            |              |      | A7500-RA         | 09/20/16 00:00 / ajm                             |
| Total Radium as Ra226                 | 3.2    | pCi/L        |            |              |      | E903.0           | 09/02/16 10:43 / jjc                             |
| Total Radium as Ra226 precision (±)   |        | pCi/L        |            |              |      | E903.0           | 09/02/16 10:43 / jjc                             |
| Total Radium as Ra226 MDC             | 0.17   | pCi/L        |            |              |      | E903.0           | 09/02/16 10:43 / jjc                             |
|                                       |        |              |            |              |      |                  |                                                  |

Report RL - Analyte reporting limit.

**Definitions:** QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

Matrix: Groundwater

### LABORATORY ANALYTICAL REPORT

Prepared by College Station, TX Branch

Client: **Texas Municipal Power Agency** 

**CCRR Project:** Lab ID: T16080082-008 Client Sample ID: EQBK 8-23

**Report Date:** 09/21/16 Collection Date: 08/23/16 16:24 DateReceived: 08/23/16

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| AGRONOMIC PROPERTIES                  |        |       |            |       |             |           |                         |
| рН                                    | 6.2    | s.u.  | Н          | 0.1   |             | A4500-H B | 08/24/16 15:30 / rda    |
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| Solids, Total Dissolved TDS @ 180 C   | ND     | mg/L  |            | 10    |             | A2540 C   | 08/24/16 16:17 / rda    |
| MAJOR IONS                            |        |       |            |       |             |           |                         |
| Chloride                              | ND     | mg/L  |            | 1     |             | E300.0    | 08/25/16 01:44 / pwh    |
| Fluoride                              | ND     | mg/L  |            | 0.1   |             | A4500-F C | 08/25/16 14:24 / pwh    |
| Sulfate                               | ND     | mg/L  |            | 1     |             | E300.0    | 08/25/16 01:44 / pwh    |
| Calcium                               | ND     | mg/L  |            | 1     |             | E200.7    | 08/25/16 14:49 / jtr    |
| Magnesium                             | ND     | mg/L  |            | 1     |             | E200.7    | 08/25/16 14:49 / jtr    |
| Potassium                             | ND     | mg/L  |            | 1     |             | E200.7    | 08/25/16 14:49 / jtr    |
| Sodium                                | ND     | mg/L  |            | 1     |             | E200.7    | 08/25/16 14:49 / jtr    |
| Boron                                 | ND     | mg/L  |            | 0.05  |             | E200.7    | 08/25/16 14:49 / jtr    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  |             | E200.8    | 08/31/16 15:02 / eli-b  |
| Arsenic                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 08/31/16 15:02 / eli-b  |
| Barium                                | ND     | mg/L  |            | 0.01  |             | E200.8    | 08/31/16 15:02 / eli-b  |
| Beryllium                             | ND     | mg/L  |            | 0.001 |             | E200.7    | 09/01/16 09:21 / eli-b  |
| Cadmium                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 08/31/16 15:02 / eli-b  |
| Chromium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 08/31/16 15:02 / eli-b  |
| Cobalt                                | ND     | mg/L  |            | 0.02  |             | E200.8    | 08/31/16 15:02 / eli-b  |
| Lead                                  | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/07/16 14:42 / eli-b  |
| Lithium                               | ND     | mg/L  |            | 0.01  |             | E200.7    | 09/01/16 09:21 / eli-b  |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.8    | 08/31/16 15:02 / eli-b  |
| Selenium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 08/31/16 15:02 / eli-b  |
| Thallium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/07/16 14:42 / eli-b  |
| METALS, TOTAL                         |        |       |            |       |             |           |                         |
| Mercury                               | ND     | mg/L  |            | 0.001 |             | E245.1    | 08/30/16 15:51 / eli-b  |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 228                            | 0.30   | pCi/L | U          |       |             | RA-05     | 09/06/16 15:24 / eli-ca |
| Radium 228 precision (±)              | 1.2    | pCi/L |            |       |             | RA-05     | 09/06/16 15:24 / eli-ca |
| Radium 228 MDC                        | 2.1    | pCi/L |            |       |             | RA-05     | 09/06/16 15:24 / eli-ca |
| Radium 226 + Radium 228               | 0.338  | pCi/L |            |       |             | A7500-RA  | 09/20/16 00:00 / ajm    |
| Radium 226 + Radium 228 precision (±) | 1.25   | pCi/L |            |       |             | A7500-RA  | 09/20/16 00:00 / ajm    |
| Total Radium as Ra226                 | 0.04   | pCi/L | U          |       |             | E903.0    | 09/02/16 10:43 / jjc    |
| Total Radium as Ra226 precision (±)   | 0.12   | pCi/L |            |       |             | E903.0    | 09/02/16 10:43 / jjc    |
| Total Radium as Ra226 MDC             | 0.20   | pCi/L |            |       |             | E903.0    | 09/02/16 10:43 / jjc    |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

U - Not detected at minimum detectable concentration

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

College Station, TX 888.690.2218 • Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

## **QA/QC Summary Report**

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:09/21/16Project:CCRRWork Order:T16080082

| Analyte                           | Count | Result       | Units        | RL  | %REC | Low Limit | High Limit | RPD | RPDLimit   | Qual     |
|-----------------------------------|-------|--------------|--------------|-----|------|-----------|------------|-----|------------|----------|
| Method: A2540 C                   |       |              |              |     |      |           |            |     | Batch: TDS | 3160824B |
| Lab ID: MB-1_160824B              | Me    | ethod Blank  |              |     |      | Run: BAL3 | _160824C   |     | 08/24/     | 16 16:13 |
| Solids, Total Dissolved TDS @ 180 | ) C   | ND           | mg/L         | 5   |      |           |            |     |            |          |
| Lab ID: LCS-2_160824B             | La    | boratory Cor | ntrol Sample |     |      | Run: BAL3 | _160824C   |     | 08/24/     | 16 16:13 |
| Solids, Total Dissolved TDS @ 180 | ) C   | 1110         | mg/L         | 11  | 100  | 90        | 110        |     |            |          |
| Lab ID: T16080082-003A DUP        | Sa    | mple Duplic  | ate          |     |      | Run: BAL3 | _160824C   |     | 08/24/     | 16 16:16 |
| Solids, Total Dissolved TDS @ 180 | С     | 6680         | mg/L         | 100 |      |           |            | 1.1 | 5          |          |

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:09/21/16Project:CCRRWork Order:T16080082

| Analyte  |                   | Count        | Result       | Units         | RL               | %REC | Low Limit | High Limit | RPD       | RPDLimit    | Qual      |
|----------|-------------------|--------------|--------------|---------------|------------------|------|-----------|------------|-----------|-------------|-----------|
| Method:  | A4500-F C         |              |              |               |                  |      |           |            | Analytica | l Run: ATT1 | _160825A  |
| Lab ID:  | CCV-F2            | Co           | ntinuing Cal | ibration Veri | fication Standar | ·d   |           |            |           | 08/25/      | /16 15:26 |
| Fluoride |                   |              | 1.97         | mg/L          | 0.10             | 99   | 90        | 110        |           |             |           |
| Method:  | A4500-F C         |              |              |               |                  |      |           |            |           | Batch       | n: R69456 |
| Lab ID:  | LCS-F-3911        | Lak          | oratory Cor  | ntrol Sample  |                  |      | Run: ATT1 | _160825A   |           | 08/25/      | /16 13:21 |
| Fluoride |                   |              | 5.10         | mg/L          | 0.10             | 100  | 90        | 110        |           |             |           |
| Lab ID:  | MBLK              | Me           | thod Blank   |               |                  |      | Run: ATT1 | _160825A   |           | 08/25       | /16 13:28 |
| Fluoride |                   |              | 0.02         | mg/L          | 0.002            |      |           |            |           |             |           |
| Lab ID:  | T16080082-001ADUF | <b>P</b> Sai | mple Duplic  | ate           |                  |      | Run: ATT1 | _160825A   |           | 08/25       | /16 13:39 |
| Fluoride |                   |              | 0.210        | mg/L          | 0.10             |      |           |            | 0.0       | 10          |           |
| Lab ID:  | T16080082-001AMS  | Sai          | mple Matrix  | Spike         |                  |      | Run: ATT1 | _160825A   |           | 08/25/      | /16 13:42 |
| Fluoride |                   |              | 5.17         | mg/L          | 0.10             | 97   | 90        | 110        |           |             |           |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:09/21/16Project:CCRRWork Order:T16080082

| Analyte |                   | Count        | Result        | Units       | RL            | %REC | Low Limit | High Limit | RPD       | RPDLimit     | Qual      |
|---------|-------------------|--------------|---------------|-------------|---------------|------|-----------|------------|-----------|--------------|-----------|
| Method: | A4500-H B         |              |               |             |               |      |           |            | Analytica | l Run: ATT1_ | _160824A  |
| Lab ID: | ICV/LCS-PH-3840   | Initia       | al Calibratio | n Verificat | tion Standard |      |           |            |           | 08/24/       | 16 13:01  |
| рН      |                   |              | 7.0           | s.u.        | 0.1           | 100  | 98        | 102        |           |              |           |
| Method: | A4500-H B         |              |               |             |               |      |           |            |           | Batch        | n: R69430 |
| Lab ID: | ICV1-PH12_3890    | Initia       | al Calibratio | n Verificat | tion Standard |      | Run: ATT1 | _160824A   |           | 08/24/       | 16 12:53  |
| рН      |                   |              | 12            | s.u.        | 0.1           | 100  | 99        | 101        |           |              |           |
| Lab ID: | ICV2-PH2_3594     | Initia       | al Calibratio | n Verificat | tion Standard |      | Run: ATT1 | _160824A   |           | 08/24/       | 16 12:57  |
| pН      |                   |              | 2.0           | s.u.        | 0.1           | 101  | 95        | 105        |           |              |           |
| Lab ID: | T16080082-002ADUF | <b>P</b> San | nple Duplica  | ate         |               |      | Run: ATT1 | _160824A   |           | 08/24/       | 16 15:04  |
| рН      |                   |              | 6.2           | s.u.        | 0.1           |      |           |            | 0.5       | 3            |           |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:09/21/16Project:CCRRWork Order:T16080082

| Analyte   |                     | Count  | Result         | Units           | RL         | %REC | Low Limit  | High Limit   | RPD      | RPDLimit  | Qual      |
|-----------|---------------------|--------|----------------|-----------------|------------|------|------------|--------------|----------|-----------|-----------|
| Method:   | E200.7              |        |                |                 |            |      |            | Analyti      | cal Run: | ICP102-CS | _160825E  |
| Lab ID:   | Initial Calib Verif | 5 Init | ial Calibratio | on Verification | n Standard |      |            |              |          | 08/25     | /16 13:49 |
| Boron     |                     |        | 0.981          | mg/L            | 0.050      | 98   | 95         | 105          |          |           |           |
| Calcium   |                     |        | 48.8           | mg/L            | 1.0        | 98   | 95         | 105          |          |           |           |
| Magnesiun | n                   |        | 50.3           | mg/L            | 1.0        | 101  | 95         | 105          |          |           |           |
| Potassium | 1                   |        | 49.9           | mg/L            | 1.0        | 100  | 95         | 105          |          |           |           |
| Sodium    |                     |        | 50.7           | mg/L            | 1.0        | 101  | 95         | 105          |          |           |           |
| Lab ID:   | Cont Calib Blank    | 5 Co   | ntinuing Cal   | ibration Blanl  | <          |      |            |              |          | 08/25     | /16 13:51 |
| Boron     |                     |        | 0.0127         | mg/L            | 0.050      |      |            |              |          |           |           |
| Calcium   |                     |        | -0.00680       | mg/L            | 1.0        |      |            |              |          |           |           |
| Magnesiun | n                   |        | 0.00633        | mg/L            | 1.0        |      |            |              |          |           |           |
| Potassium | l                   |        | 0.00469        | mg/L            | 1.0        |      |            |              |          |           |           |
| Sodium    |                     |        | 0.00335        | mg/L            | 1.0        |      |            |              |          |           |           |
| Method:   | E200.7              |        |                |                 |            |      |            |              |          | Batcl     | n: R69457 |
| Lab ID:   | IPC                 | 5 Init | ial Precision  | and Recove      | ry         |      | Run: ICP10 | 2-CS_160825B |          | 08/25     | /16 13:55 |
| Boron     |                     |        | 0.970          | mg/L            | 0.050      | 97   | 95         | 105          |          |           |           |
| Calcium   |                     |        | 48.5           | mg/L            | 1.0        | 97   | 95         | 105          |          |           |           |
| Magnesiun | n                   |        | 50.4           | mg/L            | 1.0        | 101  | 95         | 105          |          |           |           |
| Potassium | ı                   |        | 48.6           | mg/L            | 1.0        | 97   | 95         | 105          |          |           |           |
| Sodium    |                     |        | 49.4           | mg/L            | 1.0        | 99   | 95         | 105          |          |           |           |
| Lab ID:   | LCS-160824          | 5 Lal  | boratory Cor   | ntrol Sample    |            |      | Run: ICP10 | 2-CS_160825B |          | 08/25     | /16 14:00 |
| Calcium   |                     |        | 48.8           | mg/L            | 1.0        | 98   | 85         | 115          |          |           |           |
| Magnesiun | n                   |        | 50.3           | mg/L            | 1.0        | 101  | 85         | 115          |          |           |           |
| Potassium | ı                   |        | 49.0           | mg/L            | 1.0        | 98   | 85         | 115          |          |           |           |
| Sodium    |                     |        | 50.1           | mg/L            | 1.0        | 100  | 85         | 115          |          |           |           |
| Boron     |                     |        | 0.983          | mg/L            | 0.050      | 97   | 85         | 115          |          |           |           |
| Lab ID:   | MB-160824           | 5 Me   | thod Blank     |                 |            |      | Run: ICP10 | 2-CS_160825B |          | 08/25     | /16 14:02 |
| Calcium   |                     |        | ND             | mg/L            | 0.08       |      |            |              |          |           |           |
| Magnesiun | n                   |        | 0.008          | mg/L            | 0.004      |      |            |              |          |           |           |
| Potassium | l                   |        | 0.004          | mg/L            | 0.002      |      |            |              |          |           |           |
| Sodium    |                     |        | ND             | mg/L            | 0.02       |      |            |              |          |           |           |
| Boron     |                     |        | 0.01           | mg/L            | 0.001      |      |            |              |          |           |           |
| Lab ID:   | T16080082-003ASD    | 5 Se   | rial Dilution  |                 |            |      | Run: ICP10 | 2-CS_160825B |          | 08/25     | /16 14:37 |
| Calcium   |                     |        | 712            | mg/L            | 5.0        |      | 0          | 0            | 2.7      | 10        |           |
| Magnesiun | n                   |        | 170            | mg/L            | 5.0        |      | 0          | 0            | 1.0      | 10        |           |
| Potassium | l                   |        | 51.6           | mg/L            | 5.0        |      | 0          | 0            | 11       | 10        | R         |
| Sodium    |                     |        | 1050           | mg/L            | 5.0        |      | 0          | 0            | 0.9      | 10        |           |
| Boron     |                     |        | 2.87           | mg/L            | 1.2        |      | 0          | 0            | 1.2      | 10        |           |
| Lab ID:   | T16080082-003AMS    | 5 Sa   | mple Matrix    | Spike           |            |      | Run: ICP10 | 2-CS_160825B |          | 08/25     | /16 14:38 |
| Calcium   |                     |        | 925            | mg/L            | 1.0        | 93   | 70         | 130          |          |           |           |
| Magnesiun | n                   |        | 405            | mg/L            | 1.0        | 93   | 70         | 130          |          |           |           |
| Potassium |                     |        | 330            | mg/L            | 1.0        | 109  | 70         | 130          |          |           |           |

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

R - RPD exceeds advisory limit.

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:09/21/16Project:CCRRWork Order:T16080082

| Analyte   |                     | Count         | Result          | Units           | RL          | %REC | Low Limit  | High Limit   | RPD     | RPDLimit   | Qual      |
|-----------|---------------------|---------------|-----------------|-----------------|-------------|------|------------|--------------|---------|------------|-----------|
| Method:   | E200.7              |               |                 |                 |             |      |            |              |         | Batch      | n: R69457 |
| Lab ID:   | T16080082-003AMS    | 5 Sa          | mple Matrix     | Spike           |             |      | Run: ICP10 | 2-CS_160825B |         | 08/25/     | 16 14:38  |
| Sodium    |                     |               | 1290            | mg/L            | 1.0         |      | 70         | 130          |         |            | Α         |
| Boron     |                     |               | 7.79            | mg/L            | 0.25        | 98   | 70         | 130          |         |            |           |
| Lab ID:   | T16080082-003AMSI   | <b>)</b> 5 Sa | mple Matrix     | Spike Duplic    | cate        |      | Run: ICP10 | 2-CS_160825B |         | 08/25/     | 16 14:40  |
| Calcium   |                     |               | 924             | mg/L            | 1.0         | 92   | 70         | 130          | 0.1     | 20         |           |
| Magnesium | า                   |               | 404             | mg/L            | 1.0         | 93   | 70         | 130          | 0.2     | 20         |           |
| Potassium |                     |               | 332             | mg/L            | 1.0         | 110  | 70         | 130          | 0.4     | 20         |           |
| Sodium    |                     |               | 1290            | mg/L            | 1.0         |      | 70         | 130          | 0.2     | 20         | Α         |
| Boron     |                     |               | 7.79            | mg/L            | 0.25        | 98   | 70         | 130          | 0.0     | 20         |           |
| Method:   | E200.7              |               |                 |                 |             |      |            | Analytic     | al Run: | ICP102-CS_ | _160826C  |
| Lab ID:   | Initial Calib Verif | Init          | tial Calibratio | on Verification | on Standard |      |            |              |         | 08/26/     | 16 14:59  |
| Boron     |                     |               | 0.978           | mg/L            | 0.050       | 98   | 95         | 105          |         |            |           |
| Lab ID:   | Cont Calib Blank    | Co            | ntinuing Cal    | ibration Blar   | nk          |      |            |              |         | 08/26/     | 16 15:01  |
| Boron     |                     |               | 0.0215          | mg/L            | 0.050       |      |            |              |         |            |           |
| Method:   | E200.7              |               |                 |                 |             |      |            |              |         | Batch      | n: R69477 |
| Lab ID:   | IPC                 | Init          | tial Precisior  | and Recov       | ery         |      | Run: ICP10 | 2-CS_160826C |         | 08/26/     | 16 15:05  |
| Boron     |                     |               | 0.946           | mg/L            | 0.050       | 95   | 95         | 105          |         |            |           |
| Lab ID:   | LCS-160826          | La            | boratory Co     | ntrol Sample    | •           |      | Run: ICP10 | 2-CS 160826C |         | 08/26/     | 16 15:12  |
| Boron     |                     |               | 0.955           | mg/L            | 0.050       | 93   | 85         | 115          |         |            |           |
| Lab ID:   | MB-160826           | Me            | ethod Blank     |                 |             |      | Run: ICP10 | 2-CS_160826C |         | 08/26/     | 16 15:14  |
| Boron     |                     |               | 0.02            | mg/L            | 0.001       |      |            |              |         |            |           |
| Lab ID:   | T16080091-001ASD    | Se            | rial Dilution   |                 |             |      | Run: ICP10 | 2-CS 160826C |         | 08/26/     | 16 15:21  |
| Boron     |                     |               | 0.566           | mg/L            | 0.25        |      | 0          | 0            | 5.7     | 10         |           |
| Lab ID:   | T16080091-001AMS    | Sa            | mple Matrix     | Spike           |             |      | Run: ICP10 | 2-CS_160826C |         | 08/26/     | 16 15:23  |
| Boron     |                     |               | 1.52            | mg/L            | 0.050       | 98   | 70         | 130          |         |            |           |
| Lab ID:   | T16080091-001AMSI   | <b>)</b> Sa   | mple Matrix     | Spike Duplic    | cate        |      | Run: ICP10 | 2-CS_160826C |         | 08/26/     | 16 15:32  |
| Boron     |                     |               | 1.52            | mg/L            | 0.050       | 99   | 70         | 130          | 0.6     | 20         |           |

### Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Texas Municipal Power Agency **Report Date:** 09/21/16 Project: CCRR Work Order: T16080082

| Analyte   |                   | Count      | Result        | Units         | RL               | %REC | Low Limit  | High Limit | RPD      | RPDLimit    | Qual      |
|-----------|-------------------|------------|---------------|---------------|------------------|------|------------|------------|----------|-------------|-----------|
| Method:   | E200.7            |            |               |               |                  |      |            |            | Analytic | al Run: SUB | -B266359  |
| Lab ID:   | ICV               | 2 C        | ontinuing Cal | ibration Veri | fication Standaı | rd   |            |            |          | 08/31       | /16 09:21 |
| Beryllium |                   |            | 1.23          | mg/L          | 0.010            | 99   | 95         | 105        |          |             |           |
| Lithium   |                   |            | 1.23          | mg/L          | 0.10             | 98   | 95         | 105        |          |             |           |
| Method:   | E200.7            |            |               |               |                  |      |            |            |          | Batch: I    | B_102226  |
| Lab ID:   | MB-102226         | 2 M        | lethod Blank  |               |                  |      | Run: SUB-E | 3266359    |          | 09/01       | /16 07:48 |
| Beryllium |                   |            | ND            | mg/L          | 0.0001           |      |            |            |          |             |           |
| Lithium   |                   |            | 0.004         | mg/L          | 0.002            |      |            |            |          |             |           |
| Lab ID:   | LCS-102226        | 2 L:       | aboratory Cor | ntrol Sample  |                  |      | Run: SUB-E | 3266359    |          | 09/01       | /16 07:52 |
| Beryllium |                   |            | 0.261         | mg/L          | 0.010            | 104  | 85         | 115        |          |             |           |
| Lithium   |                   |            | 0.518         | mg/L          | 0.10             | 103  | 85         | 115        |          |             |           |
| Lab ID:   | B16082684-001CMS  | 2 S        | ample Matrix  | Spike         |                  |      | Run: SUB-E | 3266359    |          | 09/01       | /16 08:13 |
| Beryllium |                   |            | 0.262         | mg/L          | 0.0010           | 105  | 70         | 130        |          |             |           |
| Lithium   |                   |            | 0.576         | mg/L          | 0.10             | 103  | 70         | 130        |          |             |           |
| Lab ID:   | B16082684-001CMSI | <b>2</b> S | ample Matrix  | Spike Duplic  | cate             |      | Run: SUB-E | 3266359    |          | 09/01       | /16 08:16 |
| Beryllium |                   |            | 0.257         | mg/L          | 0.0010           | 103  | 70         | 130        | 2.0      | 20          |           |
| Lithium   |                   |            | 0.564         | mg/L          | 0.10             | 100  | 70         | 130        | 2.1      | 20          |           |
| Lab ID:   | T16080082-007B    | 2 S        | ample Matrix  | Spike         |                  |      | Run: SUB-E | 3266359    |          | 09/01       | /16 09:14 |
| Beryllium |                   |            | 0.252         | mg/L          | 0.0010           | 101  | 70         | 130        |          |             |           |
| Lithium   |                   |            | 1.37          | mg/L          | 0.10             | 97   | 70         | 130        |          |             |           |
| Lab ID:   | T16080082-007B    | 2 S        | ample Matrix  | Spike Duplic  | cate             |      | Run: SUB-E | 3266359    |          | 09/01       | /16 09:18 |
| Beryllium |                   |            | 0.256         | mg/L          | 0.0010           | 102  | 70         | 130        | 1.4      | 20          |           |
| Lithium   |                   |            | 1.39          | mg/L          | 0.10             | 101  | 70         | 130        | 1.6      | 20          |           |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:09/21/16Project:CCRRWork Order:T16080082

| Analyte   |                   | Count     | Result         | Units         | RL          | %REC | Low Limit  | High Limit | RPD      | RPDLimit    | Qual      |
|-----------|-------------------|-----------|----------------|---------------|-------------|------|------------|------------|----------|-------------|-----------|
| Method:   | E200.8            |           |                |               |             |      |            |            | Analytic | al Run: SUB | -B266370  |
| Lab ID:   | QCS               | 10 Initia | al Calibration | on Verificati | on Standard |      |            |            |          | 08/31/      | /16 11:25 |
| Antimony  |                   |           | 0.0488         | mg/L          | 0.050       | 98   | 90         | 110        |          |             |           |
| Arsenic   |                   |           | 0.0499         | mg/L          | 0.0050      | 100  | 90         | 110        |          |             |           |
| Barium    |                   |           | 0.0507         | mg/L          | 0.10        | 101  | 90         | 110        |          |             |           |
| Cadmium   |                   |           | 0.0246         | mg/L          | 0.0010      | 98   | 90         | 110        |          |             |           |
| Chromium  |                   |           | 0.0502         | mg/L          | 0.010       | 100  | 90         | 110        |          |             |           |
| Cobalt    |                   |           | 0.0503         | mg/L          | 0.010       | 101  | 90         | 110        |          |             |           |
| Lead      |                   |           | 0.0499         | mg/L          | 0.010       | 100  | 90         | 110        |          |             |           |
| Molybdenu | ım                |           | 0.0483         | mg/L          | 0.0050      | 97   | 90         | 110        |          |             |           |
| Selenium  |                   |           | 0.0490         | mg/L          | 0.0050      | 98   | 90         | 110        |          |             |           |
| Thallium  |                   |           | 0.0498         | mg/L          | 0.10        | 100  | 90         | 110        |          |             |           |
| Method:   | E200.8            |           |                |               |             |      |            |            |          | Batch: I    | B_102226  |
| Lab ID:   | MB-102226         | 10 Meth   | nod Blank      |               |             |      | Run: SUB-  | 3266370    |          | 08/31/      | /16 12:24 |
| Antimony  |                   |           | ND             | mg/L          | 3E-05       |      |            |            |          |             |           |
| Arsenic   |                   |           | ND             | mg/L          | 7E-05       |      |            |            |          |             |           |
| Barium    |                   |           | ND             | mg/L          | 9E-05       |      |            |            |          |             |           |
| Cadmium   |                   |           | ND             | mg/L          | 2E-05       |      |            |            |          |             |           |
| Chromium  |                   |           | 0.0003         | mg/L          | 4E-05       |      |            |            |          |             |           |
| Cobalt    |                   |           | 2E-05          | mg/L          | 8E-06       |      |            |            |          |             |           |
| Lead      |                   |           | ND             | mg/L          | 2E-05       |      |            |            |          |             |           |
| Molybdenu | ım                |           | ND             | mg/L          | 3E-05       |      |            |            |          |             |           |
| Selenium  |                   |           | ND             | mg/L          | 0.0004      |      |            |            |          |             |           |
| Thallium  |                   |           | ND             | mg/L          | 1.0E-05     |      |            |            |          |             |           |
| Lab ID:   | LCS-102226        | 10 Labo   | oratory Co     | ntrol Sampl   | e           |      | Run: SUB-l | 3266370    |          | 08/31/      | /16 14:04 |
| Antimony  |                   |           | 0.495          | mg/L          | 0.0050      | 99   | 85         | 115        |          |             |           |
| Arsenic   |                   |           | 0.489          | mg/L          | 0.0010      | 98   | 85         | 115        |          |             |           |
| Barium    |                   |           | 0.504          | mg/L          | 0.010       | 101  | 85         | 115        |          |             |           |
| Cadmium   |                   |           | 0.254          | mg/L          | 0.0010      | 102  | 85         | 115        |          |             |           |
| Chromium  |                   |           | 0.491          | mg/L          | 0.0010      | 98   | 85         | 115        |          |             |           |
| Cobalt    |                   |           | 0.492          | mg/L          | 0.0010      | 98   | 85         | 115        |          |             |           |
| Lead      |                   |           | 0.496          | mg/L          | 0.0010      | 99   | 85         | 115        |          |             |           |
| Molybdenu | ım                |           | 0.491          | mg/L          | 0.0050      | 98   | 85         | 115        |          |             |           |
| Selenium  |                   |           | 0.484          | mg/L          | 0.0050      | 97   | 85         | 115        |          |             |           |
| Thallium  |                   |           | 0.488          | mg/L          | 0.0010      | 98   | 85         | 115        |          |             |           |
| Lab ID:   | B16082684-001CMS3 | 10 Sam    | nple Matrix    | Spike         |             |      | Run: SUB-I | 3266370    |          | 08/31/      | /16 14:07 |
| Antimony  |                   |           | 0.501          | mg/L          | 0.0010      | 100  | 70         | 130        |          |             |           |
| Arsenic   |                   |           | 0.495          | mg/L          | 0.0010      | 99   | 70         | 130        |          |             |           |
| Barium    |                   |           | 0.561          | mg/L          | 0.050       | 100  | 70         | 130        |          |             |           |
| Cadmium   |                   |           | 0.251          | mg/L          | 0.0010      | 100  | 70         | 130        |          |             |           |
| Chromium  |                   |           | 0.488          | mg/L          | 0.0050      | 97   | 70         | 130        |          |             |           |
| Cobalt    |                   |           | 0.477          | mg/L          | 0.0050      | 95   | 70         | 130        |          |             |           |
| Lead      |                   |           | 0.482          | mg/L          | 0.0010      | 96   | 70         | 130        |          |             |           |
| Molybdenu | ım                |           | 0.500          | mg/L          | 0.0010      | 100  | 70         | 130        |          |             |           |

### Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:09/21/16Project:CCRRWork Order:T16080082

| Analyte    |                   | Count  | Result        | Units          | RL          | %REC | Low Limit  | High Limit | RPD      | RPDLimit    | Qual      |
|------------|-------------------|--------|---------------|----------------|-------------|------|------------|------------|----------|-------------|-----------|
| Method:    | E200.8            |        |               |                |             |      |            |            |          | Batch: I    | B_10222   |
| Lab ID:    | B16082684-001CMS3 | 10 Sa  | mple Matrix   | Spike          |             |      | Run: SUB-  | 3266370    |          | 08/31/      | /16 14:07 |
| Selenium   |                   |        | 0.482         | mg/L           | 0.0010      | 96   | 70         | 130        |          |             |           |
| Thallium   |                   |        | 0.476         | mg/L           | 0.00050     | 95   | 70         | 130        |          |             |           |
| Lab ID:    | B16082684-001CMSE | 10 Sa  | mple Matrix   | Spike Duplic   | cate        |      | Run: SUB-E | 3266370    |          | 08/31/      | /16 14:09 |
| Antimony   |                   |        | 0.507         | mg/L           | 0.0010      | 101  | 70         | 130        | 1.2      | 20          |           |
| Arsenic    |                   |        | 0.495         | mg/L           | 0.0010      | 99   | 70         | 130        | 0.0      | 20          |           |
| Barium     |                   |        | 0.574         | mg/L           | 0.050       | 102  | 70         | 130        | 2.3      | 20          |           |
| Cadmium    |                   |        | 0.251         | mg/L           | 0.0010      | 100  | 70         | 130        | 0.0      | 20          |           |
| Chromium   |                   |        | 0.493         | mg/L           | 0.0050      | 98   | 70         | 130        | 0.9      | 20          |           |
| Cobalt     |                   |        | 0.482         | mg/L           | 0.0050      | 96   | 70         | 130        | 1.0      | 20          |           |
| Lead       |                   |        | 0.490         | mg/L           | 0.0010      | 98   | 70         | 130        | 1.7      | 20          |           |
| Molybdenu  | m                 |        | 0.507         | mg/L           | 0.0010      | 101  | 70         | 130        | 1.5      | 20          |           |
| Selenium   |                   |        | 0.484         | mg/L           | 0.0010      | 97   | 70         | 130        | 0.4      | 20          |           |
| Thallium   |                   |        | 0.483         | mg/L           | 0.00050     | 97   | 70         | 130        | 1.5      | 20          |           |
| Lab ID:    | T16080082-007B    | 10 Sa  | mple Matrix   | Spike          |             |      | Run: SUB-E | 3266370    |          | 08/31/      | /16 14:54 |
| Antimony   |                   |        | 0.510         | mg/L           | 0.0010      | 102  | 70         | 130        |          |             |           |
| Arsenic    |                   |        | 0.502         | mg/L           | 0.0010      | 100  | 70         | 130        |          |             |           |
| Barium     |                   |        | 0.572         | mg/L           | 0.050       | 106  | 70         | 130        |          |             |           |
| Cadmium    |                   |        | 0.261         | mg/L           | 0.0010      | 104  | 70         | 130        |          |             |           |
| Chromium   |                   |        | 0.513         | mg/L           | 0.0050      | 103  | 70         | 130        |          |             |           |
| Cobalt     |                   |        | 0.520         | mg/L           | 0.0050      | 103  | 70         | 130        |          |             |           |
| Lead       |                   |        | 0.513         | mg/L           | 0.0010      | 103  | 70         | 130        |          |             |           |
| Molybdenui | m                 |        | 0.500         | mg/L           | 0.0010      | 100  | 70         | 130        |          |             |           |
| Selenium   |                   |        | 0.484         | mg/L           | 0.0021      | 97   | 70         | 130        |          |             |           |
| Thallium   |                   |        | 0.497         | mg/L           | 0.00050     | 99   | 70         | 130        |          |             |           |
| Lab ID:    | T16080082-007B    | 10 Sa  | mple Matrix   | Spike Duplic   | cate        |      | Run: SUB-E | 3266370    |          | 08/31/      | /16 14:57 |
| Antimony   |                   |        | 0.510         | mg/L           | 0.0010      | 102  | 70         | 130        | 0.2      | 20          |           |
| Arsenic    |                   |        | 0.499         | mg/L           | 0.0010      | 99   | 70         | 130        | 0.6      | 20          |           |
| Barium     |                   |        | 0.561         | mg/L           | 0.050       | 104  | 70         | 130        | 1.9      | 20          |           |
| Cadmium    |                   |        | 0.258         | mg/L           | 0.0010      | 103  | 70         | 130        | 1.0      | 20          |           |
| Chromium   |                   |        | 0.498         | mg/L           | 0.0050      | 100  | 70         | 130        | 2.9      | 20          |           |
| Cobalt     |                   |        | 0.504         | mg/L           | 0.0050      | 100  | 70         | 130        | 3.0      | 20          |           |
| Lead       |                   |        | 0.501         | mg/L           | 0.0010      | 100  | 70         | 130        | 2.5      | 20          |           |
| Molybdenui | m                 |        | 0.504         | mg/L           | 0.0010      | 101  | 70         | 130        | 0.7      | 20          |           |
| Selenium   |                   |        | 0.479         | mg/L           | 0.0021      | 96   | 70         | 130        | 0.9      | 20          |           |
| Thallium   |                   |        | 0.486         | mg/L           | 0.00050     | 97   | 70         | 130        | 2.2      | 20          |           |
| Method:    | E200.8            |        |               |                |             |      |            |            | Analytic | al Run: SUB | -B26666   |
| Lab ID:    | QCS               | 2 Init | ial Calibrati | on Verificatio | on Standard |      |            |            |          | 09/07/      | /16 11:45 |
| Lead       |                   |        | 0.0498        | mg/L           | 0.010       | 100  | 90         | 110        |          |             |           |
|            |                   |        |               |                |             |      |            |            |          |             |           |

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:09/21/16Project:CCRRWork Order:T16080082

| Analyte |                | Count   | Result     | Units           | RL       | %REC | Low Limit  | High Limit | RPD      | RPDLimit    | Qual     |
|---------|----------------|---------|------------|-----------------|----------|------|------------|------------|----------|-------------|----------|
| Method: | E245.1         |         |            |                 |          |      |            |            | Analytic | al Run: SUB | -B266327 |
| Lab ID: | ICV            | Initial | Calibratio | on Verification | Standard |      |            |            |          | 08/30/      | 16 15:04 |
| Mercury |                |         | 0.0020     | mg/L            | 0.00010  | 102  | 90         | 110        |          |             |          |
| Method: | E245.1         |         |            |                 |          |      |            |            |          | Batch: I    | 3_102237 |
| Lab ID: | MB-102237      | Metho   | d Blank    |                 |          |      | Run: SUB-E | 3266327    |          | 08/30/      | 16 15:30 |
| Mercury |                |         | ND         | mg/L            | 4E-06    |      |            |            |          |             |          |
| Lab ID: | LCS-102237     | Labora  | atory Cor  | ntrol Sample    |          |      | Run: SUB-E | 3266327    |          | 08/30/      | 16 15:32 |
| Mercury |                |         | 0.0020     | mg/L            | 0.00010  | 98   | 85         | 115        |          |             |          |
| Lab ID: | T16080082-002B | Samp    | le Matrix  | Spike           |          |      | Run: SUB-E | 3266327    |          | 08/30/      | 16 15:38 |
| Mercury |                | 1       | 0.0018     | mg/L            | 0.00010  | 89   | 70         | 130        |          |             |          |
| Lab ID: | T16080082-002B | Samp    | le Matrix  | Spike Duplica   | te       |      | Run: SUB-E | 3266327    |          | 08/30/      | 16 15:40 |
| Mercury |                |         | 0.0018     | mg/L            | 0.00010  | 88   | 70         | 130        | 0.4      | 30          |          |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency **Report Date:** 09/21/16 Project: CCRR Work Order: T16080082

| Analyte  |                   | Count         | Result         | Units              | RL     | %REC | Low Limit  | High Limit | RPD      | RPDLimit     | Qual      |
|----------|-------------------|---------------|----------------|--------------------|--------|------|------------|------------|----------|--------------|-----------|
| Method:  | E300.0            |               |                |                    |        |      |            |            | Analytic | cal Run: IC1 | _160824A  |
| Lab ID:  | ICV/LCS-W-3770    | 2 Init        | ial Calibratio | on Verification St | andard |      |            |            |          | 08/24        | /16 17:38 |
| Chloride |                   |               | 99.9           | mg/L               | 2.0    | 100  | 90         | 110        |          |              |           |
| Sulfate  |                   |               | 102            | mg/L               | 2.0    | 102  | 90         | 110        |          |              |           |
| Method:  | E300.0            |               |                |                    |        |      |            |            |          | Batch        | n: R69432 |
| Lab ID:  | ICB               | 2 Me          | thod Blank     |                    |        |      | Run: IC1_1 | 60824A     |          | 08/24        | /16 17:57 |
| Chloride |                   |               | 0.8            | mg/L               | 0.05   |      |            |            |          |              |           |
| Sulfate  |                   |               | ND             | mg/L               | 0.03   |      |            |            |          |              |           |
| Lab ID:  | LFB-3911          | 2 Lal         | ooratory For   | tified Blank       |        |      | Run: IC1_1 | 60824A     |          | 08/24        | /16 18:17 |
| Chloride |                   |               | 24.0           | mg/L               | 1.0    | 93   | 90         | 110        |          |              |           |
| Sulfate  |                   |               | 24.8           | mg/L               | 1.0    | 99   | 90         | 110        |          |              |           |
| Lab ID:  | T16080082-002AMS  | 2 Sa          | mple Matrix    | Spike              |        |      | Run: IC1_1 | 60824A     |          | 08/24        | /16 23:28 |
| Chloride |                   |               | 3660           | mg/L               | 50     | 95   | 90         | 110        |          |              |           |
| Sulfate  |                   |               | 3320           | mg/L               | 50     | 100  | 90         | 110        |          |              |           |
| Lab ID:  | T16080082-002AMSE | <b>)</b> 2 Sa | mple Matrix    | Spike Duplicate    |        |      | Run: IC1_1 | 60824A     |          | 08/24        | /16 23:47 |
| Chloride |                   |               | 3710           | mg/L               | 50     | 99   | 90         | 110        | 1.4      | 10           |           |
| Sulfate  |                   |               | 3360           | mg/L               | 50     | 103  | 90         | 110        | 1.3      | 10           |           |

### Qualifiers:

RL - Analyte reporting limit. MDC - Minimum detectable concentration

Billings, MT 800.735.4489 • Casper, WY 888.235.0515
College Station, TX 888.690.2218 • Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

## **QA/QC Summary Report**

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:09/21/16Project:CCRRWork Order:T16080082

| Analyte     |                       | Count | Result      | Units           | RL | %REC | Low Limit | High Limit    | RPD | RPDLimit  | Qual     |
|-------------|-----------------------|-------|-------------|-----------------|----|------|-----------|---------------|-----|-----------|----------|
| Method:     | E903.0                |       |             |                 |    |      |           |               |     | Batch: RA | 226-0138 |
| Lab ID:     | MB-RA226-0138         | 3 Met | hod Blank   |                 |    |      | Run: RAD1 | 04-CS_160829A |     | 09/02/    | 16 10:43 |
| Total Radio | um as Ra226           |       | 0.0008      | pCi/L           |    |      |           |               |     |           | U        |
| Total Radio | um as Ra226 precision | (±)   | 0.1         | pCi/L           |    |      |           |               |     |           |          |
| Total Radio | um as Ra226 MDC       |       | 0.2         | pCi/L           |    |      |           |               |     |           |          |
| Lab ID:     | LCS-RA226-0138        | Lab   | oratory Cor | itrol Sample    |    |      | Run: RAD1 | 04-CS_160829A |     | 09/02/    | 16 10:43 |
| Total Radio | um as Ra226           |       | 55          | pCi/L           |    | 104  | 80        | 120           |     |           |          |
| Lab ID:     | T16080104-002CMS      | San   | nple Matrix | Spike           |    |      | Run: RAD1 | 04-CS_160829A |     | 09/02/    | 16 10:43 |
| Total Radio | um as Ra226           |       | 110         | pCi/L           |    | 88   | 70        | 130           |     |           |          |
| Lab ID:     | T16080104-002CMSE     | ) San | nple Matrix | Spike Duplicate |    |      | Run: RAD1 | 04-CS_160829A |     | 09/02/    | 16 10:43 |
| Total Radio | um as Ra226           |       | 110         | pCi/L           |    | 87   | 70        | 130           | 1.1 | 20        |          |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:09/21/16Project:CCRRWork Order:T16080082

| Analyte                   | Count        | Result       | Units           | RL | %REC | Low Limit  | High Limit | RPD | RPDLimit    | Qual      |
|---------------------------|--------------|--------------|-----------------|----|------|------------|------------|-----|-------------|-----------|
| Method: RA-05             |              |              |                 |    |      |            |            |     | Batch: C_RA | 228-5306  |
| Lab ID: LCS-228-RA228-530 | <b>)6</b> La | boratory Cor | ntrol Sample    |    |      | Run: SUB-0 | C214943    |     | 09/06/      | /16 13:48 |
| Radium 228                |              | 8.3          | pCi/L           |    | 92   | 80         | 120        |     |             |           |
| Lab ID: MB-228-RA228-5300 | 3 Me         | ethod Blank  |                 |    |      | Run: SUB-0 | C214943    |     | 09/06/      | /16 13:48 |
| Radium 228                |              | 0.3          | pCi/L           |    |      |            |            |     |             | U         |
| Radium 228 precision (±)  |              | 0.9          | pCi/L           |    |      |            |            |     |             |           |
| Radium 228 MDC            |              | 2            | pCi/L           |    |      |            |            |     |             |           |
| Lab ID: C16081088-004BMS  | <b>S</b> Sa  | mple Matrix  | Spike           |    |      | Run: SUB-0 | C214943    |     | 09/06/      | /16 13:48 |
| Radium 228                |              | 20           | pCi/L           |    | 82   | 70         | 130        |     |             |           |
| Lab ID: C16081088-004BMS  | SD Sa        | mple Matrix  | Spike Duplicate |    |      | Run: SUB-0 | C214943    |     | 09/06/      | /16 13:48 |
| Radium 228                |              | 21           | pCi/L           |    | 86   | 70         | 130        | 4.9 | 53.9        |           |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

# Barium Recovery

Per NELAC requirement EL-V1M6-2009 1.7.2.3.c, Energy Laboratories is reporting the sample specific Barium Sulfate carrier recovery.

| T16080082 | Sample         | Recovery |  |
|-----------|----------------|----------|--|
|           | T16080082-001C | 95.03%   |  |
|           | T16080082-001C | 109.32%  |  |
|           | T16080082-002C | 96.63%   |  |
|           | T16080082-002C | 103.30%  |  |
|           | T16080082-003C | 96.09%   |  |
|           | T16080082-003C | 101.55%  |  |
|           | T16080082-004C | 97.09%   |  |
|           | T16080082-004C | 98.93%   |  |
|           | T16080082-005C | 98.22%   |  |
|           | T16080082-005C | 109.71%  |  |
|           | T16080082-006C | 93.61%   |  |
|           | T16080082-006C | 105.63%  |  |
|           | T16080082-007C | 95.74%   |  |
|           | T16080082-007C | 111.26%  |  |
|           | T16080082-008C | 89.34%   |  |
|           | T16080082-008C | 98.06%   |  |

9/20/2016 4:00:59 PM

T16080082

## **Work Order Receipt Checklist**

## Texas Municipal Power Agency

| Login completed by:                                                                         | Alisha D. Griffin               |                    | Date R | Received: 8/23/2016 |
|---------------------------------------------------------------------------------------------|---------------------------------|--------------------|--------|---------------------|
| Reviewed by:                                                                                | BL2000\ssuchar                  |                    | Rec    | eived by: sas       |
| Reviewed Date:                                                                              | 8/25/2016                       |                    | Carri  | er name: Hand Del   |
| Shipping container/cooler in                                                                | good condition?                 | Yes ✓              | No 🗌   | Not Present         |
| Custody seals intact on all s                                                               | hipping container(s)/cooler(s)? | Yes                | No 🗌   | Not Present 🔽       |
| Custody seals intact on all sa                                                              | ample bottles?                  | Yes                | No 🗌   | Not Present 🗹       |
| Chain of custody present?                                                                   |                                 | Yes √              | No 🗌   |                     |
| Chain of custody signed whe                                                                 | en relinquished and received?   | Yes √              | No 🗌   |                     |
| Chain of custody agrees with                                                                | n sample labels?                | Yes √              | No 🗌   |                     |
| Samples in proper container                                                                 | /bottle?                        | Yes √              | No 🗌   |                     |
| Sample containers intact?                                                                   |                                 | Yes √              | No 🗌   |                     |
| Sufficient sample volume for                                                                | indicated test?                 | Yes √              | No 🗌   |                     |
| All samples received within h<br>(Exclude analyses that are c<br>such as pH, DO, Res CI, Su | onsidered field parameters      | Yes 🗹              | No 🗌   |                     |
| Temp Blank received in all s                                                                | hipping container(s)/cooler(s)? | Yes ✓              | No 🗌   | Not Applicable      |
| Container/Temp Blank tempe                                                                  | erature:                        | °C On Ice - From F | ield   |                     |
| Water - VOA vials have zero                                                                 | headspace?                      | Yes                | No 🗌   | Not Applicable      |
| Water - pH acceptable upon                                                                  | receipt?                        | Yes ✓              | No 🗌   | Not Applicable      |

### **Standard Reporting Procedures:**

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

#### **Contact and Corrective Action Comments:**

pH check of applicable preserved fractions acceptable (Lot#3931). Receipt temperature checked with Thermo 1210: Cooler #T1106 - read temperature =  $0.6^{\circ}C$ ; no corrections. Cooler #T1070 - read temperature =  $0.6^{\circ}C$ ; no corrections. ADG 160824 11:18

Per Brian G, Wants logged in per history (Schedule 1 & 2 as on COC), but additional analysis of Ca, Mg, Na, K, SO4, Cl. ADG 160824 11:19

| ENERGY (3)                                             | hain o                             | Chain of Custody | ody and A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          | and Analytical Request Record SE PRINT (Provide as much information as possible.     | ecor(              | ole.)                     | Page / of 1                       | , :                |
|--------------------------------------------------------|------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------|--------------------|---------------------------|-----------------------------------|--------------------|
| Company Name: AMEC Foster                              | Wheelor                            |                  | Project Nam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | có                       | Ö                                                                                    | Sa                 | Sample Origin<br>State:   | EPA/State Compliance:  Yes □ No □ |                    |
|                                                        |                                    |                  | Contact Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Barney /                 | Phonestax: Select                                                                    | E                  | Email:                    | Sampler: (Please Print)           |                    |
| Invoice Address:                                       |                                    |                  | Invoice Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Invoice Contact & Phone: |                                                                                      | Pu                 | Purchase Order:           | Quote/Bottle Order:               |                    |
| Coopin Donot/Eormate.                                  |                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                                                      | Ľ                  | Contact ELI prior to      | is                                |                    |
| special Reportronnats.                                 |                                    |                  | Jet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ANNAIL VSUS              | MENUESTIED                                                                           |                    |                           | DENAM                             |                    |
|                                                        | H. C.                              |                  | tainers<br>S V B C<br>Solids<br>Say Oth<br>Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | IED                                                                                  | a                  |                           | T1106                             |                    |
| WWTP                                                   | EUU/EU I (Electronic Data) Format: |                  | of Con<br>WA :<br>er <u>S</u> oils<br>rinking V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                        | TACH                                                                                 | around             | Comments:                 | Receipt Temp                      |                    |
| Other:                                                 | NELAC                              |                  | Jewyper<br>Jewy Jewy<br>Jewy br>Jewy Jewy<br>Jewy<br>Jewy<br>Jewy<br>Jewy<br>Jewy<br>Jewy<br>Jewy | Ta                       | TA =                                                                                 | THE REAL PROPERTY. | T 1070 =                  | On Ice: (P) N Custody Seal        |                    |
|                                                        |                                    |                  | Samp<br>J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | رومالدا                  | IBS                                                                                  | nebnet             | Therm (210, 20            |                                   | ^                  |
| SAMPLE IDENTIFICATION (Name, Location, Interval, etc.) | Collection                         | Collection       | MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | y-s                      |                                                                                      |                    | H correct.                | Signature Y N                     |                    |
| SSP/AP MW-1                                            | 8/23/16                            | 1028             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                        |                                                                                      |                    |                           | 100-                              |                    |
| SSP MW-2                                               |                                    | 1125             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                        |                                                                                      |                    |                           | 700-                              |                    |
| SSP MW-3                                               |                                    | 1220             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                        |                                                                                      |                    |                           | M_003                             |                    |
| SSP MW-4                                               |                                    | 1327             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                        |                                                                                      |                    |                           | 400-ISM                           |                    |
| 1-Zd db s                                              |                                    | 1437             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .×                       |                                                                                      |                    |                           | S00-28                            |                    |
| " AP PZ-2                                              |                                    | 1522             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                        |                                                                                      |                    |                           | 900-006                           |                    |
| DUP-1                                                  |                                    | 1                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                        |                                                                                      |                    |                           | 900-                              |                    |
| " Eabk 8-23                                            | >                                  | 1624             | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                        |                                                                                      |                    |                           | 100-O                             |                    |
| 6                                                      |                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                                                      |                    |                           |                                   |                    |
|                                                        | Date                               |                  | Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , all the                | Received by (print):                                                                 | Date/Time          | ilme:                     | Signature:                        |                    |
| Custody Brian Gieselma                                 | w 8/25/16                          | 6 21715          | Bin /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lenh                     | received by (print).                                                                 |                    |                           |                                   |                    |
| Record Relinquished by (print):                        | Date/Tim                           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fure:                    | Received by (print):                                                                 | Date/Time:         | Ime:                      | Signature:                        |                    |
| Sample Dienocal                                        | Return to Client:                  |                  | l ab Disposal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | Steve Suche                                                                          | Date/Time: 8/23/16 | Ime: 17.5                 | Signature:                        |                    |
| Cample Disposal.                                       |                                    |                  | o do do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | od od oom out            | attacked to other certified laboratories in order to complete the analysis requested | ri ocirotoro       | the stalamore of refer th | a analysis regulasted             |                    |
|                                                        | 1.0                                |                  | ociaciacido Lucaca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | odiio od vom od          | laboration to athor cortifical lab                                                   | vi ocirchoro       | the talomorate the        | a                                 | analysis requested |

samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified taboratories in order to compare this serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report. Visit our web site at <a href="https://www.energylab.com">www.energylab.com</a> for additional information, downloadable fee schedule, forms, and links.

### **ANALYTICAL SUMMARY REPORT**

September 21, 2016

Texas Municipal Power Agency PO Box 7000 Bryan, TX 77805-7000

Work Order: T16080097 Quote ID: T3094

Project Name: CCRR

Energy Laboratories Inc. College Station TX received the following 8 samples for Texas Municipal Power Agency on 8/24/2016 for analysis.

| Lab ID        | Client Sample ID | Collect Date Receive Date | Matrix      | Test                                                                                                                                                                                                                 |
|---------------|------------------|---------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T16080097-001 | AP MW-3          | 08/24/16 9:46 08/24/16    | Groundwater | Metals by ICP/ICPMS, Tot. Rec. Mercury, Total Recoverable Fluoride E300.0 Anions Cations by ICP pH Metals Digestion by EPA 200.2 Radium 226 + Radium 228 Radium 226, Total Radium 228, Total Solids, Total Dissolved |
| T16080097-003 | AP MW-1D         | 08/24/16 12:13 08/24/16   | Groundwater | Same As Above                                                                                                                                                                                                        |
| T16080097-004 | AP MW-5          | 08/24/16 14:12 08/24/16   | Groundwater | Same As Above                                                                                                                                                                                                        |
| T16080097-005 | AP MW-4          | 08/24/16 14:57 08/24/16   | Groundwater | Same As Above                                                                                                                                                                                                        |
| T16080097-007 | Dup-2            | 08/24/16 0:00 08/24/16    | Groundwater | Same As Above                                                                                                                                                                                                        |
| T16080097-008 | EQBK 8-24        | 08/24/16 15:18 08/24/16   | Groundwater | Same As Above                                                                                                                                                                                                        |

The analyses presented in this report were performed by Energy Laboratories, Inc., 415 Graham Rd., College Station, TX 77845-9660, unless otherwise noted.

Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

If you have any questions regarding these tests results, please call.

Report Approved By:



**CLIENT:** Texas Municipal Power Agency

Project: CCRR

Work Order: T16080097

Report Date: 09/21/16

**CASE NARRATIVE** 

Tests associated with analyst identified as ELI-CA were subcontracted to Energy Laboratories, 2393 Salt Creek Hwy., Casper, WY, EPA Number WY00002 and WY00937.

Tests associated with analyst identified as ELI-B were subcontracted to Energy Laboratories, 1120 S. 27th St., Billings, MT, EPA Number MT00005.

Matrix: Groundwater

#### LABORATORY ANALYTICAL REPORT

Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency

**Project: CCRR** T16080097-001 Lab ID:

Client Sample ID: AP MW-3

Report Date: 09/21/16 Collection Date: 08/24/16 09:46 DateReceived: 08/24/16

MCL/ QCL **Analyses Result Units** Qualifiers RL Method Analysis Date / By **AGRONOMIC PROPERTIES** Hq 6.1 s.u. Н 0.1 A4500-H B 08/26/16 12:07 / rda **PHYSICAL PROPERTIES** Solids, Total Dissolved TDS @ 180 C 08/26/16 09:50 / rda 1400 mg/L 10 A2540 C **MAJOR IONS** Chloride 128 mg/L D 10 E300.0 08/25/16 22:25 / pwh Fluoride 0.2 mg/L 0.1 A4500-F C 08/25/16 14:32 / pwh Sulfate 731 mg/L D 10 E300.0 08/25/16 22:25 / pwh Calcium 123 mg/L 1 E200.7 08/26/16 15:51 / jtr E200.7 08/26/16 15:51 / jtr Magnesium 19 mg/L 1 Potassium 14 mg/L E200.7 08/26/16 15:51 / jtr 1 Sodium 221 mg/L F200 7 08/26/16 15:51 / jtr 1 Boron 3.63 mg/L 0.05 E200.7 08/26/16 15:51 / jtr METALS, TOTAL RECOVERABLE E200.8 09/01/16 13:54 / eli-b Antimony ND mg/L 0.05 Arsenic ND mg/L 0.01 E200.8 09/01/16 13:54 / eli-b **Barium** 0.03 mg/L 0.01 E200.8 09/01/16 13:54 / eli-b 0.003 mg/L 0.001 E200.8 09/01/16 13:54 / eli-b Beryllium 0.01 F2008 Cadmium ND mg/L 09/01/16 13:54 / eli-b 09/01/16 13:54 / eli-b Chromium ND mg/L 0.01 E200.8 Cobalt 0.05 mg/L 0.02 E200.8 09/01/16 13:54 / eli-b Lead ND mg/L 0.01 E200.8 09/01/16 13:54 / eli-b Lithium 0.06 mg/L 0.01 E200.7 09/01/16 17:26 / eli-b Molybdenum ND mg/L 0.05 F2008 09/01/16 13:54 / eli-b Selenium ND mg/L 0.01 E200.8 09/01/16 13:54 / eli-b Thallium ND mg/L 0.01 E200.8 09/01/16 13:54 / eli-b **METALS, TOTAL** 0.001 E245.1 08/31/16 16:33 / eli-b Mercury ND mg/L **RADIONUCLIDES - TOTAL** Radium 228 3.5 pCi/L **RA-05** 09/06/16 10:35 / eli-ca Radium 228 precision (±) 1.0 pCi/L **RA-05** 09/06/16 10:35 / eli-ca Radium 228 MDC 1.4 pCi/L **RA-05** 09/06/16 10:35 / eli-ca Radium 226 + Radium 228 7.54 pCi/L A7500-RA 09/20/16 16:20 / sas Radium 226 + Radium 228 precision (±) 1.19 pCi/L A7500-RA 09/20/16 16:20 / sas 4.0 pCi/L Total Radium as Ra226 E903.0 09/02/16 10:43 / jjc Total Radium as Ra226 precision (±) 0.60 pCi/L E903.0 09/02/16 10:43 / jjc Total Radium as Ra226 MDC 0.19 pCi/L E903.0 09/02/16 10:43 / jjc

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency

**CCRR Project:** Lab ID: T16080097-003

Client Sample ID: AP MW-1D

**Report Date:** 09/21/16 Collection Date: 08/24/16 12:13 DateReceived: 08/24/16 Matrix: Groundwater

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL Method | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|--------------------|-------------------------|
| AGRONOMIC PROPERTIES                  |        |       |            |       |                    |                         |
| pH                                    | 6.6    | s.u.  | Н          | 0.1   | A4500-H B          | 08/26/16 12:20 / rda    |
| •                                     | 0.0    | o.u.  | ••         | 0.1   | 7110001112         | 00/20/10 12:20 / 144    |
| PHYSICAL PROPERTIES                   |        |       |            |       |                    | 00/00/40 00 54 /        |
| Solids, Total Dissolved TDS @ 180 C   | 1440   | mg/L  |            | 20    | A2540 C            | 08/26/16 09:51 / rda    |
| MAJOR IONS                            |        |       |            |       |                    |                         |
| Chloride                              | 221    | mg/L  | D          | 10    | E300.0             | 08/25/16 23:42 / pwh    |
| Fluoride                              | 0.7    | mg/L  |            | 0.1   | A4500-F C          | 08/25/16 14:50 / pwh    |
| Sulfate                               | 621    | mg/L  | D          | 10    | E300.0             | 08/25/16 23:42 / pwh    |
| Calcium                               | 78     | mg/L  |            | 1     | E200.7             | 08/26/16 16:07 / jtr    |
| Magnesium                             | 14     | mg/L  |            | 1     | E200.7             | 08/26/16 16:07 / jtr    |
| Potassium                             | 15     | mg/L  |            | 1     | E200.7             | 08/26/16 16:07 / jtr    |
| Sodium                                | 326    | mg/L  |            | 1     | E200.7             | 08/26/16 16:07 / jtr    |
| Boron                                 | 4.81   | mg/L  |            | 0.05  | E200.7             | 08/26/16 16:07 / jtr    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |                    |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  | E200.8             | 09/01/16 13:59 / eli-b  |
| Arsenic                               | 0.01   | mg/L  |            | 0.01  | E200.8             | 09/01/16 13:59 / eli-b  |
| Barium                                | 0.02   | mg/L  |            | 0.01  | E200.8             | 09/01/16 13:59 / eli-b  |
| Beryllium                             | ND     | mg/L  |            | 0.001 | E200.8             | 09/01/16 13:59 / eli-b  |
| Cadmium                               | ND     | mg/L  |            | 0.01  | E200.8             | 09/01/16 13:59 / eli-b  |
| Chromium                              | ND     | mg/L  |            | 0.01  | E200.8             | 09/01/16 13:59 / eli-b  |
| Cobalt                                | ND     | mg/L  |            | 0.02  | E200.8             | 09/01/16 13:59 / eli-b  |
| Lead                                  | ND     | mg/L  |            | 0.01  | E200.8             | 09/01/16 13:59 / eli-b  |
| Lithium                               | 0.04   | mg/L  |            | 0.01  | E200.7             | 09/01/16 18:04 / eli-b  |
| Molybdenum                            | ND     | mg/L  |            | 0.05  | E200.8             | 09/01/16 13:59 / eli-b  |
| Selenium                              | ND     | mg/L  |            | 0.01  | E200.8             | 09/01/16 13:59 / eli-b  |
| Thallium                              | ND     | mg/L  |            | 0.01  | E200.8             | 09/01/16 13:59 / eli-b  |
| METALS, TOTAL                         |        |       |            |       |                    |                         |
| Mercury                               | ND     | mg/L  |            | 0.001 | E245.1             | 08/31/16 16:41 / eli-b  |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |                    |                         |
| Radium 228                            |        | pCi/L |            |       | RA-05              | 09/06/16 10:35 / eli-ca |
| Radium 228 precision (±)              | 0.91   | pCi/L |            |       | RA-05              | 09/06/16 10:35 / eli-ca |
| Radium 228 MDC                        | 1.4    | pCi/L |            |       | RA-05              | 09/06/16 10:35 / eli-ca |
| Radium 226 + Radium 228               | 3.83   | pCi/L |            |       | A7500-RA           | 09/20/16 16:20 / sas    |
| Radium 226 + Radium 228 precision (±) | 0.957  | pCi/L |            |       | A7500-RA           | 09/20/16 16:20 / sas    |
| Total Radium as Ra226                 | 1.2    | pCi/L |            |       | E903.0             | 09/02/16 15:09 / jjc    |
| Total Radium as Ra226 precision (±)   |        | pCi/L |            |       | E903.0             | 09/02/16 15:09 / jjc    |
| Total Radium as Ra226 MDC             | 0.18   | pCi/L |            |       | E903.0             | 09/02/16 15:09 / jjc    |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency

**Project**: CCRR **Lab ID**: T16080097-004

Client Sample ID: AP MW-5

**Report Date:** 09/21/16 **Collection Date:** 08/24/16 14:12 **DateReceived:** 08/24/16

Matrix: Groundwater

| Analyses                              | Popult | Unito | Qualifiere | RL    | MCL/<br>QCL | Method    | Analysis Dato / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | KL    | QCL         | wiethod   | Analysis Date / By      |
| AGRONOMIC PROPERTIES                  |        |       |            |       |             |           |                         |
| pH                                    | 3.7    | s.u.  | Н          | 0.1   |             | A4500-H B | 08/26/16 12:23 / rda    |
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| Solids, Total Dissolved TDS @ 180 C   | 4770   | mg/L  |            | 40    |             | A2540 C   | 08/26/16 09:51 / rda    |
| MAJOR IONS                            |        |       |            |       |             |           |                         |
| Chloride                              | 469    | mg/L  | D          | 20    |             | E300.0    | 08/26/16 00:41 / pwh    |
| Fluoride                              | 1.6    | mg/L  |            | 0.1   |             | A4500-F C | 08/25/16 14:57 / pwh    |
| Sulfate                               | 2960   | mg/L  | D          | 20    |             | E300.0    | 08/26/16 00:41 / pwh    |
| Calcium                               | 468    | mg/L  |            | 1     |             | E200.7    | 08/26/16 16:12 / jtr    |
| Magnesium                             | 110    | mg/L  |            | 1     |             | E200.7    | 08/26/16 16:12 / jtr    |
| Potassium                             | 48     | mg/L  |            | 1     |             | E200.7    | 08/26/16 16:12 / jtr    |
| Sodium                                | 663    | mg/L  |            | 1     |             | E200.7    | 08/26/16 16:12 / jtr    |
| Boron                                 | 3.4    | mg/L  | D          | 0.2   |             | E200.7    | 08/26/16 16:12 / jtr    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  |             | E200.8    | 09/01/16 14:02 / eli-b  |
| Arsenic                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 14:02 / eli-b  |
| Barium                                | 0.03   | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 14:02 / eli-b  |
| Beryllium                             | 0.09   | mg/L  |            | 0.001 |             | E200.8    | 09/01/16 14:02 / eli-b  |
| Cadmium                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 14:02 / eli-b  |
| Chromium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 14:02 / eli-b  |
| Cobalt                                | 0.2    | mg/L  |            | 0.02  |             | E200.8    | 09/01/16 14:02 / eli-b  |
| Lead                                  | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 14:02 / eli-b  |
| Lithium                               | 0.6    | mg/L  |            | 0.01  |             | E200.7    | 09/01/16 18:08 / eli-b  |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.8    | 09/01/16 14:02 / eli-b  |
| Selenium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 14:02 / eli-b  |
| Thallium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 14:02 / eli-b  |
| METALS, TOTAL                         |        |       |            |       |             |           |                         |
| Mercury                               | ND     | mg/L  |            | 0.001 |             | E245.1    | 08/31/16 16:43 / eli-b  |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 228                            | 1.2    | pCi/L | U          |       |             | RA-05     | 09/06/16 12:08 / eli-ca |
| Radium 228 precision (±)              | 0.99   | pCi/L |            |       |             | RA-05     | 09/06/16 12:08 / eli-ca |
| Radium 228 MDC                        | 1.6    | pCi/L |            |       |             | RA-05     | 09/06/16 12:08 / eli-ca |
| Radium 226 + Radium 228               | 5.96   | pCi/L |            |       |             | A7500-RA  | 09/20/16 16:20 / sas    |
| Radium 226 + Radium 228 precision (±) | 1.20   | pCi/L |            |       |             | A7500-RA  | 09/20/16 16:20 / sas    |
| Total Radium as Ra226                 | 4.8    | pCi/L |            |       |             | E903.0    | 09/02/16 15:09 / jjc    |
| Total Radium as Ra226 precision (±)   | 0.67   | pCi/L |            |       |             | E903.0    | 09/02/16 15:09 / jjc    |
| Total Radium as Ra226 MDC             | 0.18   | pCi/L |            |       |             | E903.0    | 09/02/16 15:09 / jjc    |

Report RL - Analyte reporting limit.

**Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

U - Not detected at minimum detectable concentration

Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency

Project: CCRR

Lab ID: T16080097-005 Client Sample ID: AP MW-4 **Report Date:** 09/21/16 **Collection Date:** 08/24/16 14:57

**DateReceived:** 08/24/16 **Matrix:** Groundwater

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| AGRONOMIC PROPERTIES                  |        |       |            |       |             |           |                         |
| pH                                    | 6.5    | s.u.  | Н          | 0.1   |             | A4500-H B | 08/26/16 12:28 / rda    |
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| Solids, Total Dissolved TDS @ 180 C   | 4140   | mg/L  |            | 40    |             | A2540 C   | 08/26/16 09:51 / rda    |
| MAJOR IONS                            |        |       |            |       |             |           |                         |
| Chloride                              | 485    | mg/L  | D          | 20    |             | E300.0    | 08/26/16 01:00 / pwh    |
| Fluoride                              | 0.1    | mg/L  |            | 0.1   |             | A4500-F C | 08/25/16 15:03 / pwh    |
| Sulfate                               | 2310   | mg/L  | D          | 20    |             | E300.0    | 08/26/16 01:00 / pwh    |
| Calcium                               | 497    | mg/L  |            | 1     |             | E200.7    | 08/26/16 16:14 / jtr    |
| Magnesium                             | 115    | mg/L  |            | 1     |             | E200.7    | 08/26/16 16:14 / jtr    |
| Potassium                             | 55     | mg/L  |            | 1     |             | E200.7    | 08/26/16 16:14 / jtr    |
| Sodium                                | 520    | mg/L  |            | 1     |             | E200.7    | 08/26/16 16:14 / jtr    |
| Boron                                 | 2.1    | mg/L  | D          | 0.2   |             | E200.7    | 08/26/16 16:14 / jtr    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  |             | E200.8    | 09/01/16 14:04 / eli-b  |
| Arsenic                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 14:04 / eli-b  |
| Barium                                | 0.03   | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 14:04 / eli-b  |
| Beryllium                             | ND     | mg/L  |            | 0.001 |             | E200.8    | 09/01/16 14:04 / eli-b  |
| Cadmium                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 14:04 / eli-b  |
| Chromium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 14:04 / eli-b  |
| Cobalt                                | ND     | mg/L  |            | 0.02  |             | E200.8    | 09/01/16 14:04 / eli-b  |
| Lead                                  | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 14:04 / eli-b  |
| Lithium                               | 0.9    | mg/L  |            | 0.01  |             | E200.7    | 09/01/16 18:11 / eli-b  |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.8    | 09/01/16 14:04 / eli-b  |
| Selenium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 14:04 / eli-b  |
| Thallium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 14:04 / eli-b  |
| METALS, TOTAL                         |        |       |            |       |             |           |                         |
| Mercury                               | ND     | mg/L  |            | 0.001 |             | E245.1    | 08/31/16 16:44 / eli-b  |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 228                            | 0.57   | pCi/L | U          |       |             | RA-05     | 09/06/16 12:08 / eli-ca |
| Radium 228 precision (±)              | 1.0    | pCi/L |            |       |             | RA-05     | 09/06/16 12:08 / eli-ca |
| Radium 228 MDC                        | 1.7    | pCi/L |            |       |             | RA-05     | 09/06/16 12:08 / eli-ca |
| Radium 226 + Radium 228               | 3.67   | pCi/L |            |       |             | A7500-RA  | 09/20/16 16:20 / sas    |
| Radium 226 + Radium 228 precision (±) | 1.15   | pCi/L |            |       |             | A7500-RA  | 09/20/16 16:20 / sas    |
| Total Radium as Ra226                 | 3.1    | pCi/L |            |       |             | E903.0    | 09/02/16 16:53 / jjc    |
| Total Radium as Ra226 precision (±)   | 0.51   | pCi/L |            |       |             | E903.0    | 09/02/16 16:53 / jjc    |
| Total Radium as Ra226 MDC             | 0.18   | pCi/L |            |       |             | E903.0    | 09/02/16 16:53 / jjc    |
|                                       |        |       |            |       |             |           |                         |

Report RL - Analyte reporting limit.

**Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.ND - Not detected at the reporting limit.D - RL increased due to sample matrix.

H - Analysis performed past recommended holding time.

U - Not detected at minimum detectable concentration

Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency

Project: CCRR

**Lab ID:** T16080097-007

Client Sample ID: Dup-2

Report Date: 09/21/16
Collection Date: 08/24/16
DateReceived: 08/24/16
Matrix: Groundwater

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| AGRONOMIC PROPERTIES                  |        |       |            |       |             |           |                         |
| рН                                    | 6.7    | s.u.  | Н          | 0.1   |             | A4500-H B | 08/26/16 12:36 / rda    |
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| Solids, Total Dissolved TDS @ 180 C   | 1440   | mg/L  |            | 20    |             | A2540 C   | 08/26/16 09:52 / rda    |
| MAJOR IONS                            |        |       |            |       |             |           |                         |
| Chloride                              | 223    | mg/L  | D          | 10    |             | E300.0    | 08/26/16 01:39 / pwh    |
| Fluoride                              | 0.6    | mg/L  |            | 0.1   |             | A4500-F C | 08/25/16 15:14 / pwh    |
| Sulfate                               | 623    | mg/L  | D          | 10    |             | E300.0    | 08/26/16 01:39 / pwh    |
| Calcium                               | 79     | mg/L  |            | 1     |             | E200.7    | 08/26/16 16:17 / jtr    |
| Magnesium                             | 14     | mg/L  |            | 1     |             | E200.7    | 08/26/16 16:17 / jtr    |
| Potassium                             | 14     | mg/L  |            | 1     |             | E200.7    | 08/26/16 16:17 / jtr    |
| Sodium                                | 327    | mg/L  |            | 1     |             | E200.7    | 08/26/16 16:17 / jtr    |
| Boron                                 | 4.8    | mg/L  | D          | 0.1   |             | E200.7    | 08/26/16 16:17 / jtr    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  |             | E200.8    | 09/01/16 14:09 / eli-b  |
| Arsenic                               | 0.01   | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 14:09 / eli-b  |
| Barium                                | 0.03   | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 14:09 / eli-b  |
| Beryllium                             | ND     | mg/L  |            | 0.001 |             | E200.8    | 09/01/16 14:09 / eli-b  |
| Cadmium                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 14:09 / eli-b  |
| Chromium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 14:09 / eli-b  |
| Cobalt                                | ND     | mg/L  |            | 0.02  |             | E200.8    | 09/01/16 14:09 / eli-b  |
| Lead                                  | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 14:09 / eli-b  |
| Lithium                               | 0.04   | mg/L  |            | 0.01  |             | E200.7    | 09/01/16 18:18 / eli-b  |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.8    | 09/01/16 14:09 / eli-b  |
| Selenium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 14:09 / eli-b  |
| Thallium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 14:09 / eli-b  |
| METALS, TOTAL                         |        |       |            |       |             |           |                         |
| Mercury                               | ND     | mg/L  |            | 0.001 |             | E245.1    | 08/31/16 16:48 / eli-b  |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 228                            | 2.7    | pCi/L |            |       |             | RA-05     | 09/06/16 12:08 / eli-ca |
| Radium 228 precision (±)              | 1.1    | pCi/L |            |       |             | RA-05     | 09/06/16 12:08 / eli-ca |
| Radium 228 MDC                        | 1.7    | pCi/L |            |       |             | RA-05     | 09/06/16 12:08 / eli-ca |
| Radium 226 + Radium 228               | 4.40   | pCi/L |            |       |             | A7500-RA  | 09/20/16 16:20 / sas    |
| Radium 226 + Radium 228 precision (±) | 1.13   | pCi/L |            |       |             | A7500-RA  | 09/20/16 16:20 / sas    |
| Total Radium as Ra226                 | 1.7    | pCi/L |            |       |             | E903.0    | 09/02/16 16:53 / jjc    |
| Total Radium as Ra226 precision (±)   | 0.40   | pCi/L |            |       |             | E903.0    | 09/02/16 16:53 / jjc    |
| Total Radium as Ra226 MDC             | 0.24   | pCi/L |            |       |             | E903.0    | 09/02/16 16:53 / jjc    |

Report RL - Analyte reporting limit.

**Definitions:** QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

Prepared by College Station, TX Branch

Client: **Texas Municipal Power Agency** 

**CCRR Project:** Lab ID: T16080097-008 Client Sample ID: EQBK 8-24

**Report Date:** 09/21/16 Collection Date: 08/24/16 15:18 DateReceived: 08/24/16

Matrix: Groundwater

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| AGRONOMIC PROPERTIES                  |        |       |            |       |             |           |                         |
| рН                                    | 6.3    | s.u.  | Н          | 0.1   |             | A4500-H B | 08/26/16 12:40 / rda    |
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| Solids, Total Dissolved TDS @ 180 C   | ND     | mg/L  |            | 10    |             | A2540 C   | 08/26/16 09:52 / rda    |
| MAJOR IONS                            |        |       |            |       |             |           |                         |
| Chloride                              | ND     | mg/L  |            | 1     |             | E300.0    | 08/26/16 01:59 / pwh    |
| Fluoride                              | ND     | mg/L  |            | 0.1   |             | A4500-F C | 08/25/16 15:22 / pwh    |
| Sulfate                               | ND     | mg/L  |            | 1     |             | E300.0    | 08/26/16 01:59 / pwh    |
| Calcium                               | ND     | mg/L  |            | 1     |             | E200.7    | 08/26/16 16:20 / jtr    |
| Magnesium                             | ND     | mg/L  |            | 1     |             | E200.7    | 08/26/16 16:20 / jtr    |
| Potassium                             | ND     | mg/L  |            | 1     |             | E200.7    | 08/26/16 16:20 / jtr    |
| Sodium                                | ND     | mg/L  |            | 1     |             | E200.7    | 08/26/16 16:20 / jtr    |
| Boron                                 | ND     | mg/L  |            | 0.05  |             | E200.7    | 08/26/16 16:20 / jtr    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  |             | E200.8    | 09/01/16 14:12 / eli-b  |
| Arsenic                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 14:12 / eli-b  |
| Barium                                | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 14:12 / eli-b  |
| Beryllium                             | ND     | mg/L  |            | 0.001 |             | E200.8    | 09/01/16 14:12 / eli-b  |
| Cadmium                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 14:12 / eli-b  |
| Chromium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 14:12 / eli-b  |
| Cobalt                                | ND     | mg/L  |            | 0.02  |             | E200.8    | 09/01/16 14:12 / eli-b  |
| Lead                                  | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 14:12 / eli-b  |
| Lithium                               | ND     | mg/L  |            | 0.01  |             | E200.7    | 09/01/16 18:22 / eli-b  |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.8    | 09/01/16 14:12 / eli-b  |
| Selenium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 14:12 / eli-b  |
| Thallium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 14:12 / eli-b  |
| METALS, TOTAL                         |        |       |            |       |             |           |                         |
| Mercury                               | ND     | mg/L  |            | 0.001 |             | E245.1    | 08/31/16 16:50 / eli-b  |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 228                            | 1.0    | pCi/L | U          |       |             | RA-05     | 09/06/16 12:08 / eli-ca |
| Radium 228 precision (±)              | 0.84   | pCi/L |            |       |             | RA-05     | 09/06/16 12:08 / eli-ca |
| Radium 228 MDC                        | 1.6    | pCi/L |            |       |             | RA-05     | 09/06/16 12:08 / eli-ca |
| Radium 226 + Radium 228               | 1.11   | pCi/L |            |       |             | A7500-RA  | 09/20/16 16:20 / sas    |
| Radium 226 + Radium 228 precision (±) | 0.856  | pCi/L |            |       |             | A7500-RA  | 09/20/16 16:20 / sas    |
| Total Radium as Ra226                 | 0.1    | pCi/L | U          |       |             | E903.0    | 09/02/16 16:53 / jjc    |
| Total Radium as Ra226 precision (±)   | 0.16   | pCi/L |            |       |             | E903.0    | 09/02/16 16:53 / jjc    |
| Total Radium as Ra226 MDC             | 0.23   | pCi/L |            |       |             | E903.0    | 09/02/16 16:53 / jjc    |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

U - Not detected at minimum detectable concentration

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:09/21/16Project:CCRRWork Order:T16080097

| Analyte                         | Count         | Result        | Units        | RL  | %REC | Low Limit  | High Limit | RPD | RPDLimit   | Qual     |
|---------------------------------|---------------|---------------|--------------|-----|------|------------|------------|-----|------------|----------|
| Method: A2540 C                 |               |               |              |     |      |            |            |     | Batch: TDS | 160826A  |
| Lab ID: MB-1_160826A            | M             | ethod Blank   |              |     |      | Run: BAL3_ | _160826B   |     | 08/26/     | 16 09:48 |
| Solids, Total Dissolved TDS @ 1 | 80 C          | ND            | mg/L         | 5   |      |            |            |     |            |          |
| Lab ID: LCS-2_160826A           | La            | boratory Cor  | itrol Sample | Э   |      | Run: BAL3_ | _160826B   |     | 08/26/     | 16 09:48 |
| Solids, Total Dissolved TDS @ 1 | 80 C          | 1100          | mg/L         | 11  | 99   | 90         | 110        |     |            |          |
| Lab ID: T16080097-003A DU       | I <b>P</b> Sa | ample Duplica | ate          |     |      | Run: BAL3_ | _160826B   |     | 08/26/     | 16 09:51 |
| Solids, Total Dissolved TDS @ 1 | 80 C          | 1440          | mg/L         | 20  |      |            |            | 0.0 | 5          |          |
| Method: A2540 C                 |               |               |              |     |      |            |            |     | Batch: TDS | 160829A  |
| Lab ID: MB-1_160829A            | M             | ethod Blank   |              |     |      | Run: BAL3_ | _160829A   |     | 08/29/     | 16 15:23 |
| Solids, Total Dissolved TDS @ 1 | 80 C          | 6             | mg/L         | 5   |      |            |            |     |            |          |
| Lab ID: LCS-2_160829A           | La            | boratory Cor  | ntrol Sample | Э   |      | Run: BAL3_ | _160829A   |     | 08/29/     | 16 15:23 |
| Solids, Total Dissolved TDS @ 1 | 80 C          | 1120          | mg/L         | 11  | 100  | 90         | 110        |     |            |          |
| Lab ID: T16080097-006A DU       | I <b>P</b> Sa | ample Duplica | ate          |     |      | Run: BAL3_ | _160829A   |     | 08/29/     | 16 15:23 |
| Solids, Total Dissolved TDS @ 1 | 80 C          | 4000          | mg/L         | 100 |      |            |            | 0.0 | 5          |          |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Texas Municipal Power Agency **Report Date:** 09/21/16 Project: CCRR Work Order: T16080097

| Analyte  |                   | Count        | Result       | Units          | RL              | %REC | Low Limit | High Limit | RPD       | RPDLimit     | Qual      |
|----------|-------------------|--------------|--------------|----------------|-----------------|------|-----------|------------|-----------|--------------|-----------|
| Method:  | A4500-F C         |              |              |                |                 |      |           |            | Analytica | l Run: ATT1_ | _160825A  |
| Lab ID:  | CCV-F2            | Cor          | ntinuing Cal | ibration Verif | ication Standar | d    |           |            |           | 08/25/       | 16 15:26  |
| Fluoride |                   |              | 1.97         | mg/L           | 0.10            | 99   | 90        | 110        |           |              |           |
| Method:  | A4500-F C         |              |              |                |                 |      |           |            |           | Batch        | n: R69456 |
| Lab ID:  | LCS-F-3911        | Lab          | oratory Cor  | ntrol Sample   |                 |      | Run: ATT1 | _160825A   |           | 08/25/       | 16 13:21  |
| Fluoride |                   |              | 5.10         | mg/L           | 0.10            | 100  | 90        | 110        |           |              |           |
| Lab ID:  | MBLK              | Met          | thod Blank   |                |                 |      | Run: ATT1 | _160825A   |           | 08/25/       | 16 13:28  |
| Fluoride |                   |              | 0.02         | mg/L           | 0.002           |      |           |            |           |              |           |
| Lab ID:  | T16080097-002ADUF | <b>P</b> Sar | nple Duplic  | ate            |                 |      | Run: ATT1 | _160825A   |           | 08/25/       | 16 14:42  |
| Fluoride |                   |              | 0.270        | mg/L           | 0.10            |      |           |            | 0.0       | 10           |           |
| Lab ID:  | T16080097-002AMS  | Sar          | mple Matrix  | Spike          |                 |      | Run: ATT1 | _160825A   |           | 08/25/       | 16 14:47  |
| Fluoride |                   |              | 5.29         | mg/L           | 0.10            | 98   | 90        | 110        |           |              |           |

### Qualifiers:

RL - Analyte reporting limit. MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:09/21/16Project:CCRRWork Order:T16080097

| Analyte |                   | Count        | Result        | Units       | RL            | %REC | Low Limit | High Limit | RPD       | RPDLimit     | Qual     |
|---------|-------------------|--------------|---------------|-------------|---------------|------|-----------|------------|-----------|--------------|----------|
| Method: | A4500-H B         |              |               |             |               |      |           |            | Analytica | l Run: ATT1_ | 160826A  |
| Lab ID: | ICV/LCS-PH-3840   | Initi        | al Calibratio | n Verificat | tion Standard |      |           |            |           | 08/26/       | 16 09:04 |
| pН      |                   |              | 7.0           | s.u.        | 0.1           | 100  | 98        | 102        |           |              |          |
| Lab ID: | ICV/LCS-PH-3840   | Initi        | al Calibratio | n Verificat | tion Standard |      |           |            |           | 08/26/       | 16 12:52 |
| pН      |                   |              | 7.0           | s.u.        | 0.1           | 100  | 98        | 102        |           |              |          |
| Method: | A4500-H B         |              |               |             |               |      |           |            |           | Batch        | : R69474 |
| Lab ID: | ICV1-PH12_3890    | Initi        | al Calibratio | n Verificat | tion Standard |      | Run: ATT1 | _160826A   |           | 08/26/       | 16 08:58 |
| pН      |                   |              | 12            | s.u.        | 0.1           | 99   | 99        | 101        |           |              |          |
| Lab ID: | ICV2-PH2_3594     | Initi        | al Calibratio | n Verificat | tion Standard |      | Run: ATT1 | _160826A   |           | 08/26/       | 16 09:00 |
| pН      |                   |              | 2.1           | s.u.        | 0.1           | 105  | 95        | 105        |           |              |          |
| Lab ID: | T16080097-001ADUF | <b>P</b> Sar | mple Duplica  | ate         |               |      | Run: ATT1 | _160826A   |           | 08/26/       | 16 12:11 |
| рН      |                   |              | 6.0           | s.u.        | 0.1           |      |           |            | 0.5       | 3            |          |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:09/21/16Project:CCRRWork Order:T16080097

| Analyte   |                     | Count  | Result         | Units           | RL         | %REC | Low Limit  | High Limit   | RPD      | RPDLimit  | Qual      |
|-----------|---------------------|--------|----------------|-----------------|------------|------|------------|--------------|----------|-----------|-----------|
| Method:   | E200.7              |        |                |                 |            |      |            | Analyti      | cal Run: | ICP102-CS | _1608260  |
| Lab ID:   | Initial Calib Verif | 5 Init | ial Calibratio | on Verification | n Standard |      |            |              |          | 08/26     | /16 14:59 |
| Boron     |                     |        | 0.978          | mg/L            | 0.050      | 98   | 95         | 105          |          |           |           |
| Calcium   |                     |        | 49.3           | mg/L            | 1.0        | 99   | 95         | 105          |          |           |           |
| Magnesiur | m                   |        | 49.8           | mg/L            | 1.0        | 100  | 95         | 105          |          |           |           |
| Potassium | ı                   |        | 48.7           | mg/L            | 1.0        | 97   | 95         | 105          |          |           |           |
| Sodium    |                     |        | 48.2           | mg/L            | 1.0        | 96   | 95         | 105          |          |           |           |
| Lab ID:   | Cont Calib Blank    | 5 Co   | ntinuing Cal   | ibration Blanl  | <          |      |            |              |          | 08/26     | /16 15:01 |
| Boron     |                     |        | 0.0215         | mg/L            | 0.050      |      |            |              |          |           |           |
| Calcium   |                     |        | 0.00341        | mg/L            | 1.0        |      |            |              |          |           |           |
| Magnesiu  | m                   |        | 0.00135        | mg/L            | 1.0        |      |            |              |          |           |           |
| Potassium | 1                   |        | 0.00253        | mg/L            | 1.0        |      |            |              |          |           |           |
| Sodium    |                     |        | 0.425          | mg/L            | 1.0        |      |            |              |          |           |           |
| Method:   | E200.7              |        |                |                 |            |      |            |              |          | Batch     | n: R69477 |
| Lab ID:   | IPC                 | 5 Init | ial Precisior  | and Recove      | ry         |      | Run: ICP10 | 2-CS_160826C |          | 08/26     | /16 15:05 |
| Boron     |                     |        | 0.946          | mg/L            | 0.050      | 95   | 95         | 105          |          |           |           |
| Calcium   |                     |        | 47.3           | mg/L            | 1.0        | 95   | 95         | 105          |          |           |           |
| Magnesiu  | m                   |        | 48.2           | mg/L            | 1.0        | 96   | 95         | 105          |          |           |           |
| Potassium | 1                   |        | 47.7           | mg/L            | 1.0        | 95   | 95         | 105          |          |           |           |
| Sodium    |                     |        | 47.3           | mg/L            | 1.0        | 95   | 95         | 105          |          |           |           |
| Lab ID:   | LCS-160826          | 5 Lab  | oratory Cor    | ntrol Sample    |            |      | Run: ICP10 | 2-CS_160826C |          | 08/26     | /16 15:12 |
| Calcium   |                     |        | 47.7           | mg/L            | 1.0        | 95   | 85         | 115          |          |           |           |
| Magnesiu  | m                   |        | 48.2           | mg/L            | 1.0        | 96   | 85         | 115          |          |           |           |
| Potassium | ı                   |        | 47.9           | mg/L            | 1.0        | 96   | 85         | 115          |          |           |           |
| Sodium    |                     |        | 46.9           | mg/L            | 1.0        | 93   | 85         | 115          |          |           |           |
| Boron     |                     |        | 0.955          | mg/L            | 0.050      | 93   | 85         | 115          |          |           |           |
| Lab ID:   | MB-160826           | 5 Me   | thod Blank     |                 |            |      | Run: ICP10 | 2-CS_160826C |          | 08/26     | /16 15:14 |
| Calcium   |                     |        | ND             | mg/L            | 0.09       |      |            |              |          |           |           |
| Magnesiur | m                   |        | 0.006          | mg/L            | 0.004      |      |            |              |          |           |           |
| Potassium | ı                   |        | 0.003          | mg/L            | 0.002      |      |            |              |          |           |           |
| Sodium    |                     |        | 0.4            | mg/L            | 0.2        |      |            |              |          |           |           |
| Boron     |                     |        | 0.02           | mg/L            | 0.001      |      |            |              |          |           |           |
| Lab ID:   | T16080097-002ASD    | 5 Sei  | rial Dilution  |                 |            |      | Run: ICP10 | 2-CS_160826C |          | 08/26     | /16 16:01 |
| Calcium   |                     |        | 340            | mg/L            | 2.0        |      | 0          | 0            | 1.4      | 10        |           |
| Magnesiu  | m                   |        | 66.0           | mg/L            | 2.0        |      | 0          | 0            | 8.0      | 10        |           |
| Potassium | ı                   |        | 32.9           | mg/L            | 2.0        |      | 0          | 0            | 14       | 10        | R         |
| Sodium    |                     |        | 568            | mg/L            | 2.0        |      | 0          | 0            | 3.7      | 10        |           |
| Boron     |                     |        | 0.381          | mg/L            | 0.50       |      | 0          | 0            |          | 10        |           |
| Lab ID:   | T16080097-002AMS    | 5 Sai  | mple Matrix    | Spike           |            |      | Run: ICP10 | 2-CS_160826C |          | 08/26     | /16 16:03 |
| Calcium   |                     |        | 413            | mg/L            | 1.0        | 77   | 70         | 130          |          |           |           |
| Magnesiu  | m                   |        | 156            | mg/L            | 1.0        | 89   | 70         | 130          |          |           |           |
| Potassium |                     |        | 147            | mg/L            | 1.0        | 110  | 70         | 130          |          |           |           |

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

R - RPD exceeds advisory limit.

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date: 09/21/16Project:CCRRWork Order: T16080097

| Analyte   |                   | Count       | Result       | Units               | RL        | %REC | Low Limit  | High Limit   | RPD      | RPDLimit    | Qual     |
|-----------|-------------------|-------------|--------------|---------------------|-----------|------|------------|--------------|----------|-------------|----------|
| Method:   | E200.7            |             |              |                     |           |      |            |              |          | Batch       | : R69477 |
| Lab ID:   | T16080097-002AMS  | 5 Sa        | mple Matrix  | Spike               |           |      | Run: ICP10 | 2-CS_160826C |          | 08/26/      | 16 16:03 |
| Sodium    |                   |             | 674          | mg/L                | 1.0       |      | 70         | 130          |          |             | Α        |
| Boron     |                   |             | 2.27         | mg/L                | 0.10      | 97   | 70         | 130          |          |             |          |
| Lab ID:   | T16080097-002AMSE | <b>5</b> Sa | mple Matrix  | Spike Duplicate     |           |      | Run: ICP10 | 2-CS_160826C |          | 08/26/      | 16 16:05 |
| Calcium   |                   |             | 417          | mg/L                | 1.0       | 82   | 70         | 130          | 1.1      | 20          |          |
| Magnesiun | า                 |             | 157          | mg/L                | 1.0       | 90   | 70         | 130          | 0.6      | 20          |          |
| Potassium |                   |             | 147          | mg/L                | 1.0       | 109  | 70         | 130          | 0.4      | 20          |          |
| Sodium    |                   |             | 676          | mg/L                | 1.0       |      | 70         | 130          | 0.3      | 20          | Α        |
| Boron     |                   |             | 2.29         | mg/L                | 0.10      | 98   | 70         | 130          | 8.0      | 20          |          |
| Method:   | E200.7            |             |              |                     |           |      |            |              | Analytic | al Run: SUB | B266445  |
| Lab ID:   | ICV               | Co          | ntinuing Cal | ibration Verificati | on Standa | rd   |            |              |          | 09/01/      | 16 10:04 |
| Lithium   |                   |             | 1.21         | mg/L                | 0.10      | 97   | 95         | 105          |          |             |          |
| Method:   | E200.7            |             |              |                     |           |      |            |              |          | Batch: E    | 3_102271 |
| Lab ID:   | MB-102271         | Me          | thod Blank   |                     |           |      | Run: SUB-E | 3266445      |          | 09/01/      | 16 17:01 |
| Lithium   |                   |             | 0.004        | mg/L                | 0.002     |      |            |              |          |             |          |
| Lab ID:   | LCS-102271        | Lat         | ooratory Cor | ntrol Sample        |           |      | Run: SUB-E | 3266445      |          | 09/01/      | 16 17:05 |
| Lithium   |                   |             | 0.510        | mg/L                | 0.10      | 101  | 85         | 115          |          |             |          |
| Lab ID:   | B16082783-002AMS3 | 3 Sa        | mple Matrix  | Spike               |           |      | Run: SUB-E | 3266445      |          | 09/01/      | 16 17:19 |
| Lithium   |                   |             | 0.514        | mg/L                | 0.10      | 101  | 70         | 130          |          |             |          |
| Lab ID:   | B16082783-002AMSI | D Sa        | mple Matrix  | Spike Duplicate     |           |      | Run: SUB-E | 3266445      |          | 09/01/      | 16 17:22 |
| Lithium   |                   |             | 0.549        | mg/L                | 0.10      | 108  | 70         | 130          | 6.6      | 20          |          |
| Lab ID:   | B16082814-006BMS  | 3 Sa        | mple Matrix  | Spike               |           |      | Run: SUB-E | 3266445      |          | 09/01/      | 16 19:00 |
| Lithium   |                   |             | 0.734        | mg/L                | 0.10      | 102  | 70         | 130          |          |             |          |
| Lab ID:   | B16082814-006BMSI | <b>D</b> Sa | mple Matrix  | Spike Duplicate     |           |      | Run: SUB-E | 3266445      |          | 09/01/      | 16 19:04 |
| Lithium   |                   |             | 0.735        | mg/L                | 0.10      | 103  | 70         | 130          | 0.2      | 20          |          |

### Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:09/21/16Project:CCRRWork Order:T16080097

| Analyte   |                  | Count     | Result         | Units          | RL         | %REC | Low Limit  | High Limit | RPD      | RPDLimit    | Qual     |
|-----------|------------------|-----------|----------------|----------------|------------|------|------------|------------|----------|-------------|----------|
| Method:   | E200.8           |           |                |                |            |      |            |            | Analytic | al Run: SUB | -B266449 |
| Lab ID:   | QCS              | 11 Initia | al Calibration | on Verificatio | n Standard |      |            |            |          | 09/01/      | 16 11:34 |
| Antimony  |                  |           | 0.0485         | mg/L           | 0.050      | 97   | 90         | 110        |          |             |          |
| Arsenic   |                  |           | 0.0524         | mg/L           | 0.0050     | 105  | 90         | 110        |          |             |          |
| Barium    |                  |           | 0.0494         | mg/L           | 0.10       | 99   | 90         | 110        |          |             |          |
| Beryllium |                  |           | 0.0256         | mg/L           | 0.0010     | 103  | 90         | 110        |          |             |          |
| Cadmium   |                  |           | 0.0251         | mg/L           | 0.0010     | 100  | 90         | 110        |          |             |          |
| Chromium  |                  |           | 0.0511         | mg/L           | 0.010      | 102  | 90         | 110        |          |             |          |
| Cobalt    |                  |           | 0.0522         | mg/L           | 0.010      | 104  | 90         | 110        |          |             |          |
| Lead      |                  |           | 0.0496         | mg/L           | 0.010      | 99   | 90         | 110        |          |             |          |
| Molybdenu | m                |           | 0.0482         | mg/L           | 0.0050     | 96   | 90         | 110        |          |             |          |
| Selenium  |                  |           | 0.0477         | mg/L           | 0.0050     | 95   | 90         | 110        |          |             |          |
| Thallium  |                  |           | 0.0495         | mg/L           | 0.10       | 99   | 90         | 110        |          |             |          |
| Method:   | E200.8           |           |                |                |            |      |            |            |          | Batch: E    | 3_102271 |
| Lab ID:   | MB-102271        | 11 Met    | hod Blank      |                |            |      | Run: SUB-  | 3266449    |          | 09/01/      | 16 13:41 |
| Antimony  |                  |           | ND             | mg/L           | 3E-05      |      |            |            |          |             |          |
| Arsenic   |                  |           | ND             | mg/L           | 7E-05      |      |            |            |          |             |          |
| Barium    |                  |           | ND             | mg/L           | 9E-05      |      |            |            |          |             |          |
| Beryllium |                  |           | ND             | mg/L           | 9E-06      |      |            |            |          |             |          |
| Cadmium   |                  |           | ND             | mg/L           | 2E-05      |      |            |            |          |             |          |
| Chromium  |                  |           | 0.0002         | mg/L           | 4E-05      |      |            |            |          |             |          |
| Cobalt    |                  |           | ND             | mg/L           | 8E-06      |      |            |            |          |             |          |
| Lead      |                  |           | ND             | mg/L           | 2E-05      |      |            |            |          |             |          |
| Molybdenu | ım               |           | ND             | mg/L           | 3E-05      |      |            |            |          |             |          |
| Selenium  |                  |           | ND             | mg/L           | 0.0004     |      |            |            |          |             |          |
| Thallium  |                  |           | ND             | mg/L           | 1.0E-05    |      |            |            |          |             |          |
| Lab ID:   | LCS-102271       | 11 Lab    | oratory Co     | ntrol Sample   |            |      | Run: SUB-l | 3266449    |          | 09/01/      | 16 14:35 |
| Antimony  |                  |           | 0.500          | mg/L           | 0.0050     | 100  | 85         | 115        |          |             |          |
| Arsenic   |                  |           | 0.483          | mg/L           | 0.0010     | 97   | 85         | 115        |          |             |          |
| Barium    |                  |           | 0.488          | mg/L           | 0.010      | 98   | 85         | 115        |          |             |          |
| Beryllium |                  |           | 0.239          | mg/L           | 0.0010     | 96   | 85         | 115        |          |             |          |
| Cadmium   |                  |           | 0.257          | mg/L           | 0.0010     | 103  | 85         | 115        |          |             |          |
| Chromium  |                  |           | 0.500          | mg/L           | 0.0010     | 100  | 85         | 115        |          |             |          |
| Cobalt    |                  |           | 0.488          | mg/L           | 0.0010     | 98   | 85         | 115        |          |             |          |
| Lead      |                  |           | 0.484          | mg/L           | 0.0010     | 97   | 85         | 115        |          |             |          |
| Molybdenu | m                |           | 0.498          | mg/L           | 0.0050     | 100  | 85         | 115        |          |             |          |
| Selenium  |                  |           | 0.494          | mg/L           | 0.0050     | 99   | 85         | 115        |          |             |          |
| Thallium  |                  |           | 0.459          | mg/L           | 0.0010     | 92   | 85         | 115        |          |             |          |
| Lab ID:   | B16082783-002AMS | 3 11 Sam  | nple Matrix    | Spike          |            |      | Run: SUB-I | 3266449    |          | 09/01/      | 16 14:38 |
| Antimony  |                  |           | 0.516          | mg/L           | 0.0010     | 103  | 70         | 130        |          |             |          |
| Arsenic   |                  |           | 0.528          | mg/L           | 0.0010     | 103  | 70         | 130        |          |             |          |
| Barium    |                  |           | 0.526          | mg/L           | 0.050      | 100  | 70         | 130        |          |             |          |
| Beryllium |                  |           | 0.234          | mg/L           | 0.0010     | 94   | 70         | 130        |          |             |          |
| Cadmium   |                  |           | 0.256          | mg/L           | 0.0010     | 102  | 70         | 130        |          |             |          |

### Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

MDC - Minimum detectable concentration



Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:09/21/16Project:CCRRWork Order:T16080097

| Analyte   |                   | Count           | Result      | Units     | RL      | %REC | Low Limit  | High Limit | RPD       | RPDLimit | Qual      |
|-----------|-------------------|-----------------|-------------|-----------|---------|------|------------|------------|-----------|----------|-----------|
| Method:   | E200.8            |                 |             |           |         |      |            |            |           | Batch: E | 3_102271  |
| Lab ID:   | B16082783-002AMS3 | 11 Sar          | mple Matrix | Spike     |         |      | Run: SUB-E | 09/01/     | /16 14:38 |          |           |
| Chromium  |                   |                 | 0.504       | mg/L      | 0.0050  | 101  | 70         | 130        |           |          |           |
| Cobalt    |                   |                 | 0.768       | mg/L      | 0.0050  | 102  | 70         | 130        |           |          |           |
| Lead      |                   |                 | 0.494       | mg/L      | 0.0010  | 99   | 70         | 130        |           |          |           |
| Molybdenu | m                 |                 | 0.574       | mg/L      | 0.0010  | 103  | 70         | 130        |           |          |           |
| Selenium  |                   |                 | 0.532       | mg/L      | 0.0010  | 101  | 70         | 130        |           |          |           |
| Thallium  |                   |                 | 0.473       | mg/L      | 0.00050 | 94   | 70         | 130        |           |          |           |
| Lab ID:   | B16082783-002AMSI | <b>)</b> 11 Sar | mple Matrix | Spike Dup | olicate |      | Run: SUB-E | 3266449    |           | 09/01/   | /16 14:40 |
| Antimony  |                   |                 | 0.510       | mg/L      | 0.0010  | 102  | 70         | 130        | 1.1       | 20       |           |
| Arsenic   |                   |                 | 0.525       | mg/L      | 0.0010  | 102  | 70         | 130        | 0.5       | 20       |           |
| Barium    |                   |                 | 0.530       | mg/L      | 0.050   | 100  | 70         | 130        | 0.6       | 20       |           |
| Beryllium |                   |                 | 0.234       | mg/L      | 0.0010  | 94   | 70         | 130        | 0.1       | 20       |           |
| Cadmium   |                   |                 | 0.256       | mg/L      | 0.0010  | 102  | 70         | 130        | 0.0       | 20       |           |
| Chromium  |                   |                 | 0.512       | mg/L      | 0.0050  | 102  | 70         | 130        | 1.5       | 20       |           |
| Cobalt    |                   |                 | 0.767       | mg/L      | 0.0050  | 102  | 70         | 130        | 0.1       | 20       |           |
| Lead      |                   |                 | 0.497       | mg/L      | 0.0010  | 99   | 70         | 130        | 0.7       | 20       |           |
| Molybdenu | m                 |                 | 0.575       | mg/L      | 0.0010  | 103  | 70         | 130        | 0.3       | 20       |           |
| Selenium  |                   |                 | 0.538       | mg/L      | 0.0010  | 102  | 70         | 130        | 1.1       | 20       |           |
| Thallium  |                   |                 | 0.475       | mg/L      | 0.00050 | 95   | 70         | 130        | 0.5       | 20       |           |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration



Prepared by College Station, TX Branch

Texas Municipal Power Agency **Report Date:** 09/21/16 Project: CCRR Work Order: T16080097

| Analyte |                   | Count        | Result         | Units         | RL           | %REC | Low Limit  | High Limit | RPD      | RPDLimit    | Qual      |
|---------|-------------------|--------------|----------------|---------------|--------------|------|------------|------------|----------|-------------|-----------|
| Method: | E245.1            |              |                |               |              |      |            |            | Analytic | al Run: SUB | -B266413  |
| Lab ID: | ICV               | Initia       | al Calibration | on Verificati | ion Standard |      |            |            |          | 08/31/      | /16 15:50 |
| Mercury |                   |              | 0.0021         | mg/L          | 0.00010      | 103  | 90         | 110        |          |             |           |
| Method: | E245.1            |              |                |               |              |      |            |            |          | Batch: I    | 3_102294  |
| Lab ID: | MB-102294         | Met          | hod Blank      |               |              |      | Run: SUB-E | 3266413    |          | 08/31/      | /16 16:26 |
| Mercury |                   |              | ND             | mg/L          | 4E-06        |      |            |            |          |             |           |
| Lab ID: | LCS-102294        | Lab          | oratory Co     | ntrol Sampl   | е            |      | Run: SUB-E | B266413    |          | 08/31/      | /16 16:27 |
| Mercury |                   |              | 0.0020         | mg/L          | 0.00010      | 100  | 85         | 115        |          |             |           |
| Lab ID: | B16082795-002BMS  | San          | nple Matrix    | Spike         |              |      | Run: SUB-E | B266413    |          | 08/31/      | /16 16:37 |
| Mercury |                   |              | 0.0020         | mg/L          | 0.00010      | 98   | 70         | 130        |          |             |           |
| Lab ID: | B16082795-002BMSI | <b>D</b> San | nple Matrix    | Spike Dupl    | licate       |      | Run: SUB-E | 3266413    |          | 08/31/      | /16 16:39 |
| Mercury |                   |              | 0.0020         | mg/L          | 0.00010      | 98   | 70         | 130        | 0.1      | 30          |           |

### Qualifiers:

RL - Analyte reporting limit. MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:09/21/16Project:CCRRWork Order:T16080097

| Analyte  |                   | Count         | Result          | Units               | RL     | %REC | Low Limit  | High Limit | RPD      | RPDLimit     | Qual      |
|----------|-------------------|---------------|-----------------|---------------------|--------|------|------------|------------|----------|--------------|-----------|
| Method:  | E300.0            |               |                 |                     |        |      |            |            | Analytic | cal Run: IC1 | _160825A  |
| Lab ID:  | ICV/LCS-W-3770    | 2 Init        | tial Calibratio | on Verification Sta | andard |      |            |            |          | 08/25        | /16 18:12 |
| Chloride |                   |               | 101             | mg/L                | 2.0    | 101  | 90         | 110        |          |              |           |
| Sulfate  |                   |               | 101             | mg/L                | 2.0    | 101  | 90         | 110        |          |              |           |
| Method:  | E300.0            |               |                 |                     |        |      |            |            |          | Batch        | n: R69464 |
| Lab ID:  | ICB               | 2 Me          | thod Blank      |                     |        |      | Run: IC1_1 | 60825A     |          | 08/25        | /16 18:31 |
| Chloride |                   |               | 8.0             | mg/L                | 0.05   |      |            |            |          |              |           |
| Sulfate  |                   |               | ND              | mg/L                | 0.03   |      |            |            |          |              |           |
| Lab ID:  | LFB-3911          | 2 La          | boratory For    | tified Blank        |        |      | Run: IC1_1 | 60825A     |          | 08/25        | /16 18:51 |
| Chloride |                   |               | 23.9            | mg/L                | 1.0    | 93   | 90         | 110        |          |              |           |
| Sulfate  |                   |               | 24.6            | mg/L                | 1.0    | 98   | 90         | 110        |          |              |           |
| Lab ID:  | T16080097-003AMS  | 2 Sa          | mple Matrix     | Spike               |        |      | Run: IC1_1 | 60825A     |          | 08/26        | /16 00:02 |
| Chloride |                   |               | 477             | mg/L                | 10     | 103  | 90         | 110        |          |              |           |
| Sulfate  |                   |               | 865             | mg/L                | 10     | 97   | 90         | 110        |          |              |           |
| Lab ID:  | T16080097-003AMSE | <b>)</b> 2 Sa | mple Matrix     | Spike Duplicate     |        |      | Run: IC1_1 | 60825A     |          | 08/26        | /16 00:21 |
| Chloride |                   |               | 481             | mg/L                | 10     | 104  | 90         | 110        | 8.0      | 10           |           |
| Sulfate  |                   |               | 872             | mg/L                | 10     | 101  | 90         | 110        | 0.9      | 10           |           |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:09/21/16Project:CCRRWork Order:T16080097

| Analyte     |                       | Coun | t Result       | Units           | RL | %REC | Low Limit | High Limit    | RPD | RPDLimit  | Qual      |
|-------------|-----------------------|------|----------------|-----------------|----|------|-----------|---------------|-----|-----------|-----------|
| Method:     | E903.0                |      |                |                 |    |      |           |               |     | Batch: RA | 226-0138  |
| Lab ID:     | MB-RA226-0138         | 3    | Method Blank   |                 |    |      | Run: RAD1 | 04-CS_160829/ | A   | 09/02     | /16 10:43 |
| Total Radio | um as Ra226           |      | 0.0008         | pCi/L           |    |      |           |               |     |           | U         |
| Total Radio | um as Ra226 precision | (±)  | 0.1            | pCi/L           |    |      |           |               |     |           |           |
| Total Radio | um as Ra226 MDC       |      | 0.2            | pCi/L           |    |      |           |               |     |           |           |
| Lab ID:     | LCS-RA226-0138        |      | Laboratory Cor | ntrol Sample    |    |      | Run: RAD1 | 04-CS_160829/ | A   | 09/02     | /16 10:43 |
| Total Radio | um as Ra226           |      | 55             | pCi/L           |    | 104  | 80        | 120           |     |           |           |
| Lab ID:     | T16080104-002CMS      |      | Sample Matrix  | Spike           |    |      | Run: RAD1 | 04-CS_160829/ | A   | 09/02     | /16 10:43 |
| Total Radio | um as Ra226           |      | 110            | pCi/L           |    | 88   | 70        | 130           |     |           |           |
| Lab ID:     | T16080104-002CMSI     | D    | Sample Matrix  | Spike Duplicate |    |      | Run: RAD1 | 04-CS_160829/ | A   | 09/02     | /16 10:43 |
| Total Radio | um as Ra226           |      | 110            | pCi/L           |    | 87   | 70        | 130           | 1.1 | 20        |           |
| Method:     | E903.0                |      |                |                 |    |      |           |               |     | Batch: RA | 226-0139  |
| Lab ID:     | MB-RA226-0139         | 3    | Method Blank   |                 |    |      | Run: RAD1 | 04-CS_160829I | 3   | 09/02     | /16 16:53 |
| Total Radio | um as Ra226           |      | 0.06           | pCi/L           |    |      |           |               |     |           | U         |
| Total Radio | um as Ra226 precision | (±)  | 0.1            | pCi/L           |    |      |           |               |     |           |           |
| Total Radio | um as Ra226 MDC       |      | 0.2            | pCi/L           |    |      |           |               |     |           |           |
| Lab ID:     | LCS-RA226-0139        |      | Laboratory Cor | ntrol Sample    |    |      | Run: RAD1 | 04-CS_160829I | 3   | 09/02     | /16 16:53 |
| Total Radio | um as Ra226           |      | 55             | pCi/L           |    | 103  | 80        | 120           |     |           |           |
| Lab ID:     | T16080104-001CMS      |      | Sample Matrix  | Spike           |    |      | Run: RAD1 | 04-CS_160829I | 3   | 09/02     | /16 16:53 |
| Total Radio | um as Ra226           |      | 110            | pCi/L           |    | 81   | 70        | 130           |     |           |           |
| Lab ID:     | T16080104-001CMSI     | D    | Sample Matrix  | Spike Duplicate |    |      | Run: RAD1 | 04-CS_160829I | 3   | 09/02     | /16 16:53 |
| Total Radi  | um as Ra226           |      | 110            | pCi/L           |    | 81   | 70        | 130           | 0.1 | 20        |           |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

Billings, MT 800.735.4489 • Casper, WY 888.235.0515

#### College Station, TX 888.690.2218 • Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

# **QA/QC Summary Report**

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:09/21/16Project:CCRRWork Order:T16080097

| Analyte                   | Count        | Result       | Units           | RL | %REC | Low Limit  | High Limit | RPD | RPDLimit    | Qual      |
|---------------------------|--------------|--------------|-----------------|----|------|------------|------------|-----|-------------|-----------|
| Method: RA-05             |              |              |                 |    |      |            |            |     | Batch: C_RA | 228-5307  |
| Lab ID: LCS-228-RA228-530 | <b>)7</b> La | boratory Cor | ntrol Sample    |    |      | Run: SUB-0 | C214910    |     | 09/06/      | /16 10:35 |
| Radium 228                |              | 8.8          | pCi/L           |    | 98   | 80         | 120        |     |             |           |
| Lab ID: MB-228-RA228-530  | 7 3 Me       | ethod Blank  |                 |    |      | Run: SUB-0 | C214910    |     | 09/06/      | /16 10:35 |
| Radium 228                |              | 0.2          | pCi/L           |    |      |            |            |     |             | U         |
| Radium 228 precision (±)  |              | 8.0          | pCi/L           |    |      |            |            |     |             |           |
| Radium 228 MDC            |              | 1            | pCi/L           |    |      |            |            |     |             |           |
| Lab ID: C16081142-003CMS  | <b>S</b> Sa  | mple Matrix  | Spike           |    |      | Run: SUB-0 | C214910    |     | 09/06/      | /16 12:08 |
| Radium 228                |              | 22           | pCi/L           |    | 99   | 70         | 130        |     |             |           |
| Lab ID: C16081142-003CMS  | SD Sa        | mple Matrix  | Spike Duplicate |    |      | Run: SUB-0 | C214910    |     | 09/06/      | /16 12:08 |
| Radium 228                |              | 25           | pCi/L           |    | 111  | 70         | 130        | 11  | 54.3        |           |

#### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

# Barium Recovery

Per NELAC requirement EL-V1M6-2009 1.7.2.3.c, Energy Laboratories is reporting the sample specific Barium Sulfate carrier recovery.

| T16080097 | Sample         | Recovery |  |
|-----------|----------------|----------|--|
|           | T16080097-001C | 92.72%   |  |
|           | T16080097-001C | 101.36%  |  |
|           | T16080097-002C | 93.43%   |  |
|           | T16080097-002C | 106.80%  |  |
|           | T16080097-003C | 91.65%   |  |
|           | T16080097-003C | 100.19%  |  |
|           | T16080097-004C | 96.09%   |  |
|           | T16080097-004C | 104.85%  |  |
|           | T16080097-005C | 98.25%   |  |
|           | T16080097-005C | 101.95%  |  |
|           | T16080097-006C | 102.52%  |  |
|           | T16080097-006C | 105.15%  |  |
|           | T16080097-007C | 71.46%   |  |
|           | T16080097-007C | 90.76%   |  |
|           | T16080097-008C | 76.31%   |  |
|           | T16080097-008C | 95.03%   |  |

9/20/2016 4:07:03 PM

### **Work Order Receipt Checklist**

# **Texas Municipal Power Agency**

Login completed by: Alisha D. Griffin

### T16080097

Date Received: 8/24/2016

| Reviewed by:                                                                                | BL2000\ssuchar                  |                    | Red   | ceived by: adg      |
|---------------------------------------------------------------------------------------------|---------------------------------|--------------------|-------|---------------------|
| Reviewed Date:                                                                              | 8/29/2016                       |                    | Carı  | rier name: Hand Del |
| Shipping container/cooler in                                                                | good condition?                 | Yes ✓              | No 🗌  | Not Present         |
| Custody seals intact on all s                                                               | hipping container(s)/cooler(s)? | Yes                | No 🗌  | Not Present ✓       |
| Custody seals intact on all s                                                               | ample bottles?                  | Yes                | No 🗌  | Not Present ✓       |
| Chain of custody present?                                                                   |                                 | Yes ✓              | No 🗌  |                     |
| Chain of custody signed who                                                                 | en relinquished and received?   | Yes 🗹              | No 🗌  |                     |
| Chain of custody agrees with                                                                | n sample labels?                | Yes ✓              | No 🗌  |                     |
| Samples in proper container                                                                 | /bottle?                        | Yes ✓              | No 🗌  |                     |
| Sample containers intact?                                                                   |                                 | Yes ✓              | No 🗌  |                     |
| Sufficient sample volume for                                                                | indicated test?                 | Yes ✓              | No 🗌  |                     |
| All samples received within h<br>(Exclude analyses that are c<br>such as pH, DO, Res Cl, Su | onsidered field parameters      | Yes 🗸              | No 🗌  |                     |
| Temp Blank received in all s                                                                | hipping container(s)/cooler(s)? | Yes ✓              | No 🗌  | Not Applicable      |
| Container/Temp Blank tempe                                                                  | erature:                        | °C On Ice - From F | Field |                     |
| Water - VOA vials have zero                                                                 | headspace?                      | Yes                | No 🗌  | Not Applicable      |
| Water - pH acceptable upon                                                                  | receipt?                        | Yes √              | No 🗌  | Not Applicable      |
|                                                                                             |                                 |                    |       |                     |

### **Standard Reporting Procedures:**

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

#### **Contact and Corrective Action Comments:**

pH check of applicable preserved fractions acceptable (Lot#3931). Per Samuel M, log in per history (Schedule 1 & 2 as on COC), but additional analysis of Ca, Mg, Na, K, SO4, Cl. Receipt temperature checked with Thermo 1210: Cooler #T1071 - read temperature = 0.6°C; no corrections. Cooler #T1140 - read temperature = 0.7°C; no corrections. ADG 160824 11:19

| Company Name:  Compan | Chain of Custody and Analytical Request Record PLEASE PRINT (Provide as much information as possible project Name, PWS, Permit, Etc.    MDA   GMANG CON CONTROL   State   Stat                                                                                                                                                                                                                                                                                                                       | (Provide as much information as possible.) Permit, Etc. | ssible.) Sample Origin State:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Page of<br>EPA/State Compliance:<br>Yes □ No □                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Report Mail Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Name: Phone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | reax Select                                             | Email:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sampler: (Please Print)                                                  |
| Invoice Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Contact & Phone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         | Purchase Order:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quote/Bottle Order:                                                      |
| Special Report/Formats:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ANALYSIS REQUESTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         | RUSH sample submittal for charges and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | to Shipped by:  Hand Cooler ID(s):                                       |
| □ DW □ EDD/EDT (Electronic Data) □ POTW/WWTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r of Contained<br>8. V & W A :9<br>8. Soils/Solid<br>Tetra Soils Solid<br>Tetra Soils Soils<br>Tetra Soils | TACHED                                                  | Scheduling – Sched |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | odmuN<br>qyT əlqms2<br>s <u>W</u> ¹! <u>A</u><br>s <u>W</u> ¹! <u>A</u><br>odestation<br>d - WQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         | S TI140 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.7°C Son Ice: (© N/H) Custody Seal Y (© On Bottle Y (© On Cooler Y () N |
| SAMPLE IDENTIFICATION Collection (Name, Location, Interval, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | et2                                                     | H<br>T16080097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Intact Y N<br>Signature Y N<br>Match                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27                                                                       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NO                                                                       |
| 4 AP PZ-3 8-97-16 UTIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -005<br>Name                                                             |
| 5 AP MW-1D 1213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -003                                                                     |
| 2 AP MW-5 1413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ××                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -004<br>-005                                                             |
| 8 AP P2-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 900-006                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOO-1                                                                    |
| print):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Signature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         | Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Signature:                                                               |
| Record Relinquished by (print): Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Signature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         | Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Signature:                                                               |
| Signed Sample Disposal: Return to Client:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lab Disposal:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Alisha D. Griffin (                                     | Date/Time;<br>08/24/16 17:34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | On Modolang.                                                             |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | the state of the s                                                                                                                                                                                                                                                                                                                       | reported by the salphonestor                            | oisylana oth otolomoo ot sobro ni oci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | palyeis redilleste                                                       |

9 0

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to comp. This serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report.

Visit our web site at <a href="www.energylab.com">www.energylab.com</a> for additional information, downloadable fee schedule, forms, and links.

### ANALYTICAL SUMMARY REPORT

September 21, 2016

Texas Municipal Power Agency PO Box 7000 Bryan, TX 77805-7000

Work Order: T16080104

Quote ID: T3094

Project Name: CCRR

Energy Laboratories Inc. College Station TX received the following 7 samples for Texas Municipal Power Agency on 8/25/2016 for analysis.

| Lab ID        | Client Sample ID | Collect Date Receive Date | Matrix      | Test                                                                                                                                                                                                                 |
|---------------|------------------|---------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T16080104-001 | SFL MW-5         | 08/25/16 9:52 08/25/16    | Groundwater | Metals by ICP/ICPMS, Tot. Rec. Mercury, Total Recoverable Fluoride E300.0 Anions Cations by ICP pH Metals Digestion by EPA 200.2 Radium 226 + Radium 228 Radium 226, Total Radium 228, Total Solids, Total Dissolved |
| T16080104-002 | SFL MW-2         | 08/25/16 10:45 08/25/16   | Groundwater | Same As Above                                                                                                                                                                                                        |
| T16080104-003 | SFL MW-4         | 08/25/16 12:28 08/25/16   | Groundwater | Same As Above                                                                                                                                                                                                        |
| T16080104-004 | SFL MW-3         | 08/25/16 13:24 08/25/16   | Groundwater | Same As Above                                                                                                                                                                                                        |
| T16080104-006 | SFL MW-6         | 08/25/16 15:22 08/25/16   | Groundwater | Same As Above                                                                                                                                                                                                        |
| T16080104-007 | EQBK 8-25        | 08/25/16 16:15 08/25/16   | Groundwater | Same As Above                                                                                                                                                                                                        |

The analyses presented in this report were performed by Energy Laboratories, Inc., 415 Graham Rd., College Station, TX 77845-9660, unless otherwise noted.

Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

If you have any questions regarding these tests results, please call.

Report Approved By:

**Report Date:** 09/21/16

**CLIENT:** Texas Municipal Power Agency

Project: CCRR

Work Order: T16080104 CASE NARRATIVE

Tests associated with analyst identified as ELI-B were subcontracted to Energy Laboratories, 1120 S. 27th St., Billings, MT, EPA Number MT00005.

Tests associated with analyst identified as ELI-CA were subcontracted to Energy Laboratories, 2393 Salt Creek Hwy., Casper, WY, EPA Number WY00002 and WY00937.

Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency

**Project**: CCRR **Lab ID**: T16080104-001

Client Sample ID: SFL MW-5

Report Date: 09/21/16

Collection Date: 08/25/16 09:52

DateReceived: 08/25/16

Matrix: Groundwater

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL Method | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|--------------------|-------------------------|
| AGRONOMIC PROPERTIES                  |        |       |            |       |                    |                         |
| рН                                    | 5.1    | s.u.  | Н          | 0.1   | A4500-H            | B 08/26/16 13:36 / rda  |
| PHYSICAL PROPERTIES                   |        |       |            |       |                    |                         |
| Solids, Total Dissolved TDS @ 180 C   | 7960   | mg/L  |            | 100   | A2540 C            | 08/29/16 15:26 / pwh    |
| MAJOR IONS                            |        |       |            |       |                    |                         |
| Chloride                              | 2950   | mg/L  | D          | 50    | E300.0             | 09/02/16 22:09 / pwh    |
| Fluoride                              | 0.2    | mg/L  |            | 0.1   | A4500-F            | C 08/29/16 10:26 / pwh  |
| Sulfate                               | 2090   | mg/L  | D          | 50    | E300.0             | 08/31/16 18:54 / pwh    |
| Calcium                               | 906    | mg/L  | D          | 2     | E200.7             | 08/29/16 17:28 / jtr    |
| Magnesium                             | 178    | mg/L  | D          | 2     | E200.7             | 08/29/16 17:28 / jtr    |
| Potassium                             | 64     | mg/L  | D          | 2     | E200.7             | 08/29/16 17:28 / jtr    |
| Sodium                                | 1590   | mg/L  | D          | 2     | E200.7             | 08/29/16 17:28 / jtr    |
| Boron                                 | 3.6    | mg/L  | D          | 0.5   | E200.7             | 08/29/16 17:28 / jtr    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |                    |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  | E200.8             | 09/01/16 17:14 / eli-b  |
| Arsenic                               | ND     | mg/L  |            | 0.01  | E200.8             | 09/01/16 17:14 / eli-b  |
| Barium                                | 0.08   | mg/L  |            | 0.01  | E200.7             | 09/01/16 19:38 / eli-b  |
| Beryllium                             | 0.01   | mg/L  |            | 0.001 | E200.8             | 09/01/16 17:14 / eli-b  |
| Cadmium                               | ND     | mg/L  |            | 0.01  | E200.8             | 09/01/16 17:14 / eli-b  |
| Chromium                              | ND     | mg/L  |            | 0.01  | E200.8             | 09/06/16 18:27 / eli-b  |
| Cobalt                                | 0.06   | mg/L  |            | 0.02  | E200.8             | 09/06/16 18:27 / eli-b  |
| Lead                                  | ND     | mg/L  |            | 0.01  | E200.8             | 09/01/16 17:14 / eli-b  |
| ithium                                | 8.0    | mg/L  | D          | 0.02  | E200.7             | 09/01/16 19:38 / eli-b  |
| Nolybdenum                            | ND     | mg/L  |            | 0.05  | E200.7             | 09/01/16 19:38 / eli-b  |
| Selenium                              | ND     | mg/L  |            | 0.01  | E200.8             | 09/01/16 17:14 / eli-b  |
| Thallium                              | ND     | mg/L  |            | 0.01  | E200.8             | 09/01/16 17:14 / eli-b  |
| METALS, TOTAL                         |        |       |            |       |                    |                         |
| Mercury                               | ND     | mg/L  |            | 0.001 | E245.1             | 08/31/16 16:52 / eli-b  |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |                    |                         |
| Radium 228                            | 5.9    | pCi/L |            |       | RA-05              | 09/06/16 12:08 / eli-ca |
| Radium 228 precision (±)              | 1.5    | pCi/L |            |       | RA-05              | 09/06/16 12:08 / eli-ca |
| Radium 228 MDC                        | 1.5    | pCi/L |            |       | RA-05              | 09/06/16 12:08 / eli-ca |
| Radium 226 + Radium 228               | 25.6   | pCi/L |            |       | A7500-R            | A 09/20/16 16:42 / sas  |
| Radium 226 + Radium 228 precision (±) | 2.52   | pCi/L |            |       | A7500-R            | A 09/20/16 16:42 / sas  |
| otal Radium as Ra226                  | 20     | pCi/L |            |       | E903.0             | 09/02/16 16:53 / jjc    |
| otal Radium as Ra226 precision (±)    | 2.1    | pCi/L |            |       | E903.0             | 09/02/16 16:53 / jjc    |
| Гotal Radium as Ra226 MDC             | 0.16   | pCi/L |            |       | E903.0             | 09/02/16 16:53 / jjc    |

Report RL - Analyte reporting limit.

**Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency

 Project:
 CCRR

 Lab ID:
 T16080104-002

Client Sample ID: SFL MW-2

Report Date: 09/21/16
Collection Date: 08/25/16 10:45
DateReceived: 08/25/16
Matrix: Groundwater

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL Method | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|--------------------|-------------------------|
| Analyses                              | Nesuit | Onito | Qualificis |       | QUE MICHION        | Analysis bate / by      |
| AGRONOMIC PROPERTIES                  |        |       |            |       |                    |                         |
| pH                                    | 6.9    | s.u.  | Н          | 0.1   | A4500-H B          | 08/26/16 13:41 / rda    |
| PHYSICAL PROPERTIES                   |        |       |            |       |                    |                         |
| Solids, Total Dissolved TDS @ 180 C   | 7680   | mg/L  |            | 100   | A2540 C            | 08/29/16 15:27 / pwh    |
| MAJOR IONS                            |        |       |            |       |                    |                         |
| Chloride                              | 2810   | mg/L  | D          | 50    | E300.0             | 09/02/16 22:28 / pwh    |
| Fluoride                              | 0.1    | mg/L  |            | 0.1   | A4500-F C          | 08/29/16 10:44 / pwh    |
| Sulfate                               | 1900   | mg/L  | D          | 50    | E300.0             | 08/31/16 19:14 / pwh    |
| Calcium                               | 890    | mg/L  | D          | 2     | E200.7             | 08/29/16 17:30 / jtr    |
| Magnesium                             | 141    | mg/L  | D          | 2     | E200.7             | 08/29/16 17:30 / jtr    |
| Potassium                             | 51     | mg/L  | D          | 2     | E200.7             | 08/29/16 17:30 / jtr    |
| Sodium                                | 1490   | mg/L  | D          | 2     | E200.7             | 08/29/16 17:30 / jtr    |
| Boron                                 | 0.6    | mg/L  | D          | 0.5   | E200.7             | 08/29/16 17:30 / jtr    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |                    |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  | E200.8             | 09/01/16 17:16 / eli-b  |
| Arsenic                               | ND     | mg/L  |            | 0.01  | E200.8             | 09/01/16 17:16 / eli-b  |
| Barium                                | 0.03   | mg/L  |            | 0.01  | E200.7             | 09/01/16 19:42 / eli-b  |
| Beryllium                             | 0.002  | mg/L  |            | 0.001 | E200.8             | 09/01/16 17:16 / eli-b  |
| Cadmium                               | ND     | mg/L  |            | 0.01  | E200.8             | 09/01/16 17:16 / eli-b  |
| Chromium                              | ND     | mg/L  |            | 0.01  | E200.8             | 09/02/16 15:50 / eli-b  |
| Cobalt                                | 0.02   | mg/L  |            | 0.02  | E200.8             | 09/12/16 12:59 / eli-b  |
| Lead                                  | ND     | mg/L  |            | 0.01  | E200.8             | 09/01/16 17:16 / eli-b  |
| Lithium                               | 0.5    | mg/L  | D          | 0.02  | E200.7             | 09/01/16 19:42 / eli-b  |
| Molybdenum                            | ND     | mg/L  |            | 0.05  | E200.7             | 09/01/16 19:42 / eli-b  |
| Selenium                              | ND     | mg/L  |            | 0.01  | E200.8             | 09/01/16 17:16 / eli-b  |
| Thallium                              | ND     | mg/L  |            | 0.01  | E200.8             | 09/01/16 17:16 / eli-b  |
| METALS, TOTAL                         |        |       |            |       |                    |                         |
| Mercury                               | ND     | mg/L  |            | 0.001 | E245.1             | 08/31/16 16:58 / eli-b  |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |                    |                         |
| Radium 228                            | 6.5    | pCi/L |            |       | RA-05              | 09/06/16 12:08 / eli-ca |
| Radium 228 precision (±)              | 1.6    | pCi/L |            |       | RA-05              | 09/06/16 12:08 / eli-ca |
| Radium 228 MDC                        | 1.5    | pCi/L |            |       | RA-05              | 09/06/16 12:08 / eli-ca |
| Radium 226 + Radium 228               | 20.6   | pCi/L |            |       | A7500-RA           | 09/20/16 16:42 / sas    |
| Radium 226 + Radium 228 precision (±) | 2.25   | pCi/L |            |       | A7500-RA           | 09/20/16 16:42 / sas    |
| Total Radium as Ra226                 | 14     | pCi/L |            |       | E903.0             | 09/02/16 10:43 / jjc    |
| Total Radium as Ra226 precision (±)   | 1.6    | pCi/L |            |       | E903.0             | 09/02/16 10:43 / jjc    |
| Total Radium as Ra226 MDC             | 0.19   | pCi/L |            |       | E903.0             | 09/02/16 10:43 / jjc    |

Report RL - Analyte reporting limit.

**Definitions:** QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

Prepared by College Station, TX Branch

Client: **Texas Municipal Power Agency** 

**CCRR Project:** Lab ID: T16080104-003 Client Sample ID: SFL MW-4

**Report Date:** 09/21/16 Collection Date: 08/25/16 12:28 DateReceived: 08/25/16

Matrix: Groundwater

|                                       |        |       |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| AGRONOMIC PROPERTIES                  |        |       |            |       |      |           |                         |
| Н                                     | 7.1    | s.u.  | Н          | 0.1   |      | A4500-H B | 08/26/16 13:45 / rda    |
| PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| Solids, Total Dissolved TDS @ 180 C   | 6160   | mg/L  |            | 100   |      | A2540 C   | 08/29/16 15:27 / pwh    |
| MAJOR IONS                            |        |       |            |       |      |           |                         |
| Chloride                              | 1680   | mg/L  | D          | 20    |      | E300.0    | 09/02/16 22:48 / pwh    |
| Fluoride                              | 0.3    | mg/L  |            | 0.1   |      | A4500-F C | 08/29/16 10:40 / pwh    |
| Sulfate                               | 2100   | mg/L  | D          | 20    |      | E300.0    | 08/31/16 19:33 / pwh    |
| Calcium                               | 768    | mg/L  | D          | 2     |      | E200.7    | 08/29/16 17:32 / jtr    |
| Magnesium                             | 117    | mg/L  | D          | 2     |      | E200.7    | 08/29/16 17:32 / jtr    |
| Potassium                             | 57     | mg/L  | D          | 2     |      | E200.7    | 08/29/16 17:32 / jtr    |
| Sodium                                | 1070   | mg/L  | D          | 2     |      | E200.7    | 08/29/16 17:32 / jtr    |
| Boron                                 | 0.6    | mg/L  | D          | 0.5   |      | E200.7    | 08/29/16 17:32 / jtr    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  |      | E200.8    | 09/01/16 17:19 / eli-b  |
| Arsenic                               | ND     | mg/L  |            | 0.01  |      | E200.8    | 09/01/16 17:19 / eli-b  |
| Barium                                | 0.03   | mg/L  |            | 0.01  |      | E200.7    | 09/01/16 19:45 / eli-b  |
| Beryllium                             | ND     | mg/L  |            | 0.001 |      | E200.7    | 09/01/16 19:45 / eli-b  |
| Cadmium                               | ND     | mg/L  |            | 0.01  |      | E200.7    | 09/01/16 19:45 / eli-b  |
| Chromium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 09/02/16 15:53 / eli-b  |
| Cobalt                                | ND     | mg/L  |            | 0.02  |      | E200.8    | 09/12/16 13:01 / eli-b  |
| Lead                                  | ND     | mg/L  |            | 0.01  |      | E200.8    | 09/01/16 17:19 / eli-b  |
| Lithium                               | 0.5    | mg/L  | D          | 0.02  |      | E200.7    | 09/01/16 19:45 / eli-b  |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |      | E200.7    | 09/01/16 19:45 / eli-b  |
| Selenium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 09/01/16 17:19 / eli-b  |
| Thallium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 09/01/16 17:19 / eli-b  |
| METALS, TOTAL                         |        |       |            |       |      |           |                         |
| Mercury                               | ND     | mg/L  |            | 0.001 |      | E245.1    | 08/31/16 17:00 / eli-b  |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 228                            | 0.64   | pCi/L | U          |       |      | RA-05     | 09/06/16 12:08 / eli-ca |
| Radium 228 precision (±)              | 1.3    | pCi/L |            |       |      | RA-05     | 09/06/16 12:08 / eli-ca |
| Radium 228 MDC                        | 2.1    | pCi/L |            |       |      | RA-05     | 09/06/16 12:08 / eli-ca |
| Radium 226 + Radium 228               | 5.28   | pCi/L |            |       |      | A7500-RA  | 09/20/16 16:42 / sas    |
| Radium 226 + Radium 228 precision (±) |        | pCi/L |            |       |      | A7500-RA  | 09/20/16 16:42 / sas    |
| Total Radium as Ra226                 |        | pCi/L |            |       |      | E903.0    | 09/02/16 16:53 / jjc    |
| Total Radium as Ra226 precision (±)   |        | pCi/L |            |       |      | E903.0    | 09/02/16 16:53 / jjc    |
| Total Radium as Ra226 MDC             |        | pCi/L |            |       |      | E903.0    | 09/02/16 16:53 / jjc    |

Report RL - Analyte reporting limit.

**Definitions:** 

QCL - Quality control limit.

ND - Not detected at the reporting limit. D - RL increased due to sample matrix.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.

H - Analysis performed past recommended holding time.

U - Not detected at minimum detectable concentration

Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency

Project: CCRR
Lab ID: T16080104-004
Client Sample ID: SFL MW-3

Report Date: 09/21/16

Collection Date: 08/25/16 13:24

DateReceived: 08/25/16

Matrix: Groundwater

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| AGRONOMIC PROPERTIES                  |        |       |            |       |             |           |                         |
| рН                                    | 3.9    | s.u.  | Н          | 0.1   |             | A4500-H B | 08/26/16 13:49 / rda    |
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| Solids, Total Dissolved TDS @ 180 C   | 5660   | mg/L  |            | 100   |             | A2540 C   | 08/29/16 15:27 / pwh    |
| MAJOR IONS                            |        |       |            |       |             |           |                         |
| Chloride                              | 1490   | mg/L  | D          | 20    |             | E300.0    | 09/02/16 23:07 / pwh    |
| Fluoride                              | 0.7    | mg/L  |            | 0.1   |             | A4500-F C | 08/29/16 10:51 / pwh    |
| Sulfate                               | 2210   | mg/L  | D          | 20    |             | E300.0    | 08/31/16 19:53 / pwh    |
| Calcium                               | 666    | mg/L  | D          | 2     |             | E200.7    | 08/29/16 17:33 / jtr    |
| Magnesium                             | 124    | mg/L  | D          | 2     |             | E200.7    | 08/29/16 17:33 / jtr    |
| Potassium                             | 54     | mg/L  | D          | 2     |             | E200.7    | 08/29/16 17:33 / jtr    |
| Sodium                                | 914    | mg/L  | D          | 2     |             | E200.7    | 08/29/16 17:33 / jtr    |
| Boron                                 | 2.5    | mg/L  | D          | 0.5   |             | E200.7    | 08/29/16 17:33 / jtr    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  |             | E200.8    | 09/01/16 17:22 / eli-b  |
| Arsenic                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 17:22 / eli-b  |
| Barium                                | 0.06   | mg/L  |            | 0.01  |             | E200.7    | 09/01/16 19:49 / eli-b  |
| Beryllium                             | 0.04   | mg/L  |            | 0.001 |             | E200.7    | 09/01/16 19:49 / eli-b  |
| Cadmium                               | ND     | mg/L  |            | 0.01  |             | E200.7    | 09/01/16 19:49 / eli-b  |
| Chromium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/02/16 15:55 / eli-b  |
| Cobalt                                | 0.07   | mg/L  |            | 0.02  |             | E200.8    | 09/12/16 13:04 / eli-b  |
| Lead                                  | 0.03   | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 17:22 / eli-b  |
| Lithium                               | 0.4    | mg/L  | D          | 0.02  |             | E200.7    | 09/01/16 19:49 / eli-b  |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.7    | 09/01/16 19:49 / eli-b  |
| Selenium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 17:22 / eli-b  |
| Thallium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 17:22 / eli-b  |
| METALS, TOTAL                         |        |       |            |       |             |           |                         |
| Mercury                               | 0.003  | mg/L  |            | 0.001 |             | E245.1    | 09/01/16 16:11 / eli-b  |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 228                            | 5.3    | pCi/L |            |       |             | RA-05     | 09/06/16 12:08 / eli-ca |
| Radium 228 precision (±)              | 1.6    | pCi/L |            |       |             | RA-05     | 09/06/16 12:08 / eli-ca |
| Radium 228 MDC                        | 1.5    | pCi/L |            |       |             | RA-05     | 09/06/16 12:08 / eli-ca |
| Radium 226 + Radium 228               | 16.6   | pCi/L |            |       |             | A7500-RA  | 09/20/16 16:42 / sas    |
| Radium 226 + Radium 228 precision (±) | 2.03   | pCi/L |            |       |             | A7500-RA  | 09/20/16 16:42 / sas    |
| Total Radium as Ra226                 | 11     | pCi/L |            |       |             | E903.0    | 09/02/16 16:53 / jjc    |
| Total Radium as Ra226 precision (±)   | 1.3    | pCi/L |            |       |             | E903.0    | 09/02/16 16:53 / jjc    |
| Total Radium as Ra226 MDC             | 0.17   | pCi/L |            |       |             | E903.0    | 09/02/16 16:53 / jjc    |

Report RL - Analyte reporting limit.

**Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency

**Project**: CCRR **Lab ID**: T16080104-006

Client Sample ID: SFL MW-6

Report Date: 09/21/16

Collection Date: 08/25/16 15:22

DateReceived: 08/25/16

Matrix: Groundwater

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL N | /lethod  | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|---------------|----------|-------------------------|
| AGRONOMIC PROPERTIES                  |        |       |            |       |               |          |                         |
| рН                                    | 4.3    | s.u.  | Н          | 0.1   | Α             | 4500-H B | 08/26/16 14:02 / rda    |
| PHYSICAL PROPERTIES                   |        |       |            |       |               |          |                         |
| Solids, Total Dissolved TDS @ 180 C   | 8850   | mg/L  |            | 100   | Α             | 2540 C   | 08/29/16 15:28 / pwh    |
| MAJOR IONS                            |        |       |            |       |               |          |                         |
| Chloride                              | 3470   | mg/L  | D          | 50    | Е             | 300.0    | 09/02/16 23:46 / pwh    |
| Fluoride                              | 0.8    | mg/L  |            | 0.1   | Α             | 4500-F C | 08/29/16 11:10 / pwh    |
| Sulfate                               | 2240   | mg/L  | D          | 50    | E             | 300.0    | 08/31/16 20:31 / pwh    |
| Calcium                               | 929    | mg/L  | D          | 2     | E             | 200.7    | 08/29/16 17:37 / jtr    |
| Magnesium                             | 245    | mg/L  | D          | 2     | Е             | 200.7    | 08/29/16 17:37 / jtr    |
| Potassium                             | 81     | mg/L  | D          | 2     | Е             | 200.7    | 08/29/16 17:37 / jtr    |
| Sodium                                | 1720   | mg/L  | D          | 2     | E             | 200.7    | 08/29/16 17:37 / jtr    |
| Boron                                 | 0.39   | mg/L  |            | 0.05  | E             | 200.7    | 09/01/16 13:52 / jtr    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |               |          |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  | E             | 200.8    | 09/01/16 17:27 / eli-b  |
| Arsenic                               | 0.01   | mg/L  |            | 0.01  | Е             | 200.8    | 09/01/16 17:27 / eli-b  |
| Barium                                | 0.08   | mg/L  |            | 0.01  | Е             | 200.7    | 09/01/16 19:56 / eli-b  |
| Beryllium                             | 0.05   | mg/L  | D          | 0.002 | Е             | 200.7    | 09/01/16 19:56 / eli-b  |
| Cadmium                               | 0.01   | mg/L  |            | 0.01  | E             | 200.8    | 09/01/16 17:27 / eli-b  |
| Chromium                              | ND     | mg/L  |            | 0.01  | E             | 200.8    | 09/02/16 16:01 / eli-b  |
| Cobalt                                | 0.1    | mg/L  |            | 0.02  | Е             | 200.8    | 09/12/16 13:09 / eli-b  |
| Lead                                  | ND     | mg/L  |            | 0.01  | Е             | 200.8    | 09/01/16 17:27 / eli-b  |
| Lithium                               | 8.0    | mg/L  | D          | 0.04  | Е             | 200.7    | 09/01/16 19:56 / eli-b  |
| Molybdenum                            | ND     | mg/L  |            | 0.05  | Е             | 200.8    | 09/01/16 17:27 / eli-b  |
| Selenium                              | 0.01   | mg/L  |            | 0.01  | Е             | 200.8    | 09/01/16 17:27 / eli-b  |
| Thallium                              | ND     | mg/L  |            | 0.01  | E             | 200.8    | 09/01/16 17:27 / eli-b  |
| METALS, TOTAL                         |        |       |            |       |               |          |                         |
| Mercury                               | ND     | mg/L  |            | 0.001 | E             | 245.1    | 08/31/16 17:05 / eli-b  |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |               |          |                         |
| Radium 228                            | 4.5    | pCi/L |            |       | R             | RA-05    | 09/06/16 12:08 / eli-ca |
| Radium 228 precision (±)              | 1.4    | pCi/L |            |       | R             | RA-05    | 09/06/16 12:08 / eli-ca |
| Radium 228 MDC                        | 1.6    | pCi/L |            |       | R             | RA-05    | 09/06/16 12:08 / eli-ca |
| Radium 226 + Radium 228               | 28.8   | pCi/L |            |       | Α             | 7500-RA  | 09/20/16 16:42 / sas    |
| Radium 226 + Radium 228 precision (±) | 2.83   | pCi/L |            |       | Α             | 7500-RA  | 09/20/16 16:42 / sas    |
| Total Radium as Ra226                 | 24     | pCi/L |            |       | E             | 903.0    | 09/02/16 16:53 / jjc    |
| Total Radium as Ra226 precision (±)   | 2.5    | pCi/L |            |       | E             | 903.0    | 09/02/16 16:53 / jjc    |
| Total Radium as Ra226 MDC             | 0.17   | pCi/L |            |       | E             | 903.0    | 09/02/16 16:53 / jjc    |

Report RL - Analyte reporting limit.

**Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency

 Project:
 CCRR

 Lab ID:
 T16080104-007

 Client Sample ID:
 EQBK 8-25

Report Date: 09/21/16
Collection Date: 08/25/16 16:15
DateReceived: 08/25/16
Matrix: Groundwater

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| AGRONOMIC PROPERTIES                  |        |       |            |       |             |           |                         |
| рН                                    | 5.7    | s.u.  | Н          | 0.1   |             | A4500-H B | 08/26/16 14:06 / rda    |
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| Solids, Total Dissolved TDS @ 180 C   | ND     | mg/L  |            | 10    |             | A2540 C   | 08/29/16 15:28 / pwh    |
| MAJOR IONS                            |        |       |            |       |             |           |                         |
| Chloride                              | ND     | mg/L  |            | 1     |             | E300.0    | 09/03/16 00:05 / pwh    |
| Fluoride                              | ND     | mg/L  |            | 0.1   |             | A4500-F C | 08/29/16 11:17 / pwh    |
| Sulfate                               | ND     | mg/L  |            | 1     |             | E300.0    | 08/31/16 20:51 / pwh    |
| Calcium                               | ND     | mg/L  |            | 1     |             | E200.7    | 08/29/16 17:39 / jtr    |
| Magnesium                             | ND     | mg/L  |            | 1     |             | E200.7    | 08/29/16 17:39 / jtr    |
| Potassium                             | ND     | mg/L  |            | 1     |             | E200.7    | 08/29/16 17:39 / jtr    |
| Sodium                                | ND     | mg/L  |            | 1     |             | E200.7    | 09/01/16 13:54 / jtr    |
| Boron                                 | ND     | mg/L  |            | 0.05  |             | E200.7    | 08/29/16 17:39 / jtr    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  |             | E200.8    | 09/01/16 17:29 / eli-b  |
| Arsenic                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 17:29 / eli-b  |
| Barium                                | ND     | mg/L  |            | 0.01  |             | E200.7    | 09/01/16 20:06 / eli-b  |
| Beryllium                             | ND     | mg/L  |            | 0.001 |             | E200.7    | 09/01/16 20:06 / eli-b  |
| Cadmium                               | ND     | mg/L  |            | 0.01  |             | E200.7    | 09/01/16 20:06 / eli-b  |
| Chromium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/02/16 16:03 / eli-b  |
| Cobalt                                | ND     | mg/L  |            | 0.02  |             | E200.8    | 09/12/16 13:12 / eli-b  |
| Lead                                  | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 17:29 / eli-b  |
| Lithium                               | ND     | mg/L  |            | 0.01  |             | E200.7    | 09/13/16 15:19 / eli-b  |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.7    | 09/01/16 20:06 / eli-b  |
| Selenium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 17:29 / eli-b  |
| Thallium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/01/16 17:29 / eli-b  |
| METALS, TOTAL                         |        |       |            |       |             |           |                         |
| Mercury                               | ND     | mg/L  |            | 0.001 |             | E245.1    | 08/31/16 17:07 / eli-b  |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 228                            | 1.1    | pCi/L | U          |       |             | RA-05     | 09/06/16 12:08 / eli-ca |
| Radium 228 precision (±)              | 1.2    | pCi/L |            |       |             | RA-05     | 09/06/16 12:08 / eli-ca |
| Radium 228 MDC                        | 1.6    | pCi/L |            |       |             | RA-05     | 09/06/16 12:08 / eli-ca |
| Radium 226 + Radium 228               | 1.23   | pCi/L |            |       |             | A7500-RA  | 09/20/16 16:42 / sas    |
| Radium 226 + Radium 228 precision (±) | 1.22   | pCi/L |            |       |             | A7500-RA  | 09/20/16 16:42 / sas    |
| Total Radium as Ra226                 | 0.15   | pCi/L | U          |       |             | E903.0    | 09/02/16 16:53 / jjc    |
| Total Radium as Ra226 precision (±)   | 0.15   | pCi/L |            |       |             | E903.0    | 09/02/16 16:53 / jjc    |
| Total Radium as Ra226 MDC             | 0.20   | pCi/L |            |       |             | E903.0    | 09/02/16 16:53 / jjc    |

Report RL - Analyte reporting limit.

**Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

U - Not detected at minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

College Station, TX 888.690.2218 • Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

### **QA/QC Summary Report**

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date: 09/21/16Project:CCRRWork Order: T16080104

| Analyte Co                          | unt Result     | Units        | RL  | %REC | Low Limit  | High Limit | RPD | RPDLimit   | Qual     |
|-------------------------------------|----------------|--------------|-----|------|------------|------------|-----|------------|----------|
| Method: A2540 C                     |                |              |     |      |            |            |     | Batch: TDS | 160829A  |
| Lab ID: MB-1_160829A                | Method Blank   |              |     |      | Run: BAL3_ | _160829A   |     | 08/29/     | 16 15:23 |
| Solids, Total Dissolved TDS @ 180 C | 6              | mg/L         | 5   |      |            |            |     |            |          |
| Lab ID: LCS-2_160829A               | Laboratory Cor | ntrol Sample |     |      | Run: BAL3_ | _160829A   |     | 08/29/     | 16 15:23 |
| Solids, Total Dissolved TDS @ 180 C | 1120           | mg/L         | 11  | 100  | 90         | 110        |     |            |          |
| Lab ID: T16080104-002A DUP          | Sample Duplic  | ate          |     |      | Run: BAL3_ | _160829A   |     | 08/29/     | 16 15:27 |
| Solids, Total Dissolved TDS @ 180 C | 7700           | mg/L         | 100 |      |            |            | 0.3 | 5          |          |

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.



Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency **Report Date:** 09/21/16 Project: CCRR Work Order: T16080104

| Analyte  |                   | Count       | Result       | Units          | RL               | %REC | Low Limit | High Limit | RPD       | RPDLimit     | Qual      |
|----------|-------------------|-------------|--------------|----------------|------------------|------|-----------|------------|-----------|--------------|-----------|
| Method:  | A4500-F C         |             |              |                |                  |      |           |            | Analytica | l Run: ATT1_ | _160829A  |
| Lab ID:  | CCV-F2            | Coi         | ntinuing Cal | ibration Verit | fication Standaı | rd   |           |            |           | 08/29/       | /16 11:21 |
| Fluoride |                   |             | 1.98         | mg/L           | 0.10             | 99   | 90        | 110        |           |              |           |
| Method:  | A4500-F C         |             |              |                |                  |      |           |            |           | Batch        | n: R69478 |
| Lab ID:  | LCS-F-3911        | Lab         | oratory Cor  | ntrol Sample   |                  |      | Run: ATT1 | _160829A   |           | 08/29/       | /16 10:13 |
| Fluoride |                   |             | 5.29         | mg/L           | 0.10             | 103  | 90        | 110        |           |              |           |
| Lab ID:  | MBLK              | Me          | thod Blank   |                |                  |      | Run: ATT1 | _160829A   |           | 08/29/       | /16 10:19 |
| Fluoride |                   |             | 0.02         | mg/L           | 0.002            |      |           |            |           |              |           |
| Lab ID:  | T16080104-001ADUF | <b>S</b> aı | mple Duplic  | ate            |                  |      | Run: ATT1 | _160829A   |           | 08/29/       | /16 10:32 |
| Fluoride |                   |             | 0.240        | mg/L           | 0.10             |      |           |            | 0.0       | 10           |           |
| Lab ID:  | T16080104-001AMS  | Sar         | mple Matrix  | Spike          |                  |      | Run: ATT1 | _160829A   |           | 08/29/       | /16 10:35 |
| Fluoride |                   |             | 4.57         | mg/L           | 0.10             | 85   | 90        | 110        |           |              | S         |

<sup>-</sup> Low spike recovery due to matrix interference

RL - Analyte reporting limit. MDC - Minimum detectable concentration ND - Not detected at the reporting limit. S - Spike recovery outside of advisory limits.

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date: 09/21/16Project:CCRRWork Order: T16080104

| Analyte |                   | Count      | Result         | Units        | RL          | %REC | Low Limit | High Limit | RPD       | RPDLimit     | Qual      |
|---------|-------------------|------------|----------------|--------------|-------------|------|-----------|------------|-----------|--------------|-----------|
| Method: | A4500-H B         |            |                |              |             |      |           |            | Analytica | l Run: ATT1_ | _160826A  |
| Lab ID: | ICV/LCS-PH-3840   | Init       | ial Calibratio | n Verificati | on Standard |      |           |            |           | 08/26/       | /16 09:04 |
| рН      |                   |            | 7.0            | s.u.         | 0.1         | 100  | 98        | 102        |           |              |           |
| Lab ID: | ICV/LCS-PH-3840   | Init       | ial Calibratio | n Verificati | on Standard |      |           |            |           | 08/26/       | /16 12:52 |
| рН      |                   |            | 7.0            | s.u.         | 0.1         | 100  | 98        | 102        |           |              |           |
| Method: | A4500-H B         |            |                |              |             |      |           |            |           | Batch        | n: R69474 |
| Lab ID: | ICV1-PH12_3890    | Init       | ial Calibratio | n Verificati | on Standard |      | Run: ATT1 | _160826A   |           | 08/26/       | /16 08:58 |
| рН      |                   |            | 12             | s.u.         | 0.1         | 99   | 99        | 101        |           |              |           |
| Lab ID: | ICV2-PH2_3594     | Init       | ial Calibratio | n Verificati | on Standard |      | Run: ATT1 | _160826A   |           | 08/26/       | /16 09:00 |
| рН      |                   |            | 2.1            | s.u.         | 0.1         | 105  | 95        | 105        |           |              |           |
| Lab ID: | T16080104-004ADUF | <b>S</b> a | mple Duplica   | ate          |             |      | Run: ATT1 | _160826A   |           | 08/26/       | /16 13:53 |
| рН      |                   |            | 3.9            | s.u.         | 0.1         |      |           |            | 0.3       | 3            |           |

#### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:09/21/16Project:CCRRWork Order:T16080104

| Analyte   |                     | Count  | Result         | Units           | RL         | %REC | Low Limit  | High Limit   | RPD       | RPDLimit  | Qual      |
|-----------|---------------------|--------|----------------|-----------------|------------|------|------------|--------------|-----------|-----------|-----------|
| Method:   | E200.7              |        |                |                 |            |      |            | Analyt       | ical Run: | ICP102-CS | _1608290  |
| Lab ID:   | Initial Calib Verif | 5 Init | ial Calibratio | on Verification | n Standard |      |            |              |           | 08/29     | /16 17:00 |
| Boron     |                     |        | 0.993          | mg/L            | 0.050      | 99   | 95         | 105          |           |           |           |
| Calcium   |                     |        | 49.4           | mg/L            | 1.0        | 99   | 95         | 105          |           |           |           |
| Magnesiur | n                   |        | 50.6           | mg/L            | 1.0        | 101  | 95         | 105          |           |           |           |
| Potassium | 1                   |        | 50.8           | mg/L            | 1.0        | 102  | 95         | 105          |           |           |           |
| Sodium    |                     |        | 49.8           | mg/L            | 1.0        | 100  | 95         | 105          |           |           |           |
| Lab ID:   | Cont Calib Blank    | 5 Co   | ntinuing Cal   | ibration Blanl  | <          |      |            |              |           | 08/29     | /16 17:02 |
| Boron     |                     |        | 0.0217         | mg/L            | 0.050      |      |            |              |           |           |           |
| Calcium   |                     |        | 0.00298        | mg/L            | 1.0        |      |            |              |           |           |           |
| Magnesiur | n                   |        | -0.000326      | mg/L            | 1.0        |      |            |              |           |           |           |
| Potassium | l                   |        | 0.00430        | mg/L            | 1.0        |      |            |              |           |           |           |
| Sodium    |                     |        | 0.281          | mg/L            | 1.0        |      |            |              |           |           |           |
| Method:   | E200.7              |        |                |                 |            |      |            |              |           | Batcl     | h: R69492 |
| Lab ID:   | IPC                 | 5 Init | ial Precision  | and Recove      | ry         |      | Run: ICP10 | 2-CS_160829C | ;         | 08/29     | /16 17:08 |
| Boron     |                     |        | 0.986          | mg/L            | 0.050      | 99   | 95         | 105          |           |           |           |
| Calcium   |                     |        | 50.0           | mg/L            | 1.0        | 100  | 95         | 105          |           |           |           |
| Magnesiur | n                   |        | 51.3           | mg/L            | 1.0        | 103  | 95         | 105          |           |           |           |
| Potassium | l                   |        | 49.2           | mg/L            | 1.0        | 98   | 95         | 105          |           |           |           |
| Sodium    |                     |        | 50.6           | mg/L            | 1.0        | 101  | 95         | 105          |           |           |           |
| Lab ID:   | LCS-160829          | 5 Lal  | boratory Cor   | ntrol Sample    |            |      | Run: ICP10 | 2-CS_160829C | ;         | 08/29     | /16 17:14 |
| Calcium   |                     |        | 50.5           | mg/L            | 1.0        | 101  | 85         | 115          |           |           |           |
| Magnesiur | n                   |        | 51.5           | mg/L            | 1.0        | 103  | 85         | 115          |           |           |           |
| Potassium | ı                   |        | 50.8           | mg/L            | 1.0        | 102  | 85         | 115          |           |           |           |
| Sodium    |                     |        | 50.6           | mg/L            | 1.0        | 101  | 85         | 115          |           |           |           |
| Boron     |                     |        | 1.01           | mg/L            | 0.050      | 98   | 85         | 115          |           |           |           |
| Lab ID:   | MB-160829           | 5 Me   | thod Blank     |                 |            |      | Run: ICP10 | 2-CS_160829C | ;         | 08/29     | /16 17:16 |
| Calcium   |                     |        | ND             | mg/L            | 0.08       |      |            |              |           |           |           |
| Magnesiur | n                   |        | ND             | mg/L            | 0.004      |      |            |              |           |           |           |
| Potassium | ı                   |        | ND             | mg/L            | 0.01       |      |            |              |           |           |           |
| Sodium    |                     |        | 0.2            | mg/L            | 0.2        |      |            |              |           |           |           |
| Boron     |                     |        | 0.03           | mg/L            | 0.001      |      |            |              |           |           |           |
| Lab ID:   | T16080082-008ASD    | 5 Se   | rial Dilution  |                 |            |      | Run: ICP10 | 2-CS_160829C | ;         | 08/29     | /16 17:19 |
| Calcium   |                     |        | ND             | mg/L            | 1.0        |      | 0          | 0            |           | 10        |           |
| Magnesiur | n                   |        | ND             | mg/L            | 1.0        |      | 0          | 0            |           | 10        |           |
| Potassium | ı                   |        | ND             | mg/L            | 1.0        |      | 0          | 0            |           | 10        |           |
| Sodium    |                     |        | 0.926          | mg/L            | 1.0        |      | 0          | 0            |           | 10        | Ν         |
| Boron     |                     |        | 0.0250         | mg/L            | 0.25       |      | 0          | 0            |           | 10        | N         |
| Lab ID:   | T16080082-008AMS    | 5 Sa   | mple Matrix    | Spike           |            |      | Run: ICP10 | 2-CS_160829C | ;         | 08/29     | /16 17:21 |
| Calcium   |                     |        | 51.0           | mg/L            | 1.0        | 102  | 70         | 130          |           |           |           |
| Magnesiur | n                   |        | 52.2           | mg/L            | 1.0        | 104  | 70         | 130          |           |           |           |
| Potassium |                     |        | 51.7           | mg/L            | 1.0        | 103  | 70         | 130          |           |           |           |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

N - The analyte concentration was not sufficiently high to calculate a RPD for the serial dilution test.

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:09/21/16Project:CCRRWork Order:T16080104

| Analyte   |                     | Count | Result             | Units              | RL     | %REC | Low Limit  | High Limit   | RPD     | RPDLimit    | Qual      |
|-----------|---------------------|-------|--------------------|--------------------|--------|------|------------|--------------|---------|-------------|-----------|
| Method:   | E200.7              |       |                    |                    |        |      |            |              |         | Batcl       | n: R69492 |
| Lab ID:   | T16080082-008AMS    | 5 9   | Sample Matrix      | Spike              |        |      | Run: ICP10 | 2-CS_160829C |         | 08/29       | /16 17:21 |
| Sodium    |                     |       | 51.6               | mg/L               | 1.0    | 103  | 70         | 130          |         |             |           |
| Boron     |                     |       | 1.09               | mg/L               | 0.050  | 107  | 70         | 130          |         |             |           |
| Lab ID:   | T16080082-008AMSD   | 5 5   | Sample Matrix      | Spike Duplicate    |        |      | Run: ICP10 | 2-CS_160829C |         | 08/29       | /16 17:23 |
| Calcium   |                     |       | 51.5               | mg/L               | 1.0    | 103  | 70         | 130          | 0.9     | 20          |           |
| Magnesiur | n                   |       | 52.8               | mg/L               | 1.0    | 106  | 70         | 130          | 1.1     | 20          |           |
| Potassium |                     |       | 52.6               | mg/L               | 1.0    | 105  | 70         | 130          | 1.7     | 20          |           |
| Sodium    |                     |       | 52.2               | mg/L               | 1.0    | 104  | 70         | 130          | 1.1     | 20          |           |
| Boron     |                     |       | 1.10               | mg/L               | 0.050  | 109  | 70         | 130          | 1.6     | 20          |           |
| Method:   | E200.7              |       |                    |                    |        |      |            | Analytic     | al Run: | : ICP102-CS | _160901B  |
| Lab ID:   | Initial Calib Verif | 2     | Initial Calibratio | n Verification Sta | andard |      |            |              |         | 09/01       | /16 13:38 |
| Boron     |                     |       | 0.996              | mg/L               | 0.050  | 100  | 95         | 105          |         |             |           |
| Sodium    |                     |       | 51.0               | mg/L               | 1.0    | 102  | 95         | 105          |         |             |           |
| Lab ID:   | Cont Calib Blank    | 2 (   | Continuing Cali    | bration Blank      |        |      |            |              |         | 09/01       | /16 13:39 |
| Boron     |                     |       | 0.00421            | mg/L               | 0.050  |      |            |              |         |             |           |
| Sodium    |                     |       | 0.00284            | mg/L               | 1.0    |      |            |              |         |             |           |
| Method:   | E200.7              |       |                    |                    |        |      |            |              |         | Batcl       | n: R69562 |
| Lab ID:   | IPC                 | 2     | Initial Precision  | and Recovery       |        |      | Run: ICP10 | 2-CS 160901B |         | 09/01       | /16 13:43 |
| Boron     |                     |       | 0.975              | mg/L               | 0.050  | 98   | 95         | 105          |         |             |           |
| Sodium    |                     |       | 48.7               | mg/L               | 1.0    | 97   | 95         | 105          |         |             |           |
| Lab ID:   | LCS-160831          | 2 [   | Laboratory Cor     | trol Sample        |        |      | Run: ICP10 | 2-CS_160901B |         | 09/01       | /16 13:49 |
| Sodium    |                     |       | 51.6               | mg/L               | 1.0    | 103  | 85         | 115          |         |             |           |
| Boron     |                     |       | 1.01               | mg/L               | 0.050  | 101  | 85         | 115          |         |             |           |
| Lab ID:   | MB-160831           | 2     | Method Blank       |                    |        |      | Run: ICP10 | 2-CS_160901B |         | 09/01       | /16 13:50 |
| Sodium    |                     |       | ND                 | mg/L               | 0.02   |      |            |              |         |             |           |
| Boron     |                     |       | 0.003              | mg/L               | 0.001  |      |            |              |         |             |           |
| Lab ID:   | T16080104-007ASD    | 2 9   | Serial Dilution    |                    |        |      | Run: ICP10 | 2-CS_160901B |         | 09/01       | /16 13:56 |
| Sodium    |                     |       | 0.206              | mg/L               | 1.0    |      | 0          | 0            |         | 10          | Ν         |
| Boron     |                     |       | ND                 | mg/L               | 0.25   |      | 0          | 0            |         | 10          |           |
| Lab ID:   | T16080104-007AMS    | 2 9   | Sample Matrix      | Spike              |        |      | Run: ICP10 | 2-CS_160901B |         | 09/01       | /16 13:58 |
| Sodium    |                     |       | 51.1               | mg/L               | 1.0    | 102  | 70         | 130          |         |             |           |
| Boron     |                     |       | 1.05               | mg/L               | 0.050  | 105  | 70         | 130          |         |             |           |
| Lab ID:   | T16080104-007AMSD   | 2 9   | Sample Matrix      | Spike Duplicate    |        |      | Run: ICP10 | 2-CS_160901B |         | 09/01       | /16 14:03 |
| Sodium    |                     |       | 50.7               | mg/L               | 1.0    | 101  | 70         | 130          | 8.0     | 20          |           |
| Boron     |                     |       | 1.05               | mg/L               | 0.050  | 105  | 70         | 130          | 0.4     | 20          |           |

#### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

N - The analyte concentration was not sufficiently high to calculate a RPD for the serial dilution test.

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:09/21/16Project:CCRRWork Order:T16080104

| Analyte   |                   | Count         | Result      | Units          | RL             | %REC           | Low Limit  | High Limit | RPD       | RPDLimit    | Qual      |
|-----------|-------------------|---------------|-------------|----------------|----------------|----------------|------------|------------|-----------|-------------|-----------|
| Method:   | E200.7            |               |             |                |                |                |            |            | Analytica | al Run: SUB | -B26644   |
| Lab ID:   | ICV               | 6 Co          | ntinuing Ca | ibration Verif | ication Standa | <sup>r</sup> d |            |            |           | 09/01/      | /16 10:04 |
| Barium    |                   |               | 2.51        | mg/L           | 0.10           | 100            | 95         | 105        |           |             |           |
| Beryllium |                   |               | 1.25        | mg/L           | 0.010          | 100            | 95         | 105        |           |             |           |
| Cadmium   |                   |               | 2.45        | mg/L           | 0.010          | 98             | 95         | 105        |           |             |           |
| Cobalt    |                   |               | 2.45        | mg/L           | 0.020          | 98             | 95         | 105        |           |             |           |
| Lithium   |                   |               | 1.21        | mg/L           | 0.10           | 97             | 95         | 105        |           |             |           |
| Molybdenu | ım                |               | 2.46        | mg/L           | 0.10           | 98             | 95         | 105        |           |             |           |
| Method:   | E200.7            |               |             |                |                |                |            |            |           | Batch: I    | B_10227   |
| Lab ID:   | MB-102272         | 6 Me          | thod Blank  |                |                |                | Run: SUB-E | 3266445    |           | 09/01/      | /16 19:07 |
| Barium    |                   |               | ND          | mg/L           | 0.0003         |                |            |            |           |             |           |
| Beryllium |                   |               | ND          | mg/L           | 0.0001         |                |            |            |           |             |           |
| Cadmium   |                   |               | ND          | mg/L           | 0.0008         |                |            |            |           |             |           |
| Cobalt    |                   |               | 0.005       | mg/L           | 0.001          |                |            |            |           |             |           |
| Lithium   |                   |               | 0.002       | mg/L           | 0.002          |                |            |            |           |             |           |
| Molybdenu | ım                |               | ND          | mg/L           | 0.004          |                |            |            |           |             |           |
| Lab ID:   | LCS-102272        | 6 Lat         | ooratory Co | ntrol Sample   |                |                | Run: SUB-  | 3266445    |           | 09/01/      | /16 19:11 |
| Barium    |                   |               | 0.492       | mg/L           | 0.10           | 98             | 85         | 115        |           |             |           |
| Beryllium |                   |               | 0.257       | mg/L           | 0.010          | 103            | 85         | 115        |           |             |           |
| Cadmium   |                   |               | 0.256       | mg/L           | 0.010          | 103            | 85         | 115        |           |             |           |
| Cobalt    |                   |               | 0.514       | mg/L           | 0.050          | 102            | 85         | 115        |           |             |           |
| Lithium   |                   |               | 0.522       | mg/L           | 0.10           | 104            | 85         | 115        |           |             |           |
| Molybdenu | ım                |               | 0.503       | mg/L           | 0.10           | 101            | 85         | 115        |           |             |           |
| Lab ID:   | B16082814-007BMS3 | <b>3</b> 6 Sa | mple Matrix | Spike          |                |                | Run: SUB-E | 3266445    |           | 09/01/      | /16 19:31 |
| Barium    |                   |               | 0.544       | mg/L           | 0.050          | 101            | 70         | 130        |           |             |           |
| Beryllium |                   |               | 0.267       | mg/L           | 0.0014         | 107            | 70         | 130        |           |             |           |
| Cadmium   |                   |               | 0.268       | mg/L           | 0.0054         | 107            | 70         | 130        |           |             |           |
| Cobalt    |                   |               | 1.39        | mg/L           | 0.014          | 108            | 70         | 130        |           |             |           |
| Lithium   |                   |               | 0.690       | mg/L           | 0.10           | 109            | 70         | 130        |           |             |           |
| Molybdenu | ım                |               | 1.07        | mg/L           | 0.029          | 108            | 70         | 130        |           |             |           |
| Lab ID:   | B16082814-007BMSE | <b>o</b> 6 Sa | mple Matrix | Spike Duplic   | ate            |                | Run: SUB-E | 3266445    |           | 09/01/      | /16 19:35 |
| Barium    |                   |               | 0.528       | mg/L           | 0.050          | 98             | 70         | 130        | 3.0       | 20          |           |
| Beryllium |                   |               | 0.261       | mg/L           | 0.0014         | 104            | 70         | 130        | 2.1       | 20          |           |
| Cadmium   |                   |               | 0.260       | mg/L           | 0.0054         | 104            | 70         | 130        | 3.0       | 20          |           |
| Cobalt    |                   |               | 1.36        | mg/L           | 0.014          | 102            | 70         | 130        | 2.3       | 20          |           |
| Lithium   |                   |               | 0.675       | mg/L           | 0.10           | 106            | 70         | 130        | 2.2       | 20          |           |
| Molybdenu | ım                |               | 1.01        | mg/L           | 0.029          | 95             | 70         | 130        | 6.1       | 20          |           |
| Method:   | E200.7            |               |             |                |                |                |            |            | Analytica | al Run: SUB | -B26695   |
| Lab ID:   | ICV               | Co            | ntinuing Ca | ibration Verif | ication Standa | <sup>-</sup> d |            |            |           | 09/13/      | /16 11:00 |
| Lithium   |                   |               | 1.28        | mg/L           | 0.10           | 102            | 95         | 105        |           |             |           |

#### Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date: 09/21/16Project:CCRRWork Order: T16080104

| Analyte   |                   | Count   | Result         | Units          | RL         | %REC | Low Limit  | High Limit | RPD       | RPDLimit    | Qual     |
|-----------|-------------------|---------|----------------|----------------|------------|------|------------|------------|-----------|-------------|----------|
| Method:   | E200.8            |         |                |                |            |      |            |            | Analytica | al Run: SUB | -B266449 |
| Lab ID:   | QCS               | 8 Init  | ial Calibratio | on Verificatio | n Standard |      |            |            |           | 09/01/      | 16 11:34 |
| Antimony  |                   |         | 0.0485         | mg/L           | 0.050      | 97   | 90         | 110        |           |             |          |
| Arsenic   |                   |         | 0.0524         | mg/L           | 0.0050     | 105  | 90         | 110        |           |             |          |
| Beryllium |                   |         | 0.0256         | mg/L           | 0.0010     | 103  | 90         | 110        |           |             |          |
| Cadmium   |                   |         | 0.0251         | mg/L           | 0.0010     | 100  | 90         | 110        |           |             |          |
| Lead      |                   |         | 0.0496         | mg/L           | 0.010      | 99   | 90         | 110        |           |             |          |
| Molybdenu | m                 |         | 0.0482         | mg/L           | 0.0050     | 96   | 90         | 110        |           |             |          |
| Selenium  |                   |         | 0.0477         | mg/L           | 0.0050     | 95   | 90         | 110        |           |             |          |
| Thallium  |                   |         | 0.0495         | mg/L           | 0.10       | 99   | 90         | 110        |           |             |          |
| Method:   | E200.8            |         |                |                |            |      |            |            |           | Batch: E    | 3_102272 |
| Lab ID:   | MB-102272         | 8 Me    | thod Blank     |                |            |      | Run: SUB-E | 3266449    |           | 09/01/      | 16 16:55 |
| Antimony  |                   |         | 3E-05          | mg/L           | 3E-05      |      |            |            |           |             |          |
| Arsenic   |                   |         | ND             | mg/L           | 7E-05      |      |            |            |           |             |          |
| Cadmium   |                   |         | ND             | mg/L           | 2E-05      |      |            |            |           |             |          |
| Chromium  |                   |         | 0.0006         | mg/L           | 4E-05      |      |            |            |           |             |          |
| Lead      |                   |         | ND             | mg/L           | 2E-05      |      |            |            |           |             |          |
| Molybdenu | m                 |         | ND             | mg/L           | 3E-05      |      |            |            |           |             |          |
| Selenium  |                   |         | ND             | mg/L           | 0.0004     |      |            |            |           |             |          |
| Thallium  |                   |         | ND             | mg/L           | 1.0E-05    |      |            |            |           |             |          |
| Lab ID:   | LCS-102272        | 8 Lab   | oratory Cor    | ntrol Sample   |            |      | Run: SUB-E | 3266449    |           | 09/01/      | 16 17:32 |
| Antimony  |                   |         | 0.496          | mg/L           | 0.0050     | 99   | 85         | 115        |           |             |          |
| Arsenic   |                   |         | 0.530          | mg/L           | 0.0010     | 106  | 85         | 115        |           |             |          |
| Cadmium   |                   |         | 0.275          | mg/L           | 0.0010     | 110  | 85         | 115        |           |             |          |
| Chromium  |                   |         | 0.539          | mg/L           | 0.0010     | 108  | 85         | 115        |           |             |          |
| Lead      |                   |         | 0.490          | mg/L           | 0.0010     | 98   | 85         | 115        |           |             |          |
| Molybdenu | m                 |         | 0.492          | mg/L           | 0.0050     | 98   | 85         | 115        |           |             |          |
| Selenium  |                   |         | 0.459          | mg/L           | 0.0050     | 92   | 85         | 115        |           |             |          |
| Thallium  |                   |         | 0.466          | mg/L           | 0.0010     | 93   | 85         | 115        |           |             |          |
| Lab ID:   | B16082814-007BMS3 | 8 Sai   | mple Matrix    | Spike          |            |      | Run: SUB-E | 3266449    |           | 09/01/      | 16 17:43 |
| Antimony  |                   |         | 0.504          | mg/L           | 0.0010     | 101  | 70         | 130        |           |             |          |
| Arsenic   |                   |         | 0.560          | mg/L           | 0.0010     | 110  | 70         | 130        |           |             |          |
| Cadmium   |                   |         | 0.281          | mg/L           | 0.0010     | 112  | 70         | 130        |           |             |          |
| Chromium  |                   |         | 0.532          | mg/L           | 0.0050     | 106  | 70         | 130        |           |             |          |
| Lead      |                   |         | 0.494          | mg/L           | 0.0010     | 99   | 70         | 130        |           |             |          |
| Molybdenu | m                 |         | 1.03           | mg/L           | 0.0010     | 100  | 70         | 130        |           |             |          |
| Selenium  |                   |         | 0.436          | mg/L           | 0.0010     | 87   | 70         | 130        |           |             |          |
| Thallium  |                   |         | 0.465          | mg/L           | 0.00050    | 93   | 70         | 130        |           |             |          |
| Lab ID:   | B16082814-007BMSI | D 8 Sai | mple Matrix    | Spike Duplic   | cate       |      | Run: SUB-E | 3266449    |           | 09/01/      | 16 17:46 |
| Antimony  |                   |         | 0.497          | mg/L           | 0.0010     | 99   | 70         | 130        | 1.2       | 20          |          |
| Arsenic   |                   |         | 0.558          | mg/L           | 0.0010     | 109  | 70         | 130        | 0.4       | 20          |          |
| Cadmium   |                   |         | 0.281          | mg/L           | 0.0010     | 112  | 70         | 130        | 0.1       | 20          |          |
| Chromium  |                   |         | 0.532          | mg/L           | 0.0050     | 106  | 70         | 130        | 0.0       | 20          |          |

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

MDC - Minimum detectable concentration

College Station, TX 888.690.2218 • Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

### **QA/QC Summary Report**

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date: 09/21/16Project:CCRRWork Order: T16080104

| Analyte   |                  | Count         | Result       | Units           | RL      | %REC | Low Limit  | High Limit | RPD | RPDLimit Qual   |
|-----------|------------------|---------------|--------------|-----------------|---------|------|------------|------------|-----|-----------------|
| Method:   | E200.8           |               |              |                 |         |      |            |            |     | Batch: B_102272 |
| Lab ID:   | B16082814-007BMS | <b>D</b> 8 Sa | ample Matrix | Spike Duplicate |         |      | Run: SUB-E | 3266449    |     | 09/01/16 17:46  |
| Lead      |                  |               | 0.496        | mg/L            | 0.0010  | 99   | 70         | 130        | 0.3 | 20              |
| Molybdenu | m                |               | 1.04         | mg/L            | 0.0010  | 102  | 70         | 130        | 0.9 | 20              |
| Selenium  |                  |               | 0.483        | mg/L            | 0.0010  | 96   | 70         | 130        | 10  | 20              |
| Thallium  |                  |               | 0.470        | mg/L            | 0.00050 | 94   | 70         | 130        | 1.1 | 20              |

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:09/21/16Project:CCRRWork Order:T16080104

| Analyte   |                   | Count          | Result         | Units          | RL          | %REC | Low Limit  | High Limit | RPD      | RPDLimit    | Qual      |
|-----------|-------------------|----------------|----------------|----------------|-------------|------|------------|------------|----------|-------------|-----------|
| Method:   | E200.8            |                |                |                |             |      |            |            | Analytic | al Run: SUB | -B266526  |
| Lab ID:   | QCS               | Init           | ial Calibratio | on Verificatio | on Standard |      |            |            |          | 09/02/      | ′16 11:15 |
| Chromium  |                   |                | 0.0493         | mg/L           | 0.010       | 99   | 90         | 110        |          |             |           |
| Method:   | E200.8            |                |                |                |             |      |            |            |          | Batch: E    | 3_102272  |
| Lab ID:   | MB-102272         | 8 Me           | thod Blank     |                |             |      | Run: SUB-E | 3266526    |          | 09/02/      | 16 14:37  |
| Antimony  |                   |                | 0.0001         | mg/L           | 3E-05       |      |            |            |          |             |           |
| Arsenic   |                   |                | ND             | mg/L           | 0.0001      |      |            |            |          |             |           |
| Cadmium   |                   |                | ND             | mg/L           | 1E-05       |      |            |            |          |             |           |
| Chromium  |                   |                | 0.0008         | mg/L           | 8E-05       |      |            |            |          |             |           |
| Lead      |                   |                | 9E-05          | mg/L           | 4E-05       |      |            |            |          |             |           |
| Molybdenu | m                 |                | ND             | mg/L           | 4E-05       |      |            |            |          |             |           |
| Selenium  |                   |                | 0.001          | mg/L           | 0.0002      |      |            |            |          |             |           |
| Thallium  |                   |                | ND             | mg/L           | 1E-05       |      |            |            |          |             |           |
| Lab ID:   | LCS-102272        | 8 Lab          | oratory Co     | ntrol Sample   |             |      | Run: SUB-E | 3266526    |          | 09/02/      | 16 16:06  |
| Antimony  |                   |                | 0.485          | mg/L           | 0.0050      | 97   | 85         | 115        |          |             |           |
| Arsenic   |                   |                | 0.486          | mg/L           | 0.0010      | 97   | 85         | 115        |          |             |           |
| Cadmium   |                   |                | 0.253          | mg/L           | 0.0010      | 101  | 85         | 115        |          |             |           |
| Chromium  |                   |                | 0.482          | mg/L           | 0.0010      | 96   | 85         | 115        |          |             |           |
| Lead      |                   |                | 0.501          | mg/L           | 0.0010      | 100  | 85         | 115        |          |             |           |
| Molybdenu | m                 |                | 0.491          | mg/L           | 0.0050      | 98   | 85         | 115        |          |             |           |
| Selenium  |                   |                | 0.477          | mg/L           | 0.0050      | 95   | 85         | 115        |          |             |           |
| Thallium  |                   |                | 0.495          | mg/L           | 0.0010      | 99   | 85         | 115        |          |             |           |
| Lab ID:   | B16082814-007BMS  | <b>3</b> 8 Sar | mple Matrix    | Spike          |             |      | Run: SUB-E | 3266526    |          | 09/02/      | 16 16:08  |
| Antimony  |                   |                | 0.521          | mg/L           | 0.0010      | 104  | 70         | 130        |          |             |           |
| Arsenic   |                   |                | 0.499          | mg/L           | 0.0010      | 97   | 70         | 130        |          |             |           |
| Cadmium   |                   |                | 0.247          | mg/L           | 0.0010      | 98   | 70         | 130        |          |             |           |
| Chromium  |                   |                | 0.498          | mg/L           | 0.0050      | 99   | 70         | 130        |          |             |           |
| Lead      |                   |                | 0.532          | mg/L           | 0.0010      | 106  | 70         | 130        |          |             |           |
| Molybdenu | m                 |                | 1.08           | mg/L           | 0.0010      | 115  | 70         | 130        |          |             |           |
| Selenium  |                   |                | 0.471          | mg/L           | 0.0012      | 92   | 70         | 130        |          |             |           |
| Thallium  |                   |                | 0.520          | mg/L           | 0.00050     | 104  | 70         | 130        |          |             |           |
| Lab ID:   | B16082814-007BMSI | D 8 Sar        | mple Matrix    | Spike Dupli    | cate        |      | Run: SUB-E | 3266526    |          | 09/02/      | 16 16:11  |
| Antimony  |                   |                | 0.497          | mg/L           | 0.0010      | 99   | 70         | 130        | 4.7      | 20          |           |
| Arsenic   |                   |                | 0.484          | mg/L           | 0.0010      | 94   | 70         | 130        | 3.1      | 20          |           |
| Cadmium   |                   |                | 0.244          | mg/L           | 0.0010      | 97   | 70         | 130        | 1.2      | 20          |           |
| Chromium  |                   |                | 0.478          | mg/L           | 0.0050      | 95   | 70         | 130        | 4.1      | 20          |           |
| Lead      |                   |                | 0.518          | mg/L           | 0.0010      | 104  | 70         | 130        | 2.7      | 20          |           |
| Molybdenu | m                 |                | 1.06           | mg/L           | 0.0010      | 111  | 70         | 130        | 1.7      | 20          |           |
| Selenium  |                   |                | 0.460          | mg/L           | 0.0012      | 90   | 70         | 130        | 2.3      | 20          |           |
| Thallium  |                   |                | 0.506          | mg/L           | 0.00050     | 101  | 70         | 130        | 2.6      | 20          |           |

#### Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:09/21/16Project:CCRRWork Order:T16080104

| Analyte   |                   | Count         | Result          | Units          | RL         | %REC | Low Limit  | High Limit | RPD      | RPDLimit    | Qual      |
|-----------|-------------------|---------------|-----------------|----------------|------------|------|------------|------------|----------|-------------|-----------|
| Method:   | E200.8            |               |                 |                |            |      |            |            | Analytic | al Run: SUB | -B266607  |
| Lab ID:   | QCS               | 2 Init        | tial Calibratio | on Verificatio | n Standard |      |            |            |          | 09/06/      | /16 12:07 |
| Chromium  |                   |               | 0.0525          | mg/L           | 0.010      | 105  | 90         | 110        |          |             |           |
| Cobalt    |                   |               | 0.0516          | mg/L           | 0.010      | 103  | 90         | 110        |          |             |           |
| Method:   | E200.8            |               |                 |                |            |      |            |            |          | Batch: I    | 3_102272  |
| Lab ID:   | MB-102272         | 8 Me          | thod Blank      |                |            |      | Run: SUB-  | B266607    |          | 09/06/      | /16 18:04 |
| Antimony  |                   |               | ND              | mg/L           | 3E-05      |      |            |            |          |             |           |
| Arsenic   |                   |               | 0.0002          | mg/L           | 7E-05      |      |            |            |          |             |           |
| Cadmium   |                   |               | ND              | mg/L           | 2E-05      |      |            |            |          |             |           |
| Chromium  |                   |               | 0.0007          | mg/L           | 4E-05      |      |            |            |          |             |           |
| Lead      |                   |               | ND              | mg/L           | 2E-05      |      |            |            |          |             |           |
| Molybdenu | m                 |               | ND              | mg/L           | 3E-05      |      |            |            |          |             |           |
| Selenium  |                   |               | ND              | mg/L           | 0.0004     |      |            |            |          |             |           |
| Thallium  |                   |               | ND              | mg/L           | 1.0E-05    |      |            |            |          |             |           |
| Lab ID:   | LCS-102272        | 8 La          | boratory Co     | ntrol Sample   |            |      | Run: SUB-l | B266607    |          | 09/06/      | /16 18:06 |
| Antimony  |                   |               | 0.500           | mg/L           | 0.0050     | 100  | 85         | 115        |          |             |           |
| Arsenic   |                   |               | 0.498           | mg/L           | 0.0010     | 100  | 85         | 115        |          |             |           |
| Cadmium   |                   |               | 0.254           | mg/L           | 0.0010     | 102  | 85         | 115        |          |             |           |
| Chromium  |                   |               | 0.496           | mg/L           | 0.0010     | 99   | 85         | 115        |          |             |           |
| Lead      |                   |               | 0.488           | mg/L           | 0.0010     | 98   | 85         | 115        |          |             |           |
| Molybdenu | m                 |               | 0.495           | mg/L           | 0.0050     | 99   | 85         | 115        |          |             |           |
| Selenium  |                   |               | 0.472           | mg/L           | 0.0050     | 94   | 85         | 115        |          |             |           |
| Thallium  |                   |               | 0.475           | mg/L           | 0.0010     | 95   | 85         | 115        |          |             |           |
| Lab ID:   | B16082814-007BMS3 | <b>3</b> 8 Sa | mple Matrix     | Spike          |            |      | Run: SUB-l | B266607    |          | 09/06/      | /16 18:14 |
| Antimony  |                   |               | 0.538           | mg/L           | 0.0010     | 108  | 70         | 130        |          | 00,00       |           |
| Arsenic   |                   |               | 0.522           | mg/L           | 0.0010     | 102  | 70         | 130        |          |             |           |
| Cadmium   |                   |               | 0.262           | mg/L           | 0.0010     | 104  | 70         | 130        |          |             |           |
| Chromium  |                   |               | 0.493           | mg/L           | 0.0050     | 98   | 70         | 130        |          |             |           |
| Lead      |                   |               | 0.520           | mg/L           | 0.0010     | 104  | 70         | 130        |          |             |           |
| Molybdenu | m                 |               | 1.09            | mg/L           | 0.0010     | 112  | 70         | 130        |          |             |           |
| Selenium  | ····              |               | 0.471           | mg/L           | 0.0021     | 94   | 70         | 130        |          |             |           |
| Thallium  |                   |               | 0.504           | mg/L           | 0.00050    | 100  | 70         | 130        |          |             |           |
| Lab ID:   | B16082814-007BMSI | <b>D</b> 8 Sa | mple Matrix     | Spike Duplic   | cate       |      | Run: SUB-l | B266607    |          | 09/06/      | /16 18:17 |
| Antimony  |                   |               | 0.500           | mg/L           | 0.0010     | 100  | 70         | 130        | 7.3      | 20          | 10 10.11  |
| Arsenic   |                   |               | 0.504           | mg/L           | 0.0010     | 99   | 70         | 130        | 3.3      | 20          |           |
| Cadmium   |                   |               | 0.252           | mg/L           | 0.0010     | 100  | 70         | 130        | 3.8      | 20          |           |
| Chromium  |                   |               | 0.489           | mg/L           | 0.0010     | 97   | 70         | 130        | 0.9      | 20          |           |
| Lead      |                   |               | 0.495           | mg/L           | 0.0030     | 99   | 70         | 130        | 4.9      | 20          |           |
| Molybdenu | m                 |               | 1.02            | mg/L           | 0.0010     | 99   | 70         | 130        | 6.1      | 20          |           |
| Selenium  | 111               |               | 0.466           | mg/L           | 0.0010     | 93   | 70         | 130        | 1.1      | 20          |           |
|           |                   |               |                 |                |            |      |            |            |          |             |           |
| Thallium  |                   |               | 0.479           | mg/L           | 0.00050    | 95   | 70         | 130        | 5.0      | 20          |           |

#### Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

MDC - Minimum detectable concentration



Prepared by College Station, TX Branch

Client: Texas Municipal Power Agency **Report Date:** 09/21/16 Project: CCRR Work Order: T16080104

|                 |     |                  |              |               |      |           |            |          |             | -         |
|-----------------|-----|------------------|--------------|---------------|------|-----------|------------|----------|-------------|-----------|
| Analyte         | Co  | unt Result       | Units        | RL            | %REC | Low Limit | High Limit | RPD      | RPDLimit    | Qual      |
| Method: E200.8  |     |                  |              |               |      |           |            | Analytic | al Run: SUB | -B266894  |
| Lab ID: QCS     |     | Initial Calibrat | ion Verifica | tion Standard |      |           |            |          | 09/12       | /16 14:07 |
| Cobalt          |     | 0.0511           | mg/L         | 0.010         | 102  | 90        | 110        |          |             |           |
| Method: E200.8  |     |                  |              |               |      |           |            |          | Batch:      | B_102272  |
| Lab ID: MB-1022 | 272 | 10 Method Blank  |              |               |      | Run: SUB- | 3266894    |          | 09/12       | /16 12:56 |
| Antimony        |     | ND               | mg/L         | 3E-05         |      |           |            |          |             |           |
| Arsenic         |     | ND               | mg/L         | 7E-05         |      |           |            |          |             |           |
| Beryllium       |     | ND               | mg/L         | 9E-06         |      |           |            |          |             |           |
| Cadmium         |     | ND               | mg/L         | 2E-05         |      |           |            |          |             |           |
| Chromium        |     | 0.0003           | mg/L         | 4E-05         |      |           |            |          |             |           |
| Cobalt          |     | ND               | mg/L         | 8E-06         |      |           |            |          |             |           |
| Lead            |     | ND               | mg/L         | 2E-05         |      |           |            |          |             |           |
| Molybdenum      |     | 8E-05            | mg/L         | 3E-05         |      |           |            |          |             |           |
| Selenium        |     | ND               | mg/L         | 0.0004        |      |           |            |          |             |           |
| Thallium        |     | 7E-05            | mg/L         | 1.0E-05       |      |           |            |          |             |           |
|                 |     |                  |              |               |      |           |            |          |             |           |

#### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:09/21/16Project:CCRRWork Order:T16080104

| Analyte |                   | Count Res   | ult Units        | RL             | %REC | Low Limit  | High Limit | RPD      | RPDLimit Qual       |
|---------|-------------------|-------------|------------------|----------------|------|------------|------------|----------|---------------------|
| Method: | E245.1            |             |                  |                |      |            |            | Analytic | al Run: SUB-B266413 |
| Lab ID: | ICV               | Initial Cal | bration Verifica | ation Standard |      |            |            |          | 08/31/16 15:50      |
| Mercury |                   | 0.00        | )21 mg/L         | 0.00010        | 103  | 90         | 110        |          |                     |
| Method: | E245.1            |             |                  |                |      |            |            |          | Batch: B_102294     |
| Lab ID: | MB-102294         | Method B    | lank             |                |      | Run: SUB-I | B266413    |          | 08/31/16 16:26      |
| Mercury |                   |             | ND mg/L          | 4E-06          |      |            |            |          |                     |
| Lab ID: | LCS-102294        | Laborator   | y Control Sam    | ole            |      | Run: SUB-I | B266413    |          | 08/31/16 16:27      |
| Mercury |                   | 0.00        | )20 mg/L         | 0.00010        | 100  | 85         | 115        |          |                     |
| Lab ID: | B16082795-002BMS  | Sample N    | latrix Spike     |                |      | Run: SUB-I | B266413    |          | 08/31/16 16:37      |
| Mercury |                   | 0.00        | )20 mg/L         | 0.00010        | 98   | 70         | 130        |          |                     |
| Lab ID: | B16082795-002BMSI | D Sample N  | latrix Spike Du  | plicate        |      | Run: SUB-I | B266413    |          | 08/31/16 16:39      |
| Mercury |                   | 0.00        | )20 mg/L         | 0.00010        | 98   | 70         | 130        | 0.1      | 30                  |
| Lab ID: | T16080104-007B    | Sample N    | latrix Spike     |                |      | Run: SUB-I | B266413    |          | 08/31/16 17:09      |
| Mercury |                   | 0.00        | )20 mg/L         | 0.00010        | 102  | 70         | 130        |          |                     |
| Lab ID: | T16080104-007B    | Sample N    | latrix Spike Du  | plicate        |      | Run: SUB-I | B266413    |          | 08/31/16 17:11      |
| Mercury |                   | 0.00        | )21 mg/L         | 0.00010        | 104  | 70         | 130        | 1.7      | 30                  |
| Method: | E245.1            |             |                  |                |      |            |            | Analytic | al Run: SUB-B266483 |
| Lab ID: | ICV               | Initial Cal | bration Verifica | ation Standard |      |            |            |          | 09/01/16 15:23      |
| Mercury |                   | 0.00        | )21 mg/L         | 0.00010        | 103  | 90         | 110        |          |                     |
| Method: | E245.1            |             |                  |                |      |            |            |          | Batch: B_102317     |
| Lab ID: | MB-102317         | Method B    | lank             |                |      | Run: SUB-I | B266483    |          | 09/01/16 16:07      |
| Mercury |                   |             | ND mg/L          | 4E-06          |      |            |            |          |                     |
| Lab ID: | LCS-102317        | Laborator   | y Control Sam    | ole            |      | Run: SUB-I | B266483    |          | 09/01/16 16:09      |
| Mercury |                   | 0.00        | )20 mg/L         | 0.00010        | 100  | 85         | 115        |          |                     |
| Lab ID: | B16082972-001BMS  | Sample N    | latrix Spike     |                |      | Run: SUB-I | B266483    |          | 09/01/16 16:16      |
| Mercury |                   | 0.002       | 210 mg/L         | 0.00010        | 105  | 70         | 130        |          |                     |
| Lab ID: | B16082972-001BMSI | D Sample N  | latrix Spike Du  | plicate        |      | Run: SUB-l | B266483    |          | 09/01/16 16:18      |
| Mercury |                   | 0.002       | 207 mg/L         | 0.00010        | 103  | 70         | 130        | 1.6      | 30                  |

#### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.



Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date: 09/21/16Project:CCRRWork Order: T16080104

| Analyte |                   | Count       | Result         | Units        | RL              | %REC | Low Limit  | High Limit | RPD      | RPDLimit      | Qual     |
|---------|-------------------|-------------|----------------|--------------|-----------------|------|------------|------------|----------|---------------|----------|
| Method: | E300.0            |             |                |              |                 |      |            |            | Analytic | cal Run: IC1_ | 160831A  |
| Lab ID: | ICV/LCS-W-3770    | Init        | ial Calibratio | on Verificat | tion Standard   |      |            |            |          | 08/31/        | 16 15:59 |
| Sulfate |                   |             | 97.5           | mg/L         | 2.0             | 98   | 90         | 110        |          |               |          |
| Lab ID: | ICB2              | Init        | ial Calibratio | on Blank, I  | nstrument Blank |      |            |            |          | 08/31/        | 16 17:17 |
| Sulfate |                   |             | ND             | mg/L         | 1.0             |      | 0          | 0          |          |               |          |
| Method: | E300.0            |             |                |              |                 |      |            |            |          | Batch         | : R69556 |
| Lab ID: | ICB               | Me          | thod Blank     |              |                 |      | Run: IC1_1 | 60831A     |          | 08/31/        | 16 16:19 |
| Sulfate |                   |             | ND             | mg/L         | 0.03            |      |            |            |          |               |          |
| Lab ID: | LFB-3911          | Lal         | boratory For   | tified Blanl | k               |      | Run: IC1_1 | 60831A     |          | 08/31/        | 16 16:38 |
| Sulfate |                   |             | 22.9           | mg/L         | 1.0             | 92   | 90         | 110        |          |               |          |
| Lab ID: | LFBD-3911         | Lal         | boratory For   | tified Blanl | k Duplicate     |      | Run: IC1_1 | 60831A     |          | 08/31/        | 16 16:58 |
| Sulfate |                   |             | 22.6           | mg/L         | 1.0             | 90   | 90         | 110        | 1.6      | 10            |          |
| Lab ID: | T16080115-001AMS  | Sa          | mple Matrix    | Spike        |                 |      | Run: IC1_1 | 60831A     |          | 08/31/        | 16 17:56 |
| Sulfate |                   |             | 3380           | mg/L         | 25              |      | 90         | 110        |          |               | Α        |
| Lab ID: | T16080115-001AMSI | <b>D</b> Sa | mple Matrix    | Spike Dup    | olicate         |      | Run: IC1_1 | 60831A     |          | 08/31/        | 16 18:15 |
| Sulfate |                   |             | 3420           | mg/L         | 25              |      | 90         | 110        | 1.2      | 10            | Α        |

#### Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

MDC - Minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:09/21/16Project:CCRRWork Order:T16080104

| Analyte  |                   | Count        | Result         | Units           | RL           | %REC | Low Limit  | High Limit | RPD     | RPDLimit      | Qual      |
|----------|-------------------|--------------|----------------|-----------------|--------------|------|------------|------------|---------|---------------|-----------|
| Method:  | E300.0            |              |                |                 |              |      |            |            | Analyti | cal Run: IC1_ | _160902A  |
| Lab ID:  | ICV/LCS-W-3770    | Initi        | al Calibration | on Verification | n Standard   |      |            |            |         | 09/02/        | /16 18:54 |
| Chloride |                   |              | 99.2           | mg/L            | 2.0          | 99   | 90         | 110        |         |               |           |
| Lab ID:  | ICB2              | Initi        | al Calibration | on Blank, Inst  | rument Blank |      |            |            |         | 09/02         | /16 20:12 |
| Chloride |                   |              | 0.413          | mg/L            | 1.0          |      | 0          | 0          |         |               |           |
| Method:  | E300.0            |              |                |                 |              |      |            |            |         | Batch         | n: R69586 |
| Lab ID:  | ICB               | Met          | thod Blank     |                 |              |      | Run: IC1_1 | 60902A     |         | 09/02         | /16 19:14 |
| Chloride |                   |              | 0.4            | mg/L            | 0.05         |      |            |            |         |               |           |
| Lab ID:  | LFB-3911          | Lab          | oratory For    | tified Blank    |              |      | Run: IC1_1 | 60902A     |         | 09/02/        | /16 19:33 |
| Chloride |                   |              | 24.4           | mg/L            | 1.0          | 96   | 90         | 110        |         |               |           |
| Lab ID:  | LFBD-3911         | Lab          | oratory For    | tified Blank D  | uplicate     |      | Run: IC1_1 | 60902A     |         | 09/02/        | /16 19:53 |
| Chloride |                   |              | 24.4           | mg/L            | 1.0          | 96   | 90         | 110        | 0.0     | 10            |           |
| Lab ID:  | T16080115-001AMS  | Sar          | mple Matrix    | Spike           |              |      | Run: IC1_1 | 60902A     |         | 09/02/        | /16 20:51 |
| Chloride |                   |              | 1260           | mg/L            | 25           | 104  | 90         | 110        |         |               |           |
| Lab ID:  | T16080115-001AMSI | <b>D</b> Sar | mple Matrix    | Spike Duplic    | ate          |      | Run: IC1_1 | 60902A     |         | 09/02/        | /16 21:10 |
| Chloride |                   |              | 1260           | mg/L            | 25           | 104  | 90         | 110        | 0.1     | 10            |           |
| Lab ID:  | T16080117-001AMS  | Sar          | nple Matrix    | Spike           |              |      | Run: IC1_1 | 60902A     |         | 09/03/        | /16 01:23 |
| Chloride |                   |              | 949            | mg/L            | 25           | 101  | 90         | 110        |         |               |           |
| Lab ID:  | T16080117-001AMSI | <b>D</b> Sar | nple Matrix    | Spike Duplic    | ate          |      | Run: IC1_1 | 60902A     |         | 09/03/        | /16 01:43 |
| Chloride |                   |              | 964            | mg/L            | 25           | 104  | 90         | 110        | 1.6     | 10            |           |

#### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

Prepared by College Station, TX Branch

Texas Municipal Power Agency **Report Date:** 09/21/16 Project: CCRR Work Order: T16080104

| Analyte    |                       | Count | t Result       | Units           | RL | %REC | Low Limit | High I | _imit   | RPD | RPDLimit  | Qual      |
|------------|-----------------------|-------|----------------|-----------------|----|------|-----------|--------|---------|-----|-----------|-----------|
| Method:    | E903.0                |       |                |                 |    |      |           |        |         |     | Batch: RA | 226-0138  |
| Lab ID:    | MB-RA226-0138         | 3     | Method Blank   |                 |    |      | Run: RAD1 | 04-CS_ | 160829A |     | 09/02     | /16 10:43 |
| Total Radi | um as Ra226           |       | 0.0008         | pCi/L           |    |      |           |        |         |     |           | U         |
| Total Radi | um as Ra226 precision | (±)   | 0.1            | pCi/L           |    |      |           |        |         |     |           |           |
| Total Radi | um as Ra226 MDC       |       | 0.2            | pCi/L           |    |      |           |        |         |     |           |           |
| Lab ID:    | LCS-RA226-0138        |       | Laboratory Cor | ntrol Sample    |    |      | Run: RAD1 | 04-CS_ | 160829A |     | 09/02     | /16 10:43 |
| Total Radi | um as Ra226           |       | 55             | pCi/L           |    | 104  | 80        |        | 120     |     |           |           |
| Lab ID:    | T16080104-002CMS      |       | Sample Matrix  | Spike           |    |      | Run: RAD1 | 04-CS_ | 160829A |     | 09/02     | /16 10:43 |
| Total Radi | um as Ra226           |       | 110            | pCi/L           |    | 88   | 70        |        | 130     |     |           |           |
| Lab ID:    | T16080104-002CMSI     | )     | Sample Matrix  | Spike Duplicate |    |      | Run: RAD1 | 04-CS_ | 160829A |     | 09/02     | /16 10:43 |
| Total Radi | um as Ra226           |       | 110            | pCi/L           |    | 87   | 70        |        | 130     | 1.1 | 20        |           |
| Method:    | E903.0                |       |                |                 |    |      |           |        |         |     | Batch: RA | 226-0139  |
| Lab ID:    | MB-RA226-0139         | 3     | Method Blank   |                 |    |      | Run: RAD1 | 04-CS_ | 160829B |     | 09/02     | /16 16:53 |
| Total Radi | um as Ra226           |       | 0.06           | pCi/L           |    |      |           |        |         |     |           | U         |
| Total Radi | um as Ra226 precision | (±)   | 0.1            | pCi/L           |    |      |           |        |         |     |           |           |
| Total Radi | um as Ra226 MDC       |       | 0.2            | pCi/L           |    |      |           |        |         |     |           |           |
| Lab ID:    | LCS-RA226-0139        |       | Laboratory Cor | ntrol Sample    |    |      | Run: RAD1 | 04-CS_ | 160829B |     | 09/02     | /16 16:53 |
| Total Radi | um as Ra226           |       | 55             | pCi/L           |    | 103  | 80        |        | 120     |     |           |           |
| Lab ID:    | T16080104-001CMS      |       | Sample Matrix  | Spike           |    |      | Run: RAD1 | 04-CS_ | 160829B |     | 09/02     | /16 16:53 |
| Total Radi | um as Ra226           |       | 110            | pCi/L           |    | 81   | 70        |        | 130     |     |           |           |
| Lab ID:    | T16080104-001CMS      | )     | Sample Matrix  | Spike Duplicate |    |      | Run: RAD1 | 04-CS_ | 160829B |     | 09/02     | /16 16:53 |
| Total Radi | um as Ra226           |       | 110            | pCi/L           |    | 81   | 70        |        | 130     | 0.1 | 20        |           |

#### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

Prepared by College Station, TX Branch

Client:Texas Municipal Power AgencyReport Date:09/21/16Project:CCRRWork Order:T16080104

| Analyte   |                    | Count        | Result      | Units           | RL | %REC | Low Limit | High Limit | RPD | RPDLimit    | Qual      |
|-----------|--------------------|--------------|-------------|-----------------|----|------|-----------|------------|-----|-------------|-----------|
| Method:   | RA-05              |              |             |                 |    |      |           |            |     | Batch: C_RA | 228-5307  |
| Lab ID:   | LCS-228-RA228-5307 | <b>'</b> Lab | oratory Cor | ntrol Sample    |    |      | Run: SUB- | C214910    |     | 09/06       | /16 10:35 |
| Radium 22 | 28                 |              | 8.8         | pCi/L           |    | 98   | 80        | 120        |     |             |           |
| Lab ID:   | MB-228-RA228-5307  | 3 Me         | thod Blank  |                 |    |      | Run: SUB- | C214910    |     | 09/06       | /16 10:35 |
| Radium 22 | 28                 |              | 0.2         | pCi/L           |    |      |           |            |     |             | U         |
| Radium 22 | 28 precision (±)   |              | 8.0         | pCi/L           |    |      |           |            |     |             |           |
| Radium 22 | 28 MDC             |              | 1           | pCi/L           |    |      |           |            |     |             |           |
| Lab ID:   | C16081142-003CMS   | Sar          | mple Matrix | Spike           |    |      | Run: SUB- | C214910    |     | 09/06       | /16 12:08 |
| Radium 22 | 28                 |              | 22          | pCi/L           |    | 99   | 70        | 130        |     |             |           |
| Lab ID:   | C16081142-003CMSI  | <b>)</b> Sar | mple Matrix | Spike Duplicate |    |      | Run: SUB- | C214910    |     | 09/06       | /16 12:08 |
| Radium 22 | 28                 |              | 25          | pCi/L           |    | 111  | 70        | 130        | 11  | 54.3        |           |

#### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

# Barium Recovery

Per NELAC requirement EL-V1M6-2009 1.7.2.3.c, Energy Laboratories is reporting the sample specific Barium Sulfate carrier recovery.

| T16080104 | Sample         | Recovery |  |
|-----------|----------------|----------|--|
|           | T16080104-001C | 97.34%   |  |
|           | T16080104-001C | 106.80%  |  |
|           | T16080104-002C | 100.53%  |  |
|           | T16080104-002C | 101.94%  |  |
|           | T16080104-003C | 80.46%   |  |
|           | T16080104-003C | 105.05%  |  |
|           | T16080104-004C | 99.64%   |  |
|           | T16080104-004C | 101.75%  |  |
|           | T16080104-005C | 99.11%   |  |
|           | T16080104-005C | 102.72%  |  |
|           | T16080104-006C | 92.36%   |  |
|           | T16080104-006C | 103.69%  |  |
|           | T16080104-007C | 88.93%   |  |
|           | T16080104-007C | 93.07%   |  |

9/20/2016 4:09:02 PM

# **Work Order Receipt Checklist**

### Texas Municipal Power Agency

Login completed by: Alisha D. Griffin

### T16080104

Date Received: 8/25/2016

| J ,                                                                                          |                                 |                    |      |                     |
|----------------------------------------------------------------------------------------------|---------------------------------|--------------------|------|---------------------|
| Reviewed by:                                                                                 | BL2000\ssuchar                  |                    | Red  | ceived by: trr      |
| Reviewed Date:                                                                               | 8/30/2016                       |                    | Car  | rier name: Hand Del |
| Shipping container/cooler in                                                                 | good condition?                 | Yes √              | No 🗍 | Not Present ☐       |
| Custody seals intact on all st                                                               | nipping container(s)/cooler(s)? | Yes                | No 🗌 | Not Present ✓       |
| Custody seals intact on all sa                                                               | ample bottles?                  | Yes                | No 🗌 | Not Present ✓       |
| Chain of custody present?                                                                    |                                 | Yes √              | No 🗌 |                     |
| Chain of custody signed whe                                                                  | en relinquished and received?   | Yes 🔽              | No 🗌 |                     |
| Chain of custody agrees with                                                                 | n sample labels?                | Yes 🔽              | No 🗌 |                     |
| Samples in proper container                                                                  | /bottle?                        | Yes 🗹              | No 🗌 |                     |
| Sample containers intact?                                                                    |                                 | Yes 🗹              | No 🗌 |                     |
| Sufficient sample volume for                                                                 | indicated test?                 | Yes 🗹              | No 🗌 |                     |
| All samples received within h<br>(Exclude analyses that are or<br>such as pH, DO, Res Cl, Su | onsidered field parameters      | Yes √              | No 🗌 |                     |
| Temp Blank received in all sl                                                                | hipping container(s)/cooler(s)? | Yes 🔽              | No 🗌 | Not Applicable      |
| Container/Temp Blank tempe                                                                   | erature:                        | °C On Ice - From F | ield |                     |
| Water - VOA vials have zero                                                                  | headspace?                      | Yes                | No 🗌 | Not Applicable      |
| Water - pH acceptable upon                                                                   | receipt?                        | Yes 🔽              | No 🗌 | Not Applicable      |
|                                                                                              |                                 |                    |      |                     |

### **Standard Reporting Procedures:**

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

#### **Contact and Corrective Action Comments:**

pH check of applicable preserved fractions acceptable (Lot#3931). Per BG, log in per history (Schedule 1 & 2 as on COC), but additional analysis of Ca, Mg, Na, K, SO4, Cl. Receipt temperature checked with Thermo 1210: Cooler #R/W - read temperature = 1.2°C; no corrections. Cooler #T10920 - read temperature = 0.7°C; no corrections. ADG 160826 09:39

| ENERGY (E)                                             | Chain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of Custo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ody and A                                                                   | d Analytic               | Chain of Custody and Analytical Request Record | Rec              | ord        |                                                         | Page of                 |    |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------|------------------------------------------------|------------------|------------|---------------------------------------------------------|-------------------------|----|
| Company Name:                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project Nam                                                                 | S                        | C.                                             | 200              | Sample     | Sample Origin                                           | EPA/State Compliance:   |    |
| Oster                                                  | Wheeler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TMP                                                                         | ZA A                     |                                                |                  | State:     |                                                         | Yes No                  |    |
| Report Mail Address:                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Contact Name:                                                               |                          | Phone/Fax:                                     |                  | Email:     |                                                         | Sampler: (Please Print) |    |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Section 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Greg Seit                                                                   | seifert                  | 512-241-2310                                   | 310              |            |                                                         | BG/SM                   |    |
| Invoice Address:                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Invoice Conf                                                                | Invoice Contact & Phone: |                                                |                  | Purcha     | Purchase Order:                                         | Quote/Bottle Order:     |    |
|                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                          |                                                |                  |            |                                                         |                         |    |
| Special Report/Formats:                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MC                                                                          | AMALYSIS                 | REQUESTED                                      |                  | 1          | Contact ELI prior to RUSH sample submittal              | shipped by:             |    |
|                                                        | יי, דמם/ממח                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | say Othe<br>Say Othe<br>Say Othe                                            |                          |                                                | THE RESIDENCE OF | æ          | for charges and<br>scheduling – See<br>Instruction Page |                         |    |
| POTWWWTP State:                                        | Format:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r of Cor<br>e: A W t<br>ter <u>S</u> oils<br>ninking h                      | C \$                     |                                                | and the same of  | )          | Comments:                                               | 10 Receipt Temp         |    |
| Other:                                                 | NELAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | edmuM<br>eqyT əlqm<br>e <u>W</u> ii <u>A</u><br>oifstəgə <u>V</u><br>O - WO |                          |                                                | EE AT            | S          | No corrections<br>R/W = 1.8                             | Custody Seal            | ZE |
|                                                        | AND DESCRIPTION OF THE PERSON | Contraction of the Contraction o | Sa                                                                          | hedi                     |                                                | -                | 3          | 1098= 0.                                                | 7                       | -  |
| SAMPLE IDENTIFICATION (Name, Location, Interval, etc.) | Collection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Collection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MATRIX                                                                      | 25                       |                                                | 3                |            | T16080104                                               | *                       | Z  |
| SFL MW-5                                               | 8/25/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                           |                          |                                                |                  |            |                                                         | 100-                    |    |
| 2 SFL MW-2                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                             |                          |                                                |                  |            |                                                         | 7-005                   |    |
| SFL MW-4                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                             |                          |                                                |                  |            |                                                         | -003                    |    |
| 5FL MW-3                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                             |                          |                                                |                  |            |                                                         | 500-<br>ISM             |    |
| SFL MW-1                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                             |                          |                                                |                  |            |                                                         |                         |    |
| SFL MW-6                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                             |                          |                                                |                  |            | 2nd 2-1 only 1/3 full                                   |                         |    |
| FABK 8-25                                              | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | >                                                                           | <b>&gt;</b>              |                                                |                  |            |                                                         | -                       |    |
| 8 0                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                          |                                                |                  |            |                                                         | <u>40</u> @             |    |
| 10                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                          |                                                |                  |            |                                                         |                         |    |
| >                                                      | Max 8/25/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 80716 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Signature:                                                                  | ure: Starely             | Received by (print):                           |                  | Date/Time: |                                                         | Signature:              |    |
| Record Relinquished by (print):                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             | ure;                     | Received by (print):                           |                  | Date/Time: |                                                         | Signature:              |    |
| Signed Sample Disposal:                                | Return to Client:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lab Disposal:                                                               | al:                      | Received by Laboratory:                        | gen !            | Pate/Time: | 116 1708                                                | Signifure:              | P  |
| 3                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L 01 P 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ociao toronto I                                                             | odio od nom on           | Collitation and to at both                     | inchorada        | I in ord   | and of a                                                |                         | 1  |

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratoriés in order to complete the analysis requested.

This serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report.

Visit our web site at <a href="www.energylab.com">www.energylab.com</a> for additional information, downloadable fee schedule, forms, and links.

### **ANALYTICAL SUMMARY REPORT**

November 14, 2016

Texas Municipal Power Agency PO Box 7000 Bryan, TX 77805-7000

Work Order: B16101433

Quote ID: B3997 - CCRR

Project Name: TMPA

Energy Laboratories Inc Billings MT received the following 9 samples for Texas Municipal Power Agency on 10/19/2016 for analysis.

| Lab ID        | Client Sample ID | Collect Date   | Receive Date | Matrix       | Test                                                                                                                                                                                                                                                                  |
|---------------|------------------|----------------|--------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B16101433-001 | SSP/AP MW-1      | 10/17/16 17:\$ | 37 10/19/16  | Ground Water | Metals by ICP/ICPMS, Tot. Rec. Mercury, Total Recoverable Fluoride Anions by Ion Chromatography pH Metals Preparation by EPA 200.2 Digestion, Mercury by CVAA Preparation for TDS Radium 226 + Radium 228 Radium 226, Total Radium 228, Total Solids, Total Dissolved |
| B16101433-002 | SSP MW-2         | 10/18/16 9:12  | 2 10/19/16   | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B16101433-003 | SSP MW-3         | 10/18/16 10:2  | 23 10/19/16  | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B16101433-004 | SSP MW-4         | 10/18/16 11:2  | 21 10/19/16  | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B16101433-005 | EQBK-101816      | 10/18/16 12:3  | 30 10/19/16  | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B16101433-006 | AP MW-4          | 10/18/16 13:5  | 54 10/19/16  | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B16101433-007 | AP MW-5          | 10/18/16 14:4  | 18 10/19/16  | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B16101433-008 | DUP-1            | 10/18/16 0:00  | 0 10/19/16   | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B16101433-009 | AP MW-1D         | 10/18/16 15:3  | 38 10/19/16  | Ground Water | Same As Above                                                                                                                                                                                                                                                         |

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

College Station, TX 888.690.2218 • Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

**Report Date: 11/14/16** 

Trust our People. Trust our Data.

www.energylab.com

**CLIENT:** Texas Municipal Power Agency

Project: TMPA

Work Order: B16101433 CASE NARRATIVE

Tests associated with analyst identified as ELI-CA were subcontracted to Energy Laboratories, PO Box 247, Casper, WY, EPA Number WY00002 and WY00937.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **TMPA** 

Lab ID: B16101433-001 Client Sample ID: SSP/AP MW-1

**Report Date:** 11/14/16 Collection Date: 10/17/16 17:37 DateReceived: 10/19/16

Matrix: Ground Water

|                                       |        |       |            |       | MCL/       |                         |
|---------------------------------------|--------|-------|------------|-------|------------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL Method | Analysis Date / By      |
| PHYSICAL PROPERTIES                   |        |       |            |       |            |                         |
| pH                                    | 6.2    | s.u.  | Н          | 0.1   | A4500-H B  | 10/19/16 13:48 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   |        | mg/L  | D          | 100   | A2540 C    | 10/20/16 10:00 / jef    |
| _                                     |        | J     |            |       |            | ,                       |
| INORGANICS                            | 4=40   |       | _          |       | =          | 10/04/10 07 10 /        |
| Chloride                              |        | mg/L  | D          | 6     | E300.0     | 10/21/16 05:42 / mej    |
| Sulfate                               |        | mg/L  | D          | 20    | E300.0     | 10/21/16 05:42 / mej    |
| Fluoride                              | 0.2    | mg/L  |            | 0.1   | A4500-F C  | 10/20/16 14:21 / cjm    |
| CATIONS                               |        |       |            |       |            |                         |
| Calcium                               | 673    | mg/L  |            | 1     | E200.7     | 10/21/16 20:57 / rlh    |
| Magnesium                             | 147    | mg/L  |            | 1     | E200.7     | 10/21/16 20:57 / rlh    |
| Potassium                             | 51     | mg/L  |            | 1     | E200.7     | 10/21/16 20:57 / rlh    |
| Sodium                                | 1260   | mg/L  | D          | 4     | E200.7     | 10/21/16 20:57 / rlh    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |            |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  | E200.8     | 10/21/16 19:24 / jpv    |
| Arsenic                               | 0.01   | mg/L  |            | 0.01  | E200.8     | 10/21/16 19:24 / jpv    |
| Barium                                | ND     | mg/L  |            | 0.1   | E200.7     | 10/21/16 20:57 / rlh    |
| Beryllium                             | ND     | mg/L  |            | 0.001 | E200.8     | 10/21/16 19:24 / jpv    |
| Boron                                 | 0.93   | mg/L  |            | 0.05  | E200.7     | 10/21/16 20:57 / rlh    |
| Cadmium                               | ND     | mg/L  |            | 0.01  | E200.8     | 10/21/16 19:24 / jpv    |
| Chromium                              |        | mg/L  |            | 0.01  | E200.8     | 10/21/16 19:24 / jpv    |
| Cobalt                                |        | mg/L  |            | 0.02  | E200.8     | 10/21/16 19:24 / jpv    |
| Lead                                  |        | mg/L  |            | 0.01  | E200.8     | 10/21/16 19:24 / jpv    |
| Lithium                               |        | mg/L  | D          | 0.02  | E200.7     | 10/21/16 20:57 / rlh    |
| Mercury                               |        | mg/L  |            | 0.001 | E245.1     | 10/20/16 11:40 / mas    |
| Molybdenum                            |        | mg/L  |            | 0.05  | E200.8     | 10/21/16 19:24 / jpv    |
| Selenium                              |        | mg/L  |            | 0.01  | E200.8     | 10/21/16 19:24 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.01  | E200.8     | 10/21/16 19:24 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |            |                         |
| Radium 226                            | 0.97   | pCi/L |            |       | E903.0     | 11/07/16 12:01 / eli-ca |
| Radium 226 precision (±)              |        | pCi/L |            |       | E903.0     | 11/07/16 12:01 / eli-ca |
| Radium 226 MDC                        | 0.14   | pCi/L |            |       | E903.0     | 11/07/16 12:01 / eli-ca |
| Radium 228                            | 1.2    | pCi/L | U          |       | RA-05      | 11/02/16 13:13 / eli-ca |
| Radium 228 precision (±)              |        | pCi/L |            |       | RA-05      | 11/02/16 13:13 / eli-ca |
| Radium 228 MDC                        |        | pCi/L |            |       | RA-05      | 11/02/16 13:13 / eli-ca |
| Radium 226 + Radium 228               |        | pCi/L |            |       | A7500-RA   | 11/08/16 10:25 / eli-ca |
| Radium 226 + Radium 228 precision (±) |        | pCi/L |            |       | A7500-RA   | 11/08/16 10:25 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.3    | pCi/L |            |       | A7500-RA   | 11/08/16 10:25 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

U - Not detected at minimum detectable concentration

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA

Lab ID: B16101433-002 Client Sample ID: SSP MW-2

Report Date: 11/14/16

Collection Date: 10/18/16 09:12

DateReceived: 10/19/16

Matrix: Ground Water

|                                       |        |       |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| pH                                    | 5.5    | s.u.  | Н          | 0.1   |      | A4500-H B | 10/19/16 13:51 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   |        | mg/L  | D          | 100   |      | A2540 C   | 10/20/16 10:00 / jef    |
| ,                                     |        | Ü     |            |       |      |           | ,                       |
| INORGANICS                            | 0040   | ,,    | 5          | 0     |      | F000 0    | 10/01/10 05 50 / '      |
| Chloride                              |        | mg/L  | D          | 6     |      | E300.0    | 10/21/16 05:56 / mej    |
| Sulfate                               |        | mg/L  | D          | 20    |      | E300.0    | 10/21/16 05:56 / mej    |
| Fluoride                              | 0.2    | mg/L  |            | 0.1   |      | A4500-F C | 10/20/16 14:25 / cjm    |
| CATIONS                               |        |       |            |       |      |           |                         |
| Calcium                               |        | mg/L  |            | 1     |      | E200.7    | 10/21/16 21:01 / rlh    |
| Magnesium                             | 218    | mg/L  |            | 1     |      | E200.7    | 10/21/16 21:01 / rlh    |
| Potassium                             |        | mg/L  |            | 1     |      | E200.7    | 10/21/16 21:01 / rlh    |
| Sodium                                | 1280   | mg/L  | D          | 4     |      | E200.7    | 10/21/16 21:01 / rlh    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  |      | E200.8    | 10/21/16 19:27 / jpv    |
| Arsenic                               | 0.01   | mg/L  |            | 0.01  |      | E200.8    | 10/21/16 19:27 / jpv    |
| Barium                                | 0.06   | mg/L  |            | 0.01  |      | E200.7    | 10/21/16 21:01 / rlh    |
| Beryllium                             | 0.016  | mg/L  |            | 0.001 |      | E200.8    | 10/21/16 19:27 / jpv    |
| Boron                                 | 0.60   | mg/L  |            | 0.05  |      | E200.7    | 10/21/16 21:01 / rlh    |
| Cadmium                               | ND     | mg/L  |            | 0.01  |      | E200.8    | 10/21/16 19:27 / jpv    |
| Chromium                              |        | mg/L  |            | 0.01  |      | E200.8    | 10/21/16 19:27 / jpv    |
| Cobalt                                |        | mg/L  |            | 0.02  |      | E200.8    | 10/21/16 19:27 / jpv    |
| Lead                                  |        | mg/L  |            | 0.01  |      | E200.8    | 10/21/16 19:27 / jpv    |
| Lithium                               |        | mg/L  | D          | 0.02  |      | E200.7    | 10/21/16 21:01 / rlh    |
| Mercury                               |        | mg/L  |            | 0.001 |      | E245.1    | 10/20/16 11:46 / mas    |
| Molybdenum                            |        | mg/L  |            | 0.05  |      | E200.8    | 10/21/16 19:27 / jpv    |
| Selenium                              |        | mg/L  |            | 0.01  |      | E200.8    | 10/21/16 19:27 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 10/21/16 19:27 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 226                            | 1.0    | pCi/L |            |       |      | E903.0    | 11/07/16 13:53 / eli-ca |
| Radium 226 precision (±)              | 0.28   | pCi/L |            |       |      | E903.0    | 11/07/16 13:53 / eli-ca |
| Radium 226 MDC                        | 0.14   | pCi/L |            |       |      | E903.0    | 11/07/16 13:53 / eli-ca |
| Radium 228                            |        | pCi/L | U          |       |      | RA-05     | 11/02/16 13:13 / eli-ca |
| Radium 228 precision (±)              |        | pCi/L |            |       |      | RA-05     | 11/02/16 13:13 / eli-ca |
| Radium 228 MDC                        |        | pCi/L |            |       |      | RA-05     | 11/02/16 13:13 / eli-ca |
| Radium 226 + Radium 228               |        | pCi/L |            |       |      | A7500-RA  | 11/08/16 10:25 / eli-ca |
| Radium 226 + Radium 228 precision (±) |        | pCi/L |            |       |      | A7500-RA  | 11/08/16 10:25 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.2    | pCi/L |            |       |      | A7500-RA  | 11/08/16 10:25 / eli-ca |

Report RL - Analyte reporting limit.

**Definitions:** QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

U - Not detected at minimum detectable concentration

**Report Date:** 11/14/16

Collection Date: 10/18/16 10:23

#### LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**Project:** TMPA **Lab ID:** B16101433-003

Lab ID:B16101433-003DateReceived:10/19/16Client Sample ID:SSP MW-3Matrix:Ground Water

| Analyses                              | Result | Unite  | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|--------|------------|-------|-------------|-----------|-------------------------|
| Allaryses                             | Result | Office | Quamers    |       |             | Wethou    | Analysis bate / by      |
| PHYSICAL PROPERTIES                   |        |        |            |       |             |           |                         |
| рН                                    | 4.5    | s.u.   | Н          | 0.1   |             | A4500-H B | 10/19/16 13:54 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 6690   | mg/L   | D          | 100   |             | A2540 C   | 10/20/16 10:01 / jef    |
| INORGANICS                            |        |        |            |       |             |           |                         |
| Chloride                              | 1880   | mg/L   | D          | 6     |             | E300.0    | 10/21/16 06:09 / mej    |
| Sulfate                               |        | mg/L   | D          | 20    |             | E300.0    | 10/21/16 06:09 / mej    |
| Fluoride                              |        | mg/L   |            | 0.1   |             | A4500-F C | 10/20/16 14:31 / cjm    |
| CATIONS                               |        |        |            |       |             |           |                         |
| Calcium                               | 699    | mg/L   |            | 1     |             | E200.7    | 10/21/16 21:04 / rlh    |
| Magnesium                             |        | mg/L   |            | 1     |             | E200.7    | 10/21/16 21:04 / rlh    |
| Potassium                             |        | mg/L   |            | 1     |             | E200.7    | 10/21/16 21:04 / rlh    |
| Sodium                                |        | mg/L   | D          | 4     |             | E200.7    | 10/21/16 21:04 / rlh    |
| METALS, TOTAL RECOVERABLE             |        |        |            |       |             |           |                         |
| Antimony                              | ND     | mg/L   |            | 0.05  |             | E200.8    | 10/21/16 19:30 / jpv    |
| Arsenic                               |        | mg/L   |            | 0.01  |             | E200.8    | 10/21/16 19:30 / jpv    |
| Barium                                |        | mg/L   |            | 0.01  |             | E200.7    | 10/21/16 21:04 / rlh    |
| Beryllium                             | 0.120  | mg/L   |            | 0.001 |             | E200.8    | 10/21/16 19:30 / jpv    |
| Boron                                 | 2.70   | mg/L   |            | 0.05  |             | E200.7    | 10/21/16 21:04 / rlh    |
| Cadmium                               | 0.05   | mg/L   |            | 0.01  |             | E200.8    | 10/21/16 19:30 / jpv    |
| Chromium                              | ND     | mg/L   |            | 0.01  |             | E200.8    | 10/21/16 19:30 / jpv    |
| Cobalt                                | 0.58   | mg/L   |            | 0.02  |             | E200.8    | 10/21/16 19:30 / jpv    |
| Lead                                  | ND     | mg/L   |            | 0.01  |             | E200.8    | 10/21/16 19:30 / jpv    |
| Lithium                               | 0.75   | mg/L   | D          | 0.02  |             | E200.7    | 10/21/16 21:04 / rlh    |
| Mercury                               | ND     | mg/L   |            | 0.001 |             | E245.1    | 10/20/16 11:47 / mas    |
| Molybdenum                            | ND     | mg/L   |            | 0.05  |             | E200.8    | 10/21/16 19:30 / jpv    |
| Selenium                              | ND     | mg/L   |            | 0.01  |             | E200.8    | 10/21/16 19:30 / jpv    |
| Thallium                              | ND     | mg/L   |            | 0.01  |             | E200.8    | 10/21/16 19:30 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |        |            |       |             |           |                         |
| Radium 226                            | 8.0    | pCi/L  |            |       |             | E903.0    | 11/07/16 13:53 / eli-ca |
| Radium 226 precision (±)              | 1.6    | pCi/L  |            |       |             | E903.0    | 11/07/16 13:53 / eli-ca |
| Radium 226 MDC                        | 0.13   | pCi/L  |            |       |             | E903.0    | 11/07/16 13:53 / eli-ca |
| Radium 228                            | 17     | pCi/L  |            |       |             | RA-05     | 11/02/16 13:13 / eli-ca |
| Radium 228 precision (±)              | 3.2    | pCi/L  |            |       |             | RA-05     | 11/02/16 13:13 / eli-ca |
| Radium 228 MDC                        | 1.2    | pCi/L  |            |       |             | RA-05     | 11/02/16 13:13 / eli-ca |
| Radium 226 + Radium 228               | 24.7   | pCi/L  |            |       |             | A7500-RA  | 11/08/16 10:25 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 3.5    | pCi/L  |            |       |             | A7500-RA  | 11/08/16 10:25 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.2    | pCi/L  |            |       |             | A7500-RA  | 11/08/16 10:25 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

4DO Minimum detectable

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**Project:** TMPA **Lab ID:** B16101433-004

Client Sample ID: SSP MW-4

Report Date: 11/14/16

Collection Date: 10/18/16 11:21

DateReceived: 10/19/16

Matrix: Ground Water

|                                       |        |       |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| pH                                    | 6.5    | s.u.  | Н          | 0.1   |      | A4500-H B | 10/19/16 13:56 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   |        | mg/L  | D          | 40    |      | A2540 C   | 10/20/16 10:01 / jef    |
| INODOANIOO                            |        | Ü     |            |       |      |           | ,                       |
| INORGANICS                            | 10.10  |       | 5          | •     |      | F000 0    | 10/01/10 10 50 /        |
| Chloride                              |        | mg/L  | D          | 6     |      | E300.0    | 10/21/16 16:56 / mej    |
| Sulfate                               |        | mg/L  | D          | 20    |      | E300.0    | 10/21/16 16:56 / mej    |
| Fluoride                              | ND     | mg/L  |            | 0.1   |      | A4500-F C | 10/20/16 14:35 / cjm    |
| CATIONS                               |        |       |            |       |      |           |                         |
| Calcium                               | 413    | mg/L  |            | 1     |      | E200.7    | 10/21/16 21:08 / rlh    |
| Magnesium                             | 85     | mg/L  |            | 1     |      | E200.7    | 10/21/16 21:08 / rlh    |
| Potassium                             | 53     | mg/L  |            | 1     |      | E200.7    | 10/21/16 21:08 / rlh    |
| Sodium                                | 770    | mg/L  | D          | 4     |      | E200.7    | 10/21/16 21:08 / rlh    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  |      | E200.8    | 10/21/16 19:32 / jpv    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |      | E200.8    | 10/21/16 19:32 / jpv    |
| Barium                                | 0.03   | mg/L  |            | 0.01  |      | E200.7    | 10/21/16 21:08 / rlh    |
| Beryllium                             | ND     | mg/L  |            | 0.001 |      | E200.8    | 10/21/16 19:32 / jpv    |
| Boron                                 | 1.31   | mg/L  |            | 0.05  |      | E200.7    | 10/21/16 21:08 / rlh    |
| Cadmium                               | ND     | mg/L  |            | 0.01  |      | E200.8    | 10/21/16 19:32 / jpv    |
| Chromium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 10/21/16 19:32 / jpv    |
| Cobalt                                | ND     | mg/L  |            | 0.02  |      | E200.8    | 10/21/16 19:32 / jpv    |
| Lead                                  |        | mg/L  |            | 0.01  |      | E200.8    | 10/21/16 19:32 / jpv    |
| Lithium                               |        | mg/L  | D          | 0.02  |      | E200.7    | 10/21/16 21:08 / rlh    |
| Mercury                               |        | mg/L  |            | 0.001 |      | E245.1    | 10/20/16 11:49 / mas    |
| Molybdenum                            |        | mg/L  |            | 0.05  |      | E200.8    | 10/21/16 19:32 / jpv    |
| Selenium                              |        | mg/L  |            | 0.01  |      | E200.8    | 11/07/16 15:59 / rlh    |
| Thallium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 10/21/16 19:32 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 226                            | 1.4    | pCi/L |            |       |      | E903.0    | 11/07/16 13:53 / eli-ca |
| Radium 226 precision (±)              | 0.34   | pCi/L |            |       |      | E903.0    | 11/07/16 13:53 / eli-ca |
| Radium 226 MDC                        | 0.14   | pCi/L |            |       |      | E903.0    | 11/07/16 13:53 / eli-ca |
| Radium 228                            | 0.93   | pCi/L | U          |       |      | RA-05     | 11/02/16 13:13 / eli-ca |
| Radium 228 precision (±)              | 0.79   | pCi/L |            |       |      | RA-05     | 11/02/16 13:13 / eli-ca |
| Radium 228 MDC                        | 1.2    | pCi/L |            |       |      | RA-05     | 11/02/16 13:13 / eli-ca |
| Radium 226 + Radium 228               | 2.3    | pCi/L |            |       |      | A7500-RA  | 11/08/16 10:25 / eli-ca |
| Radium 226 + Radium 228 precision (±) |        | pCi/L |            |       |      | A7500-RA  | 11/08/16 10:25 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.2    | pCi/L |            |       |      | A7500-RA  | 11/08/16 10:25 / eli-ca |
|                                       |        |       |            |       |      |           |                         |

**Report** RL - Analyte reporting limit.

**Definitions:** QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

U - Not detected at minimum detectable concentration

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **TMPA** 

Lab ID: B16101433-005 Client Sample ID: EQBK-101816

Collection Date: 10/18/16 12:30 DateReceived: 10/19/16 Matrix: Ground Water

**Report Date:** 11/14/16

|                                           |        |        |            |       | MCL/ |                      |                                              |
|-------------------------------------------|--------|--------|------------|-------|------|----------------------|----------------------------------------------|
| Analyses                                  | Result | Units  | Qualifiers | RL    | QCL  | Method               | Analysis Date / By                           |
| PHYSICAL PROPERTIES                       |        |        |            |       |      |                      |                                              |
|                                           | 5.9    | 0.11   | Н          | 0.1   |      | A4500-H B            | 10/19/16 13:59 / pjw                         |
| pH<br>Solids, Total Dissolved TDS @ 180 C |        | mg/L   | П          | 10    |      | A4500-H B<br>A2540 C | 10/19/16 13:39 / pjw<br>10/20/16 10:01 / jef |
| Solids, Total Dissolved TDS (# 160 C      | ND     | IIIg/L |            | 10    |      | A2340 C              | 10/20/10 10.017 jei                          |
| INORGANICS                                |        |        |            |       |      |                      |                                              |
| Chloride                                  | ND     | mg/L   |            | 1     |      | E300.0               | 10/21/16 17:37 / mej                         |
| Sulfate                                   | ND     | mg/L   |            | 1     |      | E300.0               | 10/21/16 17:37 / mej                         |
| Fluoride                                  | ND     | mg/L   |            | 0.1   |      | A4500-F C            | 10/20/16 14:44 / cjm                         |
| CATIONS                                   |        |        |            |       |      |                      |                                              |
| Calcium                                   | ND     | mg/L   |            | 1     |      | E200.7               | 10/21/16 21:11 / rlh                         |
| Magnesium                                 | ND     | mg/L   |            | 1     |      | E200.7               | 10/21/16 21:11 / rlh                         |
| Potassium                                 | ND     | mg/L   |            | 1     |      | E200.7               | 10/21/16 21:11 / rlh                         |
| Sodium                                    | ND     | mg/L   |            | 1     |      | E200.7               | 10/21/16 21:11 / rlh                         |
| METALS, TOTAL RECOVERABLE                 |        |        |            |       |      |                      |                                              |
| Antimony                                  | ND     | mg/L   |            | 0.05  |      | E200.8               | 10/21/16 19:35 / jpv                         |
| Arsenic                                   | ND     | mg/L   |            | 0.01  |      | E200.8               | 10/21/16 19:35 / jpv                         |
| Barium                                    | ND     | mg/L   |            | 0.01  |      | E200.7               | 10/21/16 21:11 / rlh                         |
| Beryllium                                 | ND     | mg/L   |            | 0.001 |      | E200.7               | 10/21/16 21:11 / rlh                         |
| Boron                                     | ND     | mg/L   |            | 0.05  |      | E200.7               | 10/21/16 21:11 / rlh                         |
| Cadmium                                   | ND     | mg/L   |            | 0.01  |      | E200.7               | 10/21/16 21:11 / rlh                         |
| Chromium                                  |        | mg/L   |            | 0.01  |      | E200.8               | 10/21/16 19:35 / jpv                         |
| Cobalt                                    | ND     | mg/L   |            | 0.02  |      | E200.7               | 10/21/16 21:11 / rlh                         |
| Lead                                      | ND     | mg/L   |            | 0.01  |      | E200.8               | 10/21/16 19:35 / jpv                         |
| Lithium                                   | ND     | mg/L   |            | 0.01  |      | E200.7               | 10/21/16 21:11 / rlh                         |
| Mercury                                   |        | mg/L   |            | 0.001 |      | E245.1               | 10/20/16 11:51 / mas                         |
| Molybdenum                                | ND     | mg/L   |            | 0.05  |      | E200.8               | 10/21/16 19:35 / jpv                         |
| Selenium                                  |        | mg/L   |            | 0.01  |      | E200.8               | 10/21/16 19:35 / jpv                         |
| Thallium                                  | ND     | mg/L   |            | 0.01  |      | E200.8               | 10/21/16 19:35 / jpv                         |
| RADIONUCLIDES - TOTAL                     |        |        |            |       |      |                      |                                              |
| Radium 226                                | 0.07   | pCi/L  | U          |       |      | E903.0               | 11/07/16 13:53 / eli-ca                      |
| Radium 226 precision (±)                  | 0.09   | pCi/L  |            |       |      | E903.0               | 11/07/16 13:53 / eli-ca                      |
| Radium 226 MDC                            | 0.14   | pCi/L  |            |       |      | E903.0               | 11/07/16 13:53 / eli-ca                      |
| Radium 228                                | 0.51   | pCi/L  | U          |       |      | RA-05                | 11/02/16 13:13 / eli-ca                      |
| Radium 228 precision (±)                  | 0.80   | •      |            |       |      | RA-05                | 11/02/16 13:13 / eli-ca                      |
| Radium 228 MDC                            | 1.3    | pCi/L  |            |       |      | RA-05                | 11/02/16 13:13 / eli-ca                      |
| Radium 226 + Radium 228                   |        | pCi/L  | U          |       |      | A7500-RA             | 11/08/16 10:25 / eli-ca                      |
| Radium 226 + Radium 228 precision (±)     | 8.0    | pCi/L  |            |       |      | A7500-RA             | 11/08/16 10:25 / eli-ca                      |
| Radium 226 + Radium 228 MDC               | 1.3    | pCi/L  |            |       |      | A7500-RA             | 11/08/16 10:25 / eli-ca                      |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

U - Not detected at minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**Project:** TMPA **Lab ID:** B16101433-006

Client Sample ID: AP MW-4

Report Date: 11/14/16

Collection Date: 10/18/16 13:54

DateReceived: 10/19/16

Matrix: Ground Water

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| pH                                    | 5.9    | s.u.  | Н          | 0.1   |             | A4500-H B | 10/19/16 14:01 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   |        | mg/L  | D          | 40    |             | A2540 C   | 10/20/16 10:01 / jef    |
| INORGANICS                            |        |       |            |       |             |           |                         |
| Chloride                              | 511    | mg/L  | D          | 3     |             | E300.0    | 10/21/16 17:50 / mej    |
| Sulfate                               |        | mg/L  | D          | 9     |             | E300.0    | 10/21/16 17:50 / mej    |
| Fluoride                              |        | mg/L  |            | 0.1   |             | A4500-F C | 10/20/16 14:48 / cjm    |
| CATIONS                               |        |       |            |       |             |           |                         |
| Calcium                               | 538    | mg/L  |            | 1     |             | E200.7    | 10/21/16 21:15 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |             | E200.7    | 10/21/16 21:15 / rlh    |
| Potassium                             |        | mg/L  |            | 1     |             | E200.7    | 10/21/16 21:15 / rlh    |
| Sodium                                | 564    | mg/L  | D          | 4     |             | E200.7    | 10/21/16 21:15 / rlh    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  |             | E200.8    | 10/21/16 19:38 / jpv    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 10/21/16 19:38 / jpv    |
| 3arium Sarium                         | 0.02   | mg/L  |            | 0.01  |             | E200.7    | 10/21/16 21:15 / rlh    |
| Beryllium                             | ND     | mg/L  |            | 0.001 |             | E200.8    | 10/21/16 19:38 / jpv    |
| Boron                                 | 2.10   | mg/L  |            | 0.05  |             | E200.7    | 10/21/16 21:15 / rlh    |
| Cadmium                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 10/21/16 19:38 / jpv    |
| Chromium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 10/21/16 19:38 / jpv    |
| Cobalt                                | ND     | mg/L  |            | 0.02  |             | E200.8    | 10/21/16 19:38 / jpv    |
| ₋ead                                  | ND     | mg/L  |            | 0.01  |             | E200.8    | 10/21/16 19:38 / jpv    |
| Lithium                               | 1.09   | mg/L  | D          | 0.02  |             | E200.7    | 10/21/16 21:15 / rlh    |
| Mercury                               | ND     | mg/L  |            | 0.001 |             | E245.1    | 10/20/16 11:53 / mas    |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.8    | 10/21/16 19:38 / jpv    |
| Selenium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 10/21/16 19:38 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 10/21/16 19:38 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 226                            |        | pCi/L |            |       |             | E903.0    | 11/07/16 13:53 / eli-ca |
| Radium 226 precision (±)              | 0.20   | pCi/L |            |       |             | E903.0    | 11/07/16 13:53 / eli-ca |
| Radium 226 MDC                        | 0.13   | pCi/L |            |       |             | E903.0    | 11/07/16 13:53 / eli-ca |
| Radium 228                            | 1.3    | pCi/L |            |       |             | RA-05     | 11/02/16 13:13 / eli-ca |
| Radium 228 precision (±)              | 0.97   | pCi/L |            |       |             | RA-05     | 11/02/16 13:13 / eli-ca |
| Radium 228 MDC                        | 1.2    | pCi/L |            |       |             | RA-05     | 11/02/16 13:13 / eli-ca |
| Radium 226 + Radium 228               | 2.3    | pCi/L |            |       |             | A7500-RA  | 11/08/16 10:25 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1      | pCi/L |            |       |             | A7500-RA  | 11/08/16 10:25 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.2    | pCi/L |            |       |             | A7500-RA  | 11/08/16 10:25 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **TMPA** Lab ID: B16101433-007

Client Sample ID: AP MW-5

**Report Date:** 11/14/16 Collection Date: 10/18/16 14:48 DateReceived: 10/19/16

Matrix: Ground Water

| Analyses                              | Result  | Units     | Qualifiers | RL    | MCL/<br>QCL Method | d Analysis Date / By        |
|---------------------------------------|---------|-----------|------------|-------|--------------------|-----------------------------|
|                                       | rtocurt | · · · · · | quamoro    |       |                    | ,                           |
| PHYSICAL PROPERTIES                   |         |           |            |       |                    |                             |
| рН                                    |         | s.u.      | Н          | 0.1   | A4500-             |                             |
| Solids, Total Dissolved TDS @ 180 C   | 5040    | mg/L      | D          | 40    | A2540              | C 10/20/16 10:01 / jef      |
| INORGANICS                            |         |           |            |       |                    |                             |
| Chloride                              | 451     | mg/L      | D          | 6     | E300.0             | 10/21/16 18:04 / mej        |
| Sulfate                               | 2630    | mg/L      | D          | 20    | E300.0             | 10/21/16 18:04 / mej        |
| Fluoride                              | 1.3     | mg/L      |            | 0.1   | A4500-             | F C 10/20/16 14:56 / cjm    |
| CATIONS                               |         |           |            |       |                    |                             |
| Calcium                               | 503     | mg/L      |            | 1     | E200.7             | 10/21/16 21:18 / rlh        |
| Magnesium                             | 115     | mg/L      |            | 1     | E200.7             | 10/21/16 21:18 / rlh        |
| Potassium                             | 39      | mg/L      |            | 1     | E200.7             | 10/21/16 21:18 / rlh        |
| Sodium                                | 672     | mg/L      | D          | 4     | E200.7             | 10/21/16 21:18 / rlh        |
| METALS, TOTAL RECOVERABLE             |         |           |            |       |                    |                             |
| Antimony                              | ND      | mg/L      |            | 0.05  | E200.8             | 10/21/16 19:40 / jpv        |
| Arsenic                               | 0.01    | mg/L      |            | 0.01  | E200.8             | 10/21/16 19:40 / jpv        |
| Barium                                | 0.02    | mg/L      |            | 0.01  | E200.7             | 10/21/16 21:18 / rlh        |
| Beryllium                             | 0.087   | mg/L      |            | 0.001 | E200.8             | 10/21/16 19:40 / jpv        |
| Boron                                 | 3.33    | mg/L      |            | 0.05  | E200.7             | 10/21/16 21:18 / rlh        |
| Cadmium                               | ND      | mg/L      |            | 0.01  | E200.8             | 10/21/16 19:40 / jpv        |
| Chromium                              | ND      | mg/L      |            | 0.01  | E200.8             | 10/21/16 19:40 / jpv        |
| Cobalt                                | 0.18    | mg/L      |            | 0.02  | E200.8             | 10/21/16 19:40 / jpv        |
| Lead                                  | ND      | mg/L      |            | 0.01  | E200.8             | 10/21/16 19:40 / jpv        |
| Lithium                               | 0.60    | mg/L      | D          | 0.02  | E200.7             | 10/21/16 21:18 / rlh        |
| Mercury                               | ND      | mg/L      |            | 0.001 | E245.1             | 10/24/16 13:42 / mas        |
| Molybdenum                            | ND      | mg/L      |            | 0.05  | E200.8             | 10/21/16 19:40 / jpv        |
| Selenium                              | 0.01    | mg/L      |            | 0.01  | E200.8             | 11/10/16 16:10 / rlh        |
| Thallium                              | ND      | mg/L      |            | 0.01  | E200.8             | 10/21/16 19:40 / jpv        |
| RADIONUCLIDES - TOTAL                 |         |           |            |       |                    |                             |
| Radium 226                            | 1.8     | pCi/L     |            |       | E903.0             | 11/07/16 13:53 / eli-ca     |
| Radium 226 precision (±)              | 0.43    | pCi/L     |            |       | E903.0             | 11/07/16 13:53 / eli-ca     |
| Radium 226 MDC                        | 0.13    | pCi/L     |            |       | E903.0             | 11/07/16 13:53 / eli-ca     |
| Radium 228                            | 3.4     | pCi/L     |            |       | RA-05              | 11/02/16 13:13 / eli-ca     |
| Radium 228 precision (±)              | 1.2     | pCi/L     |            |       | RA-05              | 11/02/16 13:13 / eli-ca     |
| Radium 228 MDC                        | 1.2     | pCi/L     |            |       | RA-05              | 11/02/16 13:13 / eli-ca     |
| Radium 226 + Radium 228               | 5.2     | pCi/L     |            |       | A7500-             | -RA 11/08/16 10:25 / eli-ca |
| Radium 226 + Radium 228 precision (±) |         | pCi/L     |            |       | A7500-             | ·RA 11/08/16 10:25 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.2     | pCi/L     |            |       | A7500-             | RA 11/08/16 10:25 / eli-ca  |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA

**Lab ID:** B16101433-008

Client Sample ID: DUP-1

Report Date: 11/14/16
Collection Date: 10/18/16
DateReceived: 10/19/16

Matrix: Ground Water

MCL/ QCL **Analyses Result Units** Qualifiers RL Method Analysis Date / By PHYSICAL PROPERTIES Hq 6.5 s.u. Н 0.1 A4500-H B 10/19/16 14:07 / piw Solids, Total Dissolved TDS @ 180 C 3780 mg/L П 40 A2540 C 10/20/16 10:01 / jef **INORGANICS** D 6 Chloride 1210 mg/L E300.0 10/21/16 18:17 / mej Sulfate D 20 E300.0 1190 mg/L 10/21/16 18:17 / mej Fluoride 0.1 A4500-F C 10/20/16 14:59 / cjm ND mg/L **CATIONS** Calcium 398 mg/L 1 E200.7 10/21/16 21:22 / rlh E200.7 10/21/16 21:22 / rlh Magnesium 81 mg/L 1 Potassium 52 mg/L E200.7 10/21/16 21:22 / rlh 1 D Sodium 740 mg/L 1 E200.7 10/21/16 21:22 / rlh **METALS, TOTAL RECOVERABLE** Antimony ND mg/L 0.05 E200.8 10/21/16 19:51 / jpv Arsenic ND mg/L 0.01 E200.8 10/21/16 19:51 / jpv Barium 0.03 mg/L 0.01 E200.7 10/21/16 21:22 / rlh Beryllium ND mg/L 0.001 E200.8 10/21/16 19:51 / jpv 0.05 E200.7 Boron 1.29 mg/L 10/21/16 21:22 / rlh 0.01 Cadmium ND mg/L F2008 10/21/16 19:51 / jpv Chromium ND mg/L 0.01 E200.8 10/21/16 19:51 / jpv Cobalt ND mg/L 0.02 E200.8 10/21/16 19:51 / jpv Lead ND mg/L 0.01 E200.8 10/21/16 19:51 / ipv D Lithium 1.00 mg/L 0.02 E200.7 10/21/16 21:22 / rlh Mercury ND mg/L 0.001 F245 1 10/20/16 12:01 / mas Molybdenum ND mg/L 0.05 E200.8 10/21/16 19:51 / jpv Selenium ND mg/L 0.001 E200.8 11/07/16 16:02 / rlh Thallium 0.01 E200.8 ND mg/L 10/21/16 19:51 / jpv **RADIONUCLIDES - TOTAL** Radium 226 2.1 pCi/L E903.0 11/07/16 13:53 / eli-ca Radium 226 precision (±) 0.51 pCi/L E903.0 11/07/16 13:53 / eli-ca Radium 226 MDC 0.17 pCi/L E903.0 11/07/16 13:53 / eli-ca Radium 228 2.4 pCi/L **RA-05** 11/02/16 13:13 / eli-ca Radium 228 precision (±) 0.96 pCi/L **RA-05** 11/02/16 13:13 / eli-ca Radium 228 MDC 1.6 pCi/L **RA-05** 11/02/16 13:13 / eli-ca 11/08/16 10:25 / eli-ca Radium 226 + Radium 228 4.5 pCi/L A7500-RA Radium 226 + Radium 228 precision (±) 1.1 pCi/L A7500-RA 11/08/16 10:25 / eli-ca Radium 226 + Radium 228 MDC 1.6 pCi/L A7500-RA 11/08/16 10:25 / eli-ca

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC Mill I I I I I I I

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA

Lab ID: B16101433-009 Client Sample ID: AP MW-1D Report Date: 11/14/16

Collection Date: 10/18/16 15:38

DateReceived: 10/19/16

Matrix: Ground Water

|                                       |        |       |            |       | MCL/       |                         |
|---------------------------------------|--------|-------|------------|-------|------------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL Method | Analysis Date / By      |
| PHYSICAL PROPERTIES                   |        |       |            |       |            |                         |
| рН                                    | 6.0    | s.u.  | Н          | 0.1   | A4500-H B  | 10/19/16 14:09 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 1410   | mg/L  | D          | 20    | A2540 C    | 10/20/16 10:02 / jef    |
| INORGANICS                            |        |       |            |       |            |                         |
| Chloride                              | 233    | mg/L  |            | 1     | E300.0     | 10/21/16 18:31 / mej    |
| Sulfate                               |        | mg/L  | D          | 4     | E300.0     | 10/21/16 18:31 / mej    |
| Fluoride                              |        | mg/L  |            | 0.1   | A4500-F C  | 10/20/16 15:15 / cjm    |
| CATIONS                               |        |       |            |       |            |                         |
| Calcium                               | 77     | mg/L  |            | 1     | E200.7     | 10/21/16 21:26 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     | E200.7     | 10/21/16 21:26 / rlh    |
| Potassium                             | 11     | mg/L  |            | 1     | E200.7     | 10/21/16 21:26 / rlh    |
| Sodium                                | 323    | mg/L  |            | 1     | E200.7     | 10/21/16 21:26 / rlh    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |            |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  | E200.8     | 10/21/16 19:54 / jpv    |
| Arsenic                               | 0.01   | mg/L  |            | 0.01  | E200.8     | 10/21/16 19:54 / jpv    |
| Barium                                | 0.02   | mg/L  |            | 0.01  | E200.7     | 10/21/16 21:26 / rlh    |
| Beryllium                             | ND     | mg/L  |            | 0.001 | E200.7     | 10/21/16 21:26 / rlh    |
| Boron                                 | 4.62   | mg/L  |            | 0.05  | E200.7     | 10/21/16 21:26 / rlh    |
| Cadmium                               | ND     | mg/L  |            | 0.01  | E200.8     | 10/21/16 19:54 / jpv    |
| Chromium                              | ND     | mg/L  |            | 0.01  | E200.8     | 10/21/16 19:54 / jpv    |
| Cobalt                                | ND     | mg/L  |            | 0.02  | E200.8     | 10/21/16 19:54 / jpv    |
| Lead                                  | ND     | mg/L  |            | 0.01  | E200.8     | 10/21/16 19:54 / jpv    |
| Lithium                               | 0.05   | mg/L  |            | 0.01  | E200.7     | 11/10/16 16:13 / jh     |
| Mercury                               | ND     | mg/L  |            | 0.001 | E245.1     | 10/20/16 12:03 / mas    |
| Molybdenum                            | ND     | mg/L  |            | 0.05  | E200.8     | 10/21/16 19:54 / jpv    |
| Selenium                              | ND     | mg/L  |            | 0.01  | E200.8     | 10/21/16 19:54 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.01  | E200.8     | 10/21/16 19:54 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |            |                         |
| Radium 226                            | 0.53   | pCi/L |            |       | E903.0     | 11/07/16 13:53 / eli-ca |
| Radium 226 precision (±)              | 0.17   | pCi/L |            |       | E903.0     | 11/07/16 13:53 / eli-ca |
| Radium 226 MDC                        | 0.15   | pCi/L |            |       | E903.0     | 11/07/16 13:53 / eli-ca |
| Radium 228                            | 2.3    | pCi/L |            |       | RA-05      | 11/02/16 13:13 / eli-ca |
| Radium 228 precision (±)              | 1.2    | pCi/L |            |       | RA-05      | 11/02/16 13:13 / eli-ca |
| Radium 228 MDC                        | 1.3    | pCi/L |            |       | RA-05      | 11/02/16 13:13 / eli-ca |
| Radium 226 + Radium 228               | 2.8    | pCi/L |            |       | A7500-RA   | 11/08/16 10:25 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.2    | pCi/L |            |       | A7500-RA   | 11/08/16 10:25 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.3    | pCi/L |            |       | A7500-RA   | 11/08/16 10:25 / eli-ca |
|                                       |        |       |            |       |            |                         |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Texas Municipal Power AgencyReport Date:11/09/16Project:TMPAWork Order:B16101433

| Analyte   |                   | Count        | Result      | Units           | RL | %REC | Low Limit | High Limit    | RPD | RPDLimit  | Qual     |
|-----------|-------------------|--------------|-------------|-----------------|----|------|-----------|---------------|-----|-----------|----------|
| Method:   | E903.0            |              |             |                 |    |      |           |               |     | Batch: RA | 226-8302 |
| Lab ID:   | LCS-RA226-8302    | Lab          | oratory Cor | ntrol Sample    |    |      | Run: TENN | ELEC-3_161026 | С   | 11/07/    | 16 12:01 |
| Radium 22 | 26                |              | 10          | pCi/L           |    | 96   | 80        | 120           |     |           |          |
| Lab ID:   | MB-RA226-8302     | 3 Met        | thod Blank  |                 |    |      | Run: TENN | ELEC-3_161026 | С   | 11/07/    | 16 12:01 |
| Radium 22 | 26                |              | 0.2         | pCi/L           |    |      |           |               |     |           |          |
| Radium 22 | 26 precision (±)  |              | 0.1         | pCi/L           |    |      |           |               |     |           |          |
| Radium 22 | 26 MDC            |              | 0.1         | pCi/L           |    |      |           |               |     |           |          |
| Lab ID:   | C16100328-004GMS  | Sar          | nple Matrix | Spike           |    |      | Run: TENN | ELEC-3_161026 | С   | 11/07/    | 16 12:01 |
| Radium 22 | 26                |              | 23          | pCi/L           |    | 88   | 70        | 130           |     |           |          |
| Lab ID:   | C16100328-004GMSI | <b>D</b> Sar | nple Matrix | Spike Duplicate |    |      | Run: TENN | ELEC-3_161026 | С   | 11/07/    | 16 12:01 |
| Radium 22 | 26                |              | 25          | pCi/L           |    | 94   | 70        | 130           | 6.7 | 20        |          |

Prepared by Casper, WY Branch

Client:Texas Municipal Power AgencyReport Date:11/09/16Project:TMPAWork Order:B16101433

| Analyte   |                    | Count        | Result      | Units           | RL | %REC | Low Limit | High Limit    | RPD | RPDLimit  | Qual     |
|-----------|--------------------|--------------|-------------|-----------------|----|------|-----------|---------------|-----|-----------|----------|
| Method:   | RA-05              |              |             |                 |    |      |           |               |     | Batch: RA | 228-5350 |
| Lab ID:   | LCS-228-RA226-8302 | 2 Lab        | oratory Cor | ntrol Sample    |    |      | Run: TENN | ELEC-3_161026 | Α   | 11/02/    | 16 11:35 |
| Radium 22 | 28                 |              | 7.7         | pCi/L           |    | 90   | 80        | 120           |     |           |          |
| Lab ID:   | MB-RA226-8302      | 3 Met        | thod Blank  |                 |    |      | Run: TENN | ELEC-3_161026 | Α   | 11/02/    | 16 11:35 |
| Radium 22 | 28                 |              | -0.02       | pCi/L           |    |      |           |               |     |           | U        |
| Radium 22 | 28 precision (±)   |              | 0.6         | pCi/L           |    |      |           |               |     |           |          |
| Radium 22 | 28 MDC             |              | 1           | pCi/L           |    |      |           |               |     |           |          |
| Lab ID:   | C16100328-004GMS   | San          | nple Matrix | Spike           |    |      | Run: TENN | ELEC-3_161026 | Α   | 11/02/    | 16 11:35 |
| Radium 22 | 28                 |              | 25          | pCi/L           |    | 105  | 70        | 130           |     |           |          |
| Lab ID:   | C16100328-004GMSI  | <b>)</b> San | nple Matrix | Spike Duplicate |    |      | Run: TENN | ELEC-3_161026 | Α   | 11/02/    | 16 11:35 |
| Radium 22 | 28                 |              | 22          | pCi/L           |    | 92   | 70        | 130           | 13  | 20        |          |

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:11/14/16Project:TMPAWork Order:B16101433

| Analyte   |                   | Count  | Result       | Units        | RL                | %REC | Low Limit  | High Limit  | RPD         | RPDLimit    | Qual             |
|-----------|-------------------|--------|--------------|--------------|-------------------|------|------------|-------------|-------------|-------------|------------------|
| Method:   | E200.7            |        |              |              |                   |      |            | Anal        | lytical Rur | n: ICP203-B | _161021 <i>A</i> |
| Lab ID:   | ICV               | 10 Cor | itinuing Cal | ibration Ver | ification Standar | d    |            |             |             | 10/21       | /16 10:47        |
| Barium    |                   |        | 2.48         | mg/L         | 0.10              | 99   | 95         | 105         |             |             |                  |
| Beryllium |                   |        | 1.24         | mg/L         | 0.010             | 99   | 95         | 105         |             |             |                  |
| Boron     |                   |        | 2.49         | mg/L         | 0.10              | 100  | 95         | 105         |             |             |                  |
| Cadmium   |                   |        | 2.44         | mg/L         | 0.010             | 98   | 95         | 105         |             |             |                  |
| Calcium   |                   |        | 25.3         | mg/L         | 1.0               | 101  | 95         | 105         |             |             |                  |
| Cobalt    |                   |        | 2.44         | mg/L         | 0.020             | 98   | 95         | 105         |             |             |                  |
| Lithium   |                   |        | 1.29         | mg/L         | 0.10              | 104  | 95         | 105         |             |             |                  |
| Magnesiun | n                 |        | 25.8         | mg/L         | 1.0               | 103  | 95         | 105         |             |             |                  |
| Potassium |                   |        | 25.4         | mg/L         | 1.0               | 102  | 95         | 105         |             |             |                  |
| Sodium    |                   |        | 25.4         | mg/L         | 1.0               | 102  | 95         | 105         |             |             |                  |
| Method:   | E200.7            |        |              |              |                   |      |            |             |             | Batc        | h: 103766        |
| Lab ID:   | MB-103766         | 10 Met | hod Blank    |              |                   |      | Run: ICP20 | 3-B_161021A |             | 10/21       | /16 20:25        |
| Barium    |                   |        | 0.0005       | mg/L         | 0.0003            |      |            |             |             |             |                  |
| Beryllium |                   |        | ND           | mg/L         | 0.0001            |      |            |             |             |             |                  |
| Boron     |                   |        | ND           | mg/L         | 0.003             |      |            |             |             |             |                  |
| Cadmium   |                   |        | ND           | mg/L         | 0.0008            |      |            |             |             |             |                  |
| Calcium   |                   |        | ND           | mg/L         | 0.03              |      |            |             |             |             |                  |
| Cobalt    |                   |        | 0.002        | mg/L         | 0.001             |      |            |             |             |             |                  |
| Lithium   |                   |        | 0.01         | mg/L         | 0.002             |      |            |             |             |             |                  |
| Magnesiun | n                 |        | ND           | mg/L         | 0.004             |      |            |             |             |             |                  |
| Potassium |                   |        | ND           | mg/L         | 0.08              |      |            |             |             |             |                  |
| Sodium    |                   |        | ND           | mg/L         | 0.02              |      |            |             |             |             |                  |
| Lab ID:   | LCS-103766        | 10 Lab | oratory Cor  | ntrol Sample | e                 |      | Run: ICP20 | 3-B_161021A |             | 10/21       | /16 20:29        |
| Barium    |                   |        | 0.539        | mg/L         | 0.10              | 108  | 85         | 115         |             |             |                  |
| Beryllium |                   |        | 0.271        | mg/L         | 0.010             | 108  | 85         | 115         |             |             |                  |
| Boron     |                   |        | 0.514        | mg/L         | 0.10              | 103  | 85         | 115         |             |             |                  |
| Cadmium   |                   |        | 0.256        | mg/L         | 0.010             | 103  | 85         | 115         |             |             |                  |
| Calcium   |                   |        | 26.2         | mg/L         | 1.0               | 105  | 85         | 115         |             |             |                  |
| Cobalt    |                   |        | 0.512        | mg/L         | 0.050             | 102  | 85         | 115         |             |             |                  |
| Lithium   |                   |        | 0.529        | mg/L         | 0.10              | 104  | 85         | 115         |             |             |                  |
| Magnesiun | n                 |        | 26.2         | mg/L         | 1.0               | 105  | 85         | 115         |             |             |                  |
| Potassium |                   |        | 25.1         | mg/L         | 1.0               | 100  | 85         | 115         |             |             |                  |
| Sodium    |                   |        | 26.3         | mg/L         | 1.0               | 105  | 85         | 115         |             |             |                  |
| Lab ID:   | B16101406-001BMS3 | 10 San | nple Matrix  | Spike        |                   |      | Run: ICP20 | 3-B_161021A |             | 10/21       | /16 20:43        |
| Barium    |                   |        | 0.916        | mg/L         | 0.050             | 99   | 70         | 130         |             |             |                  |
| Beryllium |                   |        | 0.258        | mg/L         | 0.0010            | 103  | 70         | 130         |             |             |                  |
| Boron     |                   |        | 0.873        | mg/L         | 0.050             | 94   | 70         | 130         |             |             |                  |
| Cadmium   |                   |        | 0.237        | mg/L         | 0.0039            | 95   | 70         | 130         |             |             |                  |
| Calcium   |                   |        | 63.6         | mg/L         | 1.0               | 97   | 70         | 130         |             |             |                  |
| Cobalt    |                   |        | 0.495        | mg/L         | 0.0063            | 96   | 70         | 130         |             |             |                  |
| Lithium   |                   |        | 1.19         | mg/L         | 0.10              | 90   | 70         | 130         |             |             |                  |
| Magnesiun | n                 |        | 46.5         | mg/L         | 1.0               | 98   | 70         | 130         |             |             |                  |

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:11/14/16Project:TMPAWork Order:B16101433

| Analyte   |                   | Count           | Result       | Units        | RL                  | %REC | Low Limit  | High Limit  | RPD        | RPDLimit     | Qual      |
|-----------|-------------------|-----------------|--------------|--------------|---------------------|------|------------|-------------|------------|--------------|-----------|
| Method:   | E200.7            |                 |              |              |                     |      |            |             |            | Batcl        | h: 103766 |
| Lab ID:   | B16101406-001BMS3 | 3 10 Sai        | mple Matrix  | Spike        |                     |      | Run: ICP20 | 3-B_161021A |            | 10/21/       | 16 20:43  |
| Potassium |                   |                 | 40.0         | mg/L         | 1.0                 | 92   | 70         | 130         |            |              |           |
| Sodium    |                   |                 | 633          | mg/L         | 1.8                 |      | 70         | 130         |            |              | Α         |
| Lab ID:   | B16101406-001BMSI | <b>)</b> 10 Sai | mple Matrix  | Spike Dup    | olicate             |      | Run: ICP20 | 3-B_161021A |            | 10/21/       | 16 20:46  |
| Barium    |                   |                 | 0.869        | mg/L         | 0.050               | 90   | 70         | 130         | 5.2        | 20           |           |
| Beryllium |                   |                 | 0.243        | mg/L         | 0.0010              | 97   | 70         | 130         | 5.8        | 20           |           |
| Boron     |                   |                 | 0.809        | mg/L         | 0.050               | 81   | 70         | 130         | 7.5        | 20           |           |
| Cadmium   |                   |                 | 0.242        | mg/L         | 0.0039              | 97   | 70         | 130         | 2.3        | 20           |           |
| Calcium   |                   |                 | 60.6         | mg/L         | 1.0                 | 85   | 70         | 130         | 4.9        | 20           |           |
| Cobalt    |                   |                 | 0.493        | mg/L         | 0.0063              | 96   | 70         | 130         | 0.2        | 20           |           |
| Lithium   |                   |                 | 1.13         | mg/L         | 0.10                | 78   | 70         | 130         | 5.0        | 20           |           |
| Magnesium | 1                 |                 | 44.0         | mg/L         | 1.0                 | 88   | 70         | 130         | 5.5        | 20           |           |
| Potassium |                   |                 | 38.4         | mg/L         | 1.0                 | 86   | 70         | 130         | 3.9        | 20           |           |
| Sodium    |                   |                 | 596          | mg/L         | 1.8                 |      | 70         | 130         | 6.0        | 20           | Α         |
| Method:   | E200.7            |                 |              |              |                     |      |            | Ana         | lytical Ru | n: ICP203-B_ | 161110A   |
| Lab ID:   | ICV               | Co              | ntinuing Cal | libration Ve | erification Standar | ď    |            |             |            | 11/10/       | 16 14:36  |
| Lithium   |                   |                 | 1.25         | mg/L         | 0.10                | 100  | 95         | 105         |            |              |           |
| Method:   | E200.7            |                 |              |              |                     |      |            |             |            | Batcl        | h: 103766 |
| Lab ID:   | MB-103766         | Ме              | thod Blank   |              |                     |      | Run: ICP20 | 3-B_161110A |            | 11/10/       | 16 16:09  |
| Lithium   |                   |                 | 0.005        | mg/L         | 0.002               |      |            | _           |            |              |           |

### Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:11/14/16Project:TMPAWork Order:B16101433

| Analyte   |                   | Count R      | esult     | Units        | RL          | %REC | Low Limit | High Limit     | RPD    | RPDLimit   | Qual      |
|-----------|-------------------|--------------|-----------|--------------|-------------|------|-----------|----------------|--------|------------|-----------|
| Method:   | E200.8            |              |           |              |             |      |           | Analytical     | Run: I | CPMS206-B_ | _161021A  |
| Lab ID:   | QCS               | 10 Initial C | alibratio | n Verificati | on Standard |      |           |                |        | 10/21/     | 16 17:23  |
| Antimony  |                   | 0.           | .0520     | mg/L         | 0.050       | 104  | 90        | 110            |        |            |           |
| Arsenic   |                   | 0.           | .0513     | mg/L         | 0.0050      | 103  | 90        | 110            |        |            |           |
| Beryllium |                   | 0.           | .0242     | mg/L         | 0.0010      | 97   | 90        | 110            |        |            |           |
| Cadmium   |                   | 0.           | .0266     | mg/L         | 0.0010      | 106  | 90        | 110            |        |            |           |
| Chromium  |                   | 0.           | .0520     | mg/L         | 0.010       | 104  | 90        | 110            |        |            |           |
| Cobalt    |                   | 0.           | .0511     | mg/L         | 0.010       | 102  | 90        | 110            |        |            |           |
| Lead      |                   | 0.           | .0486     | mg/L         | 0.010       | 97   | 90        | 110            |        |            |           |
| Molybdenu | ım                | 0.           | .0483     | mg/L         | 0.0050      | 97   | 90        | 110            |        |            |           |
| Selenium  |                   | 0.           | .0497     | mg/L         | 0.0050      | 99   | 90        | 110            |        |            |           |
| Thallium  |                   | 0.           | .0486     | mg/L         | 0.10        | 97   | 90        | 110            |        |            |           |
| Method:   | E200.8            |              |           |              |             |      |           |                |        | Batch      | n: 103766 |
| Lab ID:   | MB-103766         | 10 Method    | l Blank   |              |             |      | Run: ICPM | S206-B_161021A |        | 10/21/     | 16 19:00  |
| Antimony  |                   |              | ND        | mg/L         | 3E-05       |      |           |                |        |            |           |
| Arsenic   |                   | 0.           | .0001     | mg/L         | 7E-05       |      |           |                |        |            |           |
| Beryllium |                   |              | ND        | mg/L         | 9E-06       |      |           |                |        |            |           |
| Cadmium   |                   |              | ND        | mg/L         | 2E-05       |      |           |                |        |            |           |
| Chromium  |                   | 5            | 5E-05     | mg/L         | 4E-05       |      |           |                |        |            |           |
| Cobalt    |                   | 2            | 2E-05     | mg/L         | 8E-06       |      |           |                |        |            |           |
| Lead      |                   |              | ND        | mg/L         | 2E-05       |      |           |                |        |            |           |
| Molybdenu | ım                | 8            | 3E-05     | mg/L         | 3E-05       |      |           |                |        |            |           |
| Selenium  |                   |              | ND        | mg/L         | 0.0004      |      |           |                |        |            |           |
| Thallium  |                   |              | ND        | mg/L         | 1.0E-05     |      |           |                |        |            |           |
| Lab ID:   | LCS-103766        | 10 Laborat   | tory Con  | itrol Sample | Э           |      | Run: ICPM | S206-B_161021A |        | 10/21/     | 16 19:06  |
| Antimony  |                   | (            | 0.530     | mg/L         | 0.0050      | 106  | 85        | 115            |        |            |           |
| Arsenic   |                   | (            | 0.532     | mg/L         | 0.0010      | 106  | 85        | 115            |        |            |           |
| Beryllium |                   | (            | 0.237     | mg/L         | 0.0010      | 95   | 85        | 115            |        |            |           |
| Cadmium   |                   | (            | 0.263     | mg/L         | 0.0010      | 105  | 85        | 115            |        |            |           |
| Chromium  |                   | (            | 0.478     | mg/L         | 0.0010      | 96   | 85        | 115            |        |            |           |
| Cobalt    |                   | (            | 0.484     | mg/L         | 0.0010      | 97   | 85        | 115            |        |            |           |
| Lead      |                   | (            | 0.488     | mg/L         | 0.0010      | 98   | 85        | 115            |        |            |           |
| Molybdenu | ım                | (            | 0.483     | mg/L         | 0.0050      | 97   | 85        | 115            |        |            |           |
| Selenium  |                   | (            | 0.500     | mg/L         | 0.0050      | 100  | 85        | 115            |        |            |           |
| Thallium  |                   | (            | 0.487     | mg/L         | 0.0010      | 97   | 85        | 115            |        |            |           |
| Lab ID:   | B16101406-001BMS3 | 10 Sample    | Matrix    | Spike        |             |      | Run: ICPM | S206-B_161021A |        | 10/21/     | 16 19:16  |
| Antimony  |                   | (            | 0.513     | mg/L         | 0.0010      | 102  | 70        | 130            |        |            |           |
| Arsenic   |                   | (            | 0.834     | mg/L         | 0.0010      | 109  | 70        | 130            |        |            |           |
| Beryllium |                   | (            | 0.231     | mg/L         | 0.0010      | 92   | 70        | 130            |        |            |           |
| Cadmium   |                   | (            | 0.247     | mg/L         | 0.0010      | 99   | 70        | 130            |        |            |           |
| Chromium  |                   | (            | 0.469     | mg/L         | 0.0050      | 94   | 70        | 130            |        |            |           |
| Cobalt    |                   | (            | 0.462     | mg/L         | 0.0050      | 92   | 70        | 130            |        |            |           |
| Lead      |                   |              | 0.456     | mg/L         | 0.0010      | 91   | 70        | 130            |        |            |           |
| Molybdenu | ım                |              | 0.477     | mg/L         | 0.0010      | 95   | 70        | 130            |        |            |           |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:11/14/16Project:TMPAWork Order:B16101433

| Analyte    |                   | Count          | Result      | Units     | RL      | %REC | Low Limit | High Limit    | RPD | RPDLimit | Qual      |
|------------|-------------------|----------------|-------------|-----------|---------|------|-----------|---------------|-----|----------|-----------|
| Method:    | E200.8            |                |             |           |         |      |           |               |     | Batc     | h: 103766 |
| Lab ID:    | B16101406-001BMS  | <b>3</b> 10 Sa | mple Matrix | Spike     |         |      | Run: ICPM | S206-B_161021 | 4   | 10/21    | /16 19:16 |
| Selenium   |                   |                | 0.482       | mg/L      | 0.0010  | 96   | 70        | 130           |     |          |           |
| Thallium   |                   |                | 0.429       | mg/L      | 0.00050 | 86   | 70        | 130           |     |          |           |
| Lab ID:    | B16101406-001BMSI | <b>D</b> 10 Sa | mple Matrix | Spike Dup | olicate |      | Run: ICPM | S206-B_161021 | 4   | 10/21    | /16 19:19 |
| Antimony   |                   |                | 0.534       | mg/L      | 0.0010  | 107  | 70        | 130           | 4.1 | 20       |           |
| Arsenic    |                   |                | 0.882       | mg/L      | 0.0010  | 118  | 70        | 130           | 5.6 | 20       |           |
| Beryllium  |                   |                | 0.251       | mg/L      | 0.0010  | 100  | 70        | 130           | 8.5 | 20       |           |
| Cadmium    |                   |                | 0.267       | mg/L      | 0.0010  | 107  | 70        | 130           | 7.6 | 20       |           |
| Chromium   |                   |                | 0.502       | mg/L      | 0.0050  | 100  | 70        | 130           | 6.9 | 20       |           |
| Cobalt     |                   |                | 0.496       | mg/L      | 0.0050  | 99   | 70        | 130           | 7.1 | 20       |           |
| Lead       |                   |                | 0.489       | mg/L      | 0.0010  | 98   | 70        | 130           | 7.1 | 20       |           |
| Molybdenum | 1                 |                | 0.505       | mg/L      | 0.0010  | 101  | 70        | 130           | 5.7 | 20       |           |
| Selenium   |                   |                | 0.510       | mg/L      | 0.0010  | 102  | 70        | 130           | 5.6 | 20       |           |
| Thallium   |                   |                | 0.467       | mg/L      | 0.00050 | 93   | 70        | 130           | 8.5 | 20       |           |
| Lab ID:    | B16101436-005CMS3 | 3 10 Sa        | mple Matrix | Spike     |         |      | Run: ICPM | S206-B_161021 | 4   | 10/21    | /16 20:07 |
| Antimony   |                   |                | 0.528       | mg/L      | 0.0010  | 106  | 70        | 130           |     |          |           |
| Arsenic    |                   |                | 0.530       | mg/L      | 0.0010  | 106  | 70        | 130           |     |          |           |
| Beryllium  |                   |                | 0.234       | mg/L      | 0.0010  | 94   | 70        | 130           |     |          |           |
| Cadmium    |                   |                | 0.251       | mg/L      | 0.0010  | 101  | 70        | 130           |     |          |           |
| Chromium   |                   |                | 0.474       | mg/L      | 0.0050  | 95   | 70        | 130           |     |          |           |
| Cobalt     |                   |                | 0.477       | mg/L      | 0.0050  | 95   | 70        | 130           |     |          |           |
| Lead       |                   |                | 0.469       | mg/L      | 0.0010  | 94   | 70        | 130           |     |          |           |
| Molybdenum | 1                 |                | 0.519       | mg/L      | 0.0010  | 96   | 70        | 130           |     |          |           |
| Selenium   |                   |                | 0.480       | mg/L      | 0.0010  | 96   | 70        | 130           |     |          |           |
| Thallium   |                   |                | 0.484       | mg/L      | 0.00050 | 97   | 70        | 130           |     |          |           |
| Lab ID:    | B16101436-005CMSI | <b>D</b> 10 Sa | mple Matrix | Spike Dur | olicate |      | Run: ICPM | S206-B_161021 | Α.  | 10/21    | /16 20:10 |
| Antimony   |                   |                | 0.510       | mg/L      | 0.0010  | 102  | 70        | 130           | 3.5 | 20       |           |
| Arsenic    |                   |                | 0.498       | mg/L      | 0.0010  | 99   | 70        | 130           | 6.3 | 20       |           |
| Beryllium  |                   |                | 0.227       | mg/L      | 0.0010  | 91   | 70        | 130           | 3.2 | 20       |           |
| Cadmium    |                   |                | 0.241       | mg/L      | 0.0010  | 96   | 70        | 130           | 4.4 | 20       |           |
| Chromium   |                   |                | 0.444       | mg/L      | 0.0050  | 89   | 70        | 130           | 6.5 | 20       |           |
| Cobalt     |                   |                | 0.455       | mg/L      | 0.0050  | 91   | 70        | 130           | 4.8 | 20       |           |
| Lead       |                   |                | 0.468       | mg/L      | 0.0010  | 94   | 70        | 130           | 0.2 | 20       |           |
| Molybdenum | 1                 |                | 0.499       | mg/L      | 0.0010  | 92   | 70        | 130           | 3.9 | 20       |           |
| Selenium   | •                 |                | 0.484       | mg/L      | 0.0010  | 97   | 70        | 130           | 0.8 | 20       |           |
| Thallium   |                   |                | 0.465       | mg/L      | 0.00050 | 93   | 70        | 130           | 3.9 | 20       |           |
| Hamulli    |                   |                | 0.403       | mg/L      | 0.00030 | 93   | 70        | 130           | 3.9 | 20       |           |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:11/14/16Project:TMPAWork Order:B16101433

| Analyte  |           | Count   | Result     | Units       | RL            | %REC | Low Limit | High Limit    | RPD       | RPDLimit   | Qual      |
|----------|-----------|---------|------------|-------------|---------------|------|-----------|---------------|-----------|------------|-----------|
| Method:  | E200.8    |         |            |             |               |      |           | Analytic      | al Run: I | CPMS206-B_ | _161107A  |
| Lab ID:  | QCS       | Initial | Calibratio | on Verifica | tion Standard |      |           |               |           | 11/07/     | 16 15:33  |
| Selenium |           |         | 0.0465     | mg/L        | 0.0050        | 93   | 90        | 110           |           |            |           |
| Method:  | E200.8    |         |            |             |               |      |           |               |           | Batcl      | n: 103766 |
| Lab ID:  | MB-103766 | Metho   | od Blank   |             |               |      | Run: ICPM | S206-B_161107 | A         | 11/07/     | 16 15:46  |
| Selenium |           |         | ND         | mg/L        | 0.0004        |      |           |               |           |            |           |
| Method:  | E200.8    |         |            |             |               |      |           | Analytic      | al Run: I | CPMS206-B_ | _161110A  |
| Lab ID:  | QCS       | Initial | Calibratio | on Verifica | tion Standard |      |           |               |           | 11/10/     | 16 10:57  |
| Selenium |           |         | 0.0469     | mg/L        | 0.0050        | 94   | 90        | 110           |           |            |           |
| Method:  | E200.8    |         |            |             |               |      |           |               |           | Batch      | n: 103766 |
| Lab ID:  | MB-103766 | Metho   | od Blank   |             |               |      | Run: ICPM | S206-B_161110 | Α         | 11/10/     | 16 16:02  |
| Selenium |           |         | ND         | mg/L        | 0.0004        |      |           |               |           |            |           |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:11/14/16Project:TMPAWork Order:B16101433

| Method: Lab ID: Mercury  Method: |                   |            |               |                   |          |           |                |        |           | Qual      |
|----------------------------------|-------------------|------------|---------------|-------------------|----------|-----------|----------------|--------|-----------|-----------|
| Mercury                          | E245.1            |            |               |                   |          |           | Analytica      | l Run: | HGCV202-B | _161020A  |
|                                  | ICV               | Initial Ca | ibration Veri | fication Standard |          |           |                |        | 10/20/    | /16 11:15 |
| Method:                          |                   | 0.00       | 207 mg/l      | 0.00010           | 104      | 90        | 110            |        |           |           |
|                                  | E245.1            |            |               |                   |          |           |                |        | Batc      | h: 103757 |
| Lab ID:                          | MB-103757         | Method E   | Blank         |                   |          | Run: HGC\ | /202-B_161020A |        | 10/20     | /16 11:36 |
| Mercury                          |                   |            | ND mg/l       | 4E-06             | <b>i</b> |           |                |        |           |           |
| Lab ID:                          | LCS-103757        | Laborato   | ry Control Sa | ample             |          | Run: HGC\ | /202-B_161020A |        | 10/20/    | /16 11:38 |
| Mercury                          |                   | 0.00       | 196 mg/l      | 0.00010           | 98       | 85        | 115            |        |           |           |
| Lab ID:                          | B16101433-001BMS  | Sample I   | /latrix Spike |                   |          | Run: HGC\ | /202-B_161020A |        | 10/20/    | /16 11:42 |
| Mercury                          |                   | 0.00       | 200 mg/l      | 0.00010           | 100      | 70        | 130            |        |           |           |
| Lab ID:                          | B16101433-001BMSI | D Sample I | //atrix Spike | Duplicate         |          | Run: HGC\ | /202-B_161020A |        | 10/20/    | /16 11:44 |
| Mercury                          |                   | 0.00       | 201 mg/l      | 0.00010           | 100      | 70        | 130            | 0.6    | 30        |           |
| Lab ID:                          | B16101436-005CMS  | Sample I   | //atrix Spike |                   |          | Run: HGC\ | /202-B_161020A |        | 10/20     | /16 12:12 |
| Mercury                          |                   | 0.00       | 203 mg/l      | 0.00010           | 102      | 70        | 130            |        |           |           |
| Lab ID:                          | B16101436-005CMSI | D Sample I | //atrix Spike | Duplicate         |          | Run: HGC\ | /202-B_161020A |        | 10/20     | /16 12:14 |
| Mercury                          |                   | 0.00       | 203 mg/l      | 0.00010           | 101      | 70        | 130            | 0.1    | 30        |           |
| Method:                          | E245.1            |            |               |                   |          |           | Analytica      | l Run: | HGCV202-B | _161024A  |
| Lab ID:                          | ICV               | Initial Ca | ibration Veri | fication Standard |          |           |                |        | 10/24     | /16 12:25 |
| Mercury                          |                   | 0.00       | 206 mg/l      | 0.00010           | 103      | 90        | 110            |        |           |           |
| Method:                          | E245.1            |            |               |                   |          |           |                |        | Batc      | h: 103847 |
| Lab ID:                          | MB-103847         | Method E   | Blank         |                   |          | Run: HGC\ | /202-B_161024A |        | 10/24     | /16 13:38 |
| Mercury                          |                   | 5E         | -05 mg/l      | 4E-06             | 6        |           |                |        |           |           |
| Lab ID:                          | LCS-103847        | Laborato   | ry Control Sa | ample             |          | Run: HGC\ | /202-B_161024A |        | 10/24     | /16 13:40 |
| Mercury                          |                   | 0.00       | 203 mg/l      | 0.00010           | 99       | 85        | 115            |        |           |           |
| Lab ID:                          | B16101692-004BMS  | Sample I   | //atrix Spike |                   |          | Run: HGC\ | /202-B_161024A |        | 10/24     | /16 13:57 |
| Mercury                          |                   | 0.00       | 202 mg/l      | 0.00010           | 99       | 70        | 130            |        |           |           |
| Lab ID:                          | B16101692-004BMSI | D Sample I | //atrix Spike | Duplicate         |          | Run: HGC\ | /202-B_161024A |        | 10/24     | /16 13:59 |
| Mercury                          |                   | 0.00       | 204 mg/l      | 0.00010           | 100      | 70        | 130            | 0.9    | 30        |           |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:11/04/16Project:TMPAWork Order:B16101433

| Analyte                         | Count Result     | Units        | RL | %REC Low Limit | High Limit    | RPD | RPDLimit | Qual      |
|---------------------------------|------------------|--------------|----|----------------|---------------|-----|----------|-----------|
| Method: A2540 C                 |                  |              |    |                |               |     | Batch    | n: 103794 |
| Lab ID: MB-103794               | Method Blank     |              |    | Run: BAL#      | SD-15_161020A |     | 10/20/   | 16 09:59  |
| Solids, Total Dissolved TDS @ 1 | 80 C ND          | mg/L         | 5  |                |               |     |          |           |
| Lab ID: LCS-103794              | Laboratory Co    | ntrol Sample |    | Run: BAL#      | SD-15_161020A |     | 10/20/   | 16 09:59  |
| Solids, Total Dissolved TDS @ 1 | 80 C 979         | mg/L         | 10 | 96 90          | 110           |     |          |           |
| Lab ID: B16101406-001A DU       | JP Sample Duplic | ate          |    | Run: BAL#      | SD-15_161020A |     | 10/20/   | 16 10:00  |
| Solids, Total Dissolved TDS @ 1 | 80 C 1710        | mg/L         | 20 |                |               | 2.2 | 5        |           |
| Lab ID: B16101433-009A DU       | JP Sample Duplic | ate          |    | Run: BAL #     | SD-15_161020A |     | 10/20/   | 16 10:02  |
| Solids, Total Dissolved TDS @ 1 | 80 C 1420        | mg/L         | 20 |                |               | 0.4 | 5        |           |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:11/04/16Project:TMPAWork Order:B16101433

| Analyte  |                  | Count Result     | Units            | RL       | %REC | Low Limit | High Limit   | RPD     | RPDLimit  | Qual     |
|----------|------------------|------------------|------------------|----------|------|-----------|--------------|---------|-----------|----------|
| Method:  | A4500-F C        |                  |                  |          |      |           | Analytic     | al Run: | MAN-TECH_ | 161020A  |
| Lab ID:  | ICV              | Initial Calibrat | ion Verification | Standard |      |           |              |         | 10/20/    | 16 14:07 |
| Fluoride |                  | 1.01             | mg/L             | 0.10     | 101  | 90        | 110          |         |           |          |
| Method:  | A4500-F C        |                  |                  |          |      |           |              |         | Batch:    | R269038  |
| Lab ID:  | MBLK             | Method Blank     |                  |          |      | Run: MAN- | TECH_161020A |         | 10/20/    | 16 14:01 |
| Fluoride |                  | ND               | mg/L             | 0.03     |      |           |              |         |           |          |
| Lab ID:  | LFB              | Laboratory Fo    | rtified Blank    |          |      | Run: MAN- | TECH_161020A |         | 10/20/    | 16 14:04 |
| Fluoride |                  | 0.990            | mg/L             | 0.10     | 99   | 90        | 110          |         |           |          |
| Lab ID:  | B16101406-001AMS | Sample Matrix    | x Spike          |          |      | Run: MAN- | TECH_161020A |         | 10/20/    | 16 14:12 |
| Fluoride |                  | 3.46             | mg/L             | 0.10     | 103  | 80        | 120          |         |           |          |
| Lab ID:  | B16101406-001AMS | D Sample Matrix  | x Spike Duplica  | ate      |      | Run: MAN- | TECH_161020A |         | 10/20/    | 16 14:15 |
| Fluoride |                  | 3.44             | mg/L             | 0.10     | 101  | 80        | 120          | 0.6     | 10        |          |
| Lab ID:  | B16101433-009AMS | Sample Matrix    | x Spike          |          |      | Run: MAN- | TECH_161020A |         | 10/20/    | 16 15:18 |
| Fluoride |                  | 1.62             | mg/L             | 0.10     | 100  | 80        | 120          |         |           |          |
| Lab ID:  | B16101433-009AMS | D Sample Matrix  | x Spike Duplica  | ate      |      | Run: MAN- | TECH_161020A |         | 10/20/    | 16 15:20 |
| Fluoride |                  | 1.63             | mg/L             | 0.10     | 101  | 80        | 120          | 0.6     | 10        |          |

### Qualifiers:

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:11/04/16Project:TMPAWork Order:B16101433

| Analyte |                   | Count       | Result        | Units       | RL           | %REC | Low Limit | High Limit  | RPD        | RPDLimit   | Qual      |
|---------|-------------------|-------------|---------------|-------------|--------------|------|-----------|-------------|------------|------------|-----------|
| Method: | A4500-H B         |             |               |             |              |      |           | Analytic    | al Run: PF | ISC _101-B | _161019A  |
| Lab ID: | pH 8              | Initia      | al Calibratio | n Verificat | ion Standard |      |           |             |            | 10/19/     | /16 08:52 |
| рН      |                   |             | 7.97          | s.u.        | 0.10         | 100  | 98        | 102         |            |            |           |
| Method: | A4500-H B         |             |               |             |              |      |           |             |            | Batch:     | R268902   |
| Lab ID: | B16101433-009ADUF | <b>S</b> an | nple Duplica  | ate         |              |      | Run: PHSC | _101-B_1610 | 19A        | 10/19/     | /16 14:12 |
| рН      |                   |             | 6.05          | s.u.        | 0.10         |      |           |             | 0.0        | 3          |           |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:11/04/16Project:TMPAWork Order:B16101433

| Analyte  |                   | Count         | Result        | Units              | RL     | %REC | Low Limit  | High Limit | RPD       | RPDLimit  | Qual      |
|----------|-------------------|---------------|---------------|--------------------|--------|------|------------|------------|-----------|-----------|-----------|
| Method:  | E300.0            |               |               |                    |        |      |            | Analytical | Run: IC N | METROHM 1 | _161020A  |
| Lab ID:  | ICV               | 2 Init        | ial Calibrati | on Verification St | andard |      |            |            |           | 10/20     | /16 14:12 |
| Chloride |                   |               | 2.23          | mg/L               | 1.0    | 99   | 90         | 110        |           |           |           |
| Sulfate  |                   |               | 8.84          | mg/L               | 1.0    | 98   | 90         | 110        |           |           |           |
| Method:  | E300.0            |               |               |                    |        |      |            |            |           | Batch:    | R269049   |
| Lab ID:  | ICB               | 2 Me          | thod Blank    |                    |        |      | Run: IC ME | TROHM 1_16 | 1020A     | 10/20/    | /16 14:25 |
| Chloride |                   |               | ND            | mg/L               | 0.008  |      |            |            |           |           |           |
| Sulfate  |                   |               | ND            | mg/L               | 0.06   |      |            |            |           |           |           |
| Lab ID:  | LFB               | 2 Lal         | ooratory Fo   | tified Blank       |        |      | Run: IC ME | TROHM 1_16 | 1020A     | 10/20     | /16 14:39 |
| Chloride |                   |               | 10.2          | mg/L               | 1.0    | 102  | 90         | 110        |           |           |           |
| Sulfate  |                   |               | 30.5          | mg/L               | 1.0    | 102  | 90         | 110        |           |           |           |
| Lab ID:  | B16101382-003AMS  | 2 Sa          | mple Matrix   | Spike              |        |      | Run: IC ME | TROHM 1_16 | 1020A     | 10/21     | /16 04:08 |
| Chloride |                   |               | 1060          | mg/L               | 6.1    | 104  | 90         | 110        |           |           |           |
| Sulfate  |                   |               | 3490          | mg/L               | 18     | 104  | 90         | 110        |           |           |           |
| Lab ID:  | B16101382-003AMSI | D 2 Sa        | mple Matrix   | Spike Duplicate    |        |      | Run: IC ME | TROHM 1_16 | 1020A     | 10/21     | /16 04:21 |
| Chloride |                   |               | 1060          | mg/L               | 6.1    | 105  | 90         | 110        | 0.6       | 20        |           |
| Sulfate  |                   |               | 3510          | mg/L               | 18     | 105  | 90         | 110        | 0.6       | 20        |           |
| Lab ID:  | B16101433-004AMS  | 2 Sa          | mple Matrix   | Spike              |        |      | Run: IC ME | TROHM 1_16 | 1020A     | 10/21     | /16 17:10 |
| Chloride |                   |               | 2190          | mg/L               | 6.1    | 95   | 90         | 110        |           |           |           |
| Sulfate  |                   |               | 4280          | mg/L               | 18     | 102  | 90         | 110        |           |           |           |
| Lab ID:  | B16101433-004AMSI | <b>D</b> 2 Sa | mple Matrix   | Spike Duplicate    |        |      | Run: IC ME | TROHM 1_16 | 1020A     | 10/21     | /16 17:23 |
| Chloride |                   |               | 2170          | mg/L               | 6.1    | 93   | 90         | 110        | 0.7       | 20        |           |
| Sulfate  |                   |               | 4220          | mg/L               | 18     | 100  | 90         | 110        | 1.2       | 20        |           |
| Lab ID:  | B16101516-005AMS  | 2 Sa          | mple Matrix   | Spike              |        |      | Run: IC ME | TROHM 1_16 | 1020A     | 10/21     | /16 23:27 |
| Chloride |                   |               | 306           | mg/L               | 1.2    | 102  | 90         | 110        |           |           |           |
| Sulfate  |                   |               | 1320          | mg/L               | 3.7    | 94   | 90         | 110        |           |           |           |
| Lab ID:  | B16101516-005AMSI | D 2 Sa        | mple Matrix   | Spike Duplicate    |        |      | Run: IC ME | TROHM 1_16 | 1020A     | 10/21/    | /16 23:41 |
| Chloride |                   |               | 304           | mg/L               | 1.2    | 102  | 90         | 110        | 0.5       | 20        |           |
| Sulfate  |                   |               | 1310          | mg/L               | 3.7    | 93   | 90         | 110        | 0.5       | 20        |           |

Qualifiers:

RL - Analyte reporting limit.

# Work Order Receipt Checklist

# **Texas Municipal Power Agency**

Login completed by: Gina McCartney

B16101433

Date Received: 10/19/2016

| Login completed by:                                                                  | On a moduling                    |       | Date | 110001104. 10/10/2010          |  |
|--------------------------------------------------------------------------------------|----------------------------------|-------|------|--------------------------------|--|
| Reviewed by:                                                                         | BL2000\cindy                     |       | Re   | eceived by: qej                |  |
| Reviewed Date:                                                                       | 10/20/2016                       |       | Car  | rrier name: Return-UPS NDA N/C |  |
| Shipping container/cooler in                                                         | good condition?                  | Yes 🗸 | No 🗌 | Not Present                    |  |
| Custody seals intact on all s                                                        | shipping container(s)/cooler(s)? | Yes 🗸 | No 🗌 | Not Present                    |  |
| Custody seals intact on all s                                                        | sample bottles?                  | Yes   | No 🗌 | Not Present ✓                  |  |
| Chain of custody present?                                                            |                                  | Yes 🗸 | No 🗌 |                                |  |
| Chain of custody signed wh                                                           | en relinquished and received?    | Yes 🗸 | No 🗌 |                                |  |
| Chain of custody agrees wit                                                          | h sample labels?                 | Yes 🗸 | No 🗌 |                                |  |
| Samples in proper contained                                                          | r/bottle?                        | Yes 🔽 | No 🗌 |                                |  |
| Sample containers intact?                                                            |                                  | Yes 🔽 | No 🗌 |                                |  |
| Sufficient sample volume fo                                                          | r indicated test?                | Yes 🔽 | No 🗌 |                                |  |
| All samples received within (Exclude analyses that are of such as pH, DO, Res Cl, Sc | considered field parameters      | Yes 🔽 | No 🗌 |                                |  |
| Temp Blank received in all s                                                         | shipping container(s)/cooler(s)? | Yes   | No 🗹 | Not Applicable                 |  |
| Container/Temp Blank temp                                                            | perature:                        | °C    |      |                                |  |
| Water - VOA vials have zero                                                          | headspace?                       | Yes   | No 🗌 | Not Applicable                 |  |
| Water - pH acceptable upor                                                           | n receipt?                       | Yes √ | No 🗌 | Not Applicable                 |  |
|                                                                                      |                                  |       |      |                                |  |

# **Standard Reporting Procedures:**

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

### **Contact and Corrective Action Comments:**

Container Temperature for Cooler 1 was 11.2°C no ice and Cooler 3 was 11.2°C no ice. Coolers 1 and 3 contained Radio Chemistry analysis.

Temperature Blank temperature for Cooler 2 was 0.4°C on ice.

| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GY |  |
| 100 Marie 100 Ma |    |  |

# Chain of Custody and Analytical Request Record

|                                                                              | PINAL LINING                                                 | e as much lindination as possible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ossible.                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Company Name:                                                                | Project Name, PWS, Permit, Etc.                              | ပံ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample Origin                                     | EPA/State Compliance:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Amec Foster Wheeler                                                          | TMPA                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | State:                                            | Yes 🗆 No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Report Mail Address:                                                         | COMPGNIENCE SOLPHONIENCE                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Email:                                            | Sampler: (Please Print)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Austin, 7X 18704                                                             | -                                                            | 512-241-2310 gregus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | gregseifert Damechiticom                          | Ba/sm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Invoice Address:                                                             | Invoice Contact & Phone:                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Purchase Order:                                   | Quote/Bottle Order:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                              |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Special Report/Formats:                                                      | S ANALYSIS                                                   | REQUESTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Contact ELI prior to RUSH sample submittal        | to Tabbed by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                              | vainers<br>S V B O I<br>Solids<br>say <u>O</u> ther<br>Vater |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | for charges and scheduling – See Instruction Page | Cooler ID(s);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| WWTP [                                                                       |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Coperation U                                      | Receipt Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ☐ State: ☐ LEVEL IV ☐ Other: ☐ NELAC                                         | mber<br>Type<br>t Wate<br>station<br>V - Dri                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No Correct                                        | On Ice:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                              |                                                              | SEE_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                 | Custody Seal On Bottle Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SAMPLE IDENTIFICATION Collection Collection (Name, Location, Interval, etc.) | MATRIX S                                                     | PS .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I                                                 | Intact Y Signature Y Match                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SSP/AP MW-1 10/17/16 1737                                                    | ×                                                            | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   | 8610142a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 258 MW-2 10/18/16 0912                                                       | ×                                                            | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3 SSP MW-3 1023                                                              | >\'\                                                         | .2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| * SSP MW-4 1121                                                              | <b>X</b>                                                     | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   | 700m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                              | >>                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   | 1500<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                              | ×.                                                           | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   | 200<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| AP MW-5 1448                                                                 | ×                                                            | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   | V00 VØ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                              | X                                                            | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   | % 700}<br>  100\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| # APMW-1D V 1538                                                             | ×.                                                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   | \$00-N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -                                                                            | Signature                                                    | Document of the state of the st | į,                                                | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Record Bellevished by Critical May 168/16 9/654                              | 1                                                            | akan 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0/18/14 1454 J                                    | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| - Twandedco lo/le/llp                                                        | 7                                                            | Min Mil Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10/19/16 09                                       | 7. L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Signed Sample Disposal: Return to Client:                                    | Lab                                                          | TAID OF THE COLUMN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ate/Time:                                         | Significant Control of the Control o |

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested. TRIDDS This serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report.

Visit our web site at www.energylab.com for additional information, downloadable fee schedule, forms, and links.

Page 25 of 25

## **ANALYTICAL SUMMARY REPORT**

November 10, 2016

Texas Municipal Power Agency PO Box 7000 Bryan, TX 77805-7000

Work Order: B16101734

Project Name: CCRR

Energy Laboratories Inc Billings MT received the following 8 samples for Texas Municipal Power Agency on 10/21/2016 for analysis.

Quote ID: B3997

| ariarysis.    |                  |                  |             |            |                                                                                                                                                                                                                                                                       |
|---------------|------------------|------------------|-------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lab ID        | Client Sample ID | Collect Date Rec | eive Date N | Matrix     | Test                                                                                                                                                                                                                                                                  |
| B16101734-001 | SFL MW-4         | 10/19/16 9:13 1  | 0/21/16 Gro |            | Metals by ICP/ICPMS, Tot. Rec. Mercury, Total Recoverable Fluoride Anions by Ion Chromatography pH Metals Preparation by EPA 200.2 Digestion, Mercury by CVAA Preparation for TDS Radium 226 + Radium 228 Radium 226, Total Radium 228, Total Solids, Total Dissolved |
| B16101734-002 | SFL MW-3         | 10/19/16 10:37 1 | 0/21/16 Gro | ound Water | Same As Above                                                                                                                                                                                                                                                         |
| B16101734-004 | SFL MW-2         | 10/19/16 13:50 1 | 0/21/16 Gro | ound Water | Same As Above                                                                                                                                                                                                                                                         |
| B16101734-005 | Dup-2            | 10/19/16 0:00 1  | 0/21/16 Gro | ound Water | Same As Above                                                                                                                                                                                                                                                         |
| B16101734-006 | EQBK-101916      | 10/19/16 13:00 1 | 0/21/16 Gro | ound Water | Same As Above                                                                                                                                                                                                                                                         |
| B16101734-007 | SFL MW-5         | 10/19/16 14:30 1 | 0/21/16 Gro | ound Water | Same As Above                                                                                                                                                                                                                                                         |
| B16101734-008 | SFL MW-6         | 10/19/16 15:17 1 | 0/21/16 Gro | ound Water | Same As Above                                                                                                                                                                                                                                                         |

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

**Report Date: 11/10/16** 

**CLIENT:** Texas Municipal Power Agency

Project: CCRR

Work Order: B16101734 CASE NARRATIVE

Tests associated with analyst identified as ELI-CA were subcontracted to Energy Laboratories, PO Box 247, Casper, WY, EPA Number WY00002 and WY00937.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B16101734-001 Client Sample ID: SFL MW-4

**Report Date:** 11/10/16 Collection Date: 10/19/16 09:13 DateReceived: 10/21/16

Matrix: Ground Water

|                                       |        |       |            |       | MCL/       |                         |
|---------------------------------------|--------|-------|------------|-------|------------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL Method | Analysis Date / By      |
| PHYSICAL PROPERTIES                   |        |       |            |       |            |                         |
| рН                                    | 6.5    | s.u.  | Н          | 0.1   | A4500-H B  | 10/23/16 17:06 / Idv    |
| Solids, Total Dissolved TDS @ 180 C   | 5850   | mg/L  | D          | 100   | A2540 C    | 10/24/16 11:38 / ks     |
| INORGANICS                            |        |       |            |       |            |                         |
| Chloride                              | 1750   | mg/L  | D          | 6     | E300.0     | 10/28/16 03:52 / jpv    |
| Sulfate                               | 2190   | mg/L  | D          | 20    | E300.0     | 10/28/16 03:52 / jpv    |
| Fluoride                              | ND     | mg/L  |            | 0.1   | A4500-F C  | 10/26/16 11:46 / cjm    |
| CATIONS                               |        |       |            |       |            |                         |
| Calcium                               | 826    | mg/L  |            | 1     | E200.7     | 10/27/16 01:41 / jh     |
| Magnesium                             | 126    | mg/L  |            | 1     | E200.7     | 10/27/16 01:41 / jh     |
| Potassium                             | 56     | mg/L  |            | 1     | E200.7     | 10/27/16 01:41 / jh     |
| Sodium                                | 1090   | mg/L  | D          | 4     | E200.7     | 10/27/16 01:41 / jh     |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |            |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  | E200.8     | 10/25/16 17:09 / jpv    |
| Arsenic                               | ND     | mg/L  |            | 0.01  | E200.8     | 10/26/16 20:45 / jpv    |
| Barium                                | 0.03   | mg/L  |            | 0.01  | E200.8     | 10/25/16 17:09 / jpv    |
| Beryllium                             | ND     | mg/L  |            | 0.001 | E200.8     | 10/25/16 17:09 / jpv    |
| Boron                                 | 0.69   | mg/L  |            | 0.05  | E200.7     | 10/27/16 01:41 / jh     |
| Cadmium                               | ND     | mg/L  |            | 0.01  | E200.8     | 10/25/16 17:09 / jpv    |
| Chromium                              | ND     | mg/L  |            | 0.01  | E200.8     | 10/26/16 20:45 / jpv    |
| Cobalt                                | ND     | mg/L  |            | 0.02  | E200.8     | 10/25/16 17:09 / jpv    |
| Lead                                  | ND     | mg/L  |            | 0.01  | E200.8     | 10/25/16 17:09 / jpv    |
| Lithium                               | 0.52   | -     | D          | 0.02  | E200.7     | 10/27/16 01:41 / jh     |
| Mercury                               | ND     | mg/L  |            | 0.001 | E245.1     | 10/25/16 13:45 / mas    |
| Molybdenum                            | ND     | mg/L  |            | 0.05  | E200.8     | 10/25/16 17:09 / jpv    |
| Selenium                              | ND     | mg/L  |            | 0.01  | E200.8     | 10/26/16 20:45 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.01  | E200.8     | 10/25/16 17:09 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |            |                         |
| Radium 226                            | 1.1    | pCi/L |            |       | E903.0     | 11/07/16 11:20 / eli-ca |
| Radium 226 precision (±)              | 0.30   | pCi/L |            |       | E903.0     | 11/07/16 11:20 / eli-ca |
| Radium 226 MDC                        | 0.19   | pCi/L |            |       | E903.0     | 11/07/16 11:20 / eli-ca |
| Radium 228                            | 3.2    | pCi/L |            |       | RA-05      | 11/02/16 09:13 / eli-ca |
| Radium 228 precision (±)              | 1.2    | pCi/L |            |       | RA-05      | 11/02/16 09:13 / eli-ca |
| Radium 228 MDC                        | 1.2    | pCi/L |            |       | RA-05      | 11/02/16 09:13 / eli-ca |
| Radium 226 + Radium 228               | 4.2    | pCi/L |            |       | A7500-RA   | 11/08/16 10:25 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.2    | pCi/L |            |       | A7500-RA   | 11/08/16 10:25 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.2    | pCi/L |            |       | A7500-RA   | 11/08/16 10:25 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B16101734-002 Client Sample ID: SFL MW-3

**Report Date:** 11/10/16 Collection Date: 10/19/16 10:37 DateReceived: 10/21/16

Matrix: Ground Water

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| pH                                    | 3.8    | s.u.  | Н          | 0.1   |             | A4500-H B | 10/23/16 14:53 / ldv    |
| Solids, Total Dissolved TDS @ 180 C   |        | mg/L  | D          | 100   |             | A2540 C   | 10/24/16 11:39 / ks     |
|                                       | 0010   | 9/ =  | J          | .00   |             | 7120100   | 10/2 I/ 10 11.00 / R0   |
| NORGANICS                             |        |       | _          |       |             |           |                         |
| Chloride                              |        | mg/L  | D          | 6     |             | E300.0    | 10/28/16 04:06 / jpv    |
| Sulfate                               |        | mg/L  | D          | 20    |             | E300.0    | 10/28/16 04:06 / jpv    |
| Fluoride                              | 0.5    | mg/L  |            | 0.1   |             | A4500-F C | 10/26/16 11:54 / cjm    |
| CATIONS                               |        |       |            |       |             |           |                         |
| Calcium                               | 727    | mg/L  |            | 1     |             | E200.7    | 10/27/16 01:45 / jh     |
| /lagnesium                            | 135    | mg/L  |            | 1     |             | E200.7    | 10/27/16 01:45 / jh     |
| Potassium                             | 55     | mg/L  |            | 1     |             | E200.7    | 10/27/16 01:45 / jh     |
| Sodium                                | 954    | mg/L  | D          | 4     |             | E200.7    | 10/27/16 01:45 / jh     |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  |             | E200.8    | 10/25/16 17:12 / jpv    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 10/25/16 17:12 / jpv    |
| Barium                                | 0.05   | mg/L  |            | 0.01  |             | E200.8    | 10/25/16 17:12 / jpv    |
| Beryllium                             | 0.034  | mg/L  |            | 0.001 |             | E200.8    | 10/25/16 17:12 / jpv    |
| Boron                                 | 2.87   | mg/L  |            | 0.05  |             | E200.7    | 10/27/16 01:45 / jh     |
| Cadmium                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 10/25/16 17:12 / jpv    |
| Chromium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 10/26/16 20:47 / jpv    |
| Cobalt                                | 0.07   | mg/L  |            | 0.02  |             | E200.8    | 10/25/16 17:12 / jpv    |
| .ead                                  | 0.03   | mg/L  |            | 0.01  |             | E200.8    | 10/25/16 17:12 / jpv    |
| ithium                                | 0.44   | mg/L  | D          | 0.02  |             | E200.7    | 10/27/16 01:45 / jh     |
| Mercury                               | 0.003  | mg/L  |            | 0.001 |             | E245.1    | 10/25/16 13:51 / mas    |
| Nolybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.8    | 10/25/16 17:12 / jpv    |
| Selenium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 10/26/16 20:47 / jpv    |
| hallium                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 10/25/16 17:12 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 226                            | 4.1    | pCi/L |            |       |             | E903.0    | 11/07/16 11:20 / eli-ca |
| Radium 226 precision (±)              | 0.89   | pCi/L |            |       |             | E903.0    | 11/07/16 11:20 / eli-ca |
| Radium 226 MDC                        |        | pCi/L |            |       |             | E903.0    | 11/07/16 11:20 / eli-ca |
| Radium 228                            | 5.9    | pCi/L |            |       |             | RA-05     | 11/02/16 09:13 / eli-ca |
| Radium 228 precision (±)              | 1.5    | pCi/L |            |       |             | RA-05     | 11/02/16 09:13 / eli-ca |
| Radium 228 MDC                        | 1.3    | pCi/L |            |       |             | RA-05     | 11/02/16 09:13 / eli-ca |
| Radium 226 + Radium 228               | 10.0   | pCi/L |            |       |             | A7500-RA  | 11/08/16 10:25 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.8    | pCi/L |            |       |             | A7500-RA  | 11/08/16 10:25 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.3    | pCi/L |            |       |             | A7500-RA  | 11/08/16 10:25 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

Lab ID: B16101734-004 Client Sample ID: SFL MW-2

**Report Date:** 11/10/16 **Collection Date:** 10/19/16 13:50 **DateReceived:** 10/21/16

Matrix: Ground Water

|                                       |        |       |            |       | MCL/       |                         |
|---------------------------------------|--------|-------|------------|-------|------------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL Method | Analysis Date / By      |
| PHYSICAL PROPERTIES                   |        |       |            |       |            |                         |
| На                                    | 6.4    | s.u.  | Н          | 0.1   | A4500-H B  | 10/23/16 17:14 / Idv    |
| Solids, Total Dissolved TDS @ 180 C   |        | mg/L  | D          | 100   | A2540 C    | 10/24/16 11:39 / ks     |
| INORGANICS                            |        |       |            |       |            |                         |
| Chloride                              | 2790   | mg/L  | D          | 6     | E300.0     | 10/28/16 05:02 / jpv    |
| Sulfate                               |        | mg/L  | D          | 20    | E300.0     | 10/28/16 05:02 / jpv    |
| Fluoride                              |        | mg/L  | _          | 0.1   | A4500-F C  | 10/26/16 12:07 / cjm    |
| CATIONS                               |        |       |            |       |            |                         |
| Calcium                               | 944    | mg/L  |            | 1     | E200.7     | 10/27/16 01:52 / jh     |
| Magnesium                             |        | mg/L  |            | 1     | E200.7     | 10/27/16 01:52 / jh     |
| Potassium                             |        | mg/L  |            | 1     | E200.7     | 10/27/16 01:52 / jh     |
| Sodium                                |        | mg/L  | D          | 4     | E200.7     | 10/27/16 01:52 / jh     |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |            |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  | E200.8     | 10/25/16 17:25 / jpv    |
| Arsenic                               |        | mg/L  |            | 0.01  | E200.8     | 10/26/16 20:52 / jpv    |
| Barium                                | 0.03   | mg/L  |            | 0.01  | E200.8     | 10/25/16 17:25 / jpv    |
| Beryllium                             | 0.002  | mg/L  |            | 0.001 | E200.8     | 10/25/16 17:25 / jpv    |
| Boron                                 | 0.57   | mg/L  |            | 0.05  | E200.7     | 10/27/16 01:52 / jh     |
| Cadmium                               | ND     | mg/L  |            | 0.01  | E200.8     | 10/25/16 17:25 / jpv    |
| Chromium                              | ND     | mg/L  |            | 0.01  | E200.8     | 10/26/16 20:52 / jpv    |
| Cobalt                                | 0.02   | mg/L  |            | 0.02  | E200.8     | 10/25/16 17:25 / jpv    |
| Lead                                  | ND     | mg/L  |            | 0.01  | E200.8     | 10/25/16 17:25 / jpv    |
| Lithium                               | 0.58   | mg/L  | D          | 0.02  | E200.7     | 10/27/16 01:52 / jh     |
| Mercury                               | ND     | mg/L  |            | 0.001 | E245.1     | 10/25/16 13:55 / mas    |
| Molybdenum                            | ND     | mg/L  |            | 0.05  | E200.8     | 10/25/16 17:25 / jpv    |
| Selenium                              | ND     | mg/L  |            | 0.01  | E200.8     | 10/26/16 20:52 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.01  | E200.8     | 10/25/16 17:25 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |            |                         |
| Radium 226                            | 4.3    | pCi/L |            |       | E903.0     | 11/07/16 11:20 / eli-ca |
| Radium 226 precision (±)              | 0.91   | pCi/L |            |       | E903.0     | 11/07/16 11:20 / eli-ca |
| Radium 226 MDC                        | 0.20   | pCi/L |            |       | E903.0     | 11/07/16 11:20 / eli-ca |
| Radium 228                            | 8.6    | pCi/L |            |       | RA-05      | 11/02/16 09:13 / eli-ca |
| Radium 228 precision (±)              | 2.0    | pCi/L |            |       | RA-05      | 11/02/16 09:13 / eli-ca |
| Radium 228 MDC                        | 1.3    | pCi/L |            |       | RA-05      | 11/02/16 09:13 / eli-ca |
| Radium 226 + Radium 228               | 12.9   | pCi/L |            |       | A7500-RA   | 11/08/16 10:25 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 2.2    | pCi/L |            |       | A7500-RA   | 11/08/16 10:25 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.3    | pCi/L |            |       | A7500-RA   | 11/08/16 10:25 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

4DO Minimum data table and a

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B16101734-005

Client Sample ID: Dup-2

**Report Date:** 11/10/16 Collection Date: 10/19/16 DateReceived: 10/21/16

Matrix: Ground Water

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| H                                     | 6.6    | s.u.  | Н          | 0.1   |             | A4500-H B | 10/23/16 17:17 / ldv    |
| Solids, Total Dissolved TDS @ 180 C   |        | mg/L  | D          | 100   |             | A2540 C   | 10/24/16 11:39 / ks     |
|                                       | 0.120  | 9, =  | J          | 100   |             | 7120100   | 10/2 I/ 10 11.00 / No   |
| NORGANICS                             | 4=00   |       | _          |       |             |           | 10/00/10 05 10 //       |
| Chloride                              |        | mg/L  | D          | 6     |             | E300.0    | 10/28/16 05:16 / jpv    |
| Sulfate                               |        | mg/L  | D          | 20    |             | E300.0    | 10/28/16 05:16 / jpv    |
| Fluoride                              | ND     | mg/L  |            | 0.1   |             | A4500-F C | 10/26/16 12:11 / cjm    |
| CATIONS                               |        |       |            |       |             |           |                         |
| Calcium                               | 838    | mg/L  |            | 1     |             | E200.7    | 10/27/16 01:56 / jh     |
| /lagnesium                            | 127    | mg/L  |            | 1     |             | E200.7    | 10/27/16 01:56 / jh     |
| Potassium                             | 58     | mg/L  |            | 1     |             | E200.7    | 10/27/16 01:56 / jh     |
| Sodium                                | 1120   | mg/L  | D          | 4     |             | E200.7    | 10/27/16 01:56 / jh     |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  |             | E200.8    | 10/25/16 17:28 / jpv    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 10/26/16 20:55 / jpv    |
| Barium                                | 0.03   | mg/L  |            | 0.01  |             | E200.8    | 10/25/16 17:28 / jpv    |
| Beryllium                             | ND     | mg/L  |            | 0.001 |             | E200.8    | 10/25/16 17:28 / jpv    |
| Boron                                 | 0.66   | mg/L  |            | 0.05  |             | E200.7    | 10/27/16 01:56 / jh     |
| Cadmium                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 10/25/16 17:28 / jpv    |
| Chromium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 10/26/16 20:55 / jpv    |
| Cobalt                                | ND     | mg/L  |            | 0.02  |             | E200.8    | 10/25/16 17:28 / jpv    |
| .ead                                  | ND     | mg/L  |            | 0.01  |             | E200.8    | 10/25/16 17:28 / jpv    |
| ithium                                | 0.54   | mg/L  | D          | 0.02  |             | E200.7    | 10/27/16 01:56 / jh     |
| Mercury                               | ND     | mg/L  |            | 0.001 |             | E245.1    | 10/25/16 13:57 / mas    |
| Nolybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.8    | 10/25/16 17:28 / jpv    |
| Selenium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 10/26/16 20:55 / jpv    |
| hallium                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 10/25/16 17:28 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 226                            | 1.1    | pCi/L |            |       |             | E903.0    | 11/07/16 11:20 / eli-ca |
| Radium 226 precision (±)              | 0.30   | pCi/L |            |       |             | E903.0    | 11/07/16 11:20 / eli-ca |
| Radium 226 MDC                        | 0.20   | pCi/L |            |       |             | E903.0    | 11/07/16 11:20 / eli-ca |
| Radium 228                            | 2.6    | pCi/L |            |       |             | RA-05     | 11/02/16 10:57 / eli-ca |
| Radium 228 precision (±)              | 1.2    | pCi/L |            |       |             | RA-05     | 11/02/16 10:57 / eli-ca |
| Radium 228 MDC                        | 1.5    | pCi/L |            |       |             | RA-05     | 11/02/16 10:57 / eli-ca |
| Radium 226 + Radium 228               | 3.7    | pCi/L |            |       |             | A7500-RA  | 11/08/16 10:25 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.2    | pCi/L |            |       |             | A7500-RA  | 11/08/16 10:25 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.6    | pCi/L |            |       |             | A7500-RA  | 11/08/16 10:25 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

**Lab ID:** B16101734-006 **Client Sample ID:** EQBK-101916

Report Date: 11/10/16

Collection Date: 10/19/16 13:00

DateReceived: 10/21/16

Matrix: Ground Water

|                                       |        |       |            |          | MCL/ |                     |                         |
|---------------------------------------|--------|-------|------------|----------|------|---------------------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL       | QCL  | Method              | Analysis Date / By      |
| PHYSICAL PROPERTIES                   |        |       |            |          |      |                     |                         |
| pH                                    | 6.3    | s.u.  | Н          | 0.1      |      | A4500-H B           | 10/23/16 17:19 / ldv    |
| Solids, Total Dissolved TDS @ 180 C   |        | mg/L  | •          | 10       |      | A2540 C             | 10/24/16 11:39 / ks     |
| _                                     |        | 3     |            |          |      |                     |                         |
| INORGANICS                            |        |       |            |          |      |                     | 10/00/10 05 50 //       |
| Chloride                              |        | mg/L  |            | 1        |      | E300.0              | 10/28/16 05:58 / jpv    |
| Sulfate<br>Fluoride                   |        | mg/L  |            | 1<br>0.1 |      | E300.0<br>A4500-F C | 10/28/16 05:58 / jpv    |
| riuoride                              | ND     | mg/L  |            | 0.1      |      | A4500-F C           | 10/26/16 12:20 / cjm    |
| CATIONS                               |        |       |            |          |      |                     |                         |
| Calcium                               | ND     | mg/L  |            | 1        |      | E200.7              | 10/27/16 02:52 / jh     |
| Magnesium                             | ND     | mg/L  |            | 1        |      | E200.7              | 10/27/16 02:52 / jh     |
| Potassium                             | ND     | mg/L  |            | 1        |      | E200.7              | 10/27/16 02:52 / jh     |
| Sodium                                | ND     | mg/L  |            | 1        |      | E200.7              | 10/27/16 02:52 / jh     |
| METALS, TOTAL RECOVERABLE             |        |       |            |          |      |                     |                         |
| Antimony                              | ND     | mg/L  |            | 0.05     |      | E200.8              | 10/25/16 17:58 / jpv    |
| Arsenic                               | ND     | mg/L  |            | 0.01     |      | E200.8              | 10/26/16 21:23 / jpv    |
| Barium                                | ND     | mg/L  |            | 0.01     |      | E200.8              | 10/25/16 17:58 / jpv    |
| Beryllium                             | ND     | mg/L  |            | 0.001    |      | E200.8              | 10/25/16 17:58 / jpv    |
| Boron                                 | ND     | mg/L  |            | 0.05     |      | E200.7              | 10/27/16 02:52 / jh     |
| Cadmium                               | ND     | mg/L  |            | 0.01     |      | E200.8              | 10/25/16 17:58 / jpv    |
| Chromium                              |        | mg/L  |            | 0.01     |      | E200.8              | 10/26/16 21:23 / jpv    |
| Cobalt                                |        | mg/L  |            | 0.02     |      | E200.8              | 10/25/16 17:58 / jpv    |
| Lead                                  |        | mg/L  |            | 0.01     |      | E200.8              | 10/25/16 17:58 / jpv    |
| Lithium                               |        | mg/L  |            | 0.01     |      | E200.7              | 10/27/16 02:52 / jh     |
| Mercury                               |        | mg/L  |            | 0.001    |      | E245.1              | 10/25/16 13:59 / mas    |
| Molybdenum                            |        | mg/L  |            | 0.05     |      | E200.8              | 10/25/16 17:58 / jpv    |
| Selenium                              |        | mg/L  |            | 0.01     |      | E200.8              | 10/26/16 21:23 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.01     |      | E200.8              | 10/25/16 17:58 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |          |      |                     |                         |
| Radium 226                            | 0.18   | pCi/L | U          |          |      | E903.0              | 11/07/16 12:59 / eli-ca |
| Radium 226 precision (±)              | 0.15   | pCi/L |            |          |      | E903.0              | 11/07/16 12:59 / eli-ca |
| Radium 226 MDC                        | 0.21   | pCi/L |            |          |      | E903.0              | 11/07/16 12:59 / eli-ca |
| Radium 228                            | 0.79   | pCi/L | U          |          |      | RA-05               | 11/02/16 09:13 / eli-ca |
| Radium 228 precision (±)              |        | pCi/L |            |          |      | RA-05               | 11/02/16 09:13 / eli-ca |
| Radium 228 MDC                        |        | pCi/L |            |          |      | RA-05               | 11/02/16 09:13 / eli-ca |
| Radium 226 + Radium 228               |        | •     | U          |          |      | A7500-RA            | 11/08/16 10:25 / eli-ca |
| Radium 226 + Radium 228 precision (±) |        | pCi/L |            |          |      | A7500-RA            | 11/08/16 10:25 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.4    | pCi/L |            |          |      | A7500-RA            | 11/08/16 10:25 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC - Minimum detectable concentration

U - Not detected at minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B16101734-007 Client Sample ID: SFL MW-5

**Report Date:** 11/10/16 Collection Date: 10/19/16 14:30 DateReceived: 10/21/16

Matrix: Ground Water

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| Hq                                    | 4.9    | s.u.  | Н          | 0.1   |             | A4500-H B | 10/23/16 17:22 / Idv    |
| Solids, Total Dissolved TDS @ 180 C   |        | mg/L  | D          | 100   |             | A2540 C   | 10/24/16 11:39 / ks     |
| INORGANICS                            |        |       |            |       |             |           |                         |
| Chloride                              | 3070   | mg/L  | D          | 10    |             | E300.0    | 10/28/16 06:12 / jpv    |
| Sulfate                               |        | mg/L  | D          | 40    |             | E300.0    | 10/28/16 06:12 / jpv    |
| Fluoride                              |        | mg/L  |            | 0.1   |             | A4500-F C | 10/26/16 12:26 / cjm    |
| CATIONS                               |        |       |            |       |             |           |                         |
| Calcium                               | 903    | mg/L  |            | 1     |             | E200.7    | 10/27/16 02:56 / jh     |
| Magnesium                             |        | mg/L  |            | 1     |             | E200.7    | 10/27/16 02:56 / jh     |
| Potassium                             |        | mg/L  |            | 1     |             | E200.8    | 10/26/16 21:26 / jpv    |
| Sodium                                |        | mg/L  | D          | 7     |             | E200.7    | 10/27/16 02:56 / jh     |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  |             | E200.8    | 10/25/16 18:00 / jpv    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 10/26/16 21:26 / jpv    |
| Barium                                | 0.06   | mg/L  |            | 0.01  |             | E200.8    | 10/25/16 18:00 / jpv    |
| Beryllium                             | 0.010  | mg/L  |            | 0.001 |             | E200.8    | 10/25/16 18:00 / jpv    |
| Boron                                 | 3.74   | mg/L  | D          | 0.07  |             | E200.7    | 10/27/16 02:56 / jh     |
| Cadmium                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 10/25/16 18:00 / jpv    |
| Chromium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 10/26/16 21:26 / jpv    |
| Cobalt                                | 0.05   | mg/L  |            | 0.02  |             | E200.8    | 10/25/16 18:00 / jpv    |
| Lead                                  | ND     | mg/L  |            | 0.01  |             | E200.8    | 10/25/16 18:00 / jpv    |
| Lithium                               | 0.90   | mg/L  | D          | 0.04  |             | E200.7    | 10/27/16 02:56 / jh     |
| Mercury                               | ND     | mg/L  |            | 0.001 |             | E245.1    | 10/25/16 14:00 / mas    |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.8    | 10/25/16 18:00 / jpv    |
| Selenium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 10/26/16 21:26 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 10/25/16 18:00 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 226                            |        | pCi/L |            |       |             | E903.0    | 11/07/16 12:59 / eli-ca |
| Radium 226 precision (±)              | 1.0    | pCi/L |            |       |             | E903.0    | 11/07/16 12:59 / eli-ca |
| Radium 226 MDC                        | 0.20   | pCi/L |            |       |             | E903.0    | 11/07/16 12:59 / eli-ca |
| Radium 228                            | 6.5    | pCi/L |            |       |             | RA-05     | 11/02/16 10:57 / eli-ca |
| Radium 228 precision (±)              | 1.6    | pCi/L |            |       |             | RA-05     | 11/02/16 10:57 / eli-ca |
| Radium 228 MDC                        | 1.6    | pCi/L |            |       |             | RA-05     | 11/02/16 10:57 / eli-ca |
| Radium 226 + Radium 228               | 11.5   | pCi/L |            |       |             | A7500-RA  | 11/08/16 10:25 / eli-ca |
| Radium 226 + Radium 228 precision (±) |        | pCi/L |            |       |             | A7500-RA  | 11/08/16 10:25 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.6    | pCi/L |            |       |             | A7500-RA  | 11/08/16 10:25 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

**Lab ID:** B16101734-008 **Client Sample ID:** SFL MW-6

Report Date: 11/10/16

Collection Date: 10/19/16 15:17

DateReceived: 10/21/16

Matrix: Ground Water

|                                       |        |       |            |       | MCL/       |                         |
|---------------------------------------|--------|-------|------------|-------|------------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL Method | Analysis Date / By      |
| PHYSICAL PROPERTIES                   |        |       |            |       |            |                         |
| pH                                    | 4 2    | s.u.  | Н          | 0.1   | A4500-H B  | 10/23/16 17:25 / ldv    |
| Solids, Total Dissolved TDS @ 180 C   | 8170   |       | D          | 100   | A2540 C    | 10/24/16 11:39 / ks     |
| _                                     |        |       |            |       |            |                         |
| INORGANICS                            |        |       |            |       |            |                         |
| Chloride                              |        | mg/L  | D          | 10    | E300.0     | 10/28/16 06:26 / jpv    |
| Sulfate                               |        | mg/L  | D          | 40    | E300.0     | 10/28/16 06:26 / jpv    |
| Fluoride                              | 0.8    | mg/L  |            | 0.1   | A4500-F C  | 10/26/16 12:35 / cjm    |
| CATIONS                               |        |       |            |       |            |                         |
| Calcium                               | 983    | mg/L  |            | 1     | E200.7     | 10/27/16 03:00 / jh     |
| Magnesium                             | 263    | mg/L  |            | 1     | E200.7     | 10/27/16 03:00 / jh     |
| Potassium                             | 88     | mg/L  |            | 1     | E200.8     | 10/26/16 21:29 / jpv    |
| Sodium                                | 2070   | mg/L  |            | 1     | E200.8     | 10/26/16 21:29 / jpv    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |            |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  | E200.8     | 10/25/16 18:03 / jpv    |
| Arsenic                               | ND     | mg/L  |            | 0.01  | E200.8     | 10/25/16 18:03 / jpv    |
| Barium                                | 0.06   | mg/L  |            | 0.01  | E200.8     | 10/25/16 18:03 / jpv    |
| Beryllium                             | 0.051  | mg/L  |            | 0.001 | E200.8     | 10/25/16 18:03 / jpv    |
| Boron                                 | 0.41   | mg/L  | D          | 0.07  | E200.7     | 10/27/16 03:00 / jh     |
| Cadmium                               | 0.01   | mg/L  |            | 0.01  | E200.8     | 10/25/16 18:03 / jpv    |
| Chromium                              | 0.01   | mg/L  |            | 0.01  | E200.8     | 10/26/16 21:29 / jpv    |
| Cobalt                                | 0.12   | mg/L  |            | 0.02  | E200.8     | 10/25/16 18:03 / jpv    |
| Lead                                  | ND     | mg/L  |            | 0.01  | E200.8     | 10/25/16 18:03 / jpv    |
| Lithium                               | 0.88   | mg/L  | D          | 0.04  | E200.7     | 10/27/16 03:00 / jh     |
| Mercury                               | ND     | mg/L  |            | 0.001 | E245.1     | 10/25/16 14:02 / mas    |
| Molybdenum                            | ND     | mg/L  |            | 0.05  | E200.8     | 10/25/16 18:03 / jpv    |
| Selenium                              |        | mg/L  |            | 0.01  | E200.8     | 10/26/16 21:29 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.01  | E200.8     | 10/25/16 18:03 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |            |                         |
| Radium 226                            | 4.5    | pCi/L |            |       | E903.0     | 11/07/16 12:59 / eli-ca |
| Radium 226 precision (±)              | 0.95   | pCi/L |            |       | E903.0     | 11/07/16 12:59 / eli-ca |
| Radium 226 MDC                        | 0.20   | pCi/L |            |       | E903.0     | 11/07/16 12:59 / eli-ca |
| Radium 228                            | 6.3    | pCi/L |            |       | RA-05      | 11/02/16 10:57 / eli-ca |
| Radium 228 precision (±)              | 1.6    | pCi/L |            |       | RA-05      | 11/02/16 10:57 / eli-ca |
| Radium 228 MDC                        | 1.5    | pCi/L |            |       | RA-05      | 11/02/16 10:57 / eli-ca |
| Radium 226 + Radium 228               | 10.8   | pCi/L |            |       | A7500-RA   | 11/08/16 10:25 / eli-ca |
| Radium 226 + Radium 228 precision (±) |        | pCi/L |            |       | A7500-RA   | 11/08/16 10:25 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.6    | pCi/L |            |       | A7500-RA   | 11/08/16 10:25 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC Minimum data table and

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Texas Municipal Power AgencyReport Date:11/08/16Project:CCRRWork Order:B16101734

| Analyte   |                   | Count        | Result      | Units           | RL | %REC | Low Limit  | High Limit | RPD | RPDLimit  | Qual      |
|-----------|-------------------|--------------|-------------|-----------------|----|------|------------|------------|-----|-----------|-----------|
| Method:   | E903.0            |              |             |                 |    |      |            |            |     | Batch: RA | 226-8300  |
| Lab ID:   | LCS-RA226-8300    | Lab          | oratory Cor | ntrol Sample    |    |      | Run: G542I | M_161025A  |     | 11/07/    | /16 11:20 |
| Radium 22 | 26                |              | 11          | pCi/L           |    | 107  | 80         | 120        |     |           |           |
| Lab ID:   | MB-RA226-8300     | 3 Me         | thod Blank  |                 |    |      | Run: G542I | M_161025A  |     | 11/07/    | /16 11:20 |
| Radium 22 | 26                |              | 0.07        | pCi/L           |    |      |            |            |     |           | U         |
| Radium 22 | 26 precision (±)  |              | 0.1         | pCi/L           |    |      |            |            |     |           |           |
| Radium 22 | 26 MDC            |              | 0.2         | pCi/L           |    |      |            |            |     |           |           |
| Lab ID:   | B16101734-001CMS  | Sar          | mple Matrix | Spike           |    |      | Run: G542I | M_161025A  |     | 11/07/    | /16 11:20 |
| Radium 22 | 26                |              | 20          | pCi/L           |    | 94   | 70         | 130        |     |           |           |
| Lab ID:   | B16101734-001CMSI | <b>D</b> Sar | mple Matrix | Spike Duplicate |    |      | Run: G542I | M_161025A  |     | 11/07/    | /16 11:20 |
| Radium 22 | 26                |              | 22          | pCi/L           |    | 103  | 70         | 130        | 9.1 | 20        |           |

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

Prepared by Casper, WY Branch

Client:Texas Municipal Power AgencyReport Date:11/08/16Project:CCRRWork Order:B16101734

| Analyte   |                    | Count        | Result      | Units           | RL | %REC | Low Limit | High Limit     | RPD | RPDLimit  | Qual      |
|-----------|--------------------|--------------|-------------|-----------------|----|------|-----------|----------------|-----|-----------|-----------|
| Method:   | RA-05              |              |             |                 |    |      |           |                |     | Batch: RA | 228-5349  |
| Lab ID:   | LCS-228-RA226-8300 | Lab          | oratory Cor | ntrol Sample    |    |      | Run: TENN | IELEC-3_161025 | iΑ  | 11/02/    | /16 09:13 |
| Radium 22 | 28                 |              | 7.3         | pCi/L           |    | 85   | 80        | 120            |     |           |           |
| Lab ID:   | MB-RA226-8300      | 3 Met        | thod Blank  |                 |    |      | Run: TENN | ELEC-3_161025  | iΑ  | 11/02/    | /16 09:13 |
| Radium 22 | 28                 |              | 0.05        | pCi/L           |    |      |           |                |     |           | U         |
| Radium 22 | 28 precision (±)   |              | 8.0         | pCi/L           |    |      |           |                |     |           |           |
| Radium 22 | 28 MDC             |              | 1           | pCi/L           |    |      |           |                |     |           |           |
| Lab ID:   | B16101734-006CMS   | Sar          | nple Matrix | Spike           |    |      | Run: TENN | ELEC-3_161025  | iΑ  | 11/02/    | /16 09:13 |
| Radium 22 | 28                 |              | 15.1        | pCi/L           |    | 82   | 70        | 130            |     |           |           |
| Lab ID:   | B16101734-006CMSE  | <b>)</b> Sar | mple Matrix | Spike Duplicate |    |      | Run: TENN | ELEC-3_161025  | iΑ  | 11/02/    | /16 09:13 |
| Radium 22 | 28                 |              | 16.0        | pCi/L           |    | 87   | 70        | 130            | 5.9 | 20        |           |

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:11/10/16Project:CCRRWork Order:B16101734

| Analyte       |                   | Count        | Result         | Units            | RL          | %REC | Low Limit  | High Limit  | RPD       | RPDLimit    | Qual             |
|---------------|-------------------|--------------|----------------|------------------|-------------|------|------------|-------------|-----------|-------------|------------------|
| Method:       | E200.7            |              |                |                  |             |      |            | Analy       | /tical Ru | n: ICP203-B | _161026 <i>A</i> |
| Lab ID:       | ICV               | 6 C          | ontinuing Cali | bration Verifica | tion Standa | rd   |            |             |           | 10/26       | 16 15:28         |
| Boron         |                   |              | 2.46           | mg/L             | 0.10        | 98   | 95         | 105         |           |             |                  |
| Calcium       |                   |              | 25.0           | mg/L             | 1.0         | 100  | 95         | 105         |           |             |                  |
| Lithium       |                   |              | 1.27           | mg/L             | 0.10        | 101  | 95         | 105         |           |             |                  |
| Magnesiur     | m                 |              | 25.5           | mg/L             | 1.0         | 102  | 95         | 105         |           |             |                  |
| Potassium     | 1                 |              | 25.4           | mg/L             | 1.0         | 102  | 95         | 105         |           |             |                  |
| Sodium        |                   |              | 25.4           | mg/L             | 1.0         | 102  | 95         | 105         |           |             |                  |
| Method:       | E200.7            |              |                |                  |             |      |            |             |           | Batc        | h: 103856        |
| Lab ID:       | MB-103856         | 6 M          | lethod Blank   |                  |             |      | Run: ICP20 | 3-B_161026A |           | 10/27       | 16 00:27         |
| Boron         |                   |              | ND             | mg/L             | 0.003       |      |            |             |           |             |                  |
| Calcium       |                   |              | ND             | mg/L             | 0.03        |      |            |             |           |             |                  |
| Lithium       |                   |              | 0.005          | mg/L             | 0.002       |      |            |             |           |             |                  |
| Magnesiur     | m                 |              | ND             | mg/L             | 0.004       |      |            |             |           |             |                  |
| Potassium     |                   |              | ND             | mg/L             | 0.08        |      |            |             |           |             |                  |
| Sodium        |                   |              | ND             | mg/L             | 0.02        |      |            |             |           |             |                  |
| Lab ID:       | LCS-103856        | 6 La         | aboratory Cor  | ntrol Sample     |             |      | Run: ICP20 | 3-B 161026A |           | 10/27       | 16 00:31         |
| Boron         |                   |              | 0.507          | mg/L             | 0.10        | 101  | 85         | _<br>115    |           |             |                  |
| Calcium       |                   |              | 26.7           | mg/L             | 1.0         | 107  | 85         | 115         |           |             |                  |
| Lithium       |                   |              | 0.532          | mg/L             | 0.10        | 105  | 85         | 115         |           |             |                  |
| Magnesiur     | n                 |              | 26.6           | mg/L             | 1.0         | 106  | 85         | 115         |           |             |                  |
| Potassium     |                   |              | 26.3           | mg/L             | 1.0         | 105  | 85         | 115         |           |             |                  |
| Sodium        |                   |              | 26.6           | mg/L             | 1.0         | 107  | 85         | 115         |           |             |                  |
| Lab ID:       | B16101734-005BMS3 | 8 6 S        | ample Matrix   | Spike            |             |      | Run: ICP20 | 3-B_161026A |           | 10/27       | 16 02:06         |
| Boron         |                   |              | 1.12           | mg/L             | 0.050       | 91   | 70         | 130         |           |             |                  |
| Calcium       |                   |              | 819            | mg/L             | 1.0         |      | 70         | 130         |           |             | Α                |
| Lithium       |                   |              | 1.03           | mg/L             | 0.10        | 99   | 70         | 130         |           |             |                  |
| Magnesiur     | m                 |              | 147            | mg/L             | 1.0         |      | 70         | 130         |           |             | Α                |
| Potassium     | 1                 |              | 81.1           | mg/L             | 1.0         | 92   | 70         | 130         |           |             |                  |
| Sodium        |                   |              | 1090           | mg/L             | 3.7         |      | 70         | 130         |           |             | Α                |
| Lab ID:       | B16101734-005BMSI | <b>6</b> 6 8 | ample Matrix   | Spike Duplicate  | <b>;</b>    |      | Run: ICP20 | 3-B_161026A |           | 10/27       | 16 02:10         |
| Boron         |                   |              | 1.23           | mg/L             | 0.050       | 115  | 70         | 130         | 10        | 20          |                  |
| Calcium       |                   |              | 878            | mg/L             | 1.0         |      | 70         | 130         | 6.9       | 20          | Α                |
| Lithium       |                   |              | 1.08           | mg/L             | 0.10        | 110  | 70         | 130         | 4.8       | 20          |                  |
| Magnesiur     | m                 |              | 157            | mg/L             | 1.0         |      | 70         | 130         | 6.5       | 20          | Α                |
| Potassium     |                   |              | 86.2           | mg/L             | 1.0         | 112  | 70         | 130         | 6.1       | 20          |                  |
| Sodium        |                   |              | 1160           | mg/L             | 3.7         |      | 70         | 130         | 6.5       | 20          | Α                |
| Method:       | E200.7            |              |                |                  |             |      |            |             |           | Batc        | h: 103857        |
| Lab ID:       | MB-103857         | 6 M          | lethod Blank   |                  |             |      | Run: ICP20 | 3-B_161026A |           | 10/27       | 16 02:45         |
| Boron         |                   |              | ND             | mg/L             | 0.003       |      |            |             |           |             |                  |
| Calcium       |                   |              | ND             | mg/L             | 0.03        |      |            |             |           |             |                  |
| 0 0.10.10.11. |                   |              |                |                  |             |      |            |             |           |             |                  |

### Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

MDC - Minimum detectable concentration

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:11/10/16Project:CCRRWork Order:B16101734

| Analyte   |                   | Count         | Result       | Units           | RL    | %REC | Low Limit  | High Limit  | RPD | RPDLimit | Qual      |
|-----------|-------------------|---------------|--------------|-----------------|-------|------|------------|-------------|-----|----------|-----------|
| Method:   | E200.7            |               |              |                 |       |      |            |             |     | Batcl    | h: 103857 |
| Lab ID:   | MB-103857         | 6 Me          | thod Blank   |                 |       |      | Run: ICP20 | 3-B_161026A |     | 10/27/   | 16 02:45  |
| Magnesiun | n                 |               | ND           | mg/L            | 0.004 |      |            |             |     |          |           |
| Potassium |                   |               | ND           | mg/L            | 0.08  |      |            |             |     |          |           |
| Sodium    |                   |               | ND           | mg/L            | 0.02  |      |            |             |     |          |           |
| Lab ID:   | LCS-103857        | 6 Lal         | boratory Cor | ntrol Sample    |       |      | Run: ICP20 | 3-B_161026A |     | 10/27/   | 16 02:49  |
| Boron     |                   |               | 0.479        | mg/L            | 0.10  | 96   | 85         | 115         |     |          |           |
| Calcium   |                   |               | 25.3         | mg/L            | 1.0   | 101  | 85         | 115         |     |          |           |
| Lithium   |                   |               | 0.509        | mg/L            | 0.10  | 101  | 85         | 115         |     |          |           |
| Magnesiun | n                 |               | 25.2         | mg/L            | 1.0   | 101  | 85         | 115         |     |          |           |
| Potassium |                   |               | 25.3         | mg/L            | 1.0   | 101  | 85         | 115         |     |          |           |
| Sodium    |                   |               | 25.1         | mg/L            | 1.0   | 100  | 85         | 115         |     |          |           |
| Lab ID:   | B16101754-003CMS3 | 6 Sa          | mple Matrix  | Spike           |       |      | Run: ICP20 | 3-B_161026A |     | 10/27/   | 16 03:28  |
| Boron     |                   |               | 0.571        | mg/L            | 0.050 | 99   | 70         | 130         |     |          |           |
| Calcium   |                   |               | 30.0         | mg/L            | 1.0   | 102  | 70         | 130         |     |          |           |
| Lithium   |                   |               | 0.524        | mg/L            | 0.10  | 101  | 70         | 130         |     |          |           |
| Magnesiun | n                 |               | 26.7         | mg/L            | 1.0   | 101  | 70         | 130         |     |          |           |
| Potassium |                   |               | 27.2         | mg/L            | 1.0   | 101  | 70         | 130         |     |          |           |
| Sodium    |                   |               | 309          | mg/L            | 1.0   |      | 70         | 130         |     |          | Α         |
| Lab ID:   | B16101754-003CMSE | <b>o</b> 6 Sa | mple Matrix  | Spike Duplicate |       |      | Run: ICP20 | 3-B_161026A |     | 10/27/   | 16 03:32  |
| Boron     |                   |               | 0.572        | mg/L            | 0.050 | 99   | 70         | 130         | 0.2 | 20       |           |
| Calcium   |                   |               | 29.7         | mg/L            | 1.0   | 101  | 70         | 130         | 0.9 | 20       |           |
| Lithium   |                   |               | 0.520        | mg/L            | 0.10  | 100  | 70         | 130         | 0.7 | 20       |           |
| Magnesiun | n                 |               | 26.6         | mg/L            | 1.0   | 100  | 70         | 130         | 0.7 | 20       |           |
| Potassium |                   |               | 27.0         | mg/L            | 1.0   | 100  | 70         | 130         | 0.7 | 20       |           |
| Sodium    |                   |               | 304          | mg/L            | 1.0   |      | 70         | 130         | 1.7 | 20       | Α         |

### Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

MDC - Minimum detectable concentration

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:11/10/16Project:CCRRWork Order:B16101734

| Analyte   |                  | Count    | Result         | Units          | RL         | %REC | Low Limit | High Limit     | RPD    | RPDLimit   | Qual      |
|-----------|------------------|----------|----------------|----------------|------------|------|-----------|----------------|--------|------------|-----------|
| Method:   | E200.8           |          |                |                |            |      |           | Analytical     | Run: I | CPMS202-B_ | _161025A  |
| Lab ID:   | QCS              | 9 Init   | ial Calibratio | on Verificatio | n Standard |      |           |                |        | 10/25/     | 16 12:58  |
| Antimony  |                  |          | 0.0506         | mg/L           | 0.050      | 101  | 90        | 110            |        |            |           |
| Arsenic   |                  |          | 0.0505         | mg/L           | 0.0050     | 101  | 90        | 110            |        |            |           |
| Barium    |                  |          | 0.0496         | mg/L           | 0.10       | 99   | 90        | 110            |        |            |           |
| Beryllium |                  |          | 0.0245         | mg/L           | 0.0010     | 98   | 90        | 110            |        |            |           |
| Cadmium   |                  |          | 0.0255         | mg/L           | 0.0010     | 102  | 90        | 110            |        |            |           |
| Cobalt    |                  |          | 0.0503         | mg/L           | 0.010      | 101  | 90        | 110            |        |            |           |
| Lead      |                  |          | 0.0508         | mg/L           | 0.010      | 102  | 90        | 110            |        |            |           |
| Molybdenu | m                |          | 0.0471         | mg/L           | 0.0050     | 94   | 90        | 110            |        |            |           |
| Thallium  |                  |          | 0.0490         | mg/L           | 0.10       | 98   | 90        | 110            |        |            |           |
| Method:   | E200.8           |          |                |                |            |      |           |                |        | Batcl      | h: 103856 |
| Lab ID:   | MB-103856        | 11 Me    | thod Blank     |                |            |      | Run: ICPM | S202-B_161025A |        | 10/25/     | 16 15:56  |
| Antimony  |                  |          | 3E-05          | mg/L           | 3E-05      |      |           |                |        |            |           |
| Arsenic   |                  |          | ND             | mg/L           | 0.0001     |      |           |                |        |            |           |
| Barium    |                  |          | ND             | mg/L           | 7E-05      |      |           |                |        |            |           |
| Beryllium |                  |          | ND             | mg/L           | 1E-05      |      |           |                |        |            |           |
| Cadmium   |                  |          | ND             | mg/L           | 1E-05      |      |           |                |        |            |           |
| Chromium  |                  |          | ND             | mg/L           | 8E-05      |      |           |                |        |            |           |
| Cobalt    |                  |          | ND             | mg/L           | 2E-05      |      |           |                |        |            |           |
| Lead      |                  |          | ND             | mg/L           | 4E-05      |      |           |                |        |            |           |
| Molybdenu | m                |          | ND             | mg/L           | 4E-05      |      |           |                |        |            |           |
| Selenium  |                  |          | ND             | mg/L           | 0.0002     |      |           |                |        |            |           |
| Thallium  |                  |          | 4E-05          | mg/L           | 1E-05      |      |           |                |        |            |           |
| Lab ID:   | LCS-103856       | 11 Lab   | oratory Cor    | ntrol Sample   |            |      | Run: ICPM | S202-B_161025A |        | 10/25/     | 16 15:59  |
| Antimony  |                  |          | 0.507          | mg/L           | 0.0050     | 101  | 85        | 115            |        |            |           |
| Arsenic   |                  |          | 0.504          | mg/L           | 0.0010     | 101  | 85        | 115            |        |            |           |
| Barium    |                  |          | 0.503          | mg/L           | 0.010      | 101  | 85        | 115            |        |            |           |
| Beryllium |                  |          | 0.233          | mg/L           | 0.0010     | 93   | 85        | 115            |        |            |           |
| Cadmium   |                  |          | 0.258          | mg/L           | 0.0010     | 103  | 85        | 115            |        |            |           |
| Chromium  |                  |          | 0.445          | mg/L           | 0.0010     | 89   | 85        | 115            |        |            |           |
| Cobalt    |                  |          | 0.452          | mg/L           | 0.0010     | 90   | 85        | 115            |        |            |           |
| Lead      |                  |          | 0.491          | mg/L           | 0.0010     | 98   | 85        | 115            |        |            |           |
| Molybdenu | m                |          | 0.497          | mg/L           | 0.0050     | 99   | 85        | 115            |        |            |           |
| Selenium  |                  |          | 0.502          | mg/L           | 0.0050     | 100  | 85        | 115            |        |            |           |
| Thallium  |                  |          | 0.477          | mg/L           | 0.0010     | 95   | 85        | 115            |        |            |           |
| Lab ID:   | B16101734-005BMS | 3 11 Sai | mple Matrix    | Spike          |            |      | Run: ICPM | S202-B_161025A |        | 10/25/     | 16 17:31  |
| Antimony  |                  |          | 0.532          | mg/L           | 0.0010     | 106  | 70        | 130            |        |            |           |
| Arsenic   |                  |          | 0.508          | mg/L           | 0.0010     | 101  | 70        | 130            |        |            |           |
| Barium    |                  |          | 0.545          | mg/L           | 0.050      | 103  | 70        | 130            |        |            |           |
| Beryllium |                  |          | 0.220          | mg/L           | 0.0010     | 88   | 70        | 130            |        |            |           |
| Cadmium   |                  |          | 0.238          | mg/L           | 0.0010     | 95   | 70        | 130            |        |            |           |
| Chromium  |                  |          | 0.458          | mg/L           | 0.0050     | 91   | 70        | 130            |        |            |           |
| Cobalt    |                  |          | 0.467          | mg/L           | 0.0050     | 93   | 70        | 130            |        |            |           |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:11/10/16Project:CCRRWork Order:B16101734

| Analyte   |                   | Count           | Result      | Units        | RL      | %REC | Low Limit | High Limit    | RPD | RPDLimit | Qual      |
|-----------|-------------------|-----------------|-------------|--------------|---------|------|-----------|---------------|-----|----------|-----------|
| Method:   | E200.8            |                 |             |              |         |      |           |               |     | Batc     | h: 103856 |
| Lab ID:   | B16101734-005BMS  | 3 11 Sam        | nple Matrix | Spike        |         |      | Run: ICPM | S202-B_161025 | A   | 10/25    | /16 17:31 |
| Lead      |                   |                 | 0.512       | mg/L         | 0.0010  | 102  | 70        | 130           |     |          |           |
| Molybdenu | ım                |                 | 0.493       | mg/L         | 0.0010  | 99   | 70        | 130           |     |          |           |
| Selenium  |                   |                 | 0.481       | mg/L         | 0.0010  | 95   | 70        | 130           |     |          |           |
| Thallium  |                   |                 | 0.495       | mg/L         | 0.00050 | 99   | 70        | 130           |     |          |           |
| Lab ID:   | B16101734-005BMSI | <b>D</b> 11 Sam | nple Matrix | Spike Dupli  | icate   |      | Run: ICPM | S202-B_161025 | A   | 10/25    | /16 17:33 |
| Antimony  |                   |                 | 0.517       | mg/L         | 0.0010  | 103  | 70        | 130           | 2.8 | 20       |           |
| Arsenic   |                   |                 | 0.505       | mg/L         | 0.0010  | 101  | 70        | 130           | 0.5 | 20       |           |
| Barium    |                   |                 | 0.530       | mg/L         | 0.050   | 100  | 70        | 130           | 3.0 | 20       |           |
| Beryllium |                   |                 | 0.213       | mg/L         | 0.0010  | 85   | 70        | 130           | 3.0 | 20       |           |
| Cadmium   |                   |                 | 0.235       | mg/L         | 0.0010  | 94   | 70        | 130           | 1.4 | 20       |           |
| Chromium  |                   |                 | 0.453       | mg/L         | 0.0050  | 90   | 70        | 130           | 1.2 | 20       |           |
| Cobalt    |                   |                 | 0.459       | mg/L         | 0.0050  | 92   | 70        | 130           | 1.7 | 20       |           |
| Lead      |                   |                 | 0.506       | mg/L         | 0.0010  | 101  | 70        | 130           | 1.0 | 20       |           |
| Molybdenu | ım                |                 | 0.491       | mg/L         | 0.0010  | 98   | 70        | 130           | 0.4 | 20       |           |
| Selenium  |                   |                 | 0.478       | mg/L         | 0.0010  | 95   | 70        | 130           | 0.6 | 20       |           |
| Thallium  |                   |                 | 0.476       | mg/L         | 0.00050 | 95   | 70        | 130           | 3.9 | 20       |           |
| Method:   | E200.8            |                 |             |              |         |      |           |               |     | Batc     | h: 10385  |
| Lab ID:   | MB-103857         | 11 Metl         | hod Blank   |              |         |      | Run: ICPM | S202-B 161025 | A   | 10/25    | /16 17:42 |
| Antimony  |                   |                 | ND          | mg/L         | 3E-05   |      |           | _             |     |          |           |
| Arsenic   |                   |                 | ND          | mg/L         | 0.0001  |      |           |               |     |          |           |
| Barium    |                   |                 | 7E-05       | mg/L         | 7E-05   |      |           |               |     |          |           |
| Beryllium |                   |                 | ND          | mg/L         | 1E-05   |      |           |               |     |          |           |
| Cadmium   |                   |                 | ND          | mg/L         | 1E-05   |      |           |               |     |          |           |
| Chromium  |                   |                 | ND          | mg/L         | 8E-05   |      |           |               |     |          |           |
| Cobalt    |                   |                 | ND          | mg/L         | 2E-05   |      |           |               |     |          |           |
| Lead      |                   |                 | 5E-05       | mg/L         | 4E-05   |      |           |               |     |          |           |
| Molybdenu | ım                |                 | 6E-05       | mg/L         | 4E-05   |      |           |               |     |          |           |
| Selenium  |                   |                 | 0.0002      | mg/L         | 0.0002  |      |           |               |     |          |           |
| Thallium  |                   |                 | 0.0001      | mg/L         | 1E-05   |      |           |               |     |          |           |
| Lab ID:   | LCS-103857        | 11 Lab          | oratory Co  | ntrol Sample | е       |      | Run: ICPM | S202-B_161025 | A   | 10/25    | /16 17:44 |
| Antimony  |                   |                 | 0.519       | mg/L         | 0.0050  | 104  | 85        | _<br>115      |     |          |           |
| Arsenic   |                   |                 | 0.494       | mg/L         | 0.0010  | 99   | 85        | 115           |     |          |           |
| Barium    |                   |                 | 0.509       | mg/L         | 0.010   | 102  | 85        | 115           |     |          |           |
| Beryllium |                   |                 | 0.228       | mg/L         | 0.0010  | 91   | 85        | 115           |     |          |           |
| Cadmium   |                   |                 | 0.243       | mg/L         | 0.0010  | 97   | 85        | 115           |     |          |           |
| Chromium  |                   |                 | 0.429       | mg/L         | 0.0010  | 86   | 85        | 115           |     |          |           |
| Cobalt    |                   |                 | 0.445       | mg/L         | 0.0010  | 89   | 85        | 115           |     |          |           |
| Lead      |                   |                 | 0.499       | mg/L         | 0.0010  | 100  | 85        | 115           |     |          |           |
| Molybdenu | ım                |                 | 0.490       | mg/L         | 0.0050  | 98   | 85        | 115           |     |          |           |
| Selenium  |                   |                 | 0.490       | mg/L         | 0.0050  | 98   | 85        | 115           |     |          |           |
| Thallium  |                   |                 | 0.474       | mg/L         | 0.0030  | 95   | 85        | 115           |     |          |           |
| maniani   |                   |                 | V. TI T     | ⊎, ⊏         | 0.0010  | 00   | 00        | 110           |     |          |           |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:11/10/16Project:CCRRWork Order:B16101734

| Analyte   |                   | Count          | Result      | Units     | RL      | %REC | Low Limit | High Limit     | RPD | RPDLimit | Qual      |
|-----------|-------------------|----------------|-------------|-----------|---------|------|-----------|----------------|-----|----------|-----------|
| Method:   | E200.8            |                |             |           |         |      |           |                |     | Batch    | n: 103857 |
| Lab ID:   | B16101754-003CMS3 | <b>3</b> 11 Sa | mple Matrix | Spike     |         |      | Run: ICPM | S202-B_161025A |     | 10/25/   | 16 18:14  |
| Antimony  |                   |                | 0.510       | mg/L      | 0.0010  | 102  | 70        | 130            |     |          |           |
| Arsenic   |                   |                | 0.494       | mg/L      | 0.0010  | 99   | 70        | 130            |     |          |           |
| Barium    |                   |                | 0.587       | mg/L      | 0.050   | 101  | 70        | 130            |     |          |           |
| Beryllium |                   |                | 0.214       | mg/L      | 0.0010  | 86   | 70        | 130            |     |          |           |
| Cadmium   |                   |                | 0.233       | mg/L      | 0.0010  | 93   | 70        | 130            |     |          |           |
| Chromium  |                   |                | 0.461       | mg/L      | 0.0050  | 92   | 70        | 130            |     |          |           |
| Cobalt    |                   |                | 0.472       | mg/L      | 0.0050  | 94   | 70        | 130            |     |          |           |
| Lead      |                   |                | 0.499       | mg/L      | 0.0010  | 100  | 70        | 130            |     |          |           |
| Molybdenu | m                 |                | 0.480       | mg/L      | 0.0010  | 96   | 70        | 130            |     |          |           |
| Selenium  |                   |                | 0.462       | mg/L      | 0.0010  | 93   | 70        | 130            |     |          |           |
| Thallium  |                   |                | 0.481       | mg/L      | 0.00050 | 96   | 70        | 130            |     |          |           |
| Lab ID:   | B16101754-003CMSI | <b>D</b> 11 Sa | mple Matrix | Spike Dup | olicate |      | Run: ICPM | S202-B_161025A |     | 10/25/   | 16 18:16  |
| Antimony  |                   |                | 0.514       | mg/L      | 0.0010  | 103  | 70        | 130            | 8.0 | 20       |           |
| Arsenic   |                   |                | 0.488       | mg/L      | 0.0010  | 98   | 70        | 130            | 1.2 | 20       |           |
| Barium    |                   |                | 0.595       | mg/L      | 0.050   | 103  | 70        | 130            | 1.3 | 20       |           |
| Beryllium |                   |                | 0.222       | mg/L      | 0.0010  | 89   | 70        | 130            | 3.8 | 20       |           |
| Cadmium   |                   |                | 0.238       | mg/L      | 0.0010  | 95   | 70        | 130            | 2.2 | 20       |           |
| Chromium  |                   |                | 0.451       | mg/L      | 0.0050  | 90   | 70        | 130            | 2.1 | 20       |           |
| Cobalt    |                   |                | 0.456       | mg/L      | 0.0050  | 91   | 70        | 130            | 3.3 | 20       |           |
| Lead      |                   |                | 0.499       | mg/L      | 0.0010  | 100  | 70        | 130            | 0.1 | 20       |           |
| Molybdenu | m                 |                | 0.505       | mg/L      | 0.0010  | 101  | 70        | 130            | 5.1 | 20       |           |
| Selenium  |                   |                | 0.461       | mg/L      | 0.0010  | 92   | 70        | 130            | 0.3 | 20       |           |
| Thallium  |                   |                | 0.486       | mg/L      | 0.00050 | 97   | 70        | 130            | 1.2 | 20       |           |

### Qualifiers:

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:11/10/16Project:CCRRWork Order:B16101734

| Analyte    |                   | Count    | Result         | Units          | RL          | %REC | Low Limit | High Limit    | RPD      | RPDLimit   | Qual      |
|------------|-------------------|----------|----------------|----------------|-------------|------|-----------|---------------|----------|------------|-----------|
| Method:    | E200.8            |          |                |                |             |      |           | Analytica     | l Run: I | CPMS206-B_ | _161026A  |
| Lab ID:    | QCS               | 5 Initia | al Calibration | on Verificatio | on Standard |      |           |               |          | 10/26/     | 16 19:48  |
| Arsenic    |                   |          | 0.0502         | mg/L           | 0.0050      | 100  | 90        | 110           |          |            |           |
| Chromium   |                   |          | 0.0507         | mg/L           | 0.010       | 101  | 90        | 110           |          |            |           |
| Potassium  |                   |          | 2.55           | mg/L           | 0.50        | 102  | 90        | 110           |          |            |           |
| Selenium   |                   |          | 0.0501         | mg/L           | 0.0050      | 100  | 90        | 110           |          |            |           |
| Sodium     |                   |          | 2.47           | mg/L           | 0.50        | 99   | 90        | 110           |          |            |           |
| Method:    | E200.8            |          |                |                |             |      |           |               |          | Batcl      | h: 103856 |
| Lab ID:    | MB-103856         | 12 Metl  | nod Blank      |                |             |      | Run: ICPM | S206-B_161026 | A        | 10/26/     | 16 20:01  |
| Antimony   |                   |          | ND             | mg/L           | 3E-05       |      |           |               |          |            |           |
| Arsenic    |                   |          | ND             | mg/L           | 7E-05       |      |           |               |          |            |           |
| Barium     |                   |          | ND             | mg/L           | 9E-05       |      |           |               |          |            |           |
| Beryllium  |                   |          | 2E-05          | mg/L           | 9E-06       |      |           |               |          |            |           |
| Cadmium    |                   |          | ND             | mg/L           | 2E-05       |      |           |               |          |            |           |
| Chromium   |                   |          | ND             | mg/L           | 4E-05       |      |           |               |          |            |           |
| Cobalt     |                   |          | ND             | mg/L           | 8E-06       |      |           |               |          |            |           |
| Lead       |                   |          | ND             | mg/L           | 2E-05       |      |           |               |          |            |           |
| Molybdenui | m                 |          | 3E-05          | mg/L           | 3E-05       |      |           |               |          |            |           |
| Potassium  |                   |          | 0.01           | mg/L           | 0.009       |      |           |               |          |            |           |
| Selenium   |                   |          | ND             | mg/L           | 0.0004      |      |           |               |          |            |           |
| Thallium   |                   |          | ND             | mg/L           | 1.0E-05     |      |           |               |          |            |           |
| Lab ID:    | LCS-103856        | 12 Lab   | oratory Co     | ntrol Sample   | <b>!</b>    |      | Run: ICPM | S206-B_161026 | A        | 10/26/     | 16 20:06  |
| Antimony   |                   |          | 0.530          | mg/L           | 0.0050      | 106  | 85        | 115           |          |            |           |
| Arsenic    |                   |          | 0.499          | mg/L           | 0.0010      | 100  | 85        | 115           |          |            |           |
| Barium     |                   |          | 0.535          | mg/L           | 0.010       | 107  | 85        | 115           |          |            |           |
| Beryllium  |                   |          | 0.262          | mg/L           | 0.0010      | 105  | 85        | 115           |          |            |           |
| Cadmium    |                   |          | 0.252          | mg/L           | 0.0010      | 101  | 85        | 115           |          |            |           |
| Chromium   |                   |          | 0.488          | mg/L           | 0.0010      | 98   | 85        | 115           |          |            |           |
| Cobalt     |                   |          | 0.513          | mg/L           | 0.0010      | 103  | 85        | 115           |          |            |           |
| Lead       |                   |          | 0.532          | mg/L           | 0.0010      | 106  | 85        | 115           |          |            |           |
| Molybdenui | m                 |          | 0.526          | mg/L           | 0.0050      | 105  | 85        | 115           |          |            |           |
| Potassium  |                   |          | 25.2           | mg/L           | 1.0         | 101  | 85        | 115           |          |            |           |
| Selenium   |                   |          | 0.481          | mg/L           | 0.0050      | 96   | 85        | 115           |          |            |           |
| Thallium   |                   |          | 0.521          | mg/L           | 0.0010      | 104  | 85        | 115           |          |            |           |
| Lab ID:    | B16101734-005BMS3 | 3 12 Sam | ple Matrix     | Spike          |             |      | Run: ICPM | S206-B_161026 | A        | 10/26/     | 16 20:58  |
| Antimony   |                   |          | 0.522          | mg/L           | 0.0010      | 104  | 70        | _<br>130      |          |            |           |
| Arsenic    |                   |          | 0.514          | mg/L           | 0.0010      | 103  | 70        | 130           |          |            |           |
| Barium     |                   |          | 0.537          | mg/L           | 0.050       | 102  | 70        | 130           |          |            |           |
| Beryllium  |                   |          | 0.245          | mg/L           | 0.0010      | 98   | 70        | 130           |          |            |           |
| Cadmium    |                   |          | 0.245          | mg/L           | 0.0010      | 98   | 70        | 130           |          |            |           |
| Chromium   |                   |          | 0.502          | mg/L           | 0.0050      | 100  | 70        | 130           |          |            |           |
| Cobalt     |                   |          | 0.502          | mg/L           | 0.0050      | 104  | 70        | 130           |          |            |           |
| JUDUIL     |                   |          |                | mg/L           |             | 104  | 70        | 130           |          |            |           |
| Lead       |                   |          | 0.507          | ma/i           | 0.0010      | 7117 | /!!       | 1 (1)         |          |            |           |

#### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:11/10/16Project:CCRRWork Order:B16101734

| Analyte   |                   | Count           | Result     | Units        | RL      | %REC | Low Limit | High Limit     | RPD | RPDLimit | Qual      |
|-----------|-------------------|-----------------|------------|--------------|---------|------|-----------|----------------|-----|----------|-----------|
| Method:   | E200.8            |                 |            |              |         |      |           |                |     | Batc     | h: 103856 |
| Lab ID:   | B16101734-005BMS3 | 12 Sam          | ple Matrix | Spike        |         |      | Run: ICPM | S206-B_161026  | Ą   | 10/26    | /16 20:58 |
| Potassium |                   |                 | 82.9       | mg/L         | 1.0     | 115  | 70        | 130            |     |          |           |
| Selenium  |                   |                 | 0.495      | mg/L         | 0.0021  | 99   | 70        | 130            |     |          |           |
| Thallium  |                   |                 | 0.462      | mg/L         | 0.00050 | 92   | 70        | 130            |     |          |           |
| Lab ID:   | B16101734-005BMSE | <b>)</b> 12 Sam | ple Matrix | Spike Dupli  | cate    |      | Run: ICPM | S206-B_161026  | A   | 10/26    | /16 21:08 |
| Antimony  |                   |                 | 0.510      | mg/L         | 0.0010  | 102  | 70        | 130            | 2.4 | 20       |           |
| Arsenic   |                   |                 | 0.504      | mg/L         | 0.0010  | 101  | 70        | 130            | 1.9 | 20       |           |
| Barium    |                   |                 | 0.531      | mg/L         | 0.050   | 101  | 70        | 130            | 1.1 | 20       |           |
| Beryllium |                   |                 | 0.247      | mg/L         | 0.0010  | 99   | 70        | 130            | 1.0 | 20       |           |
| Cadmium   |                   |                 | 0.239      | mg/L         | 0.0010  | 95   | 70        | 130            | 2.4 | 20       |           |
| Chromium  |                   |                 | 0.493      | mg/L         | 0.0050  | 99   | 70        | 130            | 1.6 | 20       |           |
| Cobalt    |                   |                 | 0.505      | mg/L         | 0.0050  | 101  | 70        | 130            | 2.5 | 20       |           |
| Lead      |                   |                 | 0.505      | mg/L         | 0.0010  | 101  | 70        | 130            | 0.4 | 20       |           |
| Molybdenu | m                 |                 | 0.518      | mg/L         | 0.0010  | 104  | 70        | 130            | 1.5 | 20       |           |
| Potassium |                   |                 | 82.3       | mg/L         | 1.0     | 113  | 70        | 130            | 0.7 | 20       |           |
| Selenium  |                   |                 | 0.475      | mg/L         | 0.0021  | 95   | 70        | 130            | 4.0 | 20       |           |
| Thallium  |                   |                 | 0.459      | mg/L         | 0.00050 | 92   | 70        | 130            | 0.6 | 20       |           |
| Method:   | E200.8            |                 |            |              |         |      |           |                |     | Batc     | h: 103857 |
| Lab ID:   | MB-103857         | 13 Meth         | od Blank   |              |         |      | Run: ICPM | S206-B_161026  | A   | 10/26    | /16 21:16 |
| Antimony  |                   |                 | ND         | mg/L         | 3E-05   |      |           |                |     |          |           |
| Arsenic   |                   |                 | ND         | mg/L         | 7E-05   |      |           |                |     |          |           |
| Barium    |                   |                 | ND         | mg/L         | 9E-05   |      |           |                |     |          |           |
| Beryllium |                   |                 | 1E-05      | mg/L         | 9E-06   |      |           |                |     |          |           |
| Cadmium   |                   |                 | ND         | mg/L         | 2E-05   |      |           |                |     |          |           |
| Chromium  |                   |                 | ND         | mg/L         | 4E-05   |      |           |                |     |          |           |
| Cobalt    |                   |                 | ND         | mg/L         | 8E-06   |      |           |                |     |          |           |
| Lead      |                   |                 | ND         | mg/L         | 2E-05   |      |           |                |     |          |           |
| Molybdenu | m                 |                 | ND         | mg/L         | 3E-05   |      |           |                |     |          |           |
| Potassium |                   |                 | 0.05       | mg/L         | 0.009   |      |           |                |     |          |           |
| Selenium  |                   |                 | ND         | mg/L         | 0.0004  |      |           |                |     |          |           |
| Sodium    |                   |                 | 0.04       | mg/L         | 0.005   |      |           |                |     |          |           |
| Thallium  |                   |                 | 0.0001     | mg/L         | 1.0E-05 |      |           |                |     |          |           |
| Lab ID:   | LCS-103857        | 13 Labo         | oratory Co | ntrol Sample | )       |      | Run: ICPM | S206-B_161026/ | Ą   | 10/26    | /16 21:18 |
| Antimony  |                   |                 | 0.524      | mg/L         | 0.0050  | 105  | 85        | 115            |     |          |           |
| Arsenic   |                   |                 | 0.500      | mg/L         | 0.0010  | 100  | 85        | 115            |     |          |           |
| Barium    |                   |                 | 0.513      | mg/L         | 0.010   | 103  | 85        | 115            |     |          |           |
| Beryllium |                   |                 | 0.249      | mg/L         | 0.0010  | 99   | 85        | 115            |     |          |           |
| Cadmium   |                   |                 | 0.245      | mg/L         | 0.0010  | 98   | 85        | 115            |     |          |           |
| Chromium  |                   |                 | 0.493      | mg/L         | 0.0010  | 99   | 85        | 115            |     |          |           |
| Cobalt    |                   |                 | 0.511      | mg/L         | 0.0010  | 102  | 85        | 115            |     |          |           |
| Lead      |                   |                 | 0.511      | mg/L         | 0.0010  | 102  | 85        | 115            |     |          |           |
| Molybdenu | m                 |                 | 0.531      | mg/L         | 0.0050  | 106  | 85        | 115            |     |          |           |
| ,         |                   |                 |            | mg/L         |         | 107  | 85        | 115            |     |          |           |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:11/10/16Project:CCRRWork Order:B16101734

| Analyte   |                   | Count          | Result      | Units        | RL      | %REC | Low Limit | High Limit     | RPD | RPDLimit | Qual      |
|-----------|-------------------|----------------|-------------|--------------|---------|------|-----------|----------------|-----|----------|-----------|
| Method:   | E200.8            |                |             |              |         |      |           |                |     | Batcl    | h: 103857 |
| Lab ID:   | LCS-103857        | 13 La          | boratory Co | ntrol Sample | Э       |      | Run: ICPM | S206-B_161026A |     | 10/26/   | 16 21:18  |
| Selenium  |                   |                | 0.487       | mg/L         | 0.0050  | 97   | 85        | 115            |     |          |           |
| Sodium    |                   |                | 25.2        | mg/L         | 1.0     | 101  | 85        | 115            |     |          |           |
| Thallium  |                   |                | 0.498       | mg/L         | 0.0010  | 100  | 85        | 115            |     |          |           |
| Lab ID:   | B16101754-003CMS  | 3 13 Sa        | mple Matrix | Spike        |         |      | Run: ICPM | S206-B_161026A |     | 10/26/   | 16 21:41  |
| Antimony  |                   |                | 0.531       | mg/L         | 0.0010  | 106  | 70        | 130            |     |          |           |
| Arsenic   |                   |                | 0.507       | mg/L         | 0.0010  | 101  | 70        | 130            |     |          |           |
| Barium    |                   |                | 0.608       | mg/L         | 0.050   | 106  | 70        | 130            |     |          |           |
| Beryllium |                   |                | 0.265       | mg/L         | 0.0010  | 106  | 70        | 130            |     |          |           |
| Cadmium   |                   |                | 0.248       | mg/L         | 0.0010  | 99   | 70        | 130            |     |          |           |
| Chromium  |                   |                | 0.487       | mg/L         | 0.0050  | 97   | 70        | 130            |     |          |           |
| Cobalt    |                   |                | 0.550       | mg/L         | 0.0050  | 110  | 70        | 130            |     |          |           |
| Lead      |                   |                | 0.523       | mg/L         | 0.0010  | 105  | 70        | 130            |     |          |           |
| Molybdenu | m                 |                | 0.548       | mg/L         | 0.0010  | 110  | 70        | 130            |     |          |           |
| Potassium |                   |                | 28.9        | mg/L         | 1.0     | 108  | 70        | 130            |     |          |           |
| Selenium  |                   |                | 0.484       | mg/L         | 0.0010  | 97   | 70        | 130            |     |          |           |
| Sodium    |                   |                | 298         | mg/L         | 1.0     |      | 70        | 130            |     |          | Α         |
| Thallium  |                   |                | 0.509       | mg/L         | 0.00050 | 102  | 70        | 130            |     |          |           |
| Lab ID:   | B16101754-003CMSI | <b>)</b> 13 Sa | mple Matrix | Spike Dupl   | icate   |      | Run: ICPM | S206-B_161026A |     | 10/26/   | 16 21:44  |
| Antimony  |                   |                | 0.524       | mg/L         | 0.0010  | 105  | 70        | 130            | 1.4 | 20       |           |
| Arsenic   |                   |                | 0.511       | mg/L         | 0.0010  | 102  | 70        | 130            | 0.9 | 20       |           |
| Barium    |                   |                | 0.591       | mg/L         | 0.050   | 103  | 70        | 130            | 2.7 | 20       |           |
| Beryllium |                   |                | 0.252       | mg/L         | 0.0010  | 101  | 70        | 130            | 4.8 | 20       |           |
| Cadmium   |                   |                | 0.244       | mg/L         | 0.0010  | 98   | 70        | 130            | 1.5 | 20       |           |
| Chromium  |                   |                | 0.486       | mg/L         | 0.0050  | 97   | 70        | 130            | 0.2 | 20       |           |
| Cobalt    |                   |                | 0.526       | mg/L         | 0.0050  | 105  | 70        | 130            | 4.6 | 20       |           |
| Lead      |                   |                | 0.503       | mg/L         | 0.0010  | 101  | 70        | 130            | 4.0 | 20       |           |
| Molybdenu | m                 |                | 0.543       | mg/L         | 0.0010  | 109  | 70        | 130            | 0.9 | 20       |           |
| Potassium |                   |                | 28.8        | mg/L         | 1.0     | 107  | 70        | 130            | 0.3 | 20       |           |
| Selenium  |                   |                | 0.480       | mg/L         | 0.0010  | 96   | 70        | 130            | 0.9 | 20       |           |
| Sodium    |                   |                | 297         | mg/L         | 1.0     |      | 70        | 130            | 0.4 | 20       | Α         |
| Thallium  |                   |                | 0.493       | mg/L         | 0.00050 | 99   | 70        | 130            | 3.2 | 20       |           |

#### Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

MDC - Minimum detectable concentration

Prepared by Billings, MT Branch

| Analyte |                   | Count | Result          | Units        | RL           | %REC | Low Limit | High Limit     | RPD     | RPDLimit  | Qual      |
|---------|-------------------|-------|-----------------|--------------|--------------|------|-----------|----------------|---------|-----------|-----------|
| Method: | E245.1            |       |                 |              |              |      |           | Analytic       | al Run: | HGCV202-B | _161025A  |
| Lab ID: | ICV               | Init  | ial Calibration | on Verificat | ion Standard |      |           |                |         | 10/25/    | 16 13:24  |
| Mercury |                   |       | 0.00202         | mg/L         | 0.00010      | 101  | 90        | 110            |         |           |           |
| Method: | E245.1            |       |                 |              |              |      |           |                |         | Batcl     | h: 103884 |
| Lab ID: | MB-103884         | Me    | thod Blank      |              |              |      | Run: HGCV | /202-B_161025A |         | 10/25/    | 16 13:42  |
| Mercury |                   |       | ND              | mg/L         | 4E-06        |      |           |                |         |           |           |
| Lab ID: | LCS-103884        | Lak   | ooratory Co     | ntrol Sampl  | e            |      | Run: HGCV | /202-B_161025A |         | 10/25/    | 16 13:43  |
| Mercury |                   |       | 0.00191         | mg/L         | 0.00010      | 95   | 85        | 115            |         |           |           |
| Lab ID: | B16101734-001BMS  | Sai   | mple Matrix     | Spike        |              |      | Run: HGCV | /202-B_161025A |         | 10/25/    | 16 13:47  |
| Mercury |                   |       | 0.00192         | mg/L         | 0.00010      | 96   | 70        | 130            |         |           |           |
| Lab ID: | B16101734-001BMSI | D Sai | mple Matrix     | Spike Dup    | licate       |      | Run: HGCV | /202-B_161025A |         | 10/25/    | 16 13:49  |
| Mercury |                   |       | 0.00192         | mg/L         | 0.00010      | 96   | 70        | 130            | 0.0     | 30        |           |

Prepared by Billings, MT Branch

| Analyte           | Соц                 | unt Result     | Units       | RL | %REC | Low Limit  | High Limit    | RPD | RPDLimit | Qual      |
|-------------------|---------------------|----------------|-------------|----|------|------------|---------------|-----|----------|-----------|
| Method: A2        | 540 C               |                |             |    |      |            |               |     | Batch    | n: 103888 |
| Lab ID: MB        | -103888             | Method Blank   |             |    |      | Run: BAL#  | SD-15_161024A |     | 10/24/   | 16 11:36  |
| Solids, Total Dis | ssolved TDS @ 180 C | 5              | mg/L        | 5  |      |            |               |     |          |           |
| Lab ID: LCS       | S-103888            | Laboratory Con | trol Sample |    |      | Run: BAL # | SD-15_161024A |     | 10/24/   | 16 11:37  |
| Solids, Total Dis | ssolved TDS @ 180 C | 983            | mg/L        | 10 | 99   | 90         | 110           |     |          |           |
| Lab ID: B16       | 6101734-001A DUP    | Sample Duplica | ate         |    |      | Run: BAL # | SD-15_161024A |     | 10/24/   | 16 11:38  |
| Solids, Total Dis | ssolved TDS @ 180 C | 5620           | mg/L        | 98 |      |            |               | 3.9 | 5        |           |
| Method: A2        | 540 C               |                |             |    |      |            |               |     | Batch    | n: 104090 |
| Lab ID: MB        | -104090             | Method Blank   |             |    |      | Run: BAL#  | SD-15_161031C |     | 10/31/   | 16 11:41  |
| Solids, Total Dis | ssolved TDS @ 180 C | ND             | mg/L        | 5  |      |            |               |     |          |           |
| Lab ID: LCS       | S-104090            | Laboratory Con | trol Sample |    |      | Run: BAL # | SD-15_161031C |     | 10/31/   | 16 11:41  |
| Solids, Total Dis | ssolved TDS @ 180 C | 972            | mg/L        | 10 | 97   | 90         | 110           |     |          |           |
| Lab ID: B16       | 6101733-066A DUP    | Sample Duplica | ate         |    |      | Run: BAL # | SD-15_161031C |     | 10/31/   | 16 11:41  |
| Solids, Total Dis | ssolved TDS @ 180 C | 4090           | mg/L        | 28 |      |            |               | 1.6 | 5        |           |

Prepared by Billings, MT Branch

| Analyte  |                   | Count        | Result        | Units             | RL      | %REC | Low Limit | High Limit   | RPD     | RPDLimit  | Qual     |
|----------|-------------------|--------------|---------------|-------------------|---------|------|-----------|--------------|---------|-----------|----------|
| Method:  | A4500-F C         |              |               |                   |         |      |           | Analytic     | al Run: | MAN-TECH_ | _161026A |
| Lab ID:  | ICV               | Initia       | al Calibratio | on Verification S | tandard |      |           |              |         | 10/26/    | 16 09:49 |
| Fluoride |                   |              | 0.990         | mg/L              | 0.10    | 99   | 90        | 110          |         |           |          |
| Method:  | A4500-F C         |              |               |                   |         |      |           |              |         | Batch:    | R269344  |
| Lab ID:  | MBLK              | Met          | hod Blank     |                   |         |      | Run: MAN- | TECH_161026A |         | 10/26/    | 16 09:44 |
| Fluoride |                   |              | ND            | mg/L              | 0.03    |      |           |              |         |           |          |
| Lab ID:  | LFB               | Lab          | oratory For   | tified Blank      |         |      | Run: MAN- | TECH_161026A |         | 10/26/    | 16 09:46 |
| Fluoride |                   |              | 1.00          | mg/L              | 0.10    | 100  | 90        | 110          |         |           |          |
| Lab ID:  | B16101692-003AMS  | San          | nple Matrix   | Spike             |         |      | Run: MAN- | TECH_161026A |         | 10/26/    | 16 14:04 |
| Fluoride |                   |              | 1.09          | mg/L              | 0.10    | 86   | 80        | 120          |         |           |          |
| Lab ID:  | B16101692-003AMSI | <b>D</b> San | nple Matrix   | Spike Duplicate   | )       |      | Run: MAN- | TECH_161026A |         | 10/26/    | 16 14:10 |
| Fluoride |                   |              | 1.12          | mg/L              | 0.10    | 89   | 80        | 120          | 2.7     | 10        |          |

Prepared by Billings, MT Branch

| Analyte |                   | Count        | Result        | Units       | RL                  | %REC | Low Limit | High Limit    | RPD     | RPDLimit    | Qual      |
|---------|-------------------|--------------|---------------|-------------|---------------------|------|-----------|---------------|---------|-------------|-----------|
| Method: | A4500-H B         |              |               |             |                     |      |           | Analytical    | Run: Pl | HSC _101-B_ | _161023A  |
| Lab ID: | pH 8              | Initi        | al Calibratio | on Verifica | ation Standard      |      |           |               |         | 10/23       | /16 13:03 |
| рН      |                   |              | 7.96          | s.u.        | 0.10                | 100  | 98        | 102           |         |             |           |
| Lab ID: | CCV - pH 7        | Cor          | ntinuing Cal  | ibration V  | erification Standaı | ·d   |           |               |         | 10/23       | /16 16:56 |
| рН      |                   |              | 7.01          | s.u.        | 0.10                | 100  | 98        | 102           |         |             |           |
| Method: | A4500-H B         |              |               |             |                     |      |           |               |         | Batch:      | R269135   |
| Lab ID: | B16101734-002ADUF | <b>P</b> Sar | nple Duplica  | ate         |                     |      | Run: PHSC | _101-B_161023 | BA      | 10/23/      | /16 14:56 |
| рН      |                   |              | 3.82          | s.u.        | 0.10                |      |           |               | 0.0     | 3           |           |
| Lab ID: | B16101734-001ADUF | <b>P</b> Sar | nple Duplica  | ate         |                     |      | Run: PHSC | _101-B_161023 | BA      | 10/23       | /16 17:09 |
| рН      |                   |              | 6.48          | s.u.        | 0.10                |      |           |               | 0.0     | 3           |           |
| Method: | A4500-H B         |              |               |             |                     |      |           | Analytical    | Run: Pl | HSC _101-B  | _161024A  |
| Lab ID: | pH 8              | Initi        | al Calibratio | n Verifica  | ation Standard      |      |           |               |         | 10/24       | /16 08:43 |
| pН      |                   |              | 7.97          | s.u.        | 0.10                | 100  | 98        | 102           |         |             |           |
| Method: | A4500-H B         |              |               |             |                     |      |           |               |         | Batch:      | R269148   |
| Lab ID: | B16101818-005ADUF | <b>9</b> Sar | nple Duplica  | ate         |                     |      | Run: PHSC | _101-B_161024 | ŀΑ      | 10/24       | /16 16:06 |
| рН      |                   |              | 6.38          | s.u.        | 0.10                |      |           |               | 8.0     | 3           |           |

Prepared by Billings, MT Branch

| Analyte  |                   | Count         | Result         | Units               | RL     | %REC | Low Limit  | High Limit | RPD       | RPDLimit   | Qual      |
|----------|-------------------|---------------|----------------|---------------------|--------|------|------------|------------|-----------|------------|-----------|
| Method:  | E300.0            |               |                |                     |        |      |            | Analytical | Run: IC M | IETROHM 1_ | _161027A  |
| Lab ID:  | ICV               | 2 Init        | ial Calibratio | on Verification Sta | andard |      |            |            |           | 10/27/     | /16 11:46 |
| Chloride |                   |               | 2.23           | mg/L                | 1.0    | 99   | 90         | 110        |           |            |           |
| Sulfate  |                   |               | 8.91           | mg/L                | 1.0    | 99   | 90         | 110        |           |            |           |
| Method:  | E300.0            |               |                |                     |        |      |            |            |           | Batch:     | R269432   |
| Lab ID:  | ICB               | 2 Me          | thod Blank     |                     |        |      | Run: IC ME | TROHM 1_16 | 1027A     | 10/27/     | /16 12:00 |
| Chloride |                   |               | ND             | mg/L                | 0.008  |      |            |            |           |            |           |
| Sulfate  |                   |               | ND             | mg/L                | 0.06   |      |            |            |           |            |           |
| Lab ID:  | LFB               | 2 Lal         | ooratory For   | tified Blank        |        |      | Run: IC ME | TROHM 1_16 | 1027A     | 10/27/     | /16 12:14 |
| Chloride |                   |               | 10.3           | mg/L                | 1.0    | 103  | 90         | 110        |           |            |           |
| Sulfate  |                   |               | 30.7           | mg/L                | 1.0    | 102  | 90         | 110        |           |            |           |
| Lab ID:  | B16101733-065AMS  | 2 Sa          | mple Matrix    | Spike               |        |      | Run: IC ME | TROHM 1_16 | 1027A     | 10/28/     | /16 02:13 |
| Chloride |                   |               | 10.9           | mg/L                | 1.0    | 109  | 90         | 110        |           |            |           |
| Sulfate  |                   |               | 32.2           | mg/L                | 1.0    | 107  | 90         | 110        |           |            |           |
| Lab ID:  | B16101733-065AMSI | <b>D</b> 2 Sa | mple Matrix    | Spike Duplicate     |        |      | Run: IC ME | TROHM 1_16 | 1027A     | 10/28/     | /16 02:27 |
| Chloride |                   |               | 11.0           | mg/L                | 1.0    | 110  | 90         | 110        | 0.7       | 20         |           |
| Sulfate  |                   |               | 32.5           | mg/L                | 1.0    | 108  | 90         | 110        | 0.7       | 20         |           |
| Lab ID:  | B16101734-005AMS  | 2 Sa          | mple Matrix    | Spike               |        |      | Run: IC ME | TROHM 1_16 | 1027A     | 10/28/     | /16 05:30 |
| Chloride |                   |               | 2670           | mg/L                | 6.1    | 94   | 90         | 110        |           |            |           |
| Sulfate  |                   |               | 5180           | mg/L                | 18     | 100  | 90         | 110        |           |            |           |
| Lab ID:  | B16101734-005AMSI | <b>D</b> 2 Sa | mple Matrix    | Spike Duplicate     |        |      | Run: IC ME | TROHM 1_16 | 1027A     | 10/28/     | /16 05:44 |
| Chloride |                   |               | 2730           | mg/L                | 6.1    | 99   | 90         | 110        | 2.1       | 20         |           |
| Sulfate  |                   |               | 5260           | mg/L                | 18     | 103  | 90         | 110        | 1.5       | 20         |           |

### **Work Order Receipt Checklist**

### **Texas Municipal Power Agency**

Login completed by: Cindy Rohrer

B16101734

Date Received: 10/21/2016

| Reviewed by:                                                                            | BL2000\tedwards                 |              |      | Received by: shc                 |
|-----------------------------------------------------------------------------------------|---------------------------------|--------------|------|----------------------------------|
| Reviewed Date:                                                                          | 10/24/2016                      |              | (    | Carrier name: Return-UPS NDA N/C |
| Shipping container/cooler in                                                            | good condition?                 | Yes √        | No 🗌 | Not Present                      |
| Custody seals intact on all sl                                                          | nipping container(s)/cooler(s)? | Yes ✓        | No 🗌 | Not Present                      |
| Custody seals intact on all sa                                                          | ample bottles?                  | Yes          | No 🗌 | Not Present ✓                    |
| Chain of custody present?                                                               |                                 | Yes ✓        | No 🗌 |                                  |
| Chain of custody signed who                                                             | en relinquished and received?   | Yes ✓        | No 🗌 |                                  |
| Chain of custody agrees with                                                            | sample labels?                  | Yes ✓        | No 🗌 |                                  |
| Samples in proper container                                                             | /bottle?                        | Yes √        | No 🗌 |                                  |
| Sample containers intact?                                                               |                                 | Yes √        | No 🗌 |                                  |
| Sufficient sample volume for                                                            | indicated test?                 | Yes √        | No 🗌 |                                  |
| All samples received within h<br>(Exclude analyses that are couch as pH, DO, Res CI, Su | onsidered field parameters      | Yes 🗹        | No 🗌 |                                  |
| Temp Blank received in all s                                                            | nipping container(s)/cooler(s)? | Yes          | No 🗹 | Not Applicable                   |
| Container/Temp Blank tempe                                                              | erature:                        | 8.3°C No Ice |      |                                  |
| Water - VOA vials have zero                                                             | headspace?                      | Yes          | No 🗌 | Not Applicable                   |
| Water - pH acceptable upon                                                              | receipt?                        | Yes √        | No 🗌 | Not Applicable                   |

### **Standard Reporting Procedures:**

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

#### **Contact and Corrective Action Comments:**

Per phone call between Greg Seifert with Amec Foster Wheeler and Amanda Myatt, Energy Laboratory College Station Asst Lab Manager on 10/25/16, cancel analysis of Calcium, Magnesium, Potassium and Sodium on all samples.

| Company Name:                                          |                                 | Project Name, PWS, Permit, Etc.                                        |                         |                                            |                                    |
|--------------------------------------------------------|---------------------------------|------------------------------------------------------------------------|-------------------------|--------------------------------------------|------------------------------------|
| Amee Foster Wheeler                                    |                                 | TMPA                                                                   | Ste                     |                                            | Sampler (Please Print)             |
| Report Mail Address; of 1X Hwy. #375                   | Ny. #375                        | Contact Name: Phone/Fax: Morriss Barney                                |                         |                                            | <b>B</b> \$/\$M                    |
| Austin, TX 78704<br>Invoice Address:                   |                                 | Invoice Contact & Phone:                                               | 512-241-2310 greg. Sei  | Purchase Order: Quote/B                    | Quote/Bottle Order:                |
| Special Report/Formats:                                |                                 | ANIALYSIS                                                              | REQUESTED               | Contact ELI prior to RUSH sample submittal | Shipped by:<br>Cooler ID(s):       |
| WO C                                                   | EDD/EDT(Electronic Data)        | Containers<br>W S V B O E<br>Soils/Solids<br>oassay Other<br>ing Water | CHED                    | R scheduling – See Instruction Page        | Receipt Temp                       |
| State:                                                 | LEVEL IV                        |                                                                        | d Turnaro               | S    = 1.0y 1:1                            | On ice: (Y)N Custody Seal (N)      |
|                                                        | -                               | N<br>Samp<br>Jev<br>Jev<br>Jev                                         | Standar                 | I                                          | On Cooler Y Intact Y Signature Y N |
| SAMPLE IDENTIFICATION (Name, Location, Interval, etc.) | Collection Collection Date Time | MATRIX V                                                               |                         |                                            | Match                              |
| BA 1P MW 3                                             | 10/19/16 08/5                   | X                                                                      | *                       |                                            | \$ 18 C                            |
| H-MW 74S;                                              | 10/19/16 0913                   | <b>3</b>                                                               | X.                      |                                            | 0 KE 100                           |
| SFL MW-3                                               | 1037                            | X.                                                                     | X                       |                                            | 3 3                                |
| 'SFL MW-1                                              | 1136                            | X                                                                      | X.                      |                                            |                                    |
| SFL MW-2                                               | /350                            | X                                                                      | X                       |                                            |                                    |
| bw-2                                                   |                                 | <b>X</b>                                                               | X >                     |                                            |                                    |
|                                                        | /300                            | ×                                                                      | <b>\\</b>               |                                            |                                    |
| 8 SFL MW-5                                             | 1430                            | ×                                                                      | X                       |                                            |                                    |
| 9-MM 735 °                                             | <b>♦</b> 1517                   | ×                                                                      | X                       |                                            |                                    |
| Custody Reinquished by (print):                        |                                 | Signature:                                                             | 1                       | 75401 all                                  | lignature:                         |
| Record Relinquished by (print):                        | MA COO 10-17-16<br>Date/Time:   |                                                                        | 1                       |                                            | Signature:<br>Signature:           |
| Signed Signed                                          | description of                  | l ah Disnasal                                                          | Received by Laboratory: | 9111001116                                 | 240                                |

3

Page 27 of 27

### **ANALYTICAL SUMMARY REPORT**

January 12, 2017

Texas Municipal Power Agency PO Box 7000 Bryan, TX 77805-7000

Work Order: B16121644 Quote ID: B3997 - CCRR

Project Name: TMPA-6706-15-0060

Energy Laboratories Inc Billings MT received the following 21 samples for Texas Municipal Power Agency on 12/22/2016 for analysis.

| Lab ID        | Client Sample ID  | Collect Date Receive Date | Matrix  | Test                                                                                                                                                                                                                                                                  |
|---------------|-------------------|---------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B16121644-001 | EQBK MPS-122016   | 12/20/16 17:50 12/22/16   | Aqueous | Metals by ICP/ICPMS, Tot. Rec. Mercury, Total Recoverable Fluoride Anions by Ion Chromatography pH Metals Preparation by EPA 200.2 Digestion, Mercury by CVAA Preparation for TDS Radium 226 + Radium 228 Radium 226, Total Radium 228, Total Solids, Total Dissolved |
| B16121644-002 | EQBK 12-21-16/SCM | 12/21/16 13:37 12/22/16   | Aqueous | Same As Above                                                                                                                                                                                                                                                         |
| B16121644-003 | SSP/AP MW-1       | 12/20/16 14:17 12/22/16   | Aqueous | Same As Above                                                                                                                                                                                                                                                         |
| B16121644-004 | AP-MW1D           | 12/21/16 12:16 12/22/16   | Aqueous | Same As Above                                                                                                                                                                                                                                                         |
| B16121644-005 | SSP-MW2           | 12/20/16 16:10 12/22/16   | Aqueous | Same As Above                                                                                                                                                                                                                                                         |
| B16121644-006 | SSP-MW3           | 12/20/16 17:20 12/22/16   | Aqueous | Same As Above                                                                                                                                                                                                                                                         |
| B16121644-007 | AP-MW4            | 12/21/16 10:42 12/22/16   | Aqueous | Same As Above                                                                                                                                                                                                                                                         |
| B16121644-008 | SFL-MW6           | 12/21/16 12:32 12/22/16   | Aqueous | Same As Above                                                                                                                                                                                                                                                         |
| B16121644-009 | AP-MW-3           | 12/21/16 9:16 12/23/16    | Aqueous | Same As Above                                                                                                                                                                                                                                                         |

### **ANALYTICAL SUMMARY REPORT**

| B16121644-011 | EQBK-MPS-122116   | 12/21/16 13:15 12/23/16 | Aqueous | Metals by ICP/ICPMS, Tot. Rec. Mercury, Total Recoverable Fluoride Anions by Ion Chromatography pH Metals Preparation by EPA 200.2 Digestion, Mercury by CVAA Preparation for TDS Radium 226 + Radium 228 Radium 226, Total Radium 228, Total Solids, Total Dissolved |
|---------------|-------------------|-------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B16121644-012 | DUP 2             | 12/21/16 0:00 12/23/16  | Aqueous | Same As Above                                                                                                                                                                                                                                                         |
| B16121644-013 | SSP-MW4           | 12/20/16 16:52 12/23/16 | Aqueous | Same As Above                                                                                                                                                                                                                                                         |
| B16121644-014 | EQBK-12-20-16/SCM | 12/20/16 18:00 12/23/16 | Aqueous | Same As Above                                                                                                                                                                                                                                                         |
| B16121644-015 | AP-MW5            | 12/21/16 9:06 12/23/16  | Aqueous | Same As Above                                                                                                                                                                                                                                                         |
| B16121644-016 | DUP-1             | 12/21/16 0:00 12/23/16  | Aqueous | Same As Above                                                                                                                                                                                                                                                         |
| B16121644-017 | SFL-MW5           | 12/21/16 15:39 12/23/16 | Aqueous | Same As Above                                                                                                                                                                                                                                                         |
| B16121644-018 | SFL-MW2           | 12/22/16 9:45 12/23/16  | Aqueous | Same As Above                                                                                                                                                                                                                                                         |
| B16121644-019 | SFL-MW3           | 12/22/16 11:35 12/23/16 | Aqueous | Same As Above                                                                                                                                                                                                                                                         |
| B16121644-020 | SFL-MW4           | 12/22/16 12:40 12/23/16 | Aqueous | Same As Above                                                                                                                                                                                                                                                         |
| B16121644-021 | EQBK 12-22-16/SCM | 12/22/16 10:10 12/23/16 | Aqueous | Same As Above                                                                                                                                                                                                                                                         |

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

**CLIENT:** Texas Municipal Power Agency

**Project:** TMPA-6706-15-0060

Work Order: B16121644 CASE NARRATIVE

Tests associated with analyst identified as ELI-CA were subcontracted to Energy Laboratories, PO Box 247, Casper, WY, EPA Number WY00002 and WY00937.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

TMPA-6706-15-0060 Project: Lab ID: B16121644-001 Client Sample ID: EQBK MPS-122016

**Report Date:** 01/12/17 Collection Date: 12/20/16 17:50 DateReceived: 12/22/16 Matrix: Aqueous

| Analyses                              | Result l | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|----------|-------|------------|-------|-------------|-----------|-------------------------|
| MAJOR IONS                            |          |       |            |       |             |           |                         |
| Calcium                               | ND r     | ma/l  |            | 1     |             | E200.7    | 12/27/16 13:36 / jh     |
| Magnesium                             | ND r     | •     |            | 1     |             | E200.7    | 12/27/16 13:36 / jh     |
| Potassium                             | ND r     | •     |            | 1     |             | E200.7    | 12/27/16 13:36 / jh     |
| Sodium                                | ND r     | •     |            | 1     |             | E200.7    | 12/27/16 13:36 / jh     |
| PHYSICAL PROPERTIES                   |          |       |            |       |             |           |                         |
| pH                                    | 6.1 s    | s.u.  | Н          | 0.1   |             | A4500-H B | 12/22/16 16:06 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | ND r     | mg/L  |            | 10    |             | A2540 C   | 12/22/16 16:14 / jef    |
| INORGANICS                            |          |       |            |       |             |           |                         |
| Chloride                              | ND r     | mg/L  |            | 1     |             | E300.0    | 12/23/16 13:13 / jpv    |
| Sulfate                               | ND r     | mg/L  |            | 1     |             | E300.0    | 12/23/16 13:13 / jpv    |
| Fluoride                              | ND r     | mg/L  |            | 0.1   |             | A4500-F C | 12/27/16 16:15 / cjm    |
| METALS, TOTAL RECOVERABLE             |          |       |            |       |             |           |                         |
| Antimony                              | ND r     | mg/L  |            | 0.05  |             | E200.8    | 12/28/16 15:09 / jpv    |
| Arsenic                               | ND r     | mg/L  |            | 0.01  |             | E200.8    | 12/23/16 15:32 / rlh    |
| Barium                                | ND r     | mg/L  |            | 0.01  |             | E200.8    | 12/23/16 15:32 / rlh    |
| Beryllium                             | ND r     | mg/L  |            | 0.001 |             | E200.8    | 12/23/16 15:32 / rlh    |
| Boron                                 | ND r     | mg/L  |            | 0.05  |             | E200.7    | 12/27/16 13:36 / jh     |
| Cadmium                               | ND r     | mg/L  |            | 0.01  |             | E200.8    | 12/23/16 15:32 / rlh    |
| Chromium                              | ND r     | •     |            | 0.01  |             | E200.8    | 12/23/16 15:32 / rlh    |
| Cobalt                                | ND r     | mg/L  |            | 0.02  |             | E200.8    | 12/23/16 15:32 / rlh    |
| Lead                                  | ND r     | mg/L  |            | 0.01  |             | E200.8    | 12/23/16 15:32 / rlh    |
| Lithium                               | ND r     | mg/L  |            | 0.01  |             | E200.7    | 12/27/16 13:36 / jh     |
| Mercury                               | ND r     | •     |            | 0.001 |             | E245.1    | 12/23/16 12:36 / ser    |
| Molybdenum                            | ND r     | mg/L  |            | 0.05  |             | E200.8    | 12/28/16 15:09 / jpv    |
| Selenium                              | ND r     | mg/L  |            | 0.01  |             | E200.8    | 12/23/16 15:32 / rlh    |
| Thallium                              | ND r     | mg/L  |            | 0.01  |             | E200.8    | 12/23/16 15:32 / rlh    |
| RADIONUCLIDES - TOTAL                 |          |       |            |       |             |           |                         |
| Radium 226                            | 0.15 p   |       | U          |       |             | E903.0    | 01/11/17 14:24 / eli-ca |
| Radium 226 precision (±)              | 0.16 p   |       |            |       |             | E903.0    | 01/11/17 14:24 / eli-ca |
| Radium 226 MDC                        | 0.25 p   | pCi/L |            |       |             | E903.0    | 01/11/17 14:24 / eli-ca |
| Radium 228                            | 0.63 p   |       | U          |       |             | RA-05     | 01/06/17 11:15 / eli-ca |
| Radium 228 precision (±)              | 1.5 p    | pCi/L |            |       |             | RA-05     | 01/06/17 11:15 / eli-ca |
| Radium 228 MDC                        | 2.5 p    |       |            |       |             | RA-05     | 01/06/17 11:15 / eli-ca |
| Radium 226 + Radium 228               | 0.8 p    | pCi/L | U          |       |             | A7500-RA  | 01/12/17 12:49 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.5 p    |       |            |       |             | A7500-RA  | 01/12/17 12:49 / eli-ca |
| Radium 226 + Radium 228 MDC           | 2.5 p    | pCi/L |            |       |             | A7500-RA  | 01/12/17 12:49 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

U - Not detected at minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

 Project:
 TMPA-6706-15-0060

 Lab ID:
 B16121644-002

 Client Sample ID:
 EQBK 12-21-16/SCM

Report Date: 01/12/17

Collection Date: 12/21/16 13:37

DateReceived: 12/22/16

Matrix: Aqueous

| Analyses                              | Result | Units | Qualifiers | RL     | MCL/<br>QCL | Method           | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|--------|-------------|------------------|-------------------------|
| MAJOR IONS                            |        |       |            |        |             |                  |                         |
|                                       | 4      | m a/l |            | 4      |             | F200.7           | 10/00/16 10:17 / ib     |
| Calcium                               |        | mg/L  |            | 1<br>1 |             | E200.7<br>E200.7 | 12/28/16 12:17 / jh     |
| Magnesium<br>Potassium                |        | mg/L  |            | 1      |             | E200.7<br>E200.7 | 12/28/16 12:17 / jh     |
| Sodium                                |        | mg/L  |            | 1      |             | E200.7<br>E200.7 | 12/28/16 12:17 / jh     |
| Sodium                                | ND     | mg/L  |            | 1      |             | E200.7           | 12/28/16 12:17 / jh     |
| PHYSICAL PROPERTIES                   |        |       |            |        |             |                  |                         |
| рН                                    | 6.6    | s.u.  | Н          | 0.1    |             | A4500-H B        | 12/22/16 16:11 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | ND     | mg/L  |            | 10     |             | A2540 C          | 12/22/16 16:14 / jef    |
| INORGANICS                            |        |       |            |        |             |                  |                         |
| Chloride                              | ND     | mg/L  |            | 1      |             | E300.0           | 12/23/16 13:55 / jpv    |
| Sulfate                               | ND     | mg/L  |            | 1      |             | E300.0           | 12/23/16 13:55 / jpv    |
| Fluoride                              | ND     | mg/L  |            | 0.1    |             | A4500-F C        | 12/27/16 16:21 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |       |            |        |             |                  |                         |
| Antimony                              | ND     | mg/L  |            | 0.05   |             | E200.7           | 12/28/16 12:17 / jh     |
| Arsenic                               | ND     | mg/L  |            | 0.01   |             | E200.8           | 12/23/16 15:36 / rlh    |
| Barium                                | ND     | mg/L  |            | 0.01   |             | E200.8           | 12/23/16 15:36 / rlh    |
| Beryllium                             | ND     | mg/L  |            | 0.001  |             | E200.8           | 12/23/16 15:36 / rlh    |
| Boron                                 | ND     | mg/L  |            | 0.05   |             | E200.7           | 12/28/16 12:17 / jh     |
| Cadmium                               | ND     | mg/L  |            | 0.01   |             | E200.8           | 12/23/16 15:36 / rlh    |
| Chromium                              | ND     | mg/L  |            | 0.01   |             | E200.8           | 12/23/16 15:36 / rlh    |
| Cobalt                                | ND     | mg/L  |            | 0.02   |             | E200.8           | 12/23/16 15:36 / rlh    |
| Lead                                  | ND     | mg/L  |            | 0.01   |             | E200.8           | 12/23/16 15:36 / rlh    |
| Lithium                               | ND     | mg/L  |            | 0.01   |             | E200.7           | 12/28/16 12:17 / jh     |
| Mercury                               | ND     | mg/L  |            | 0.001  |             | E245.1           | 12/23/16 12:37 / ser    |
| Molybdenum                            | ND     | mg/L  |            | 0.05   |             | E200.7           | 12/28/16 12:17 / jh     |
| Selenium                              | ND     | mg/L  |            | 0.01   |             | E200.8           | 12/23/16 15:36 / rlh    |
| Thallium                              | ND     | mg/L  |            | 0.01   |             | E200.8           | 12/23/16 15:36 / rlh    |
| RADIONUCLIDES - TOTAL                 |        |       |            |        |             |                  |                         |
| Radium 226                            | 0.08   | pCi/L | U          |        |             | E903.0           | 01/11/17 14:24 / eli-ca |
| Radium 226 precision (±)              | 0.15   | pCi/L |            |        |             | E903.0           | 01/11/17 14:24 / eli-ca |
| Radium 226 MDC                        | 0.23   | pCi/L |            |        |             | E903.0           | 01/11/17 14:24 / eli-ca |
| Radium 228                            | -0.3   | pCi/L | U          |        |             | RA-05            | 01/06/17 11:15 / eli-ca |
| Radium 228 precision (±)              | 1.3    | pCi/L |            |        |             | RA-05            | 01/06/17 11:15 / eli-ca |
| Radium 228 MDC                        | 2.2    | pCi/L |            |        |             | RA-05            | 01/06/17 11:15 / eli-ca |
| Radium 226 + Radium 228               | -0.2   | pCi/L | U          |        |             | A7500-RA         | 01/12/17 12:49 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.3    | pCi/L |            |        |             | A7500-RA         | 01/12/17 12:49 / eli-ca |
| Radium 226 + Radium 228 MDC           | 2.2    | pCi/L |            |        |             | A7500-RA         | 01/12/17 12:49 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

ADO ME

MDC - Minimum detectable concentration

U - Not detected at minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

#### LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

 Project:
 TMPA-6706-15-0060
 Collection Date:
 12/20/16 14:17

 Lab ID:
 B16121644-003
 DateReceived:
 12/22/16

 Client Sample ID:
 SSP/AP MW-1
 Matrix:
 Aqueous

| Analyses                              | Result | Unite        | Qualifiers | RL    | MCL/<br>QCL | Method           | Analysis Date / By                           |
|---------------------------------------|--------|--------------|------------|-------|-------------|------------------|----------------------------------------------|
| Analyses                              | Nesun  | Onits        | Quanners   |       |             | Metriod          | Analysis bate / by                           |
| MAJOR IONS                            |        |              |            |       |             |                  |                                              |
| Calcium                               | 685    | mg/L         |            | 1     |             | E200.7           | 12/27/16 13:40 / jh                          |
| Magnesium                             | 149    | mg/L         |            | 1     |             | E200.7           | 12/27/16 13:40 / jh                          |
| Potassium                             | 55     | mg/L         |            | 1     |             | E200.7           | 12/27/16 13:40 / jh                          |
| Sodium                                | 1290   | mg/L         | D          | 4     |             | E200.7           | 12/27/16 13:40 / jh                          |
| PHYSICAL PROPERTIES                   |        |              |            |       |             |                  |                                              |
| рН                                    | 6.3    | s.u.         | Н          | 0.1   |             | A4500-H B        | 12/22/16 16:14 / pjw                         |
| Solids, Total Dissolved TDS @ 180 C   | 6470   | mg/L         | D          | 100   |             | A2540 C          | 12/22/16 16:14 / jef                         |
| INORGANICS                            |        |              |            |       |             |                  |                                              |
| Chloride                              | 1500   | mg/L         | D          | 6     |             | E300.0           | 12/23/16 14:37 / jpv                         |
| Sulfate                               |        | mg/L         | D          | 20    |             | E300.0           | 12/23/16 14:37 / jpv                         |
| Fluoride                              |        | mg/L         | D          | 0.1   |             | A4500-F C        | 12/27/16 16:24 / cjm                         |
| METALS TOTAL DECOVERABLE              |        | Ü            |            |       |             |                  | •                                            |
| METALS, TOTAL RECOVERABLE             | ND     | no a/I       |            | 0.05  |             | E200.7           | 10/00/16 10:01 / ib                          |
| Antimony<br>Arsenic                   |        | mg/L         |            | 0.03  |             | E200.7<br>E200.8 | 12/28/16 12:21 / jh<br>12/23/16 15:39 / rlh  |
| Barium                                |        | mg/L<br>mg/L |            | 0.01  |             | E200.8           | 12/23/16 15:39 / rlh                         |
| Beryllium                             | 0.002  |              |            | 0.01  |             | E200.8           | 12/23/16 15:39 / rlh                         |
| Boron                                 |        | mg/L         |            | 0.001 |             | E200.7           | 12/23/16 13:39 / IIII<br>12/27/16 13:40 / jh |
| Cadmium                               |        | mg/L         |            | 0.03  |             | E200.7<br>E200.8 | 12/23/16 15:39 / rlh                         |
| Chromium                              |        | mg/L         |            | 0.01  |             | E200.8           | 12/23/16 15:39 / rlh                         |
| Cobalt                                |        | mg/L         |            | 0.01  |             | E200.8           | 12/23/16 15:39 / rlh                         |
| Lead                                  |        | mg/L         |            | 0.01  |             | E200.8           | 12/23/16 15:39 / rlh                         |
| Lithium                               |        | mg/L         | D          | 0.02  |             | E200.7           | 12/27/16 13:40 / jh                          |
| Mercury                               |        | mg/L         | D          | 0.001 |             | E245.1           | 12/23/16 12:39 / ser                         |
| Molybdenum                            |        | mg/L         |            | 0.05  |             | E200.7           | 12/28/16 12:21 / jh                          |
| Selenium                              |        | mg/L         |            | 0.01  |             | E200.8           | 12/23/16 15:39 / rlh                         |
| Thallium                              |        | mg/L         |            | 0.01  |             | E200.8           | 12/23/16 15:39 / rlh                         |
| RADIONUCLIDES - TOTAL                 |        |              |            |       |             |                  |                                              |
| Radium 226                            | 0.01   | pCi/L        |            |       |             | E903.0           | 01/11/17 14:24 / eli-ca                      |
| Radium 226 precision (±)              |        | pCi/L        |            |       |             | E903.0           | 01/11/17 14:24 / eli-ca                      |
| Radium 226 MDC                        |        | pCi/L        |            |       |             | E903.0           | 01/11/17 14:24 / eli-ca                      |
| Radium 228                            |        | pCi/L        | U          |       |             | RA-05            | 01/06/17 11:15 / eli-ca                      |
| Radium 228 precision (±)              |        | pCi/L        | J          |       |             | RA-05            | 01/06/17 11:15 / eli-ca                      |
| Radium 228 MDC                        |        | pCi/L        |            |       |             | RA-05            | 01/06/17 11:15 / eli-ca                      |
| Radium 226 + Radium 228               |        | pCi/L        | U          |       |             | A7500-RA         | 01/12/17 12:49 / eli-ca                      |
| Radium 226 + Radium 228 precision (±) |        | pCi/L        | J          |       |             | A7500-RA         | 01/12/17 12:49 / eli-ca                      |
| Radium 226 + Radium 228 MDC           |        | pCi/L        |            |       |             | A7500-RA         | 01/12/17 12:49 / eli-ca                      |
|                                       |        | -            |            |       |             |                  |                                              |

**Report** RL - Analyte reporting limit.

**Definitions:** QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

U - Not detected at minimum detectable concentration

#### LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA-6706-15-0060 Collection Date: 12/21/16 12:16 Lab ID: B16121644-004 DateReceived: 12/22/16 Client Sample ID: AP-MW1D Matrix: Aqueous

| Analyses                              | Result | Unite  | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By                           |
|---------------------------------------|--------|--------|------------|-------|-------------|-----------|----------------------------------------------|
| Allalyses                             | Nesuit | Units  | Qualifiers |       | QUL         | Wethou    | Allalysis Date / By                          |
| MAJOR IONS                            |        |        |            |       |             |           |                                              |
| Calcium                               | 77     | mg/L   |            | 1     |             | E200.7    | 12/28/16 12:47 / jh                          |
| Magnesium                             |        | mg/L   |            | 1     |             | E200.7    | 12/28/16 12:47 / jh                          |
| Potassium                             | 11     | mg/L   |            | 1     |             | E200.7    | 12/28/16 12:47 / jh                          |
| Sodium                                | 321    | mg/L   | D          | 2     |             | E200.7    | 12/28/16 12:47 / jh                          |
| PHYSICAL PROPERTIES                   |        |        |            |       |             |           |                                              |
| pH                                    | 6.1    | s.u.   | Н          | 0.1   |             | A4500-H B | 12/22/16 16:16 / pjw                         |
| Solids, Total Dissolved TDS @ 180 C   |        | mg/L   | D          | 20    |             | A2540 C   | 12/22/16 16:14 / jef                         |
| INORGANICS                            |        | -      |            |       |             |           | ·                                            |
| Chloride                              | 220    | mg/L   |            | 1     |             | E300.0    | 12/23/16 14:51 / jpv                         |
| Sulfate                               |        | mg/L   | D          | 4     |             | E300.0    | 12/23/16 14:51 / jpv                         |
| Fluoride                              |        | mg/L   | D          | 0.1   |             | A4500-F C | 12/23/16 14:51 / jpv<br>12/27/16 16:27 / cjm |
|                                       | 0.0    | IIIg/L |            | 0.1   |             | A4300-F C | 12/21/10 10.21 / Gjili                       |
| METALS, TOTAL RECOVERABLE             |        |        |            |       |             |           |                                              |
| Antimony                              | ND     | mg/L   |            | 0.05  |             | E200.8    | 12/28/16 15:29 / jpv                         |
| Arsenic                               | ND     | mg/L   |            | 0.01  |             | E200.8    | 12/23/16 15:42 / rlh                         |
| Barium                                | 0.01   | mg/L   |            | 0.01  |             | E200.8    | 12/23/16 15:42 / rlh                         |
| Beryllium                             | ND     | mg/L   |            | 0.001 |             | E200.8    | 12/23/16 15:42 / rlh                         |
| Boron                                 | 4.80   | mg/L   |            | 0.05  |             | E200.7    | 12/28/16 12:47 / jh                          |
| Cadmium                               | ND     | mg/L   |            | 0.01  |             | E200.8    | 12/23/16 15:42 / rlh                         |
| Chromium                              |        | mg/L   |            | 0.01  |             | E200.8    | 12/23/16 15:42 / rlh                         |
| Cobalt                                | ND     | mg/L   |            | 0.02  |             | E200.8    | 12/23/16 15:42 / rlh                         |
| Lead                                  | ND     | mg/L   |            | 0.01  |             | E200.8    | 12/23/16 15:42 / rlh                         |
| Lithium                               |        | mg/L   |            | 0.01  |             | E200.7    | 12/28/16 12:47 / jh                          |
| Mercury                               | ND     | mg/L   |            | 0.001 |             | E245.1    | 12/23/16 12:41 / ser                         |
| Molybdenum                            | ND     | mg/L   |            | 0.05  |             | E200.7    | 12/28/16 12:47 / jh                          |
| Selenium                              | ND     | mg/L   |            | 0.01  |             | E200.8    | 12/23/16 15:42 / rlh                         |
| Thallium                              | ND     | mg/L   |            | 0.01  |             | E200.8    | 12/23/16 15:42 / rlh                         |
| RADIONUCLIDES - TOTAL                 |        |        |            |       |             |           |                                              |
| Radium 226                            | 0.32   | pCi/L  |            |       |             | E903.0    | 01/11/17 14:24 / eli-ca                      |
| Radium 226 precision (±)              | 0.16   | pCi/L  |            |       |             | E903.0    | 01/11/17 14:24 / eli-ca                      |
| Radium 226 MDC                        | 0.21   | pCi/L  |            |       |             | E903.0    | 01/11/17 14:24 / eli-ca                      |
| Radium 228                            | 2.2    | pCi/L  |            |       |             | RA-05     | 01/06/17 11:15 / eli-ca                      |
| Radium 228 precision (±)              | 1.2    | pCi/L  |            |       |             | RA-05     | 01/06/17 11:15 / eli-ca                      |
| Radium 228 MDC                        | 2.1    | pCi/L  |            |       |             | RA-05     | 01/06/17 11:15 / eli-ca                      |
| Radium 226 + Radium 228               | 2.5    | pCi/L  |            |       |             | A7500-RA  | 01/12/17 12:49 / eli-ca                      |
| Radium 226 + Radium 228 precision (±) | 1.2    | pCi/L  |            |       |             | A7500-RA  | 01/12/17 12:49 / eli-ca                      |
| Radium 226 + Radium 228 MDC           | 2.1    | pCi/L  |            |       |             | A7500-RA  | 01/12/17 12:49 / eli-ca                      |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**Report Date:** 01/12/17 Project: TMPA-6706-15-0060 Collection Date: 12/20/16 16:10 DateReceived: 12/22/16 Lab ID: B16121644-005 Client Sample ID: SSP-MW2 Matrix: Aqueous

|                                       |        |       |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |      |           |                         |
| Calcium                               | 925    | mg/L  |            | 1     |      | E200.7    | 12/27/16 13:43 / jh     |
| Magnesium                             |        | mg/L  |            | 1     |      | E200.7    | 12/27/16 13:43 / jh     |
| Potassium                             |        | mg/L  |            | 1     |      | E200.7    | 12/27/16 13:43 / jh     |
| Sodium                                |        | mg/L  | D          | 4     |      | E200.7    | 12/27/16 13:43 / jh     |
| PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| Hq                                    | 5.5    | s.u.  | Н          | 0.1   |      | A4500-H B | 12/22/16 16:19 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   |        | mg/L  | D          | 100   |      | A2540 C   | 12/22/16 16:14 / jef    |
| INORGANICS                            |        |       |            |       |      |           |                         |
| Chloride                              | 2550   | mg/L  | D          | 6     |      | E300.0    | 12/23/16 15:05 / jpv    |
| Sulfate                               |        | mg/L  | D          | 20    |      | E300.0    | 12/23/16 15:05 / jpv    |
| Fluoride                              |        | mg/L  | _          | 0.1   |      | A4500-F C | 12/27/16 16:43 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  |      | E200.8    | 12/28/16 15:32 / jpv    |
| Arsenic                               |        | mg/L  |            | 0.01  |      | E200.8    | 12/23/16 15:46 / rlh    |
| Barium                                |        | mg/L  |            | 0.01  |      | E200.8    | 12/23/16 15:46 / rlh    |
| Beryllium                             | 0.025  | Ū     |            | 0.001 |      | E200.8    | 12/23/16 15:46 / rlh    |
| Boron                                 |        | mg/L  |            | 0.05  |      | E200.7    | 12/27/16 13:43 / jh     |
| Cadmium                               |        | mg/L  |            | 0.01  |      | E200.8    | 12/23/16 15:46 / rlh    |
| Chromium                              |        | mg/L  |            | 0.01  |      | E200.8    | 12/23/16 15:46 / rlh    |
| Cobalt                                |        | mg/L  |            | 0.02  |      | E200.8    | 12/23/16 15:46 / rlh    |
| Lead                                  | ND     | mg/L  |            | 0.01  |      | E200.8    | 12/23/16 15:46 / rlh    |
| Lithium                               | 1.03   | mg/L  | D          | 0.02  |      | E200.7    | 12/27/16 13:43 / jh     |
| Mercury                               | ND     | mg/L  |            | 0.001 |      | E245.1    | 12/23/16 12:42 / ser    |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |      | E200.8    | 12/28/16 15:32 / jpv    |
| Selenium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 12/23/16 15:46 / rlh    |
| Thallium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 12/23/16 15:46 / rlh    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 226                            | 0.71   | pCi/L |            |       |      | E903.0    | 01/11/17 14:24 / eli-ca |
| Radium 226 precision (±)              | 0.21   | pCi/L |            |       |      | E903.0    | 01/11/17 14:24 / eli-ca |
| Radium 226 MDC                        | 0.20   | pCi/L |            |       |      | E903.0    | 01/11/17 14:24 / eli-ca |
| Radium 228                            | 0.98   | pCi/L | U          |       |      | RA-05     | 01/06/17 11:15 / eli-ca |
| Radium 228 precision (±)              | 1.2    | pCi/L |            |       |      | RA-05     | 01/06/17 11:15 / eli-ca |
| Radium 228 MDC                        | 2.0    | pCi/L |            |       |      | RA-05     | 01/06/17 11:15 / eli-ca |
| Radium 226 + Radium 228               | 1.7    | pCi/L | U          |       |      | A7500-RA  | 01/12/17 12:49 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.3    | pCi/L |            |       |      | A7500-RA  | 01/12/17 12:49 / eli-ca |
| Radium 226 + Radium 228 MDC           | 2.0    | pCi/L |            |       |      | A7500-RA  | 01/12/17 12:49 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

U - Not detected at minimum detectable concentration

#### LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA-6706-15-0060 Collection Date: 12/20/16 17:20 Lab ID: B16121644-006 DateReceived: 12/22/16 Client Sample ID: SSP-MW3 Matrix: Aqueous

|                                       |        |        |            |       | MCL/ |                  |                                            |
|---------------------------------------|--------|--------|------------|-------|------|------------------|--------------------------------------------|
| Analyses                              | Result | Units  | Qualifiers | RL    | QCL  | Method           | Analysis Date / By                         |
| MAJOR IONS                            |        |        |            |       |      |                  |                                            |
| Calcium                               | 702    | mg/L   |            | 1     |      | E200.7           | 10/00/16 10:51 / ib                        |
|                                       |        | mg/L   |            | 1     |      | E200.7<br>E200.7 | 12/28/16 12:51 / jh                        |
| Magnesium<br>Potassium                |        | mg/L   |            | 1     |      | E200.7<br>E200.7 | 12/28/16 12:51 / jh<br>12/28/16 12:51 / jh |
| Sodium                                |        | mg/L   | D          | 4     |      | E200.7           | 12/28/16 12:51 / jh                        |
| Sodium                                | 1100   | IIIg/L | D          | 4     |      | E200.7           | 12/20/10 12.51/ jii                        |
| PHYSICAL PROPERTIES                   |        |        |            |       |      |                  |                                            |
| рН                                    | 4.5    | s.u.   | Н          | 0.1   |      | A4500-H B        | 12/22/16 16:22 / pjw                       |
| Solids, Total Dissolved TDS @ 180 C   | 5780   | mg/L   | D          | 100   |      | A2540 C          | 12/22/16 16:14 / jef                       |
| INORGANICS                            |        |        |            |       |      |                  |                                            |
| Chloride                              | 1700   | mg/L   | D          | 6     |      | E300.0           | 12/23/16 15:19 / jpv                       |
| Sulfate                               | 2480   | mg/L   | D          | 20    |      | E300.0           | 12/23/16 15:19 / jpv                       |
| Fluoride                              | 0.8    | mg/L   |            | 0.1   |      | A4500-F C        | 12/27/16 16:50 / cjm                       |
| METALS, TOTAL RECOVERABLE             |        |        |            |       |      |                  |                                            |
| Antimony                              | ND     | mg/L   |            | 0.05  |      | E200.8           | 12/28/16 15:35 / jpv                       |
| Arsenic                               |        | mg/L   |            | 0.01  |      | E200.8           | 12/23/16 15:49 / rlh                       |
| Barium                                |        | mg/L   |            | 0.01  |      | E200.8           | 12/23/16 15:49 / rlh                       |
| Beryllium                             | 0.121  | mg/L   |            | 0.001 |      | E200.8           | 12/23/16 15:49 / rlh                       |
| Boron                                 | 2.86   | mg/L   |            | 0.05  |      | E200.7           | 12/28/16 12:51 / jh                        |
| Cadmium                               | 0.06   | mg/L   |            | 0.01  |      | E200.8           | 12/23/16 15:49 / rlh                       |
| Chromium                              | 0.01   | mg/L   |            | 0.01  |      | E200.8           | 12/23/16 15:49 / rlh                       |
| Cobalt                                | 0.59   | mg/L   |            | 0.02  |      | E200.8           | 12/23/16 15:49 / rlh                       |
| Lead                                  | 0.03   | mg/L   |            | 0.01  |      | E200.8           | 12/23/16 15:49 / rlh                       |
| Lithium                               | 0.73   | mg/L   | D          | 0.02  |      | E200.7           | 12/28/16 12:51 / jh                        |
| Mercury                               | ND     | mg/L   |            | 0.001 |      | E245.1           | 12/23/16 12:44 / ser                       |
| Molybdenum                            | ND     | mg/L   |            | 0.05  |      | E200.7           | 12/28/16 12:51 / jh                        |
| Selenium                              | ND     | mg/L   |            | 0.01  |      | E200.8           | 12/23/16 15:49 / rlh                       |
| Thallium                              | ND     | mg/L   |            | 0.01  |      | E200.8           | 12/23/16 15:49 / rlh                       |
| RADIONUCLIDES - TOTAL                 |        |        |            |       |      |                  |                                            |
| Radium 226                            | 9.3    | pCi/L  |            |       |      | E903.0           | 01/11/17 14:24 / eli-ca                    |
| Radium 226 precision (±)              | 1.8    | pCi/L  |            |       |      | E903.0           | 01/11/17 14:24 / eli-ca                    |
| Radium 226 MDC                        | 0.19   | pCi/L  |            |       |      | E903.0           | 01/11/17 14:24 / eli-ca                    |
| Radium 228                            |        | pCi/L  |            |       |      | RA-05            | 01/06/17 11:15 / eli-ca                    |
| Radium 228 precision (±)              | 5.3    | pCi/L  |            |       |      | RA-05            | 01/06/17 11:15 / eli-ca                    |
| Radium 228 MDC                        | 1.9    | pCi/L  |            |       |      | RA-05            | 01/06/17 11:15 / eli-ca                    |
| Radium 226 + Radium 228               | 37.0   | pCi/L  |            |       |      | A7500-RA         | 01/12/17 12:49 / eli-ca                    |
| Radium 226 + Radium 228 precision (±) | 5.6    | pCi/L  |            |       |      | A7500-RA         | 01/12/17 12:49 / eli-ca                    |
| Radium 226 + Radium 228 MDC           | 1.9    | pCi/L  |            |       |      | A7500-RA         | 01/12/17 12:49 / eli-ca                    |
|                                       |        |        |            |       |      |                  |                                            |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

 Project:
 TMPA-6706-15-0060

 Lab ID:
 B16121644-007

 Client Sample ID:
 AP-MW4

Report Date: 01/12/17
Collection Date: 12/21/16 10:42
DateReceived: 12/22/16
Matrix: Aqueous

|                                       |            |              |            |       | MCL/ |                      |                         |
|---------------------------------------|------------|--------------|------------|-------|------|----------------------|-------------------------|
| Analyses                              | Result     | Units        | Qualifiers | RL    | QCL  | Method               | Analysis Date / By      |
| MAJOR IONS                            |            |              |            |       |      |                      |                         |
| Calcium                               | 551        | mg/L         |            | 1     |      | E200.7               | 12/27/16 13:47 / jh     |
| Magnesium                             |            | mg/L         |            | 1     |      | E200.7               | 12/27/16 13:47 / jh     |
| Potassium                             |            | mg/L         |            | 1     |      | E200.7               | 12/27/16 13:47 / jh     |
| Sodium                                |            | mg/L         | D          | 2     |      | E200.7               | 12/27/16 13:47 / jh     |
|                                       |            | 3            |            |       |      |                      | , <b>,</b>              |
| PHYSICAL PROPERTIES                   | <b>5</b> 0 |              |            | 0.1   |      | 4.4E00 LLD           | 10/00/16 16:04 / piv    |
| pH Solida Total Dissolved TDS @ 190 C |            | s.u.<br>mg/L | H<br>D     | 40    |      | A4500-H B<br>A2540 C | 12/22/16 16:24 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 4120       | mg/L         | D          | 40    |      | A2540 C              | 12/22/16 16:14 / jef    |
| INORGANICS                            |            |              |            |       |      |                      |                         |
| Chloride                              | 507        | mg/L         | D          | 3     |      | E300.0               | 12/23/16 15:33 / jpv    |
| Sulfate                               | 2250       | mg/L         | D          | 9     |      | E300.0               | 12/23/16 15:33 / jpv    |
| Fluoride                              | ND         | mg/L         |            | 0.1   |      | A4500-F C            | 12/27/16 16:57 / cjm    |
| METALS, TOTAL RECOVERABLE             |            |              |            |       |      |                      |                         |
| Antimony                              | ND         | mg/L         |            | 0.05  |      | E200.8               | 12/28/16 15:39 / jpv    |
| Arsenic                               |            | mg/L         |            | 0.01  |      | E200.8               | 12/23/16 16:02 / rlh    |
| Barium                                |            | mg/L         |            | 0.01  |      | E200.8               | 12/23/16 16:02 / rlh    |
| Beryllium                             | ND         | mg/L         |            | 0.001 |      | E200.8               | 12/23/16 16:02 / rlh    |
| Boron                                 | 2.11       | mg/L         |            | 0.05  |      | E200.7               | 12/27/16 13:47 / jh     |
| Cadmium                               | ND         | mg/L         |            | 0.01  |      | E200.8               | 12/23/16 16:02 / rlh    |
| Chromium                              | ND         | mg/L         |            | 0.01  |      | E200.8               | 12/23/16 16:02 / rlh    |
| Cobalt                                | ND         | mg/L         |            | 0.02  |      | E200.8               | 12/23/16 16:02 / rlh    |
| Lead                                  | ND         | mg/L         |            | 0.01  |      | E200.8               | 12/23/16 16:02 / rlh    |
| Lithium                               | 1.03       | mg/L         |            | 0.01  |      | E200.7               | 12/27/16 13:47 / jh     |
| Mercury                               |            | mg/L         |            | 0.001 |      | E245.1               | 12/23/16 12:49 / ser    |
| Molybdenum                            | ND         | mg/L         |            | 0.05  |      | E200.8               | 12/28/16 15:39 / jpv    |
| Selenium                              | ND         | mg/L         |            | 0.01  |      | E200.8               | 12/23/16 16:02 / rlh    |
| Thallium                              | ND         | mg/L         |            | 0.01  |      | E200.8               | 12/23/16 16:02 / rlh    |
| RADIONUCLIDES - TOTAL                 |            |              |            |       |      |                      |                         |
| Radium 226                            | 0.68       | pCi/L        |            |       |      | E903.0               | 01/11/17 14:24 / eli-ca |
| Radium 226 precision (±)              | 0.20       | pCi/L        |            |       |      | E903.0               | 01/11/17 14:24 / eli-ca |
| Radium 226 MDC                        | 0.20       | pCi/L        |            |       |      | E903.0               | 01/11/17 14:24 / eli-ca |
| Radium 228                            | 2.4        | pCi/L        |            |       |      | RA-05                | 01/06/17 11:15 / eli-ca |
| Radium 228 precision (±)              | 1.6        | pCi/L        |            |       |      | RA-05                | 01/06/17 11:15 / eli-ca |
| Radium 228 MDC                        | 2.0        | pCi/L        |            |       |      | RA-05                | 01/06/17 11:15 / eli-ca |
| Radium 226 + Radium 228               | 3.0        | pCi/L        |            |       |      | A7500-RA             | 01/12/17 12:49 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.6        | pCi/L        |            |       |      | A7500-RA             | 01/12/17 12:49 / eli-ca |
| Radium 226 + Radium 228 MDC           | 2.0        | pCi/L        |            |       |      | A7500-RA             | 01/12/17 12:49 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC Minimum detectable com

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

#### LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

TMPA-6706-15-0060 Project: Collection Date: 12/21/16 12:32 DateReceived: 12/22/16 Lab ID: B16121644-008 Client Sample ID: SFL-MW6 Matrix: Aqueous

|                                       |        |       |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    |      | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |      |           |                         |
| Calcium                               | 977    | mg/L  |            | 1     |      | E200.7    | 12/28/16 12:54 / jh     |
| Magnesium                             |        | mg/L  |            | 1     |      | E200.7    | 12/28/16 12:54 / jh     |
| Potassium                             |        | mg/L  | D          | 2     |      | E200.7    | 12/28/16 12:54 / jh     |
| Sodium                                |        | mg/L  | D          | 7     |      | E200.7    | 12/28/16 12:54 / jh     |
| PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| Η                                     | 4.1    | s.u.  | Н          | 0.1   |      | A4500-H B | 12/22/16 16:27 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 8640   | mg/L  | D          | 100   |      | A2540 C   | 12/22/16 16:14 / jef    |
| INORGANICS                            |        |       |            |       |      |           |                         |
| Chloride                              | 3580   | mg/L  | D          | 10    |      | E300.0    | 12/23/16 15:47 / jpv    |
| Sulfate                               | 2120   | mg/L  | D          | 40    |      | E300.0    | 12/23/16 15:47 / jpv    |
| Fluoride                              | 8.0    | mg/L  |            | 0.1   |      | A4500-F C | 12/27/16 17:14 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  |      | E200.8    | 12/28/16 15:42 / jpv    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |      | E200.8    | 12/23/16 16:05 / rlh    |
| Barium                                | 0.05   | mg/L  |            | 0.01  |      | E200.8    | 12/23/16 16:05 / rlh    |
| Beryllium                             | 0.047  | mg/L  |            | 0.001 |      | E200.8    | 12/23/16 16:05 / rlh    |
| Boron                                 | 0.40   | mg/L  | D          | 0.07  |      | E200.7    | 12/28/16 12:54 / jh     |
| Cadmium                               | 0.01   | mg/L  |            | 0.01  |      | E200.8    | 12/23/16 16:05 / rlh    |
| Chromium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 12/23/16 16:05 / rlh    |
| Cobalt                                | 0.12   | mg/L  |            | 0.02  |      | E200.8    | 12/23/16 16:05 / rlh    |
| Lead                                  | ND     | mg/L  |            | 0.01  |      | E200.8    | 12/23/16 16:05 / rlh    |
| Lithium                               | 0.93   | mg/L  | D          | 0.04  |      | E200.7    | 12/28/16 12:54 / jh     |
| Mercury                               | ND     | mg/L  |            | 0.001 |      | E245.1    | 12/23/16 12:51 / ser    |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |      | E200.8    | 12/28/16 15:42 / jpv    |
| Selenium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 12/23/16 16:05 / rlh    |
| Thallium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 12/23/16 16:05 / rlh    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 226                            | 3.6    | pCi/L |            |       |      | E903.0    | 01/11/17 14:24 / eli-ca |
| Radium 226 precision (±)              | 0.78   | pCi/L |            |       |      | E903.0    | 01/11/17 14:24 / eli-ca |
| Radium 226 MDC                        | 0.21   | pCi/L |            |       |      | E903.0    | 01/11/17 14:24 / eli-ca |
| Radium 228                            | 11     | pCi/L |            |       |      | RA-05     | 01/06/17 11:15 / eli-ca |
| Radium 228 precision (±)              | 2.7    | pCi/L |            |       |      | RA-05     | 01/06/17 11:15 / eli-ca |
| Radium 228 MDC                        | 2.1    | pCi/L |            |       |      | RA-05     | 01/06/17 11:15 / eli-ca |
| Radium 226 + Radium 228               | 14.3   | pCi/L |            |       |      | A7500-RA  | 01/12/17 12:49 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 2.8    | pCi/L |            |       |      | A7500-RA  | 01/12/17 12:49 / eli-ca |
| Radium 226 + Radium 228 MDC           | 2.1    | pCi/L |            |       |      | A7500-RA  | 01/12/17 12:49 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

#### LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

TMPA-6706-15-0060 Project: Collection Date: 12/21/16 09:16 Lab ID: B16121644-009 DateReceived: 12/23/16 Client Sample ID: AP-MW-3 Matrix: Aqueous

|                                       |        |       |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |      |           |                         |
| Calcium                               | 137    | mg/L  |            | 1     |      | E200.7    | 12/28/16 13:05 / jh     |
| Magnesium                             |        | mg/L  |            | 1     |      | E200.7    | 12/28/16 13:05 / jh     |
| Potassium                             |        | mg/L  |            | 1     |      | E200.7    | 12/28/16 13:05 / jh     |
| Sodium                                |        | mg/L  |            | 1     |      | E200.7    | 12/28/16 13:05 / jh     |
| PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| рН                                    | 5.5    | s.u.  | Н          | 0.1   |      | A4500-H B | 12/23/16 11:38 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 1400   | mg/L  | D          | 20    |      | A2540 C   | 12/23/16 10:46 / jef    |
| INORGANICS                            |        |       |            |       |      |           |                         |
| Chloride                              | 141    | mg/L  |            | 1     |      | E300.0    | 12/27/16 18:03 / jpv    |
| Sulfate                               | 729    | mg/L  | D          | 4     |      | E300.0    | 12/27/16 18:03 / jpv    |
| Fluoride                              | 0.1    | mg/L  |            | 0.1   |      | A4500-F C | 12/27/16 17:17 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  |      | E200.7    | 12/28/16 13:05 / jh     |
| Arsenic                               | ND     | mg/L  |            | 0.01  |      | E200.8    | 12/28/16 16:15 / jpv    |
| Barium                                | 0.03   | mg/L  |            | 0.01  |      | E200.7    | 12/28/16 13:05 / jh     |
| Beryllium                             | 0.003  | mg/L  |            | 0.001 |      | E200.8    | 12/29/16 16:25 / jpv    |
| Boron                                 | 3.88   | mg/L  |            | 0.05  |      | E200.7    | 12/28/16 13:05 / jh     |
| Cadmium                               | ND     | mg/L  |            | 0.01  |      | E200.7    | 12/28/16 13:05 / jh     |
| Chromium                              | ND     | mg/L  |            | 0.01  |      | E200.7    | 12/28/16 13:05 / jh     |
| Cobalt                                | 0.05   | mg/L  |            | 0.02  |      | E200.8    | 12/28/16 16:15 / jpv    |
| Lead                                  | ND     | mg/L  |            | 0.01  |      | E200.8    | 12/28/16 16:15 / jpv    |
| Lithium                               | 0.07   | mg/L  |            | 0.01  |      | E200.7    | 12/28/16 13:05 / jh     |
| Mercury                               | ND     | mg/L  |            | 0.001 |      | E245.1    | 12/28/16 16:47 / ser    |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |      | E200.7    | 12/28/16 13:05 / jh     |
| Selenium                              |        | mg/L  |            | 0.01  |      | E200.8    | 12/28/16 16:15 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 12/28/16 16:15 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 226                            | 0.77   | pCi/L |            |       |      | E903.0    | 01/11/17 14:24 / eli-ca |
| Radium 226 precision (±)              | 0.22   | pCi/L |            |       |      | E903.0    | 01/11/17 14:24 / eli-ca |
| Radium 226 MDC                        | 0.22   | pCi/L |            |       |      | E903.0    | 01/11/17 14:24 / eli-ca |
| Radium 228                            | 2.1    | pCi/L |            |       |      | RA-05     | 01/06/17 11:15 / eli-ca |
| Radium 228 precision (±)              | 1.3    | pCi/L |            |       |      | RA-05     | 01/06/17 11:15 / eli-ca |
| Radium 228 MDC                        | 2.1    | pCi/L |            |       |      | RA-05     | 01/06/17 11:15 / eli-ca |
| Radium 226 + Radium 228               | 2.9    | pCi/L |            |       |      | A7500-RA  | 01/12/17 12:49 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.4    | pCi/L |            |       |      | A7500-RA  | 01/12/17 12:49 / eli-ca |
| Radium 226 + Radium 228 MDC           | 2.1    | pCi/L |            |       |      | A7500-RA  | 01/12/17 12:49 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Matrix: Aqueous

#### LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

TMPA-6706-15-0060 Project: Collection Date: 12/21/16 13:15 DateReceived: 12/23/16 Lab ID: B16121644-011 Client Sample ID: EQBK-MPS-122116

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By                    |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|---------------------------------------|
|                                       |        |       |            |       |             |           | · · · · · · · · · · · · · · · · · · · |
| MAJOR IONS                            |        |       |            |       |             |           |                                       |
| Calcium                               |        | mg/L  |            | 1     |             | E200.7    | 12/28/16 13:57 / jh                   |
| Magnesium                             |        | mg/L  |            | 1     |             | E200.7    | 12/28/16 13:57 / jh                   |
| Potassium                             |        | mg/L  |            | 1     |             | E200.7    | 12/28/16 13:57 / jh                   |
| Sodium                                | ND     | mg/L  |            | 1     |             | E200.7    | 12/28/16 13:57 / jh                   |
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                                       |
| рН                                    | 5.5    | s.u.  | Н          | 0.1   |             | A4500-H B | 12/23/16 11:46 / pjw                  |
| Solids, Total Dissolved TDS @ 180 C   | ND     | mg/L  |            | 10    |             | A2540 C   | 12/23/16 10:46 / jef                  |
| INORGANICS                            |        |       |            |       |             |           |                                       |
| Chloride                              | ND     | mg/L  |            | 1     |             | E300.0    | 12/27/16 18:32 / jpv                  |
| Sulfate                               |        | mg/L  |            | 1     |             | E300.0    | 12/27/16 18:32 / jpv                  |
| Fluoride                              |        | mg/L  |            | 0.1   |             | A4500-F C | 12/27/16 17:38 / cjm                  |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                                       |
| Antimony                              | ND     | mg/L  |            | 0.05  |             | E200.7    | 12/28/16 13:57 / jh                   |
| Arsenic                               |        | mg/L  |            | 0.01  |             | E200.8    | 12/28/16 16:38 / jpv                  |
| Barium                                |        | mg/L  |            | 0.01  |             | E200.7    | 12/28/16 13:57 / jh                   |
| Beryllium                             |        | mg/L  |            | 0.001 |             | E200.7    | 12/28/16 13:57 / jh                   |
| Boron                                 |        | mg/L  |            | 0.05  |             | E200.7    | 12/28/16 13:57 / jh                   |
| Cadmium                               | ND     | mg/L  |            | 0.01  |             | E200.7    | 12/28/16 13:57 / jh                   |
| Chromium                              | ND     | mg/L  |            | 0.01  |             | E200.7    | 12/28/16 13:57 / jh                   |
| Cobalt                                | ND     | mg/L  |            | 0.02  |             | E200.7    | 12/28/16 13:57 / jh                   |
| Lead                                  | ND     | mg/L  |            | 0.01  |             | E200.8    | 12/28/16 16:38 / jpv                  |
| Lithium                               | ND     | mg/L  |            | 0.01  |             | E200.7    | 12/28/16 13:57 / jh                   |
| Mercury                               | ND     | mg/L  |            | 0.001 |             | E245.1    | 12/28/16 16:51 / ser                  |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.7    | 12/28/16 13:57 / jh                   |
| Selenium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 12/28/16 16:38 / jpv                  |
| Thallium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 12/28/16 16:38 / jpv                  |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                                       |
| Radium 226                            | 0.17   | pCi/L | U          |       |             | E903.0    | 01/11/17 14:24 / eli-ca               |
| Radium 226 precision (±)              | 0.18   | pCi/L |            |       |             | E903.0    | 01/11/17 14:24 / eli-ca               |
| Radium 226 MDC                        | 0.27   | pCi/L |            |       |             | E903.0    | 01/11/17 14:24 / eli-ca               |
| Radium 228                            | 0.51   | pCi/L | U          |       |             | RA-05     | 01/06/17 11:15 / eli-ca               |
| Radium 228 precision (±)              | 1.6    | pCi/L |            |       |             | RA-05     | 01/06/17 11:15 / eli-ca               |
| Radium 228 MDC                        | 2.7    | pCi/L |            |       |             | RA-05     | 01/06/17 11:15 / eli-ca               |
| Radium 226 + Radium 228               | 0.7    | pCi/L | U          |       |             | A7500-RA  | 01/12/17 12:49 / eli-ca               |
| Radium 226 + Radium 228 precision (±) | 1.6    | pCi/L |            |       |             | A7500-RA  | 01/12/17 12:49 / eli-ca               |
| Radium 226 + Radium 228 MDC           | 2.7    | pCi/L |            |       |             | A7500-RA  | 01/12/17 12:49 / eli-ca               |

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

MDC - Minimum detectable concentration

U - Not detected at minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

TMPA-6706-15-0060 Project: Lab ID: B16121644-012 Client Sample ID: DUP 2

**Report Date:** 01/12/17 Collection Date: 12/21/16 DateReceived: 12/23/16 Matrix: Aqueous

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| MAJOR IONS                            |        |       |            |       |             |           |                         |
| Calcium                               | 133    | mg/L  |            | 1     |             | E200.7    | 12/28/16 14:01 / jh     |
| Magnesium                             |        | mg/L  |            | 1     |             | E200.7    | 12/28/16 14:01 / jh     |
| Potassium                             |        | mg/L  |            | 1     |             | E200.7    | 12/28/16 14:01 / jh     |
| Sodium                                |        | mg/L  |            | 1     |             | E200.7    | 12/28/16 14:01 / jh     |
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| рН                                    | 5.5    | s.u.  | Н          | 0.1   |             | A4500-H B | 12/23/16 11:48 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 1390   | mg/L  | D          | 20    |             | A2540 C   | 12/23/16 10:46 / jef    |
| INORGANICS                            |        |       |            |       |             |           |                         |
| Chloride                              | 141    | mg/L  |            | 1     |             | E300.0    | 12/27/16 18:46 / jpv    |
| Sulfate                               |        | mg/L  | D          | 4     |             | E300.0    | 12/27/16 18:46 / jpv    |
| Fluoride                              | 0.1    | mg/L  |            | 0.1   |             | A4500-F C | 12/27/16 17:42 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  |             | E200.7    | 12/28/16 14:01 / jh     |
| Arsenic                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 12/28/16 16:52 / jpv    |
| Barium                                | 0.02   | mg/L  |            | 0.01  |             | E200.7    | 12/28/16 14:01 / jh     |
| Beryllium                             | 0.003  | mg/L  |            | 0.001 |             | E200.8    | 12/29/16 16:31 / jpv    |
| Boron                                 | 3.53   | mg/L  |            | 0.05  |             | E200.7    | 12/28/16 14:01 / jh     |
| Cadmium                               | ND     | mg/L  |            | 0.01  |             | E200.7    | 12/28/16 14:01 / jh     |
| Chromium                              | ND     | mg/L  |            | 0.01  |             | E200.7    | 12/28/16 14:01 / jh     |
| Cobalt                                | 0.05   | mg/L  |            | 0.02  |             | E200.8    | 12/28/16 16:52 / jpv    |
| Lead                                  | ND     | mg/L  |            | 0.01  |             | E200.8    | 12/28/16 16:52 / jpv    |
| Lithium                               | 0.07   | mg/L  |            | 0.01  |             | E200.7    | 12/28/16 14:01 / jh     |
| Mercury                               | ND     | mg/L  |            | 0.001 |             | E245.1    | 12/28/16 16:53 / ser    |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.7    | 12/28/16 14:01 / jh     |
| Selenium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 12/28/16 16:52 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 12/28/16 16:52 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 226                            | 0.91   | pCi/L |            |       |             | E903.0    | 01/11/17 16:40 / eli-ca |
| Radium 226 precision (±)              | 0.23   | pCi/L |            |       |             | E903.0    | 01/11/17 16:40 / eli-ca |
| Radium 226 MDC                        | 0.22   | pCi/L |            |       |             | E903.0    | 01/11/17 16:40 / eli-ca |
| Radium 228                            | 0.44   | pCi/L | U          |       |             | RA-05     | 01/06/17 12:53 / eli-ca |
| Radium 228 precision (±)              | 1.6    | pCi/L |            |       |             | RA-05     | 01/06/17 12:53 / eli-ca |
| Radium 228 MDC                        | 2.6    | pCi/L |            |       |             | RA-05     | 01/06/17 12:53 / eli-ca |
| Radium 226 + Radium 228               | 1.4    | pCi/L | U          |       |             | A7500-RA  | 01/12/17 12:49 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.6    | pCi/L |            |       |             | A7500-RA  | 01/12/17 12:49 / eli-ca |
| Radium 226 + Radium 228 MDC           | 2.6    | pCi/L |            |       |             | A7500-RA  | 01/12/17 12:49 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

U - Not detected at minimum detectable concentration

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

 Project:
 TMPA-6706-15-0060

 Lab ID:
 B16121644-013

 Client Sample ID:
 SSP-MW4

Report Date: 01/12/17
Collection Date: 12/20/16 16:52
DateReceived: 12/23/16
Matrix: Aqueous

| Analyses                              | Result | Unite  | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|--------|------------|-------|-------------|-----------|-------------------------|
| riidiyooo                             | Nesuit | Oilits | Qualificis |       |             | Method    | Analysis bate / by      |
| MAJOR IONS                            |        |        |            |       |             |           |                         |
| Calcium                               | 413    | mg/L   |            | 1     |             | E200.7    | 12/28/16 14:04 / jh     |
| Magnesium                             | 84     | mg/L   |            | 1     |             | E200.7    | 12/28/16 14:04 / jh     |
| Potassium                             | 56     | mg/L   |            | 1     |             | E200.7    | 12/28/16 14:04 / jh     |
| Sodium                                | 741    | mg/L   | D          | 4     |             | E200.7    | 12/28/16 14:04 / jh     |
| PHYSICAL PROPERTIES                   |        |        |            |       |             |           |                         |
| pH                                    | 6.5    | s.u.   | Н          | 0.1   |             | A4500-H B | 12/23/16 11:51 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 3850   | mg/L   | D          | 40    |             | A2540 C   | 12/23/16 10:46 / jef    |
| INORGANICS                            |        |        |            |       |             |           |                         |
| Chloride                              | 1170   | mg/L   | D          | 6     |             | E300.0    | 12/27/16 19:01 / jpv    |
| Sulfate                               |        | mg/L   | D          | 20    |             | E300.0    | 12/27/16 19:01 / jpv    |
| Fluoride                              |        | mg/L   | _          | 0.1   |             | A4500-F C | 12/27/16 17:44 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |        |            |       |             |           |                         |
| Antimony                              | ND     | mg/L   |            | 0.05  |             | E200.8    | 12/28/16 17:18 / jpv    |
| Arsenic                               |        | mg/L   |            | 0.03  |             | E200.8    | 12/28/16 17:18 / jpv    |
| Barium                                |        | mg/L   |            | 0.01  |             | E200.7    | 12/28/16 14:04 / jh     |
| Beryllium                             | 0.003  | •      |            | 0.001 |             | E200.8    | 12/28/16 17:18 / jpv    |
| Boron                                 |        | mg/L   |            | 0.05  |             | E200.7    | 12/28/16 14:04 / jh     |
| Cadmium                               |        | mg/L   |            | 0.01  |             | E200.7    | 12/28/16 14:04 / jh     |
| Chromium                              |        | mg/L   |            | 0.01  |             | E200.8    | 12/28/16 17:18 / jpv    |
| Cobalt                                |        | mg/L   |            | 0.02  |             | E200.7    | 12/28/16 14:04 / jh     |
| Lead                                  |        | mg/L   |            | 0.01  |             | E200.8    | 12/28/16 17:18 / jpv    |
| Lithium                               |        | mg/L   | D          | 0.02  |             | E200.7    | 12/28/16 14:04 / jh     |
| Mercury                               |        | mg/L   |            | 0.001 |             | E245.1    | 12/28/16 16:55 / ser    |
| Molybdenum                            |        | mg/L   |            | 0.05  |             | E200.7    | 12/28/16 14:04 / jh     |
| Selenium                              |        | mg/L   |            | 0.01  |             | E200.8    | 12/28/16 17:18 / jpv    |
| Thallium                              | ND     | mg/L   |            | 0.01  |             | E200.8    | 12/28/16 17:18 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |        |            |       |             |           |                         |
| Radium 226                            | 1.7    | pCi/L  |            |       |             | E903.0    | 01/11/17 16:40 / eli-ca |
| Radium 226 precision (±)              | 0.42   | pCi/L  |            |       |             | E903.0    | 01/11/17 16:40 / eli-ca |
| Radium 226 MDC                        |        | pCi/L  |            |       |             | E903.0    | 01/11/17 16:40 / eli-ca |
| Radium 228                            |        | pCi/L  | U          |       |             | RA-05     | 01/06/17 12:53 / eli-ca |
| Radium 228 precision (±)              |        | pCi/L  |            |       |             | RA-05     | 01/06/17 12:53 / eli-ca |
| Radium 228 MDC                        |        | pCi/L  |            |       |             | RA-05     | 01/06/17 12:53 / eli-ca |
| Radium 226 + Radium 228               |        | pCi/L  |            |       |             | A7500-RA  | 01/12/17 12:49 / eli-ca |
| Radium 226 + Radium 228 precision (±) |        | pCi/L  |            |       |             | A7500-RA  | 01/12/17 12:49 / eli-ca |
| Radium 226 + Radium 228 MDC           | 2.7    | pCi/L  |            |       |             | A7500-RA  | 01/12/17 12:49 / eli-ca |

Report RL - Analyte reporting limit.

**Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

U - Not detected at minimum detectable concentration

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

TMPA-6706-15-0060 Project: Lab ID: B16121644-014 Client Sample ID: EQBK-12-20-16/SCM

**Report Date:** 01/12/17 Collection Date: 12/20/16 18:00 DateReceived: 12/23/16 Matrix: Aqueous

|                                       |        |       |            |           | MCL/ |            |                         |
|---------------------------------------|--------|-------|------------|-----------|------|------------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL        | QCL  | Method     | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |           |      |            |                         |
| Calcium                               | ND     | mg/L  |            | 1         |      | E200.7     | 12/28/16 14:07 / jh     |
| Magnesium                             |        | mg/L  |            | 1         |      | E200.7     | 12/28/16 14:07 / jh     |
| Potassium                             |        | mg/L  |            | 1         |      | E200.7     | 12/28/16 14:07 / jh     |
| Sodium                                |        | mg/L  |            | 1         |      | E200.7     | 12/28/16 14:07 / jh     |
|                                       |        | J.    |            |           |      |            |                         |
| PHYSICAL PROPERTIES                   | F 0    |       |            | 0.4       |      | 4.4500 LLD | 10/00/10 11:50 /        |
| pH                                    | 5.8    |       | Н          | 0.1<br>10 |      | A4500-H B  | 12/23/16 11:53 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | ND     | mg/L  |            | 10        |      | A2540 C    | 12/23/16 10:46 / jef    |
| INORGANICS                            |        |       |            |           |      |            |                         |
| Chloride                              | ND     | mg/L  |            | 1         |      | E300.0     | 12/27/16 19:15 / jpv    |
| Sulfate                               | ND     | mg/L  |            | 1         |      | E300.0     | 12/27/16 19:15 / jpv    |
| Fluoride                              | ND     | mg/L  |            | 0.1       |      | A4500-F C  | 12/27/16 17:52 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |       |            |           |      |            |                         |
| Antimony                              | ND     | mg/L  |            | 0.05      |      | E200.7     | 12/28/16 14:07 / jh     |
| Arsenic                               |        | mg/L  |            | 0.01      |      | E200.8     | 12/28/16 17:21 / jpv    |
| Barium                                | ND     | mg/L  |            | 0.01      |      | E200.7     | 12/28/16 14:07 / jh     |
| Beryllium                             | ND     | mg/L  |            | 0.001     |      | E200.7     | 12/28/16 14:07 / jh     |
| Boron                                 | ND     | mg/L  |            | 0.05      |      | E200.7     | 12/28/16 14:07 / jh     |
| Cadmium                               | ND     | mg/L  |            | 0.01      |      | E200.7     | 12/28/16 14:07 / jh     |
| Chromium                              | ND     | mg/L  |            | 0.01      |      | E200.7     | 12/28/16 14:07 / jh     |
| Cobalt                                | ND     | mg/L  |            | 0.02      |      | E200.7     | 12/28/16 14:07 / jh     |
| Lead                                  | ND     | mg/L  |            | 0.01      |      | E200.8     | 12/28/16 17:21 / jpv    |
| Lithium                               | ND     | mg/L  |            | 0.01      |      | E200.7     | 12/28/16 14:07 / jh     |
| Mercury                               |        | mg/L  |            | 0.001     |      | E245.1     | 12/28/16 16:57 / ser    |
| Molybdenum                            |        | mg/L  |            | 0.05      |      | E200.7     | 12/28/16 14:07 / jh     |
| Selenium                              | ND     | mg/L  |            | 0.01      |      | E200.8     | 12/28/16 17:21 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.01      |      | E200.8     | 12/28/16 17:21 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |           |      |            |                         |
| Radium 226                            | 0.09   | pCi/L | U          |           |      | E903.0     | 01/11/17 16:40 / eli-ca |
| Radium 226 precision (±)              | 0.16   | pCi/L |            |           |      | E903.0     | 01/11/17 16:40 / eli-ca |
| Radium 226 MDC                        | 0.26   | pCi/L |            |           |      | E903.0     | 01/11/17 16:40 / eli-ca |
| Radium 228                            | -0.9   | pCi/L | U          |           |      | RA-05      | 01/06/17 12:53 / eli-ca |
| Radium 228 precision (±)              | 1.8    | pCi/L |            |           |      | RA-05      | 01/06/17 12:53 / eli-ca |
| Radium 228 MDC                        | 3.1    | pCi/L |            |           |      | RA-05      | 01/06/17 12:53 / eli-ca |
| Radium 226 + Radium 228               | -0.8   | pCi/L | U          |           |      | A7500-RA   | 01/12/17 12:49 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.8    | pCi/L |            |           |      | A7500-RA   | 01/12/17 12:49 / eli-ca |
| Radium 226 + Radium 228 MDC           | 3.1    | pCi/L |            |           |      | A7500-RA   | 01/12/17 12:49 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

U - Not detected at minimum detectable concentration

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA-6706-15-0060 Lab ID: B16121644-015 Client Sample ID: AP-MW5

**Report Date:** 01/12/17 Collection Date: 12/21/16 09:06 DateReceived: 12/23/16 Matrix: Aqueous

|                                       |        |       |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |      |           |                         |
| Calcium                               | 575    | mg/L  |            | 1     |      | E200.7    | 12/28/16 14:11 / jh     |
| Magnesium                             |        | mg/L  |            | 1     |      | E200.7    | 12/28/16 14:11 / jh     |
| Potassium                             | 47     | mg/L  |            | 1     |      | E200.7    | 12/28/16 14:11 / jh     |
| Sodium                                | 765    | mg/L  | D          | 4     |      | E200.7    | 12/28/16 14:11 / jh     |
| PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| pH                                    | 3.6    | s.u.  | Н          | 0.1   |      | A4500-H B | 12/23/16 11:56 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 4940   | mg/L  | D          | 40    |      | A2540 C   | 12/23/16 10:46 / jef    |
| INORGANICS                            |        |       |            |       |      |           |                         |
| Chloride                              | 480    | mg/L  | D          | 6     |      | E300.0    | 12/27/16 19:30 / jpv    |
| Sulfate                               | 2960   | mg/L  | D          | 20    |      | E300.0    | 12/27/16 19:30 / jpv    |
| Fluoride                              | 1.2    | mg/L  |            | 0.1   |      | A4500-F C | 12/30/16 15:33 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  |      | E200.8    | 12/28/16 17:25 / jpv    |
| Arsenic                               | 0.01   | mg/L  |            | 0.01  |      | E200.8    | 12/28/16 17:25 / jpv    |
| Barium                                | ND     | mg/L  |            | 0.01  |      | E200.7    | 12/28/16 14:11 / jh     |
| Beryllium                             | 0.088  | mg/L  |            | 0.001 |      | E200.8    | 12/28/16 17:25 / jpv    |
| Boron                                 | 3.66   | mg/L  |            | 0.05  |      | E200.7    | 12/28/16 14:11 / jh     |
| Cadmium                               | ND     | mg/L  |            | 0.01  |      | E200.7    | 12/28/16 14:11 / jh     |
| Chromium                              |        | mg/L  |            | 0.01  |      | E200.8    | 12/28/16 17:25 / jpv    |
| Cobalt                                | 0.20   | mg/L  |            | 0.02  |      | E200.8    | 12/28/16 17:25 / jpv    |
| Lead                                  | ND     | mg/L  |            | 0.01  |      | E200.8    | 12/28/16 17:25 / jpv    |
| Lithium                               | 0.66   | mg/L  | D          | 0.02  |      | E200.7    | 12/28/16 14:11 / jh     |
| Mercury                               | ND     | mg/L  |            | 0.001 |      | E245.1    | 12/28/16 16:59 / ser    |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |      | E200.7    | 12/28/16 14:11 / jh     |
| Selenium                              | 0.01   | mg/L  |            | 0.01  |      | E200.8    | 12/28/16 17:25 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 12/28/16 17:25 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 226                            | 0.21   | pCi/L | U          |       |      | E903.0    | 01/11/17 16:40 / eli-ca |
| Radium 226 precision (±)              | 0.18   | pCi/L |            |       |      | E903.0    | 01/11/17 16:40 / eli-ca |
| Radium 226 MDC                        | 0.27   | pCi/L |            |       |      | E903.0    | 01/11/17 16:40 / eli-ca |
| Radium 228                            | 4.3    | pCi/L |            |       |      | RA-05     | 01/06/17 11:14 / eli-ca |
| Radium 228 precision (±)              | 1.5    | pCi/L |            |       |      | RA-05     | 01/06/17 11:14 / eli-ca |
| Radium 228 MDC                        | 2.7    | pCi/L |            |       |      | RA-05     | 01/06/17 11:14 / eli-ca |
| Radium 226 + Radium 228               | 4.5    | pCi/L |            |       |      | A7500-RA  | 01/12/17 12:49 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.5    | pCi/L |            |       |      | A7500-RA  | 01/12/17 12:49 / eli-ca |
| Radium 226 + Radium 228 MDC           | 2.7    | pCi/L |            |       |      | A7500-RA  | 01/12/17 12:49 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

U - Not detected at minimum detectable concentration

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

 Project:
 TMPA-6706-15-0060

 Lab ID:
 B16121644-016

 Client Sample ID:
 DUP-1

Collection Date: 12/21/16
DateReceived: 12/23/16
Matrix: Aqueous

**Report Date:** 01/12/17

| Mercury         ND mg/L         0.001         E245.1         12/28/16 17:01 / ser           Molybdenum         ND mg/L         0.05         E200.7         12/28/16 14:15 / jh           Selenium         0.01 mg/L         0.01         E200.8         12/28/16 17:28 / jpv           Thallium         ND mg/L         0.01         E200.8         12/28/16 17:28 / jpv           RADIONUCLIDES - TOTAL           Radium 226         1.6 pCi/L         E903.0         01/11/17 16:40 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |        |       |            |       | MCL/ |           |                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Calcium 523 mg/L 1 E200.7 12/28/16 14:15 / jh Magnesium 121 mg/L 1 E200.7 12/28/16 14:15 / jh Potassium 121 mg/L 1 E200.7 12/28/16 14:15 / jh Sodium 711 mg/L 1 E200.7 12/28/16 14:15 / jh Sodium 711 mg/L D 4 E200.7 12/28/16 14:15 / jh Sodium 711 mg/L D 4 E200.7 12/28/16 14:15 / jh PHYSICAL PROPERTIES  PH 3.6 s.u. H 0.1 A4500-H B 12/23/16 11.58 / pjw Solids, Total Dissolved TDS @ 180 C 4750 mg/L D 40 A2540 C 12/23/16 10:46 / jef INORGANICS  INORGANICS  Chloride 466 mg/L D 6 E300.0 12/27/16 19:44 / jpv Sulfate 2860 mg/L D 20 E300.0 12/27/16 19:44 / jpv Fluoride 1.2 mg/L 0.1 A4500-F C 12/30/16 19:44 / jpv Fluoride 1.2 mg/L 0.1 A4500-F C 12/30/16 19:48 / jpv Braining METALS, TOTAL RECOVERABLE  Antimony ND mg/L 0.05 E200.8 12/28/16 17:28 / jpv Barium ND mg/L 0.01 E200.7 12/28/16 17:28 / jpv Barium ND mg/L 0.01 E200.7 12/28/16 17:28 / jpv Boron 3.54 mg/L 0.001 E200.7 12/28/16 17:28 / jpv Boron 3.54 mg/L 0.001 E200.7 12/28/16 17:28 / jpv Boron 3.54 mg/L 0.001 E200.7 12/28/16 17:28 / jpv Boron 3.54 mg/L 0.001 E200.7 12/28/16 14:15 / jh Chromium ND mg/L 0.01 E200.7 12/28/16 14:15 / jh Chromium ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv Lead ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv Lead ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv Lead ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv Lead ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv Lead ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv Lead ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv Lead ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv Lead ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv Robolatium ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv Robolatium ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv Robolatium ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv Robolatium ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv Robolatium ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv Robolatium ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv Robolatium ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv Robolatium ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv Robolatium ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv Robolatium ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv Robolatium ND mg | Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| Magnesium         121 mg/L         1 E200.7         12/28/16 14:15 / jh           Potassium         44 mg/L         1 E200.7         12/28/16 14:15 / jh           Sodium         711 mg/L         D 4         E200.7         12/28/16 14:15 / jh           PHYSICAL PROPERTIES           pH         3.6 s.u.         H         0.1         A4500-H B         12/23/16 11:58 / pjw           Solids, Total Dissolved TDS @ 180 C         4750 mg/L         D         40         A2540 C         12/23/16 10:46 / jef           INORGANICS           INORGANICS           Chloride         466 mg/L         D         6         E300.0         12/27/16 19:44 / jpv           Fluoride         1.2 mg/L         D. 20         E300.0         12/27/16 19:44 / jpv           METALS, TOTAL RECOVERABLE           Antimony         ND         mg/L         0.05         E200.8         12/28/16 17:28 / jpv           Arsenic         0.01         mg/L         0.01         E200.8         12/28/16 17:28 / jpv           Barium         ND mg/L         0.01         E200.8         12/28/16 17:28 / jpv           Beryllium         0.084         mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MAJOR IONS                            |        |       |            |       |      |           |                         |
| Magnesium         121 mg/L         1 E200.7         12/28/16 14:15 / jh           Potassium         44 mg/L         1 E200.7         12/28/16 14:15 / jh           Sodium         711 mg/L         D 4         E200.7         12/28/16 14:15 / jh           PHYSICAL PROPERTIES           pH         3.6 s.u.         H         0.1         A4500-H B         12/23/16 11:58 / pjw           Solids, Total Dissolved TDS @ 180 C         4750 mg/L         D         40         A2540 C         12/23/16 10:46 / jef           INORGANICS           INORGANICS           Chloride         466 mg/L         D         6         E300.0         12/27/16 19:44 / jpv           Fluoride         1.2 mg/L         D. 20         E300.0         12/27/16 19:44 / jpv           METALS, TOTAL RECOVERABLE           Antimony         ND         mg/L         0.05         E200.8         12/28/16 17:28 / jpv           Arsenic         0.01         mg/L         0.01         E200.8         12/28/16 17:28 / jpv           Barium         ND mg/L         0.01         E200.8         12/28/16 17:28 / jpv           Beryllium         0.084         mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Calcium                               | 523    | mg/L  |            | 1     |      | E200.7    | 12/28/16 14:15 / jh     |
| Sodilum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Magnesium                             |        |       |            | 1     |      | E200.7    | 12/28/16 14:15 / jh     |
| PHYSICAL PROPERTIES pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Potassium                             | 44     | mg/L  |            | 1     |      | E200.7    | 12/28/16 14:15 / jh     |
| pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sodium                                | 711    | mg/L  | D          | 4     |      | E200.7    | 12/28/16 14:15 / jh     |
| Solids, Total Dissolved TDS @ 180 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| NORGANICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pH                                    | 3.6    | s.u.  | Н          | 0.1   |      | A4500-H B | 12/23/16 11:58 / pjw    |
| Chloride 466 mg/L D 6 E300.0 12/27/16 19:44 / jpv Sulfate 2860 mg/L D 20 E300.0 12/27/16 19:44 / jpv Fluoride 1.2 mg/L D 20 E300.0 12/27/16 19:44 / jpv Fluoride 1.2 mg/L D 20 E300.0 12/27/16 19:44 / jpv Fluoride 1.2 mg/L D 20 E300.0 12/27/16 19:44 / jpv D 20 E300.0 12/27/16 19:44 / jpv Fluoride 1.2 mg/L D 0.1 A4500-F C 12/30/16 15:58 / cjm METALS, TOTAL RECOVERABLE Antimony ND mg/L D 0.05 E200.8 12/28/16 17:28 / jpv Arsenic 0.01 mg/L D 0.05 E200.8 12/28/16 17:28 / jpv D 20.01 E200.8 12/28/16 17:28 / jpv D 20.01 E200.8 12/28/16 14:15 / jh D 20.01 E200.7 12/28/16 14:15 / jh D 20.01 E200.7 12/28/16 14:15 / jh D 20.01 E200.8 12/28/16 14:15 / jh D 20.01 E200.8 12/28/16 14:15 / jh D 20.01 E200.8 12/28/16 17:28 / jpv D 20.01 E200.8 12/28/16 14:15 / jh D 20.02 E200.7 12/28/16 14:15 / jh D 20.01 E200.8 12/28/16 17:28 / jpv D 20.01 | Solids, Total Dissolved TDS @ 180 C   | 4750   | mg/L  | D          | 40    |      | A2540 C   | 12/23/16 10:46 / jef    |
| Sulfate         2860 mg/L         D         20 mg/L         E300.0 mg/L         12/27/16 19:44 / jpv           Fluoride         1.2 mg/L         0.1 mg/L         20 mg/L         20 mg/L         20 mg/L         21/28/16 17:28 / jpv           METALS, TOTAL RECOVERABLE           Antimony         ND mg/L         0.05         E200.8         12/28/16 17:28 / jpv           Arsenic         0.01 mg/L         0.01         E200.8         12/28/16 17:28 / jpv           Barium         ND mg/L         0.01         E200.8         12/28/16 14:15 / jh           Beryllium         0.084 mg/L         0.001         E200.7         12/28/16 14:15 / jh           Boron         3.54 mg/L         0.005         E200.7         12/28/16 14:15 / jh           Cadmium         0.01 mg/L         0.01         E200.8         12/28/16 14:15 / jh           Chromium         ND mg/L         0.01         E200.7         12/28/16 14:15 / jh           Choalt         0.19 mg/L         0.01         E200.8         12/28/16 17:28 / jpv           Lead         ND mg/L         0.02         E200.8         12/28/16 17:28 / jpv           Lithium         0.63 mg/L         0.02         E200.8         12/28/16 17:28 / jpv           Molydenu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | INORGANICS                            |        |       |            |       |      |           |                         |
| METALS, TOTAL RECOVERABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chloride                              | 466    | mg/L  | D          | 6     |      | E300.0    | 12/27/16 19:44 / jpv    |
| METALS, TOTAL RECOVERABLE           Antimony         ND mg/L         0.05         E200.8         12/28/16 17:28 / jpv           Arsenic         0.01 mg/L         0.01         E200.8         12/28/16 17:28 / jpv           Barium         ND mg/L         0.01         E200.8         12/28/16 17:28 / jpv           Beryllium         0.084 mg/L         0.001         E200.7         12/28/16 14:15 / jh           Beryllium         0.084 mg/L         0.005         E200.7         12/28/16 14:15 / jh           Cadmium         0.01 mg/L         0.01         E200.7         12/28/16 14:15 / jh           Cadmium         ND mg/L         0.01         E200.7         12/28/16 14:15 / jh           Chalt         0.19 mg/L         0.01         E200.8         12/28/16 17:28 / jpv           Cobalt         0.19 mg/L         0.01         E200.8         12/28/16 17:28 / jpv           Lead         ND mg/L         0.02         E200.8         12/28/16 17:28 / jpv           Lead         ND mg/L         0.01         E200.8         12/28/16 17:28 / jpv           Mercury         ND mg/L         0.01         E200.7         12/28/16 17:01 / ser           Molybdenum         ND mg/L         0.05         E200.7         12/28/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sulfate                               | 2860   | mg/L  | D          | 20    |      | E300.0    | 12/27/16 19:44 / jpv    |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fluoride                              | 1.2    | mg/L  |            | 0.1   |      | A4500-F C | 12/30/16 15:58 / cjm    |
| Arsenic 0.01 mg/L 0.01 E200.8 12/28/16 17:28 / jpv Barium ND mg/L 0.01 E200.7 12/28/16 17:28 / jpv Barium ND mg/L 0.001 E200.7 12/28/16 14:15 / jh Beryllium 0.084 mg/L 0.001 E200.8 12/28/16 17:28 / jpv Boron 3.54 mg/L 0.05 E200.7 12/28/16 17:28 / jpv Boron 0.3.54 mg/L 0.01 E200.7 12/28/16 14:15 / jh Cadmium 0.01 mg/L 0.01 E200.7 12/28/16 14:15 / jh Chromium ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv Cobalt 0.19 mg/L 0.01 E200.8 12/28/16 17:28 / jpv Lead ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv Lithium 0.63 mg/L D 0.02 E200.8 12/28/16 17:28 / jpv Lithium 0.63 mg/L D 0.02 E200.7 12/28/16 14:15 / jh Mercury ND mg/L 0.001 E245.1 12/28/16 17:01 / ser Molybdenum ND mg/L 0.001 E245.1 12/28/16 17:01 / ser Molybdenum 0.01 mg/L 0.05 E200.7 12/28/16 17:28 / jpv Thallium ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv RADIONUCLIDES - TOTAL Radium 226 precision (±) 0.39 pCi/L E903.0 01/11/17 16:40 / eli-ca Radium 226 MDC 0.19 pCi/L U RA-05 01/06/17 12:53 / eli-ca Radium 228 MDC 2.3 pCi/L RA-05 01/06/17 12:53 / eli-ca Radium 228 mCC 2.3 pCi/L RA-05 01/06/17 12:53 / eli-ca Radium 228 mCC 2.3 pCi/L RA-05 01/06/17 12:53 / eli-ca Radium 228 precision (±) 1.4 pCi/L U A7500-RA 01/12/17 12:49 / eli-ca Radium 228 precision (±) 1.4 pCi/L U A7500-RA 01/12/17 12:49 / eli-ca Radium 228 precision (±) 1.4 pCi/L U A7500-RA 01/12/17 12:49 / eli-ca Radium 226 + Radium 228 precision (±) 1.4 pCi/L U A7500-RA 01/12/17 12:49 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Barium ND mg/L 0.01 E200.7 12/28/16 14:15 / jh Beryllium 0.084 mg/L 0.001 E200.8 12/28/16 17:28 / jpv Boron 3.54 mg/L 0.05 E200.7 12/28/16 17:28 / jpv Boron 3.54 mg/L 0.05 E200.7 12/28/16 17:28 / jpv Cadmium 0.01 mg/L 0.01 E200.8 12/28/16 17:28 / jpv Cohromium ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv Cobalt 0.19 mg/L 0.02 E200.8 12/28/16 17:28 / jpv Lead ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv Lead ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv Lithium 0.63 mg/L D 0.02 E200.8 12/28/16 17:28 / jpv Lithium 0.63 mg/L D 0.02 E200.7 12/28/16 14:15 / jh Mercury ND mg/L 0.001 E245.1 12/28/16 17:28 / jpv Lithium ND mg/L 0.001 E245.1 12/28/16 17:28 / jpv Belenium ND mg/L 0.001 E200.8 12/28/16 14:15 / jh Mercury ND mg/L 0.001 E200.8 12/28/16 17:28 / jpv Thallium ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv Thallium ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv  RADIONUCLIDES - TOTAL  Radium 226 precision (±) 0.39 pCi/L E903.0 01/11/17 16:40 / eli-ca Radium 226 MDC 0.19 pCi/L U RA-05 01/06/17 12:53 / eli-ca Radium 228 MDC 0.19 pCi/L U RA-05 01/06/17 12:53 / eli-ca Radium 228 MDC 2.3 pCi/L RA-05 01/06/17 12:53 / eli-ca Radium 228 MDC 2.3 pCi/L RA-05 01/06/17 12:53 / eli-ca Radium 228 HZ Radium 228 precision (±) 1.4 pCi/L U A7500-RA 01/12/17 12:49 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Antimony                              | ND     | mg/L  |            | 0.05  |      | E200.8    | 12/28/16 17:28 / jpv    |
| Beryllium         0.084         mg/L         0.001         E200.8         12/28/16 17:28 / jpv           Boron         3.54         mg/L         0.05         E200.7         12/28/16 14:15 / jh           Cadmium         0.01         mg/L         0.01         E200.7         12/28/16 14:15 / jh           Chromium         ND         mg/L         0.01         E200.8         12/28/16 17:28 / jpv           Cobalt         0.19         mg/L         0.02         E200.8         12/28/16 17:28 / jpv           Lead         ND         mg/L         0.01         E200.8         12/28/16 17:28 / jpv           Lithium         0.63         mg/L         D         0.02         E200.8         12/28/16 17:28 / jpv           Lithium         0.63         mg/L         D         0.02         E200.7         12/28/16 17:01 / ser           Molybdenum         ND         mg/L         0.001         E245.1         12/28/16 17:01 / ser           Molybdenum         ND         mg/L         0.05         E200.7         12/28/16 17:28 / jpv           Thallium         ND         mg/L         0.01         E200.8         12/28/16 17:28 / jpv           RADIONUCLIDES - TOTAL           Radium 226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Arsenic                               | 0.01   | mg/L  |            | 0.01  |      | E200.8    | 12/28/16 17:28 / jpv    |
| Boron 3.54 mg/L 0.05 E200.7 12/28/16 14:15 / jh Cadmium 0.01 mg/L 0.01 E200.7 12/28/16 14:15 / jh Chromium ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv Cobalt 0.19 mg/L 0.02 E200.8 12/28/16 17:28 / jpv Cobalt 0.19 mg/L 0.01 E200.8 12/28/16 17:28 / jpv Lead ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv Lithium 0.63 mg/L D 0.02 E200.7 12/28/16 17:28 / jpv Lithium ND mg/L 0.001 E245.1 12/28/16 17:27 / jp Mercury ND mg/L 0.001 E245.1 12/28/16 17:01 / ser Molybdenum ND mg/L 0.05 E200.7 12/28/16 14:15 / jh Selenium 0.01 mg/L 0.01 E200.8 12/28/16 17:28 / jpv Thallium ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv Thallium ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv Thallium 226 precision (±) 0.39 pCi/L E903.0 01/11/17 16:40 / eli-ca Radium 226 precision (±) 0.39 pCi/L E903.0 01/11/17 16:40 / eli-ca Radium 228 MDC 0.19 pCi/L U RA-05 01/06/17 12:53 / eli-ca Radium 228 MDC 2.3 pCi/L RA-05 01/06/17 12:53 / eli-ca Radium 228 MDC 2.3 pCi/L RA-05 01/06/17 12:53 / eli-ca Radium 226 + Radium 228 precision (±) 1.4 pCi/L U A7500-RA 01/12/17 12:49 / eli-ca Radium 226 + Radium 228 precision (±) 1.4 pCi/L U A7500-RA 01/12/17 12:49 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Barium                                | ND     | mg/L  |            | 0.01  |      | E200.7    | 12/28/16 14:15 / jh     |
| Cadmium         0.01         mg/L         0.01         E200.7         12/28/16 14:15 / jh           Chromium         ND         mg/L         0.01         E200.8         12/28/16 17:28 / jpv           Cobalt         0.19         mg/L         0.02         E200.8         12/28/16 17:28 / jpv           Lead         ND         mg/L         0.01         E200.8         12/28/16 17:28 / jpv           Lithium         0.63         mg/L         D         0.02         E200.7         12/28/16 17:28 / jpv           Lithium         0.63         mg/L         D         0.02         E200.7         12/28/16 14:15 / jh           Mercury         ND         mg/L         0.001         E245.1         12/28/16 17:01 / ser           Molybdenum         ND         mg/L         0.05         E200.7         12/28/16 17:28 / jpv           Molybdenum         ND         mg/L         0.01         E200.8         12/28/16 17:28 / jpv           Thallium         ND         mg/L         0.01         E200.8         12/28/16 17:28 / jpv           RADIONUCLIDES - TOTAL           Radium 226         1.6         pCi/L         E903.0         01/11/17 16:40 / eli-ca           Radium 226 precision (±)         0.19 </td <td>Beryllium</td> <td>0.084</td> <td>mg/L</td> <td></td> <td>0.001</td> <td></td> <td>E200.8</td> <td>12/28/16 17:28 / jpv</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Beryllium                             | 0.084  | mg/L  |            | 0.001 |      | E200.8    | 12/28/16 17:28 / jpv    |
| Chromium ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv Cobalt 0.19 mg/L 0.02 E200.8 12/28/16 17:28 / jpv Lead ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv Lithium 0.63 mg/L D 0.02 E200.7 12/28/16 17:28 / jpv Lithium 0.63 mg/L D 0.02 E200.7 12/28/16 14:15 / jh Mercury ND mg/L 0.001 E245.1 12/28/16 17:01 / ser Molybdenum ND mg/L 0.05 E200.7 12/28/16 14:15 / jh Selenium 0.01 mg/L 0.05 E200.7 12/28/16 14:15 / jh Selenium 0.01 mg/L 0.01 E200.8 12/28/16 17:28 / jpv Thallium ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv  RADIONUCLIDES - TOTAL Radium 226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Boron                                 | 3.54   | mg/L  |            | 0.05  |      | E200.7    | 12/28/16 14:15 / jh     |
| Cobalt 0.19 mg/L 0.02 E200.8 12/28/16 17:28 / jpv Lead ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv Lithium 0.63 mg/L D 0.02 E200.7 12/28/16 14:15 / jh Mercury ND mg/L 0.001 E245.1 12/28/16 17:01 / ser Molybdenum ND mg/L 0.05 E200.7 12/28/16 14:15 / jh Selenium 0.01 mg/L 0.05 E200.7 12/28/16 14:15 / jh Selenium 0.01 mg/L 0.01 E200.8 12/28/16 17:28 / jpv Thallium ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv  RADIONUCLIDES - TOTAL Radium 226 TOTAL Radium 226 precision (±) 0.39 pCi/L E903.0 01/11/17 16:40 / eli-ca Radium 226 MDC 0.19 pCi/L U RA-05 01/06/17 12:53 / eli-ca Radium 228 precision (±) 1.4 pCi/L U RA-05 01/06/17 12:53 / eli-ca Radium 228 MDC 2.3 pCi/L U A7500-RA 01/12/17 12:49 / eli-ca Radium 228 precision (±) 1.4 pCi/L U A7500-RA 01/12/17 12:49 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cadmium                               | 0.01   | mg/L  |            | 0.01  |      | E200.7    | 12/28/16 14:15 / jh     |
| Lead         ND mg/L         0.01         E200.8         12/28/16 17:28 / jpv           Lithium         0.63 mg/L         D 0.02         E200.7         12/28/16 14:15 / jh           Mercury         ND mg/L         0.001         E245.1         12/28/16 17:01 / ser           Molybdenum         ND mg/L         0.05         E200.7         12/28/16 14:15 / jh           Selenium         0.01 mg/L         0.01         E200.8         12/28/16 17:28 / jpv           Thallium         ND mg/L         0.01         E200.8         12/28/16 17:28 / jpv           RADIONUCLIDES - TOTAL           Radium 226         1.6 pCi/L         E903.0         01/11/17 16:40 / eli-ca           Radium 226 precision (±)         0.39 pCi/L         E903.0         01/11/17 16:40 / eli-ca           Radium 226 MDC         0.19 pCi/L         E903.0         01/11/17 16:40 / eli-ca           Radium 228 precision (±)         1.4 pCi/L         U         RA-05         01/06/17 12:53 / eli-ca           Radium 228 MDC         2.3 pCi/L         RA-05         01/06/17 12:53 / eli-ca           Radium 228 Precision (±)         1.4 pCi/L         U         A7500-RA         01/12/17 12:49 / eli-ca           Radium 226 + Radium 228 precision (±)         1.4 pCi/L         U         A75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chromium                              |        | -     |            | 0.01  |      | E200.8    | 12/28/16 17:28 / jpv    |
| Lithium 0.63 mg/L D 0.02 E200.7 12/28/16 14:15 / jh  Mercury ND mg/L 0.001 E245.1 12/28/16 17:01 / ser  Molybdenum ND mg/L 0.05 E200.7 12/28/16 14:15 / jh  Selenium 0.01 mg/L 0.05 E200.7 12/28/16 17:28 / jpv  Thallium ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv  Thallium ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv  RADIONUCLIDES - TOTAL  Radium 226 1.6 pCi/L E903.0 01/11/17 16:40 / eli-ca  Radium 226 precision (±) 0.39 pCi/L E903.0 01/11/17 16:40 / eli-ca  Radium 226 MDC 0.19 pCi/L E903.0 01/11/17 16:40 / eli-ca  Radium 228 precision (±) 1.4 pCi/L U RA-05 01/06/17 12:53 / eli-ca  Radium 228 MDC 2.3 pCi/L RA-05 01/06/17 12:53 / eli-ca  Radium 228 MDC 2.3 pCi/L U A7500-RA 01/12/17 12:49 / eli-ca  Radium 228 Precision (±) 1.4 pCi/L U A7500-RA 01/12/17 12:49 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cobalt                                | 0.19   | mg/L  |            | 0.02  |      | E200.8    | 12/28/16 17:28 / jpv    |
| Mercury         ND mg/L         0.001         E245.1         12/28/16 17:01 / ser           Molybdenum         ND mg/L         0.05         E200.7         12/28/16 14:15 / jh           Selenium         0.01 mg/L         0.01         E200.8         12/28/16 17:28 / jpv           Thallium         ND mg/L         0.01         E200.8         12/28/16 17:28 / jpv           RADIONUCLIDES - TOTAL           Radium 226         1.6 pCi/L         E903.0         01/11/17 16:40 / eli-ca           Radium 226 precision (±)         0.39 pCi/L         E903.0         01/11/17 16:40 / eli-ca           Radium 226 MDC         0.19 pCi/L         E903.0         01/11/17 16:40 / eli-ca           Radium 228 precision (±)         1.4 pCi/L         U         RA-05         01/06/17 12:53 / eli-ca           Radium 228 MDC         2.3 pCi/L         RA-05         01/06/17 12:53 / eli-ca           Radium 226 + Radium 228         1.6 pCi/L         U         A7500-RA         01/12/17 12:49 / eli-ca           Radium 226 + Radium 228 precision (±)         1.4 pCi/L         A7500-RA         01/12/17 12:49 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lead                                  | ND     | mg/L  |            | 0.01  |      | E200.8    | 12/28/16 17:28 / jpv    |
| Molybdenum         ND mg/L         0.05         E200.7         12/28/16 14:15 / jh           Selenium         0.01 mg/L         0.01         E200.8         12/28/16 17:28 / jpv           Thallium         ND mg/L         0.01         E200.8         12/28/16 17:28 / jpv           RADIONUCLIDES - TOTAL           Radium 226         1.6 pCi/L         E903.0         01/11/17 16:40 / eli-ca           Radium 226 precision (±)         0.39 pCi/L         E903.0         01/11/17 16:40 / eli-ca           Radium 226 MDC         0.19 pCi/L         E903.0         01/11/17 16:40 / eli-ca           Radium 228         -0.01 pCi/L         U         RA-05         01/06/17 12:53 / eli-ca           Radium 228 precision (±)         1.4 pCi/L         RA-05         01/06/17 12:53 / eli-ca           Radium 226 + Radium 228         1.6 pCi/L         U         A7500-RA         01/12/17 12:49 / eli-ca           Radium 226 + Radium 228 precision (±)         1.4 pCi/L         U         A7500-RA         01/12/17 12:49 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lithium                               | 0.63   | mg/L  | D          | 0.02  |      | E200.7    | 12/28/16 14:15 / jh     |
| Selenium         0.01 mg/L         0.01 mg/L         0.01 mg/L         E200.8 mg/L         12/28/16 17:28 / jpv           RADIONUCLIDES - TOTAL           Radium 226         1.6 pCi/L         E903.0 01/11/17 16:40 / eli-ca           Radium 226 precision (±)         0.39 pCi/L         E903.0 01/11/17 16:40 / eli-ca           Radium 226 MDC         0.19 pCi/L         E903.0 01/11/17 16:40 / eli-ca           Radium 228 mc         -0.01 pCi/L         U         RA-05 01/06/17 12:53 / eli-ca           Radium 228 precision (±)         1.4 pCi/L         RA-05 01/06/17 12:53 / eli-ca           Radium 226 + Radium 228 mc         1.6 pCi/L         U         A7500-RA 01/12/17 12:49 / eli-ca           Radium 226 + Radium 228 precision (±)         1.4 pCi/L         A7500-RA 01/12/17 12:49 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mercury                               | ND     | mg/L  |            | 0.001 |      | E245.1    | 12/28/16 17:01 / ser    |
| Thallium ND mg/L 0.01 E200.8 12/28/16 17:28 / jpv  RADIONUCLIDES - TOTAL  Radium 226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Molybdenum                            | ND     | mg/L  |            | 0.05  |      | E200.7    | 12/28/16 14:15 / jh     |
| RADIONUCLIDES - TOTAL  Radium 226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Selenium                              | 0.01   | mg/L  |            | 0.01  |      | E200.8    | 12/28/16 17:28 / jpv    |
| Radium 226       1.6 pCi/L       E903.0       01/11/17 16:40 / eli-ca         Radium 226 precision (±)       0.39 pCi/L       E903.0       01/11/17 16:40 / eli-ca         Radium 226 MDC       0.19 pCi/L       E903.0       01/11/17 16:40 / eli-ca         Radium 228       -0.01 pCi/L       U       RA-05       01/06/17 12:53 / eli-ca         Radium 228 precision (±)       1.4 pCi/L       RA-05       01/06/17 12:53 / eli-ca         Radium 228 MDC       2.3 pCi/L       RA-05       01/06/17 12:53 / eli-ca         Radium 226 + Radium 228       1.6 pCi/L       U       A7500-RA       01/12/17 12:49 / eli-ca         Radium 226 + Radium 228 precision (±)       1.4 pCi/L       A7500-RA       01/12/17 12:49 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Thallium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 12/28/16 17:28 / jpv    |
| Radium 226 precision (±)       0.39 pCi/L       E903.0       01/11/17 16:40 / eli-ca         Radium 226 MDC       0.19 pCi/L       E903.0       01/11/17 16:40 / eli-ca         Radium 228       -0.01 pCi/L       U       RA-05       01/06/17 12:53 / eli-ca         Radium 228 precision (±)       1.4 pCi/L       RA-05       01/06/17 12:53 / eli-ca         Radium 228 MDC       2.3 pCi/L       RA-05       01/06/17 12:53 / eli-ca         Radium 226 + Radium 228       1.6 pCi/L       U       A7500-RA       01/12/17 12:49 / eli-ca         Radium 226 + Radium 228 precision (±)       1.4 pCi/L       A7500-RA       01/12/17 12:49 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 226 MDC       0.19 pCi/L       E903.0       01/11/17 16:40 / eli-ca         Radium 228       -0.01 pCi/L       U       RA-05       01/06/17 12:53 / eli-ca         Radium 228 precision (±)       1.4 pCi/L       RA-05       01/06/17 12:53 / eli-ca         Radium 228 MDC       2.3 pCi/L       RA-05       01/06/17 12:53 / eli-ca         Radium 226 + Radium 228       1.6 pCi/L       U       A7500-RA       01/12/17 12:49 / eli-ca         Radium 226 + Radium 228 precision (±)       1.4 pCi/L       A7500-RA       01/12/17 12:49 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Radium 226                            | 1.6    | pCi/L |            |       |      | E903.0    | 01/11/17 16:40 / eli-ca |
| Radium 228       -0.01 pCi/L       U       RA-05 01/06/17 12:53 / eli-ca         Radium 228 precision (±)       1.4 pCi/L       RA-05 01/06/17 12:53 / eli-ca         Radium 228 MDC       2.3 pCi/L       RA-05 01/06/17 12:53 / eli-ca         Radium 226 + Radium 228       1.6 pCi/L       U       A7500-RA 01/12/17 12:49 / eli-ca         Radium 226 + Radium 228 precision (±)       1.4 pCi/L       A7500-RA 01/12/17 12:49 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Radium 226 precision (±)              | 0.39   | pCi/L |            |       |      | E903.0    | 01/11/17 16:40 / eli-ca |
| Radium 228 precision (±)       1.4 pCi/L       RA-05       01/06/17 12:53 / eli-ca         Radium 228 MDC       2.3 pCi/L       RA-05       01/06/17 12:53 / eli-ca         Radium 226 + Radium 228       1.6 pCi/L       U       A7500-RA       01/12/17 12:49 / eli-ca         Radium 226 + Radium 228 precision (±)       1.4 pCi/L       A7500-RA       01/12/17 12:49 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Radium 226 MDC                        | 0.19   | pCi/L |            |       |      | E903.0    | 01/11/17 16:40 / eli-ca |
| Radium 228 MDC       2.3 pCi/L       RA-05       01/06/17 12:53 / eli-ca         Radium 226 + Radium 228       1.6 pCi/L       U       A7500-RA       01/12/17 12:49 / eli-ca         Radium 226 + Radium 228 precision (±)       1.4 pCi/L       A7500-RA       01/12/17 12:49 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Radium 228                            | -0.01  | pCi/L | U          |       |      | RA-05     | 01/06/17 12:53 / eli-ca |
| Radium 226 + Radium 228 1.6 pCi/L U A7500-RA 01/12/17 12:49 / eli-ca Radium 226 + Radium 228 precision (±) 1.4 pCi/L A7500-RA 01/12/17 12:49 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Radium 228 precision (±)              | 1.4    | pCi/L |            |       |      | RA-05     | 01/06/17 12:53 / eli-ca |
| Radium 226 + Radium 228 precision (±) 1.4 pCi/L A7500-RA 01/12/17 12:49 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Radium 228 MDC                        | 2.3    | pCi/L |            |       |      | RA-05     | 01/06/17 12:53 / eli-ca |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Radium 226 + Radium 228               | 1.6    | pCi/L | U          |       |      | A7500-RA  | 01/12/17 12:49 / eli-ca |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Radium 226 + Radium 228 precision (±) | 1.4    | pCi/L |            |       |      | A7500-RA  | 01/12/17 12:49 / eli-ca |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Radium 226 + Radium 228 MDC           | 2.3    | pCi/L |            |       |      | A7500-RA  | 01/12/17 12:49 / eli-ca |

Report RL - Analyte reporting limit.

**Definitions:** QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

U - Not detected at minimum detectable concentration

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

 Project:
 TMPA-6706-15-0060

 Lab ID:
 B16121644-017

 Client Sample ID:
 SFL-MW5

Report Date: 01/12/17
Collection Date: 12/21/16 15:39
DateReceived: 12/23/16
Matrix: Aqueous

|                                       |        |       |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |      |           |                         |
| Calcium                               | 944    | mg/L  |            | 1     |      | E200.7    | 12/28/16 14:18 / jh     |
| Magnesium                             |        | mg/L  |            | 1     |      | E200.7    | 12/28/16 14:18 / jh     |
| Potassium                             | 61     | mg/L  | D          | 2     |      | E200.7    | 12/28/16 14:18 / jh     |
| Sodium                                | 1790   | mg/L  | D          | 7     |      | E200.7    | 12/28/16 14:18 / jh     |
| PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| pH                                    | 4.8    | s.u.  | Н          | 0.1   |      | A4500-H B | 12/23/16 12:01 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 7910   | mg/L  | D          | 100   |      | A2540 C   | 12/23/16 10:46 / jef    |
| INORGANICS                            |        |       |            |       |      |           |                         |
| Chloride                              | 3160   | mg/L  | D          | 10    |      | E300.0    | 12/27/16 20:27 / jpv    |
| Sulfate                               | 2170   | mg/L  | D          | 40    |      | E300.0    | 12/27/16 20:27 / jpv    |
| Fluoride                              | 0.2    | mg/L  |            | 0.1   |      | A4500-F C | 12/30/16 16:25 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  |      | E200.8    | 12/28/16 17:31 / jpv    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |      | E200.8    | 12/28/16 17:31 / jpv    |
| Barium                                | 0.03   | mg/L  |            | 0.01  |      | E200.7    | 12/28/16 14:18 / jh     |
| Beryllium                             | 0.010  | mg/L  |            | 0.001 |      | E200.8    | 12/28/16 17:31 / jpv    |
| Boron                                 | 3.93   | mg/L  | D          | 0.07  |      | E200.7    | 12/28/16 14:18 / jh     |
| Cadmium                               | ND     | mg/L  |            | 0.01  |      | E200.8    | 12/28/16 17:31 / jpv    |
| Chromium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 12/28/16 17:31 / jpv    |
| Cobalt                                | 0.06   | mg/L  |            | 0.02  |      | E200.8    | 12/28/16 17:31 / jpv    |
| Lead                                  | ND     | mg/L  |            | 0.01  |      | E200.8    | 12/28/16 17:31 / jpv    |
| Lithium                               | 0.99   | mg/L  | D          | 0.04  |      | E200.7    | 12/28/16 14:18 / jh     |
| Mercury                               | ND     | mg/L  |            | 0.001 |      | E245.1    | 12/28/16 17:07 / ser    |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |      | E200.8    | 12/28/16 17:31 / jpv    |
| Selenium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 12/28/16 17:31 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 12/28/16 17:31 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 226                            | 4.1    | pCi/L |            |       |      | E903.0    | 01/11/17 16:40 / eli-ca |
| Radium 226 precision (±)              | 0.87   | pCi/L |            |       |      | E903.0    | 01/11/17 16:40 / eli-ca |
| Radium 226 MDC                        | 0.20   | pCi/L |            |       |      | E903.0    | 01/11/17 16:40 / eli-ca |
| Radium 228                            | 4.6    | pCi/L |            |       |      | RA-05     | 01/06/17 12:53 / eli-ca |
| Radium 228 precision (±)              | 1.6    | pCi/L |            |       |      | RA-05     | 01/06/17 12:53 / eli-ca |
| Radium 228 MDC                        | 2.4    | pCi/L |            |       |      | RA-05     | 01/06/17 12:53 / eli-ca |
| Radium 226 + Radium 228               | 8.7    | pCi/L |            |       |      | A7500-RA  | 01/12/17 12:49 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.8    | pCi/L |            |       |      | A7500-RA  | 01/12/17 12:49 / eli-ca |
| Radium 226 + Radium 228 MDC           | 2.4    | pCi/L |            |       |      | A7500-RA  | 01/12/17 12:49 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

DateReceived: 12/23/16

Collection Date: 12/22/16 09:45

Matrix: Aqueous

#### LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA-6706-15-0060 Lab ID: B16121644-018 Client Sample ID: SFL-MW2

|                                       |        |       |            |       | MOI /       |           |                         |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |             |           |                         |
| Calcium                               | 692    | mg/L  |            | 1     |             | E200.7    | 12/28/16 14:22 / jh     |
| Magnesium                             |        | mg/L  |            | 1     |             | E200.7    | 12/28/16 14:22 / jh     |
| Potassium                             |        | mg/L  |            | 1     |             | E200.7    | 12/28/16 14:22 / jh     |
| Sodium                                | 1600   | mg/L  | D          | 4     |             | E200.7    | 12/28/16 14:22 / jh     |
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| рН                                    | 6.6    | s.u.  | Н          | 0.1   |             | A4500-H B | 12/23/16 12:04 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 6830   | mg/L  | D          | 100   |             | A2540 C   | 12/23/16 10:46 / jef    |
| INORGANICS                            |        |       |            |       |             |           |                         |
| Chloride                              | 2590   | mg/L  | D          | 6     |             | E300.0    | 12/27/16 21:11 / jpv    |
| Sulfate                               | 1770   | mg/L  | D          | 20    |             | E300.0    | 12/27/16 21:11 / jpv    |
| Fluoride                              | 0.3    | mg/L  |            | 0.1   |             | A4500-F C | 12/30/16 16:45 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.05  |             | E200.8    | 12/28/16 17:35 / jpv    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 12/28/16 17:35 / jpv    |
| Barium                                | 0.02   | mg/L  |            | 0.01  |             | E200.7    | 12/28/16 14:22 / jh     |
| Beryllium                             | 0.001  | mg/L  |            | 0.001 |             | E200.8    | 12/28/16 17:35 / jpv    |
| Boron                                 | 0.54   | mg/L  |            | 0.05  |             | E200.7    | 12/28/16 14:22 / jh     |
| Cadmium                               | ND     | mg/L  |            | 0.01  |             | E200.7    | 12/28/16 14:22 / jh     |
| Chromium                              |        | mg/L  |            | 0.01  |             | E200.8    | 12/28/16 17:35 / jpv    |
| Cobalt                                |        | mg/L  |            | 0.02  |             | E200.7    | 12/28/16 14:22 / jh     |
| Lead                                  | ND     | mg/L  |            | 0.01  |             | E200.8    | 12/28/16 17:35 / jpv    |
| Lithium                               | 0.60   | mg/L  | D          | 0.02  |             | E200.7    | 12/28/16 14:22 / jh     |
| Mercury                               | ND     | mg/L  |            | 0.001 |             | E245.1    | 12/28/16 17:09 / ser    |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.7    | 12/28/16 14:22 / jh     |
| Selenium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 12/28/16 17:35 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 12/28/16 17:35 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 226                            | 2.9    | pCi/L |            |       |             | E903.0    | 01/11/17 16:40 / eli-ca |
| Radium 226 precision (±)              | 0.64   | pCi/L |            |       |             | E903.0    | 01/11/17 16:40 / eli-ca |
| Radium 226 MDC                        | 0.20   | pCi/L |            |       |             | E903.0    | 01/11/17 16:40 / eli-ca |
| Radium 228                            | 3.7    | pCi/L |            |       |             | RA-05     | 01/06/17 12:53 / eli-ca |
| Radium 228 precision (±)              | 1.5    | pCi/L |            |       |             | RA-05     | 01/06/17 12:53 / eli-ca |
| Radium 228 MDC                        | 2.4    | pCi/L |            |       |             | RA-05     | 01/06/17 12:53 / eli-ca |
| Radium 226 + Radium 228               | 6.6    | pCi/L |            |       |             | A7500-RA  | 01/12/17 12:49 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.7    | •     |            |       |             | A7500-RA  | 01/12/17 12:49 / eli-ca |
| Radium 226 + Radium 228 MDC           | 2.4    | pCi/L |            |       |             | A7500-RA  | 01/12/17 12:49 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

#### LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

TMPA-6706-15-0060 Project: Collection Date: 12/22/16 11:35 Lab ID: B16121644-019 DateReceived: 12/23/16 Client Sample ID: SFL-MW3 Matrix: Aqueous

|                                       |        |        |            |       | MCL/ |           |                         |
|---------------------------------------|--------|--------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units  | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |        |            |       |      |           |                         |
| Calcium                               | 725    | mg/L   |            | 1     |      | E200.7    | 12/28/16 14:25 / jh     |
| Magnesium                             |        | mg/L   |            | 1     |      | E200.7    | 12/28/16 14:25 / jh     |
| Potassium                             |        | mg/L   |            | 1     |      | E200.7    | 12/28/16 14:25 / jh     |
| Sodium                                |        | mg/L   | D          | 4     |      | E200.7    | 12/28/16 14:25 / jh     |
| Codium                                | 913    | IIIg/L | Ь          | 7     |      | L200.7    | 12/20/10 14.23 / jii    |
| PHYSICAL PROPERTIES                   |        |        |            |       |      |           |                         |
| рН                                    | 3.8    | s.u.   | Н          | 0.1   |      | A4500-H B | 12/23/16 12:06 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 5640   | mg/L   | D          | 100   |      | A2540 C   | 12/23/16 10:46 / jef    |
| INORGANICS                            |        |        |            |       |      |           |                         |
| Chloride                              | 1480   | mg/L   | D          | 6     |      | E300.0    | 12/27/16 21:25 / jpv    |
| Sulfate                               | 2240   | mg/L   | D          | 20    |      | E300.0    | 12/27/16 21:25 / jpv    |
| Fluoride                              | 0.6    | mg/L   |            | 0.1   |      | A4500-F C | 12/30/16 16:55 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |        |            |       |      |           |                         |
| Antimony                              | ND     | mg/L   |            | 0.05  |      | E200.8    | 12/28/16 17:38 / jpv    |
| Arsenic                               |        | mg/L   |            | 0.01  |      | E200.8    | 12/28/16 17:38 / jpv    |
| Barium                                |        | mg/L   |            | 0.01  |      | E200.7    | 12/28/16 14:25 / jh     |
| Beryllium                             |        | mg/L   |            | 0.001 |      | E200.8    | 12/28/16 17:38 / jpv    |
| Boron                                 |        | mg/L   |            | 0.05  |      | E200.7    | 12/28/16 14:25 / jh     |
| Cadmium                               | ND     | mg/L   |            | 0.01  |      | E200.7    | 12/28/16 14:25 / jh     |
| Chromium                              |        | mg/L   |            | 0.01  |      | E200.8    | 12/28/16 17:38 / jpv    |
| Cobalt                                | 0.10   | mg/L   |            | 0.02  |      | E200.7    | 12/28/16 14:25 / jh     |
| Lead                                  | 0.03   | mg/L   |            | 0.01  |      | E200.8    | 12/28/16 17:38 / jpv    |
| Lithium                               | 0.47   | mg/L   | D          | 0.02  |      | E200.7    | 12/28/16 14:25 / jh     |
| Mercury                               | 0.003  | mg/L   |            | 0.001 |      | E245.1    | 12/29/16 15:22 / ser    |
| Molybdenum                            | ND     | mg/L   |            | 0.05  |      | E200.7    | 12/28/16 14:25 / jh     |
| Selenium                              | ND     | mg/L   |            | 0.01  |      | E200.8    | 12/28/16 17:38 / jpv    |
| Thallium                              | ND     | mg/L   |            | 0.01  |      | E200.8    | 12/28/16 17:38 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |        |            |       |      |           |                         |
| Radium 226                            | 2.8    | pCi/L  |            |       |      | E903.0    | 01/11/17 16:40 / eli-ca |
| Radium 226 precision (±)              | 0.62   | pCi/L  |            |       |      | E903.0    | 01/11/17 16:40 / eli-ca |
| Radium 226 MDC                        | 0.20   | pCi/L  |            |       |      | E903.0    | 01/11/17 16:40 / eli-ca |
| Radium 228                            | 2.9    | pCi/L  |            |       |      | RA-05     | 01/06/17 12:53 / eli-ca |
| Radium 228 precision (±)              |        | pCi/L  |            |       |      | RA-05     | 01/06/17 12:53 / eli-ca |
| Radium 228 MDC                        | 2.4    | pCi/L  |            |       |      | RA-05     | 01/06/17 12:53 / eli-ca |
| Radium 226 + Radium 228               | 5.8    | pCi/L  |            |       |      | A7500-RA  | 01/12/17 12:49 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.6    | pCi/L  |            |       |      | A7500-RA  | 01/12/17 12:49 / eli-ca |
| Radium 226 + Radium 228 MDC           | 2.4    | pCi/L  |            |       |      | A7500-RA  | 01/12/17 12:49 / eli-ca |
|                                       |        |        |            |       |      |           |                         |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

#### LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA-6706-15-0060 Collection Date: 12/22/16 12:40 DateReceived: 12/23/16 Lab ID: B16121644-020 Client Sample ID: SFL-MW4 Matrix: Aqueous

| Analyses                              | Result | Unite | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| Analyses                              | Nesuit | Onits | Qualificis |       | QUL         | Metriod   | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |             |           |                         |
| Calcium                               | 858    | mg/L  |            | 1     |             | E200.7    | 12/28/16 14:36 / jh     |
| Magnesium                             | 132    | mg/L  |            | 1     |             | E200.7    | 12/28/16 14:36 / jh     |
| Potassium                             | 59     | mg/L  |            | 1     |             | E200.7    | 12/28/16 14:36 / jh     |
| Sodium                                | 1150   | mg/L  | D          | 4     |             | E200.7    | 12/28/16 14:36 / jh     |
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| рН                                    | 6.6    | s.u.  | Н          | 0.1   |             | A4500-H B | 12/23/16 12:11 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 6000   | mg/L  | D          | 100   |             | A2540 C   | 12/23/16 10:46 / jef    |
| INORGANICS                            |        |       |            |       |             |           |                         |
| Chloride                              | 1670   | mg/L  | D          | 6     |             | E300.0    | 12/27/16 21:40 / jpv    |
| Sulfate                               |        | mg/L  | D          | 20    |             | E300.0    | 12/27/16 21:40 / jpv    |
| Fluoride                              |        | mg/L  | Б          | 0.1   |             | A4500-F C | 12/30/16 16:58 / cjm    |
|                                       |        |       |            |       |             |           |                         |
| METALS, TOTAL RECOVERABLE             | ND     | ,,    |            | 0.05  |             | F000 0    | 10/00/10 17 11 /:       |
| Antimony                              |        | mg/L  |            | 0.05  |             | E200.8    | 12/28/16 17:41 / jpv    |
| Arsenic                               |        | mg/L  |            | 0.01  |             | E200.8    | 12/28/16 17:41 / jpv    |
| Barium                                |        | mg/L  |            | 0.01  |             | E200.7    | 12/28/16 14:36 / jh     |
| Beryllium                             |        | mg/L  |            | 0.001 |             | E200.8    | 12/28/16 17:41 / jpv    |
| Boron                                 |        | mg/L  |            | 0.05  |             | E200.7    | 12/28/16 14:36 / jh     |
| Cadmium                               |        | mg/L  |            | 0.01  |             | E200.7    | 12/28/16 14:36 / jh     |
| Chromium                              |        | mg/L  |            | 0.01  |             | E200.8    | 12/28/16 17:41 / jpv    |
| Cobalt                                |        | mg/L  |            | 0.02  |             | E200.7    | 12/28/16 14:36 / jh     |
| Lead                                  |        | mg/L  | _          | 0.01  |             | E200.8    | 12/28/16 17:41 / jpv    |
| Lithium                               |        | mg/L  | D          | 0.02  |             | E200.7    | 12/28/16 14:36 / jh     |
| Mercury                               |        | mg/L  |            | 0.001 |             | E245.1    | 12/28/16 17:13 / ser    |
| Molybdenum                            |        | mg/L  |            | 0.05  |             | E200.7    | 12/28/16 14:36 / jh     |
| Selenium                              |        | mg/L  |            | 0.01  |             | E200.8    | 12/28/16 17:41 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 12/28/16 17:41 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 226                            | 0.71   | pCi/L |            |       |             | E903.0    | 01/11/17 16:40 / eli-ca |
| Radium 226 precision (±)              | 0.21   | pCi/L |            |       |             | E903.0    | 01/11/17 16:40 / eli-ca |
| Radium 226 MDC                        | 0.21   | pCi/L |            |       |             | E903.0    | 01/11/17 16:40 / eli-ca |
| Radium 228                            | -0.4   | pCi/L | U          |       |             | RA-05     | 01/06/17 12:53 / eli-ca |
| Radium 228 precision (±)              | 1.4    | pCi/L |            |       |             | RA-05     | 01/06/17 12:53 / eli-ca |
| Radium 228 MDC                        | 2.5    | pCi/L |            |       |             | RA-05     | 01/06/17 12:53 / eli-ca |
| Radium 226 + Radium 228               | 0.4    | pCi/L | U          |       |             | A7500-RA  | 01/12/17 12:49 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.4    | pCi/L |            |       |             | A7500-RA  | 01/12/17 12:49 / eli-ca |
| Radium 226 + Radium 228 MDC           | 2.5    | pCi/L |            |       |             | A7500-RA  | 01/12/17 12:49 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

U - Not detected at minimum detectable concentration

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

TMPA-6706-15-0060 Project: Lab ID: B16121644-021 Client Sample ID: EQBK 12-22-16/SCM

**Report Date:** 01/12/17 Collection Date: 12/22/16 10:10 DateReceived: 12/23/16

Matrix: Aqueous

| Analyses                              | Result U | Jnits | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|----------|-------|------------|-------|-------------|-----------|-------------------------|
| MAJOR IONS                            |          |       |            |       |             |           |                         |
| Calcium                               | ND m     | na/L  |            | 1     |             | E200.7    | 12/28/16 14:39 / jh     |
| Magnesium                             | ND m     | U     |            | 1     |             | E200.7    | 12/28/16 14:39 / jh     |
| Potassium                             | ND m     | •     |            | 1     |             | E200.7    | 12/28/16 14:39 / jh     |
| Sodium                                | ND m     | •     |            | 1     |             | E200.7    | 12/28/16 14:39 / jh     |
| PHYSICAL PROPERTIES                   |          |       |            |       |             |           |                         |
| рН                                    | 5.9 s    | .u.   | Н          | 0.1   |             | A4500-H B | 12/23/16 12:14 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | ND m     | ng/L  |            | 10    |             | A2540 C   | 12/23/16 11:46 / jef    |
| INORGANICS                            |          |       |            |       |             |           |                         |
| Chloride                              | ND m     | ng/L  |            | 1     |             | E300.0    | 12/27/16 21:55 / jpv    |
| Sulfate                               | ND m     | ng/L  |            | 1     |             | E300.0    | 12/27/16 21:55 / jpv    |
| Fluoride                              | ND m     | ng/L  |            | 0.1   |             | A4500-F C | 12/30/16 17:07 / cjm    |
| METALS, TOTAL RECOVERABLE             |          |       |            |       |             |           |                         |
| Antimony                              | ND m     | ng/L  |            | 0.05  |             | E200.7    | 12/28/16 14:39 / jh     |
| Arsenic                               | ND m     | ng/L  |            | 0.01  |             | E200.8    | 12/28/16 17:44 / jpv    |
| Barium                                | ND m     | ng/L  |            | 0.01  |             | E200.7    | 12/28/16 14:39 / jh     |
| Beryllium                             | ND m     | ng/L  |            | 0.001 |             | E200.7    | 12/28/16 14:39 / jh     |
| Boron                                 | ND m     | ng/L  |            | 0.05  |             | E200.7    | 12/28/16 14:39 / jh     |
| Cadmium                               | ND m     | ng/L  |            | 0.01  |             | E200.7    | 12/28/16 14:39 / jh     |
| Chromium                              | ND m     | ng/L  |            | 0.01  |             | E200.7    | 12/28/16 14:39 / jh     |
| Cobalt                                | ND m     | ng/L  |            | 0.02  |             | E200.7    | 12/28/16 14:39 / jh     |
| Lead                                  | ND m     | ng/L  |            | 0.01  |             | E200.8    | 12/28/16 17:44 / jpv    |
| Lithium                               | ND m     | ng/L  |            | 0.01  |             | E200.7    | 12/28/16 14:39 / jh     |
| Mercury                               | ND m     | ng/L  |            | 0.001 |             | E245.1    | 12/28/16 17:15 / ser    |
| Molybdenum                            | ND m     | ng/L  |            | 0.05  |             | E200.7    | 12/28/16 14:39 / jh     |
| Selenium                              | ND m     | ng/L  |            | 0.01  |             | E200.8    | 12/28/16 17:44 / jpv    |
| Thallium                              | ND m     | ng/L  |            | 0.01  |             | E200.8    | 12/28/16 17:44 / jpv    |
| RADIONUCLIDES - TOTAL                 |          |       |            |       |             |           |                         |
| Radium 226                            | 0.12 p   | Ci/L  | U          |       |             | E903.0    | 01/11/17 16:40 / eli-ca |
| Radium 226 precision (±)              | 0.14 p   | Ci/L  |            |       |             | E903.0    | 01/11/17 16:40 / eli-ca |
| Radium 226 MDC                        | 0.21 p   | Ci/L  |            |       |             | E903.0    | 01/11/17 16:40 / eli-ca |
| Radium 228                            | -3 p     | Ci/L  | U          |       |             | RA-05     | 01/06/17 12:53 / eli-ca |
| Radium 228 precision (±)              | 1.4 p    | Ci/L  |            |       |             | RA-05     | 01/06/17 12:53 / eli-ca |
| Radium 228 MDC                        | 2.5 p    | Ci/L  |            |       |             | RA-05     | 01/06/17 12:53 / eli-ca |
| Radium 226 + Radium 228               | -2 p     | Ci/L  | U          |       |             | A7500-RA  | 01/12/17 12:49 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.4 p    | Ci/L  |            |       |             | A7500-RA  | 01/12/17 12:49 / eli-ca |
| Radium 226 + Radium 228 MDC           | 2.5 p    | Ci/L  |            |       |             | A7500-RA  | 01/12/17 12:49 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

U - Not detected at minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:01/09/17Project:TMPA-6706-15-0060Work Order:B16121644

| Analyte           | Cour                | nt Result      | Units       | RL  | %REC | Low Limit  | High Limit    | RPD | RPDLimit | Qual      |
|-------------------|---------------------|----------------|-------------|-----|------|------------|---------------|-----|----------|-----------|
| Method: A25       | 540 C               |                |             |     |      |            |               |     | Batch    | n: 105401 |
| Lab ID: B16       | 121540-007A DUP     | Sample Duplica | ite         |     |      | Run: BAL#  | SD-15_161222A |     | 12/22/   | 16 16:14  |
| Solids, Total Dis | ssolved TDS @ 180 C | 8790           | mg/L        | 100 |      |            |               | 0.1 | 5        |           |
| Lab ID: B16       | 121644-005A DUP     | Sample Duplica | ite         |     |      | Run: BAL # | SD-15_161222A |     | 12/22/   | 16 16:14  |
| Solids, Total Dis | ssolved TDS @ 180 C | 6900           | mg/L        | 100 |      |            |               | 1.3 | 5        |           |
| Lab ID: LCS       | S-105401            | Laboratory Con | trol Sample |     |      | Run: BAL # | SD-15_161222A |     | 12/22/   | 16 16:14  |
| Solids, Total Dis | ssolved TDS @ 180 C | 1000           | mg/L        | 10  | 100  | 90         | 110           |     |          |           |
| Lab ID: MB-       | -105401             | Method Blank   |             |     |      | Run: BAL # | SD-15_161222A |     | 12/22/   | 16 16:14  |
| Solids, Total Dis | ssolved TDS @ 180 C | ND             | mg/L        | 5   |      |            |               |     |          |           |
| Method: A2        | 540 C               |                |             |     |      |            |               |     | Batch    | n: 105416 |
| Lab ID: MB-       | -105416             | Method Blank   |             |     |      | Run: BAL#  | SD-15_161223B |     | 12/23/   | 16 08:28  |
| Solids, Total Dis | ssolved TDS @ 180 C | ND             | mg/L        | 5   |      |            |               |     |          |           |
| Lab ID: LCS       | S-105416            | Laboratory Con | trol Sample |     |      | Run: BAL # | SD-15_161223B |     | 12/23/   | 16 08:29  |
| Solids, Total Dis | ssolved TDS @ 180 C | 996            | mg/L        | 10  | 99   | 90         | 110           |     |          |           |
| Lab ID: B16       | 121731-007A DUP     | Sample Duplica | ite         |     |      | Run: BAL#  | SD-15_161223B |     | 12/23/   | 16 08:29  |
| Solids, Total Dis | ssolved TDS @ 180 C | 1410           | mg/L        | 10  |      |            |               | 8.0 | 5        |           |
| Lab ID: B16       | 121644-012A DUP     | Sample Duplica | ite         |     |      | Run: BAL # | SD-15_161223B |     | 12/23/   | 16 10:46  |
| Solids, Total Dis | ssolved TDS @ 180 C | 1400           | mg/L        | 20  |      |            |               | 0.4 | 5        |           |

### Qualifiers:

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:01/09/17Project:TMPA-6706-15-0060Work Order:B16121644

| Analyte  |                  | Count        | Result        | Units               | RL     | %REC | Low Limit | High Limit   | RPD     | RPDLimit | Qual      |
|----------|------------------|--------------|---------------|---------------------|--------|------|-----------|--------------|---------|----------|-----------|
| Method:  | A4500-F C        |              |               |                     |        |      |           | Analytica    | al Run: | MAN-TECH | _161227A  |
| Lab ID:  | ICV              | Initia       | al Calibratio | on Verification Sta | ındard |      |           |              |         | 12/27    | /16 15:46 |
| Fluoride |                  |              | 0.990         | mg/L                | 0.10   | 99   | 90        | 110          |         |          |           |
| Method:  | A4500-F C        |              |               |                     |        |      |           |              |         | Batch:   | R272315   |
| Lab ID:  | MBLK             | Met          | hod Blank     |                     |        |      | Run: MAN- | TECH_161227A |         | 12/27    | /16 15:40 |
| Fluoride |                  |              | ND            | mg/L                | 0.03   |      |           |              |         |          |           |
| Lab ID:  | LFB              | Lab          | oratory For   | tified Blank        |        |      | Run: MAN- | TECH_161227A |         | 12/27    | /16 15:43 |
| Fluoride |                  |              | 1.01          | mg/L                | 0.10   | 101  | 90        | 110          |         |          |           |
| Lab ID:  | B16121513-001AMS | San          | nple Matrix   | Spike               |        |      | Run: MAN- | TECH_161227A |         | 12/27    | /16 15:59 |
| Fluoride |                  |              | 2.00          | mg/L                | 0.10   | 102  | 80        | 120          |         |          |           |
| Lab ID:  | B16121513-001AMS | <b>D</b> San | nple Matrix   | Spike Duplicate     |        |      | Run: MAN- | TECH_161227A |         | 12/27    | /16 16:01 |
| Fluoride |                  |              | 1.99          | mg/L                | 0.10   | 101  | 80        | 120          | 0.5     | 10       |           |
| Lab ID:  | B16121644-007AMS | San          | nple Matrix   | Spike               |        |      | Run: MAN- | TECH_161227A |         | 12/27    | /16 16:59 |
| Fluoride |                  |              | 1.01          | mg/L                | 0.10   | 94   | 80        | 120          |         |          |           |
| Lab ID:  | B16121644-007AMS | <b>D</b> San | nple Matrix   | Spike Duplicate     |        |      | Run: MAN- | TECH_161227A |         | 12/27    | /16 17:02 |
| Fluoride |                  |              | 1.02          | mg/L                | 0.10   | 95   | 80        | 120          | 1.0     | 10       |           |
| Method:  | A4500-F C        |              |               |                     |        |      |           | Analytica    | al Run: | MAN-TECH | _161230A  |
| Lab ID:  | ICV              | Initia       | al Calibratio | on Verification Sta | ındard |      |           |              |         | 12/30/   | /16 15:22 |
| Fluoride |                  |              | 1.01          | mg/L                | 0.10   | 101  | 90        | 110          |         |          |           |
| Method:  | A4500-F C        |              |               |                     |        |      |           |              |         | Batch:   | R272512   |
| Lab ID:  | MBLK             | Met          | hod Blank     |                     |        |      | Run: MAN- | TECH_161230A |         | 12/30/   | /16 15:16 |
| Fluoride |                  |              | ND            | mg/L                | 0.03   |      |           |              |         |          |           |
| Lab ID:  | LFB              | Lab          | oratory For   | tified Blank        |        |      | Run: MAN- | TECH_161230A |         | 12/30/   | /16 15:19 |
| Fluoride |                  |              | 1.05          | mg/L                | 0.10   | 105  | 90        | 110          |         |          |           |
| Lab ID:  | B16121644-017AMS | San          | nple Matrix   | Spike               |        |      | Run: MAN- | TECH_161230A |         | 12/30/   | /16 16:36 |
| Fluoride |                  |              | 1.17          | mg/L                | 0.10   | 98   | 80        | 120          |         |          |           |
| Lab ID:  | B16121644-017AMS | <b>D</b> San | nple Matrix   | Spike Duplicate     |        |      | Run: MAN- | TECH_161230A |         | 12/30    | /16 16:43 |
| Fluoride |                  |              | 1.09          | mg/L                | 0.10   | 90   | 80        | 120          | 7.1     | 10       |           |

#### Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:01/09/17Project:TMPA-6706-15-0060Work Order:B16121644

| Analyte |                   | Count        | Result        | Units      | RL             | %REC | Low Limit | High Limit    | RPD I   | RPDLimit   | Qual     |
|---------|-------------------|--------------|---------------|------------|----------------|------|-----------|---------------|---------|------------|----------|
| Method: | A4500-H B         |              |               |            |                |      |           | Analytical    | Run: PH | SC _101-B_ | 161222A  |
| Lab ID: | pH 8              | Initia       | al Calibratio | n Verifica | ition Standard |      |           |               |         | 12/22/     | 16 09:52 |
| pН      |                   |              | 7.97          | s.u.       | 0.10           | 100  | 98        | 102           |         |            |          |
| Method: | A4500-H B         |              |               |            |                |      |           |               |         | Batch:     | R272118  |
| Lab ID: | B16121644-001ADUF | <b>P</b> San | nple Duplica  | ate        |                |      | Run: PHSC | _101-B_161222 | Α       | 12/22/     | 16 16:08 |
| pН      |                   |              | 6.04          | s.u.       | 0.10           |      |           |               | 0.7     | 3          |          |
| Lab ID: | B16121645-003ADUF | <b>P</b> San | nple Duplica  | ate        |                |      | Run: PHSC | _101-B_161222 | Α       | 12/22/     | 16 16:45 |
| pН      |                   |              | 7.49          | s.u.       | 0.10           |      |           |               | 0.1     | 3          |          |
| Method: | A4500-H B         |              |               |            |                |      |           | Analytical    | Run: PH | SC _101-B_ | 161223A  |
| Lab ID: | pH 8              | Initia       | al Calibratio | n Verifica | tion Standard  |      |           |               |         | 12/23/     | 16 08:37 |
| pН      |                   |              | 7.97          | s.u.       | 0.10           | 100  | 98        | 102           |         |            |          |
| Method: | A4500-H B         |              |               |            |                |      |           |               |         | Batch:     | R272190  |
| Lab ID: | B16121644-009ADUF | <b>P</b> San | nple Duplica  | ate        |                |      | Run: PHSC | _101-B_161223 | Α       | 12/23/     | 16 11:40 |
| pН      |                   |              | 5.53          | s.u.       | 0.10           |      |           |               | 0.0     | 3          |          |
| Lab ID: | B16121644-019ADUF | <b>9</b> San | nple Duplica  | ate        |                |      | Run: PHSC | _101-B_161223 | A       | 12/23/     | 16 12:09 |
| pН      |                   |              | 3.84          | s.u.       | 0.10           |      |           |               | 0.0     | 3          |          |



Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:01/09/17Project:TMPA-6706-15-0060Work Order:B16121644

| Analyte            |                   | Count         | Result       | Units           | RL            | %REC | Low Limit  | High Limit  | RPD        | RPDLimit    | Qual             |
|--------------------|-------------------|---------------|--------------|-----------------|---------------|------|------------|-------------|------------|-------------|------------------|
| Method:            | E200.7            |               |              |                 |               |      |            | Anal        | ytical Rui | n: ICP203-B | _161227 <i>F</i> |
| Lab ID:            | ICV               | 6 Co          | ntinuing Cal | ibration Verifi | cation Standa | rd   |            |             |            | 12/27       | /16 11:06        |
| Boron              |                   |               | 2.46         | mg/L            | 0.10          | 98   | 95         | 105         |            |             |                  |
| Calcium            |                   |               | 25.1         | mg/L            | 1.0           | 101  | 95         | 105         |            |             |                  |
| Lithium            |                   |               | 1.26         | mg/L            | 0.10          | 101  | 95         | 105         |            |             |                  |
| Magnesiur          | m                 |               | 25.1         | mg/L            | 1.0           | 100  | 95         | 105         |            |             |                  |
| Potassium          | า                 |               | 25.0         | mg/L            | 1.0           | 100  | 95         | 105         |            |             |                  |
| Sodium             |                   |               | 25.0         | mg/L            | 1.0           | 100  | 95         | 105         |            |             |                  |
| Method:            | E200.7            |               |              |                 |               |      |            |             |            | Batc        | h: 105395        |
| Lab ID:            | MB-105395         | 6 Me          | thod Blank   |                 |               |      | Run: ICP20 | 3-B_161227A |            | 12/27       | /16 12:54        |
| Boron              |                   |               | ND           | mg/L            | 0.003         |      |            |             |            |             |                  |
| Calcium            |                   |               | 0.08         | mg/L            | 0.03          |      |            |             |            |             |                  |
| Lithium            |                   |               | 0.007        | mg/L            | 0.002         |      |            |             |            |             |                  |
| Magnesiu           | m                 |               | ND           | mg/L            | 0.04          |      |            |             |            |             |                  |
| Potassium          | า                 |               | ND           | mg/L            | 0.08          |      |            |             |            |             |                  |
| Sodium             |                   |               | ND           | mg/L            | 0.4           |      |            |             |            |             |                  |
| Lab ID:            | LCS-105395        | 6 La          | boratory Cor | ntrol Sample    |               |      | Run: ICP20 | 3-B_161227A |            | 12/27       | /16 12:58        |
| Boron              |                   |               | 0.516        | mg/L            | 0.10          | 103  | 85         | 115         |            |             |                  |
| Calcium            |                   |               | 27.7         | mg/L            | 1.0           | 110  | 85         | 115         |            |             |                  |
| Lithium            |                   |               | 0.556        | mg/L            | 0.10          | 110  | 85         | 115         |            |             |                  |
| Magnesiur          | m                 |               | 27.8         | mg/L            | 1.0           | 111  | 85         | 115         |            |             |                  |
| Potassium          |                   |               | 27.4         | mg/L            | 1.0           | 110  | 85         | 115         |            |             |                  |
| Sodium             |                   |               | 27.7         | mg/L            | 1.0           | 111  | 85         | 115         |            |             |                  |
| Lab ID:            | B16121242-002AMS3 | 6 Sa          | mple Matrix  | Spike           |               |      | Run: ICP20 | 3-B_161227A |            | 12/27       | /16 13:12        |
| Boron              |                   |               | 1.18         | mg/L            | 0.050         | 103  | 70         | 130         |            |             |                  |
| Calcium            |                   |               | 253          | mg/L            | 1.0           |      | 70         | 130         |            |             | Α                |
| Lithium            |                   |               | 1.11         | mg/L            | 0.10          | 103  | 70         | 130         |            |             |                  |
| Magnesiu           | m                 |               | 122          | mg/L            | 1.0           | 113  | 70         | 130         |            |             |                  |
| Potassium          | า                 |               | 61.3         | mg/L            | 1.0           | 105  | 70         | 130         |            |             |                  |
| Sodium             |                   |               | 131          | mg/L            | 1.8           | 120  | 70         | 130         |            |             |                  |
| Lab ID:            | B16121242-002AMSE | <b>)</b> 6 Sa | mple Matrix  | Spike Duplica   | ate           |      | Run: ICP20 | 3-B_161227A |            | 12/27       | /16 13:22        |
| Boron              |                   |               | 1.16         | mg/L            | 0.050         | 102  | 70         | 130         | 1.3        | 20          |                  |
| Calcium            |                   |               | 249          | mg/L            | 1.0           |      | 70         | 130         | 1.6        | 20          | Α                |
| Lithium            |                   |               | 1.11         | mg/L            | 0.10          | 103  | 70         | 130         | 0.1        | 20          |                  |
| Magnesiur          | m                 |               | 121          | mg/L            | 1.0           | 111  | 70         | 130         | 8.0        | 20          |                  |
| Potassium          | า                 |               | 61.1         | mg/L            | 1.0           | 105  | 70         | 130         | 0.3        | 20          |                  |
| Sodium             |                   |               | 130          | mg/L            | 1.8           | 117  | 70         | 130         | 1.3        | 20          |                  |
| Lab ID:            | B16121696-004BMS3 | 6 Sa          | mple Matrix  | Spike           |               |      | Run: ICP20 | 3-B_161227A |            | 12/27       | /16 14:11        |
| Boron              |                   |               | 0.886        | mg/L            | 0.050         | 103  | 70         | 130         |            |             |                  |
|                    |                   |               | 136          | mg/L            | 1.0           |      | 70         | 130         |            |             | Α                |
| Calcium            |                   |               |              |                 |               |      |            |             |            |             |                  |
| Calcium<br>Lithium |                   |               | 0.604        | mg/L            | 0.10          | 104  | 70         | 130         |            |             |                  |

# Qualifiers:

RL - Analyte reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:01/09/17Project:TMPA-6706-15-0060Work Order:B16121644

| Analyte   |                   | Count        | Result       | Units     | RL     | %REC | Low Limit  | High Limit  | RPD | RPDLimit | Qual      |
|-----------|-------------------|--------------|--------------|-----------|--------|------|------------|-------------|-----|----------|-----------|
| Method:   | E200.7            |              |              |           |        |      |            |             |     | Batcl    | h: 105395 |
| Lab ID:   | B16121696-004BMS3 | <b>3</b> 6 S | ample Matrix | Spike     |        |      | Run: ICP20 | 3-B_161227A |     | 12/27/   | 16 14:11  |
| Potassium |                   |              | 39.9         | mg/L      | 1.0    | 104  | 70         | 130         |     |          |           |
| Sodium    |                   |              | 179          | mg/L      | 1.0    |      | 70         | 130         |     |          | Α         |
| Lab ID:   | B16121696-004BMSE | <b>o</b> 6 s | ample Matrix | Spike Dup | licate |      | Run: ICP20 | 3-B_161227A |     | 12/27/   | 16 14:15  |
| Boron     |                   |              | 1.44         | mg/L      | 0.050  | 107  | 70         | 130         | 47  | 20       | R         |
| Calcium   |                   |              | 165          | mg/L      | 1.0    |      | 70         | 130         | 19  | 20       | Α         |
| Lithium   |                   |              | 1.15         | mg/L      | 0.10   | 107  | 70         | 130         | 63  | 20       | R         |
| Magnesium | 1                 |              | 107          | mg/L      | 1.0    | 111  | 70         | 130         | 31  | 20       | R         |
| Potassium |                   |              | 67.7         | mg/L      | 1.0    | 108  | 70         | 130         | 52  | 20       | R         |
| Sodium    |                   |              | 210          | mg/L      | 1.0    |      | 70         | 130         | 15  | 20       | Α         |

## Qualifiers:

RL - Analyte reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

R - RPD exceeds advisory limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:01/09/17Project:TMPA-6706-15-0060Work Order:B16121644

|                                                                                                     |                                      | Count          | Result                                      | Units                                                 | RL                                   | %REC            | Low Limit                                | High Limit                                      | RPD         | RPDLimit   | Qual           |
|-----------------------------------------------------------------------------------------------------|--------------------------------------|----------------|---------------------------------------------|-------------------------------------------------------|--------------------------------------|-----------------|------------------------------------------|-------------------------------------------------|-------------|------------|----------------|
| Method:                                                                                             | E200.7                               |                |                                             |                                                       |                                      |                 |                                          | Anal                                            | lytical Run | : ICP203-B | _161228A       |
| Lab ID:                                                                                             | ICV                                  | 13 Cor         | ntinuing Cali                               | bration Verifi                                        | cation Standa                        | rd              |                                          |                                                 |             | 12/28      | /16 09:49      |
| Antimony                                                                                            |                                      |                | 2.58                                        | mg/L                                                  | 0.050                                | 103             | 95                                       | 105                                             |             |            |                |
| Barium                                                                                              |                                      |                | 2.49                                        | mg/L                                                  | 0.10                                 | 99              | 95                                       | 105                                             |             |            |                |
| Beryllium                                                                                           |                                      |                | 1.25                                        | mg/L                                                  | 0.010                                | 100             | 95                                       | 105                                             |             |            |                |
| Boron                                                                                               |                                      |                | 2.51                                        | mg/L                                                  | 0.10                                 | 100             | 95                                       | 105                                             |             |            |                |
| Cadmium                                                                                             |                                      |                | 2.48                                        | mg/L                                                  | 0.010                                | 99              | 95                                       | 105                                             |             |            |                |
| Calcium                                                                                             |                                      |                | 25.1                                        | mg/L                                                  | 1.0                                  | 101             | 95                                       | 105                                             |             |            |                |
| Chromium                                                                                            |                                      |                | 2.45                                        | mg/L                                                  | 0.050                                | 98              | 95                                       | 105                                             |             |            |                |
| Cobalt                                                                                              |                                      |                | 2.49                                        | mg/L                                                  | 0.020                                | 99              | 95                                       | 105                                             |             |            |                |
| Lithium                                                                                             |                                      |                | 1.26                                        | mg/L                                                  | 0.10                                 | 101             | 95                                       | 105                                             |             |            |                |
| Magnesiun                                                                                           | n                                    |                | 24.9                                        | mg/L                                                  | 1.0                                  | 99              | 95                                       | 105                                             |             |            |                |
| Molybdenu                                                                                           |                                      |                | 2.52                                        | mg/L                                                  | 0.10                                 | 101             | 95                                       | 105                                             |             |            |                |
| Potassium                                                                                           |                                      |                | 24.9                                        | mg/L                                                  | 1.0                                  | 99              | 95                                       | 105                                             |             |            |                |
| Sodium                                                                                              |                                      |                | 25.0                                        | mg/L                                                  | 1.0                                  | 100             | 95                                       | 105                                             |             |            |                |
| Method:                                                                                             | E200.7                               |                |                                             |                                                       |                                      |                 |                                          |                                                 |             | Batc       | h: 105432      |
| Lab ID:                                                                                             | MB-105432                            | 8 Me           | thod Blank                                  |                                                       |                                      |                 | Run: ICP20                               | 3-B_161228A                                     |             | 12/28      | /16 12:10      |
| Antimony                                                                                            |                                      |                | ND                                          | mg/L                                                  | 0.02                                 |                 |                                          |                                                 |             |            |                |
| Boron                                                                                               |                                      |                | ND                                          | mg/L                                                  | 0.003                                |                 |                                          |                                                 |             |            |                |
| Calcium                                                                                             |                                      |                | ND                                          | mg/L                                                  | 0.03                                 |                 |                                          |                                                 |             |            |                |
| Lithium                                                                                             |                                      |                | 0.007                                       | mg/L                                                  | 0.002                                |                 |                                          |                                                 |             |            |                |
| Magnesiun                                                                                           | n                                    |                | ND                                          | mg/L                                                  | 0.04                                 |                 |                                          |                                                 |             |            |                |
| Molybdenu                                                                                           |                                      |                | ND                                          | mg/L                                                  | 0.004                                |                 |                                          |                                                 |             |            |                |
| Potassium                                                                                           |                                      |                | ND                                          | mg/L                                                  | 0.08                                 |                 |                                          |                                                 |             |            |                |
| Sodium                                                                                              |                                      |                | ND                                          | mg/L                                                  | 0.4                                  |                 |                                          |                                                 |             |            |                |
| Lab ID:                                                                                             | LCS-105432                           | 8 Lab          | oratory Cor                                 | trol Sample                                           |                                      |                 | Run: ICP20                               | 3-B_161228A                                     |             | 12/28      | /16 12:14      |
| Antimony                                                                                            |                                      |                | 0.526                                       | mg/L                                                  | 0.10                                 | 105             | 85                                       | _<br>115                                        |             |            |                |
| Boron                                                                                               |                                      |                | 0.468                                       | mg/L                                                  | 0.10                                 | 94              | 85                                       | 115                                             |             |            |                |
| Calcium                                                                                             |                                      |                | 25.0                                        | mg/L                                                  | 1.0                                  | 100             | 85                                       | 115                                             |             |            |                |
| Lithium                                                                                             |                                      |                | 0.506                                       | mg/L                                                  | 0.10                                 | 100             | 85                                       | 115                                             |             |            |                |
| Magnesiun                                                                                           | n                                    |                | 24.9                                        | mg/L                                                  | 1.0                                  | 100             | 85                                       | 115                                             |             |            |                |
|                                                                                                     |                                      |                | 0.489                                       | mg/L                                                  | 0.10                                 | 98              | 85                                       | 115                                             |             |            |                |
| -                                                                                                   |                                      |                | 24.8                                        | mg/L                                                  | 1.0                                  | 99              | 85                                       | 115                                             |             |            |                |
| Molybdenu<br>Potassium                                                                              | 1                                    |                |                                             |                                                       |                                      |                 |                                          |                                                 |             |            |                |
| Molybdenu                                                                                           | ı                                    |                | 24.9                                        | mg/L                                                  | 1.0                                  | 100             | 85                                       | 115                                             |             |            |                |
| Molybdenu<br>Potassium                                                                              | B16121644-003BMS3                    | <b>3</b> 8 Sar | 24.9                                        | mg/L                                                  | 1.0                                  | 100             |                                          |                                                 |             | 12/28/     | /16 12:32      |
| Molybdenu<br>Potassium<br>Sodium                                                                    |                                      | <b>3</b> 8 Sar |                                             | mg/L<br>Spike                                         |                                      |                 | Run: ICP20                               | 3-B_161228A                                     |             | 12/28/     | /16 12:32<br>S |
| Molybdenu<br>Potassium<br>Sodium<br>Lab ID:                                                         |                                      | <b>3</b> 8 Sar | 24.9<br>mple Matrix                         | mg/L<br>Spike<br>mg/L                                 | 0.022<br>0.050                       | 100<br>65<br>97 |                                          |                                                 |             | 12/28/     |                |
| Molybdenu<br>Potassium<br>Sodium<br>Lab ID:<br>Antimony                                             |                                      | <b>3</b> 8 Sar | 24.9<br>mple Matrix<br>0.325                | mg/L<br>Spike<br>mg/L<br>mg/L                         | 0.022                                | 65              | Run: ICP20<br>70                         | 3-B_161228A<br>130                              |             | 12/28/     |                |
| Molybdenu<br>Potassium<br>Sodium<br><b>Lab ID:</b><br>Antimony<br>Boron<br>Calcium                  |                                      | <b>3</b> 8 Sar | 24.9<br>mple Matrix<br>0.325<br>1.29        | mg/L<br>Spike<br>mg/L<br>mg/L<br>mg/L                 | 0.022<br>0.050                       | 65              | Run: ICP20<br>70<br>70                   | 03-B_161228A<br>130<br>130                      |             | 12/28/     | S              |
| Molybdenu<br>Potassium<br>Sodium<br><b>Lab ID:</b><br>Antimony<br>Boron<br>Calcium<br>Lithium       | B16121644-003BMS                     | <b>3</b> 8 Sar | 24.9<br>mple Matrix<br>0.325<br>1.29<br>643 | mg/L<br>Spike<br>mg/L<br>mg/L<br>mg/L<br>mg/L         | 0.022<br>0.050<br>1.0<br>0.10        | 65<br>97        | Run: ICP20<br>70<br>70<br>70<br>70       | 13-B_161228A<br>130<br>130<br>130<br>130        |             | 12/28/     | S              |
| Molybdenu<br>Potassium<br>Sodium<br>Lab ID:<br>Antimony<br>Boron<br>Calcium<br>Lithium<br>Magnesium | <b>B16121644-003BMS</b> 3            | <b>3</b> 8 Sar | 24.9 mple Matrix 0.325 1.29 643 1.61 168    | mg/L<br>Spike<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L | 0.022<br>0.050<br>1.0<br>0.10<br>1.0 | 65<br>97<br>92  | Run: ICP20<br>70<br>70<br>70<br>70<br>70 | 13-B_161228A<br>130<br>130<br>130<br>130<br>130 |             | 12/28/     | S<br>A         |
| Molybdenu<br>Potassium<br>Sodium<br><b>Lab ID:</b><br>Antimony<br>Boron<br>Calcium<br>Lithium       | <b>B16121644-003BMS</b> 3<br>m<br>um | <b>3</b> 8 Sar | 24.9 mple Matrix 0.325 1.29 643 1.61        | mg/L<br>Spike<br>mg/L<br>mg/L<br>mg/L<br>mg/L         | 0.022<br>0.050<br>1.0<br>0.10        | 65<br>97        | Run: ICP20<br>70<br>70<br>70<br>70       | 13-B_161228A<br>130<br>130<br>130<br>130        |             | 12/28/     | S<br>A         |

# Qualifiers:

RL - Analyte reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

S - Spike recovery outside of advisory limits.



Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:01/09/17Project:TMPA-6706-15-0060Work Order:B16121644

| Analyte   |                   | Count  | Result      | Units           | RL     | %REC | Low Limit  | High Limit   | RPD | RPDLimit | Qual      |
|-----------|-------------------|--------|-------------|-----------------|--------|------|------------|--------------|-----|----------|-----------|
| Method:   | E200.7            |        |             |                 |        |      |            |              |     | Bato     | h: 105432 |
| Lab ID:   | B16121644-003BMSD | 8 Sar  | nple Matrix | Spike Duplicate |        |      | Run: ICP20 | )3-B_161228A |     | 12/28    | /16 12:36 |
| Antimony  |                   |        | 0.320       | mg/L            | 0.022  | 64   | 70         | 130          | 1.4 | 20       | S         |
| Boron     |                   |        | 1.37        | mg/L            | 0.050  | 113  | 70         | 130          | 5.8 | 20       |           |
| Calcium   |                   |        | 691         | mg/L            | 1.0    |      | 70         | 130          | 7.2 | 20       | Α         |
| Lithium   |                   |        | 1.73        | mg/L            | 0.10   | 116  | 70         | 130          | 7.0 | 20       |           |
| Magnesium | 1                 |        | 179         | mg/L            | 1.0    |      | 70         | 130          | 6.1 | 20       | Α         |
| Molybdenu | m                 |        | 0.441       | mg/L            | 0.0043 | 86   | 70         | 130          | 0.0 | 20       |           |
| Potassium |                   |        | 82.0        | mg/L            | 1.0    | 114  | 70         | 130          | 5.8 | 20       |           |
| Sodium    |                   |        | 1280        | mg/L            | 1.0    |      | 70         | 130          | 6.5 | 20       | Α         |
| Method:   | E200.7            |        |             |                 |        |      |            |              |     | Bato     | h: 105433 |
| Lab ID:   | MB-105433         | 13 Me  | thod Blank  |                 |        |      | Run: ICP20 | )3-B_161228A |     | 12/28    | /16 12:58 |
| Antimony  |                   |        | ND          | mg/L            | 0.02   |      |            |              |     |          |           |
| Barium    |                   |        | ND          | mg/L            | 0.0003 |      |            |              |     |          |           |
| Beryllium |                   |        | ND          | mg/L            | 0.0001 |      |            |              |     |          |           |
| Boron     |                   |        | ND          | mg/L            | 0.003  |      |            |              |     |          |           |
| Cadmium   |                   |        | ND          | mg/L            | 0.0008 |      |            |              |     |          |           |
| Calcium   |                   |        | ND          | mg/L            | 0.03   |      |            |              |     |          |           |
| Chromium  |                   |        | ND          | mg/L            | 0.002  |      |            |              |     |          |           |
| Cobalt    |                   |        | 0.004       | mg/L            | 0.001  |      |            |              |     |          |           |
| Lithium   |                   |        | 0.007       | mg/L            | 0.002  |      |            |              |     |          |           |
| Magnesium | 1                 |        | ND          | mg/L            | 0.04   |      |            |              |     |          |           |
| Molybdenu | m                 |        | 0.006       | mg/L            | 0.004  |      |            |              |     |          |           |
| Potassium |                   |        | ND          | mg/L            | 0.08   |      |            |              |     |          |           |
| Sodium    |                   |        | ND          | mg/L            | 0.4    |      |            |              |     |          |           |
| Lab ID:   | LCS-105433        | 13 Lab | oratory Co  | ntrol Sample    |        |      | Run: ICP20 | )3-B_161228A |     | 12/28    | /16 13:01 |
| Antimony  |                   |        | 0.529       | mg/L            | 0.10   | 106  | 85         | 115          |     |          |           |
| Barium    |                   |        | 0.531       | mg/L            | 0.10   | 106  | 85         | 115          |     |          |           |
| Beryllium |                   |        | 0.267       | mg/L            | 0.010  | 107  | 85         | 115          |     |          |           |
| Boron     |                   |        | 0.502       | mg/L            | 0.10   | 100  | 85         | 115          |     |          |           |
| Cadmium   |                   |        | 0.257       | mg/L            | 0.010  | 103  | 85         | 115          |     |          |           |
| Calcium   |                   |        | 26.6        | mg/L            | 1.0    | 106  | 85         | 115          |     |          |           |
| Chromium  |                   |        | 0.513       | mg/L            | 0.050  | 103  | 85         | 115          |     |          |           |
| Cobalt    |                   |        | 0.522       | mg/L            | 0.050  | 104  | 85         | 115          |     |          |           |
| Lithium   |                   |        | 0.541       | mg/L            | 0.10   | 107  | 85         | 115          |     |          |           |
| Magnesium | ı                 |        | 26.4        | mg/L            | 1.0    | 105  | 85         | 115          |     |          |           |
| Molybdenu | m                 |        | 0.509       | mg/L            | 0.10   | 101  | 85         | 115          |     |          |           |
| Potassium |                   |        | 26.4        | mg/L            | 1.0    | 105  | 85         | 115          |     |          |           |
| Sodium    |                   |        | 26.5        | mg/L            | 1.0    | 106  | 85         | 115          |     |          |           |
| Lab ID:   | B16121644-009BMS3 | 13 Sar | mple Matrix | Spike           |        |      | Run: ICP20 | )3-B_161228A |     | 12/28    | /16 13:15 |
| Antimony  |                   |        | 0.551       | mg/L            | 0.043  | 110  | 70         | 130          |     |          |           |
| Barium    |                   |        | 0.539       | mg/L            | 0.050  | 103  | 70         | 130          |     |          |           |
| Beryllium |                   |        | 0.264       | mg/L            | 0.0010 | 104  | 70         | 130          |     |          |           |
| Boron     |                   |        | 4.31        | mg/L            | 0.050  |      | 70         | 130          |     |          | Α         |

# Qualifiers:

RL - Analyte reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

S - Spike recovery outside of advisory limits.



Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:01/09/17Project:TMPA-6706-15-0060Work Order:B16121644

| Analyte   |                   | Count           | Result      | Units           | RL     | %REC | Low Limit  | High Limit  | RPD | RPDLimit | Qual      |
|-----------|-------------------|-----------------|-------------|-----------------|--------|------|------------|-------------|-----|----------|-----------|
| Method:   | E200.7            |                 |             |                 |        |      |            |             |     | Batcl    | n: 105433 |
| Lab ID:   | B16121644-009BMS3 | 3 13 Sar        | mple Matrix | Spike           |        |      | Run: ICP20 | 3-B_161228A |     | 12/28/   | 16 13:15  |
| Cadmium   |                   |                 | 0.255       | mg/L            | 0.0016 | 101  | 70         | 130         |     |          |           |
| Calcium   |                   |                 | 159         | mg/L            | 1.0    |      | 70         | 130         |     |          | Α         |
| Chromium  |                   |                 | 0.489       | mg/L            | 0.0050 | 98   | 70         | 130         |     |          |           |
| Cobalt    |                   |                 | 0.560       | mg/L            | 0.0050 | 101  | 70         | 130         |     |          |           |
| Lithium   |                   |                 | 0.580       | mg/L            | 0.10   | 102  | 70         | 130         |     |          |           |
| Magnesiun | n                 |                 | 45.8        | mg/L            | 1.0    | 99   | 70         | 130         |     |          |           |
| Molybdenu | ım                |                 | 0.532       | mg/L            | 0.0086 | 102  | 70         | 130         |     |          |           |
| Potassium |                   |                 | 37.1        | mg/L            | 1.0    | 100  | 70         | 130         |     |          |           |
| Sodium    |                   |                 | 263         | mg/L            | 1.0    |      | 70         | 130         |     |          | Α         |
| Lab ID:   | B16121644-009BMSE | <b>)</b> 13 Sar | mple Matrix | Spike Duplicate |        |      | Run: ICP20 | 3-B_161228A |     | 12/28/   | 16 13:19  |
| Antimony  |                   |                 | 0.553       | mg/L            | 0.043  | 111  | 70         | 130         | 0.5 | 20       |           |
| Barium    |                   |                 | 0.535       | mg/L            | 0.050  | 102  | 70         | 130         | 0.7 | 20       |           |
| Beryllium |                   |                 | 0.265       | mg/L            | 0.0010 | 105  | 70         | 130         | 0.4 | 20       |           |
| Boron     |                   |                 | 4.20        | mg/L            | 0.050  |      | 70         | 130         | 2.6 | 20       | Α         |
| Cadmium   |                   |                 | 0.260       | mg/L            | 0.0016 | 102  | 70         | 130         | 1.8 | 20       |           |
| Calcium   |                   |                 | 156         | mg/L            | 1.0    |      | 70         | 130         | 1.7 | 20       | Α         |
| Chromium  |                   |                 | 0.488       | mg/L            | 0.0050 | 98   | 70         | 130         | 0.3 | 20       |           |
| Cobalt    |                   |                 | 0.567       | mg/L            | 0.0050 | 102  | 70         | 130         | 1.1 | 20       |           |
| Lithium   |                   |                 | 0.580       | mg/L            | 0.10   | 102  | 70         | 130         | 0.0 | 20       |           |
| Magnesiun | n                 |                 | 45.5        | mg/L            | 1.0    | 98   | 70         | 130         | 0.6 | 20       |           |
| Molybdenu | ım                |                 | 0.517       | mg/L            | 0.0086 | 99   | 70         | 130         | 2.8 | 20       |           |
| Potassium |                   |                 | 36.8        | mg/L            | 1.0    | 99   | 70         | 130         | 0.7 | 20       |           |
| Sodium    |                   |                 | 256         | mg/L            | 1.0    |      | 70         | 130         | 2.4 | 20       | Α         |
| Lab ID:   | B16121664-001BMS3 | 3 13 Sar        | nple Matrix | Spike           |        |      | Run: ICP20 | 3-B_161228A |     | 12/28/   | 16 14:53  |
| Antimony  |                   |                 | 0.538       | mg/L            | 0.022  | 108  | 70         | 130         |     |          |           |
| Barium    |                   |                 | 0.631       | mg/L            | 0.050  | 106  | 70         | 130         |     |          |           |
| Beryllium |                   |                 | 0.265       | mg/L            | 0.0010 | 106  | 70         | 130         |     |          |           |
| Boron     |                   |                 | 0.547       | mg/L            | 0.050  | 105  | 70         | 130         |     |          |           |
| Cadmium   |                   |                 | 0.259       | mg/L            | 0.0010 | 104  | 70         | 130         |     |          |           |
| Calcium   |                   |                 | 55.2        | mg/L            | 1.0    | 108  | 70         | 130         |     |          |           |
| Chromium  |                   |                 | 0.515       | mg/L            | 0.0050 | 103  | 70         | 130         |     |          |           |
| Cobalt    |                   |                 | 0.524       | mg/L            | 0.0050 | 104  | 70         | 130         |     |          |           |
| Lithium   |                   |                 | 0.605       | mg/L            | 0.10   | 108  | 70         | 130         |     |          |           |
| Magnesiun | n                 |                 | 33.4        | mg/L            | 1.0    | 109  | 70         | 130         |     |          |           |
| Molybdenu | ım                |                 | 0.509       | mg/L            | 0.0043 | 102  | 70         | 130         |     |          |           |
| Potassium |                   |                 | 32.4        | mg/L            | 1.0    | 109  | 70         | 130         |     |          |           |
| Sodium    |                   |                 | 81.6        | mg/L            | 1.0    | 107  | 70         | 130         |     |          |           |
| Lab ID:   | B16121664-001BMSE | <b>)</b> 13 Sar | nple Matrix | Spike Duplicate |        |      |            | 3-B_161228A |     | 12/28/   | 16 14:56  |
| Antimony  |                   |                 | 0.517       | mg/L            | 0.022  | 103  | 70         | 130         | 4.1 | 20       |           |
| Barium    |                   |                 | 0.627       | mg/L            | 0.050  | 106  | 70         | 130         | 0.6 | 20       |           |
| Beryllium |                   |                 | 0.264       | mg/L            | 0.0010 | 106  | 70         | 130         | 0.5 | 20       |           |
| Boron     |                   |                 | 0.542       | mg/L            | 0.050  | 104  | 70         | 130         | 0.9 | 20       |           |

## Qualifiers:

RL - Analyte reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:01/09/17Project:TMPA-6706-15-0060Work Order:B16121644

| Analyte   |                   | Count  | Result     | Units           | RL     | %REC | Low Limit  | High Limit  | RPD | RPDLimit | Qual      |
|-----------|-------------------|--------|------------|-----------------|--------|------|------------|-------------|-----|----------|-----------|
| Method:   | E200.7            |        |            |                 |        |      |            |             |     | Batch    | n: 105433 |
| Lab ID:   | B16121664-001BMSE | 13 Sam | ple Matrix | Spike Duplicate |        |      | Run: ICP20 | 3-B_161228A |     | 12/28/   | 16 14:56  |
| Cadmium   |                   |        | 0.261      | mg/L            | 0.0010 | 105  | 70         | 130         | 8.0 | 20       |           |
| Calcium   |                   |        | 55.2       | mg/L            | 1.0    | 107  | 70         | 130         | 0.1 | 20       |           |
| Chromium  |                   |        | 0.513      | mg/L            | 0.0050 | 103  | 70         | 130         | 0.5 | 20       |           |
| Cobalt    |                   |        | 0.525      | mg/L            | 0.0050 | 104  | 70         | 130         | 0.2 | 20       |           |
| Lithium   |                   |        | 0.600      | mg/L            | 0.10   | 107  | 70         | 130         | 8.0 | 20       |           |
| Magnesium | า                 |        | 33.2       | mg/L            | 1.0    | 108  | 70         | 130         | 0.5 | 20       |           |
| Molybdenu | m                 |        | 0.518      | mg/L            | 0.0043 | 104  | 70         | 130         | 1.7 | 20       |           |
| Potassium |                   |        | 32.2       | mg/L            | 1.0    | 108  | 70         | 130         | 0.7 | 20       |           |
| Sodium    |                   |        | 81.3       | mg/L            | 1.0    | 106  | 70         | 130         | 0.3 | 20       |           |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:01/09/17Project:TMPA-6706-15-0060Work Order:B16121644

| Analyte   |                  | Count  | Result        | Units          | RL         | %REC | Low Limit | High Limit     | RPD    | RPDLimit  | Qual      |
|-----------|------------------|--------|---------------|----------------|------------|------|-----------|----------------|--------|-----------|-----------|
| Method:   | E200.8           |        |               |                |            |      |           | Analytical     | Run: I | CPMS206-B | _161223A  |
| Lab ID:   | QCS              | 9 Init | al Calibratio | on Verificatio | n Standard |      |           |                |        | 12/23     | 16 12:57  |
| Arsenic   |                  |        | 0.0491        | mg/L           | 0.0050     | 98   | 90        | 110            |        |           |           |
| Barium    |                  |        | 0.0500        | mg/L           | 0.10       | 100  | 90        | 110            |        |           |           |
| Beryllium |                  |        | 0.0245        | mg/L           | 0.0010     | 98   | 90        | 110            |        |           |           |
| Cadmium   |                  |        | 0.0251        | mg/L           | 0.0010     | 100  | 90        | 110            |        |           |           |
| Chromium  |                  |        | 0.0500        | mg/L           | 0.010      | 100  | 90        | 110            |        |           |           |
| Cobalt    |                  |        | 0.0511        | mg/L           | 0.010      | 102  | 90        | 110            |        |           |           |
| Lead      |                  |        | 0.0482        | mg/L           | 0.010      | 96   | 90        | 110            |        |           |           |
| Selenium  |                  |        | 0.0504        | mg/L           | 0.0050     | 101  | 90        | 110            |        |           |           |
| Thallium  |                  |        | 0.0485        | mg/L           | 0.10       | 97   | 90        | 110            |        |           |           |
| Method:   | E200.8           |        |               |                |            |      |           |                |        | Batc      | h: 105395 |
| Lab ID:   | MB-105395        | 9 Me   | thod Blank    |                |            |      | Run: ICPM | S206-B_161223A |        | 12/23     | 16 14:36  |
| Arsenic   |                  |        | ND            | mg/L           | 7E-05      |      |           |                |        |           |           |
| Barium    |                  |        | ND            | mg/L           | 9E-05      |      |           |                |        |           |           |
| Beryllium |                  |        | ND            | mg/L           | 9E-06      |      |           |                |        |           |           |
| Cadmium   |                  |        | ND            | mg/L           | 2E-05      |      |           |                |        |           |           |
| Chromium  |                  |        | ND            | mg/L           | 4E-05      |      |           |                |        |           |           |
| Cobalt    |                  |        | ND            | mg/L           | 8E-06      |      |           |                |        |           |           |
| Lead      |                  |        | ND            | mg/L           | 2E-05      |      |           |                |        |           |           |
| Selenium  |                  |        | ND            | mg/L           | 0.0004     |      |           |                |        |           |           |
| Thallium  |                  |        | ND            | mg/L           | 1.0E-05    |      |           |                |        |           |           |
| Lab ID:   | LCS-105395       | 9 Lat  | oratory Cor   | ntrol Sample   |            |      | Run: ICPM | S206-B_161223A |        | 12/23     | 16 14:53  |
| Arsenic   |                  |        | 0.487         | mg/L           | 0.0010     | 97   | 85        | 115            |        |           |           |
| Barium    |                  |        | 0.504         | mg/L           | 0.010      | 101  | 85        | 115            |        |           |           |
| Beryllium |                  |        | 0.235         | mg/L           | 0.0010     | 94   | 85        | 115            |        |           |           |
| Cadmium   |                  |        | 0.246         | mg/L           | 0.0010     | 98   | 85        | 115            |        |           |           |
| Chromium  |                  |        | 0.498         | mg/L           | 0.0010     | 100  | 85        | 115            |        |           |           |
| Cobalt    |                  |        | 0.507         | mg/L           | 0.0010     | 101  | 85        | 115            |        |           |           |
| Lead      |                  |        | 0.498         | mg/L           | 0.0010     | 100  | 85        | 115            |        |           |           |
| Selenium  |                  |        | 0.504         | mg/L           | 0.0050     | 101  | 85        | 115            |        |           |           |
| Thallium  |                  |        | 0.493         | mg/L           | 0.0010     | 99   | 85        | 115            |        |           |           |
| Lab ID:   | B16121242-002AMS | 9 Sai  | mple Matrix   | Spike          |            |      | Run: ICPM | S206-B_161223A |        | 12/23     | 16 14:56  |
| Arsenic   |                  |        | 0.941         | mg/L           | 0.0010     | 94   | 70        | 130            |        |           |           |
| Barium    |                  |        | 1.04          | mg/L           | 0.050      | 98   | 70        | 130            |        |           |           |
| Beryllium |                  |        | 0.442         | mg/L           | 0.0010     | 88   | 70        | 130            |        |           |           |
| Cadmium   |                  |        | 0.452         | mg/L           | 0.0010     | 91   | 70        | 130            |        |           |           |
| Chromium  |                  |        | 0.964         | mg/L           | 0.0050     | 96   | 70        | 130            |        |           |           |
| Cobalt    |                  |        | 0.961         | mg/L           | 0.0050     | 96   | 70        | 130            |        |           |           |
| Lead      |                  |        | 0.974         | mg/L           | 0.0010     | 97   | 70        | 130            |        |           |           |
| Selenium  |                  |        | 0.971         | mg/L           | 0.0010     | 97   | 70        | 130            |        |           |           |
| Thallium  |                  |        | 0.925         | mg/L           | 0.00050    | 92   | 70        | 130            |        |           |           |

# Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:01/09/17Project:TMPA-6706-15-0060Work Order:B16121644

| Analyte   |                  | Count        | Result     | Units           | RL      | %REC | Low Limit | High Limit     | RPD | RPDLimit | Qual     |
|-----------|------------------|--------------|------------|-----------------|---------|------|-----------|----------------|-----|----------|----------|
| Method:   | E200.8           |              |            |                 |         |      |           |                |     | Batch    | : 105395 |
| Lab ID:   | B16121242-002AMS | <b>9</b> Sam | ple Matrix | Spike Duplicate |         |      | Run: ICPM | S206-B_161223A |     | 12/23/   | 16 14:59 |
| Arsenic   |                  |              | 0.992      | mg/L            | 0.0010  | 99   | 70        | 130            | 5.4 | 20       |          |
| Barium    |                  |              | 1.07       | mg/L            | 0.050   | 102  | 70        | 130            | 3.3 | 20       |          |
| Beryllium |                  |              | 0.454      | mg/L            | 0.0010  | 91   | 70        | 130            | 2.7 | 20       |          |
| Cadmium   |                  |              | 0.466      | mg/L            | 0.0010  | 93   | 70        | 130            | 3.0 | 20       |          |
| Chromium  |                  |              | 0.999      | mg/L            | 0.0050  | 100  | 70        | 130            | 3.6 | 20       |          |
| Cobalt    |                  |              | 0.987      | mg/L            | 0.0050  | 99   | 70        | 130            | 2.6 | 20       |          |
| Lead      |                  |              | 1.01       | mg/L            | 0.0010  | 101  | 70        | 130            | 3.5 | 20       |          |
| Selenium  |                  |              | 0.974      | mg/L            | 0.0010  | 97   | 70        | 130            | 0.3 | 20       |          |
| Thallium  |                  |              | 0.986      | mg/L            | 0.00050 | 99   | 70        | 130            | 6.4 | 20       |          |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:01/09/17Project:TMPA-6706-15-0060Work Order:B16121644

| Analyte   | 1                 | Count   | Result        | Units           | RL       | %REC | Low Limit  | High Limit     | RPD      | RPDLimit  | Qual       |
|-----------|-------------------|---------|---------------|-----------------|----------|------|------------|----------------|----------|-----------|------------|
| Method:   | E200.8            |         |               |                 |          |      |            | Analytica      | l Run: I | CPMS206-B | _161228A   |
| Lab ID:   | QCS               | 10 Init | ial Calibrati | on Verification | Standard |      |            |                |          | 12/28     | /16 10:21  |
| Antimony  |                   |         | 0.0480        | mg/L            | 0.050    | 96   | 90         | 110            |          |           |            |
| Arsenic   |                   |         | 0.0488        | mg/L            | 0.0050   | 98   | 90         | 110            |          |           |            |
| Beryllium |                   |         | 0.0238        | mg/L            | 0.0010   | 95   | 90         | 110            |          |           |            |
| Cadmium   |                   |         | 0.0251        | mg/L            | 0.0010   | 100  | 90         | 110            |          |           |            |
| Chromium  |                   |         | 0.0506        | mg/L            | 0.010    | 101  | 90         | 110            |          |           |            |
| Cobalt    |                   |         | 0.0506        | mg/L            | 0.010    | 101  | 90         | 110            |          |           |            |
| Lead      |                   |         | 0.0484        | mg/L            | 0.010    | 97   | 90         | 110            |          |           |            |
| Molybdenu | ım                |         | 0.0469        | mg/L            | 0.0050   | 94   | 90         | 110            |          |           |            |
| Selenium  |                   |         | 0.0490        | mg/L            | 0.0050   | 98   | 90         | 110            |          |           |            |
| Thallium  |                   |         | 0.0483        | mg/L            | 0.10     | 97   | 90         | 110            |          |           |            |
| Method:   | E200.8            |         |               |                 |          |      |            |                |          | Batc      | h: 105432  |
| Lab ID:   | MB-105432         | 2 Me    | thod Blank    |                 |          |      | Run: ICPM  | S206-B_161228  | 4        | 12/28     | /16 14:26  |
| Antimony  |                   |         | ND            | mg/L            | 3E-05    |      |            | _              |          |           |            |
| Molybdenu | ım                |         | ND            | mg/L            | 3E-05    |      |            |                |          |           |            |
| Lab ID:   | LCS-105432        | 2 Lah   | oratory Co    | ntrol Sample    |          |      | Run: ICPMS | S206-B_161228/ | Δ        | 12/28     | /16 14:46  |
| Antimony  |                   |         | 0.502         | mg/L            | 0.0010   | 100  | 85         | 115            | •        | 12,20     | , 10 11.10 |
| Molybdenu | ım                |         | 0.503         | mg/L            | 0.0010   | 101  | 85         | 115            |          |           |            |
| •         |                   |         | 0.000         | mg/L            | 0.0010   | 101  |            |                |          |           |            |
| Lab ID:   | B16121251-020AMS3 | 2 Sar   | mple Matrix   |                 |          |      |            | S206-B_161228  | 4        | 12/28     | /16 14:49  |
| Antimony  |                   |         | 0.506         | mg/L            | 0.0010   | 101  | 70         | 130            |          |           |            |
| Molybdenu | ım                |         | 0.516         | mg/L            | 0.0010   | 99   | 70         | 130            |          |           |            |
| Lab ID:   | B16121251-020AMSD | 2 Sar   | mple Matrix   | Spike Duplica   | ate      |      | Run: ICPM  | S206-B_161228/ | 4        | 12/28     | /16 14:53  |
| Antimony  |                   |         | 0.507         | mg/L            | 0.0010   | 101  | 70         | 130            | 0.2      | 20        |            |
| Molybdenu | ım                |         | 0.515         | mg/L            | 0.0010   | 99   | 70         | 130            | 0.3      | 20        |            |
| Lab ID:   | B16121644-003BMS3 | 2 Sai   | mple Matrix   | Snike           |          |      | Run: ICPM  | S206-B_161228/ | Δ        | 12/28     | /16 14:56  |
| Antimony  |                   |         | 0.345         | mg/L            | 0.0010   | 69   | 70         | 130            | •        | .2,20     | S          |
| Molybdenu | ım                |         | 0.508         | mg/L            | 0.0010   | 102  | 70         | 130            |          |           | _          |
| •         |                   | 0 -     |               | -               |          |      |            |                | _        |           |            |
| Lab ID:   | B16121644-003BMSD | 2 Sai   |               | Spike Duplica   |          |      |            | S206-B_161228/ |          |           | /16 14:59  |
| Antimony  |                   |         | 0.322         | mg/L            | 0.0010   | 64   | 70         | 130            | 6.9      | 20        | S          |
| Molybdenu | ım                |         | 0.483         | mg/L            | 0.0010   | 97   | 70         | 130            | 5.0      | 20        |            |
| Method:   | E200.8            |         |               |                 |          |      |            |                |          | Batc      | h: 105433  |
| Lab ID:   | MB-105433         | 10 Me   | thod Blank    |                 |          |      | Run: ICPM  | S206-B_161228  | 4        | 12/28     | /16 16:09  |
| Antimony  |                   |         | ND            | mg/L            | 3E-05    |      |            |                |          |           |            |
| Arsenic   |                   |         | ND            | mg/L            | 7E-05    |      |            |                |          |           |            |
| Beryllium |                   |         | ND            | mg/L            | 9E-06    |      |            |                |          |           |            |
| Cadmium   |                   |         | ND            | mg/L            | 2E-05    |      |            |                |          |           |            |
| Chromium  |                   |         | ND            | mg/L            | 4E-05    |      |            |                |          |           |            |
| Cobalt    |                   |         | ND            | mg/L            | 8E-06    |      |            |                |          |           |            |
| Lead      |                   |         | ND            | mg/L            | 2E-05    |      |            |                |          |           |            |
| Molybdenu | ım                |         | ND            | mg/L            | 3E-05    |      |            |                |          |           |            |

# Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

S - Spike recovery outside of advisory limits.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:01/09/17Project:TMPA-6706-15-0060Work Order:B16121644

| Analyte   |                   | Count           | Result      | Units        | RL      | %REC | Low Limit | High Limit     | RPD | RPDLimit | Qual     |
|-----------|-------------------|-----------------|-------------|--------------|---------|------|-----------|----------------|-----|----------|----------|
| Method:   | E200.8            |                 |             |              |         |      |           |                |     | Batch    | n: 10543 |
| Lab ID:   | MB-105433         | 10 Met          | thod Blank  |              |         |      | Run: ICPM | S206-B_161228A |     | 12/28/   | 16 16:09 |
| Selenium  |                   |                 | ND          | mg/L         | 0.0004  |      |           | _              |     |          |          |
| Thallium  |                   |                 | ND          | mg/L         | 1.0E-05 |      |           |                |     |          |          |
| Lab ID:   | LCS-105433        | 10 Lab          | oratory Cor | ntrol Sample |         |      | Run: ICPM | S206-B_161228A |     | 12/28/   | 16 16:19 |
| Antimony  |                   |                 | 0.520       | mg/L         | 0.0010  | 104  | 85        | 115            |     |          |          |
| Arsenic   |                   |                 | 0.502       | mg/L         | 0.0010  | 100  | 85        | 115            |     |          |          |
| Beryllium |                   |                 | 0.241       | mg/L         | 0.0010  | 96   | 85        | 115            |     |          |          |
| Cadmium   |                   |                 | 0.259       | mg/L         | 0.0010  | 104  | 85        | 115            |     |          |          |
| Chromium  |                   |                 | 0.496       | mg/L         | 0.0050  | 99   | 85        | 115            |     |          |          |
| Cobalt    |                   |                 | 0.517       | mg/L         | 0.0050  | 103  | 85        | 115            |     |          |          |
| Lead      |                   |                 | 0.517       | mg/L         | 0.0010  | 103  | 85        | 115            |     |          |          |
| Molybdenu | ım                |                 | 0.501       | mg/L         | 0.0010  | 100  | 85        | 115            |     |          |          |
| Selenium  |                   |                 | 0.526       | mg/L         | 0.0010  | 105  | 85        | 115            |     |          |          |
| Thallium  |                   |                 | 0.521       | mg/L         | 0.00050 | 104  | 85        | 115            |     |          |          |
| Lab ID:   | B16121644-009BMS3 | 10 Sar          | nple Matrix | Spike        |         |      | Run: ICPM | S206-B_161228A |     | 12/28/   | 16 16:22 |
| Antimony  |                   |                 | 0.530       | mg/L         | 0.0010  | 106  | 70        | 130            |     |          |          |
| Arsenic   |                   |                 | 0.492       | mg/L         | 0.0010  | 98   | 70        | 130            |     |          |          |
| Beryllium |                   |                 | 0.223       | mg/L         | 0.0010  | 88   | 70        | 130            |     |          |          |
| Cadmium   |                   |                 | 0.261       | mg/L         | 0.0010  | 103  | 70        | 130            |     |          |          |
| Chromium  |                   |                 | 0.480       | mg/L         | 0.0050  | 96   | 70        | 130            |     |          |          |
| Cobalt    |                   |                 | 0.546       | mg/L         | 0.0050  | 100  | 70        | 130            |     |          |          |
| Lead      |                   |                 | 0.505       | mg/L         | 0.0010  | 101  | 70        | 130            |     |          |          |
| Molybdenu | ım                |                 | 0.515       | mg/L         | 0.0010  | 103  | 70        | 130            |     |          |          |
| Selenium  |                   |                 | 0.496       | mg/L         | 0.0010  | 99   | 70        | 130            |     |          |          |
| Thallium  |                   |                 | 0.495       | mg/L         | 0.00050 | 99   | 70        | 130            |     |          |          |
| Lab ID:   | B16121644-009BMSE | <b>)</b> 10 Sar |             |              |         |      |           | S206-B_161228A |     |          | 16 16:25 |
| Antimony  |                   |                 | 0.520       | mg/L         | 0.0010  | 104  | 70        | 130            | 2.0 | 20       |          |
| Arsenic   |                   |                 | 0.496       | mg/L         | 0.0010  | 99   | 70        | 130            | 8.0 | 20       |          |
| Beryllium |                   |                 | 0.223       | mg/L         | 0.0010  | 88   | 70        | 130            | 0.0 | 20       |          |
| Cadmium   |                   |                 | 0.260       | mg/L         | 0.0010  | 102  | 70        | 130            | 0.7 | 20       |          |
| Chromium  |                   |                 | 0.494       | mg/L         | 0.0050  | 99   | 70        | 130            | 2.8 | 20       |          |
| Cobalt    |                   |                 | 0.579       | mg/L         | 0.0050  | 107  | 70        | 130            | 5.9 | 20       |          |
| Lead      |                   |                 | 0.510       | mg/L         | 0.0010  | 102  | 70        | 130            | 1.0 | 20       |          |
| Molybdenu | ım                |                 | 0.514       | mg/L         | 0.0010  | 103  | 70        | 130            | 0.2 | 20       |          |
| Selenium  |                   |                 | 0.510       | mg/L         | 0.0010  | 102  | 70        | 130            | 2.7 | 20       |          |
| Thallium  |                   |                 | 0.499       | mg/L         | 0.00050 | 100  | 70        | 130            | 0.9 | 20       |          |
| Lab ID:   | B16121664-001BMS3 | 10 Sar          | mple Matrix | Spike        |         |      | Run: ICPM | S206-B_161228A |     | 12/28/   | 16 18:01 |
| Antimony  |                   |                 | 0.505       | mg/L         | 0.0010  | 101  | 70        | 130            |     |          |          |
| Arsenic   |                   |                 | 0.485       | mg/L         | 0.0010  | 97   | 70        | 130            |     |          |          |
| Beryllium |                   |                 | 0.235       | mg/L         | 0.0010  | 94   | 70        | 130            |     |          |          |
| Cadmium   |                   |                 | 0.250       | mg/L         | 0.0010  | 100  | 70        | 130            |     |          |          |
| Chromium  |                   |                 | 0.485       | mg/L         | 0.0050  | 97   | 70        | 130            |     |          |          |

Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:01/09/17Project:TMPA-6706-15-0060Work Order:B16121644

| Analyte   |                   | Count          | Result        | Units         | RL          | %REC | Low Limit | High Limit             | RPD      | RPDLimit  | Qual      |
|-----------|-------------------|----------------|---------------|---------------|-------------|------|-----------|------------------------|----------|-----------|-----------|
| Method:   | E200.8            |                |               |               |             |      |           |                        |          | Batc      | h: 105433 |
| Lab ID:   | B16121664-001BMS3 | <b>3</b> 10 Sa | mple Matrix   | Spike         |             |      | Run: ICPM | S206-B_161228 <i>A</i> | ١        | 12/28     | /16 18:01 |
| Cobalt    |                   |                | 0.509         | mg/L          | 0.0050      | 102  | 70        | 130                    |          |           |           |
| Lead      |                   |                | 0.505         | mg/L          | 0.0010      | 101  | 70        | 130                    |          |           |           |
| Molybdenu | ım                |                | 0.496         | mg/L          | 0.0010      | 99   | 70        | 130                    |          |           |           |
| Selenium  |                   |                | 0.503         | mg/L          | 0.0010      | 101  | 70        | 130                    |          |           |           |
| Thallium  |                   |                | 0.497         | mg/L          | 0.00050     | 99   | 70        | 130                    |          |           |           |
| Lab ID:   | B16121664-001BMSI | <b>o</b> 10 Sa | mple Matrix   | Spike Dupl    | icate       |      | Run: ICPM | S206-B_161228 <i>A</i> |          | 12/28     | /16 18:04 |
| Antimony  |                   |                | 0.515         | mg/L          | 0.0010      | 103  | 70        | 130                    | 2.1      | 20        |           |
| Arsenic   |                   |                | 0.481         | mg/L          | 0.0010      | 96   | 70        | 130                    | 8.0      | 20        |           |
| Beryllium |                   |                | 0.232         | mg/L          | 0.0010      | 93   | 70        | 130                    | 1.2      | 20        |           |
| Cadmium   |                   |                | 0.255         | mg/L          | 0.0010      | 102  | 70        | 130                    | 1.7      | 20        |           |
| Chromium  |                   |                | 0.487         | mg/L          | 0.0050      | 97   | 70        | 130                    | 0.4      | 20        |           |
| Cobalt    |                   |                | 0.496         | mg/L          | 0.0050      | 99   | 70        | 130                    | 2.4      | 20        |           |
| Lead      |                   |                | 0.507         | mg/L          | 0.0010      | 101  | 70        | 130                    | 0.4      | 20        |           |
| Molybdenu | ım                |                | 0.503         | mg/L          | 0.0010      | 100  | 70        | 130                    | 1.3      | 20        |           |
| Selenium  |                   |                | 0.492         | mg/L          | 0.0010      | 98   | 70        | 130                    | 2.1      | 20        |           |
| Thallium  |                   |                | 0.502         | mg/L          | 0.00050     | 100  | 70        | 130                    | 1.0      | 20        |           |
| Method:   | E200.8            |                |               |               |             |      |           | Analytica              | l Run: I | CPMS206-B | _161229   |
| Lab ID:   | QCS               | Init           | ial Calibrati | on Verificati | on Standard |      |           |                        |          | 12/29     | /16 14:41 |
| Beryllium |                   |                | 0.0247        | mg/L          | 0.0010      | 99   | 90        | 110                    |          |           |           |
| Method:   | E200.8            |                |               |               |             |      |           |                        |          | Batc      | h: 105433 |
| Lab ID:   | MB-105433         | 10 Me          | thod Blank    |               |             |      | Run: ICPM | S206-B_161229A         | ١        | 12/29     | /16 16:21 |
| Antimony  |                   |                | 8E-05         | mg/L          | 3E-05       |      |           |                        |          |           |           |
| Arsenic   |                   |                | ND            | mg/L          | 7E-05       |      |           |                        |          |           |           |
| Beryllium |                   |                | ND            | mg/L          | 9E-06       |      |           |                        |          |           |           |
| Cadmium   |                   |                | ND            | mg/L          | 2E-05       |      |           |                        |          |           |           |
| Chromium  |                   |                | ND            | mg/L          | 4E-05       |      |           |                        |          |           |           |
| Cobalt    |                   |                | ND            | mg/L          | 8E-06       |      |           |                        |          |           |           |
| Lead      |                   |                | ND            | mg/L          | 2E-05       |      |           |                        |          |           |           |
| Molybdenu | ım                |                | ND            | mg/L          | 3E-05       |      |           |                        |          |           |           |
| Selenium  |                   |                | ND            | mg/L          | 0.0004      |      |           |                        |          |           |           |
| Thallium  |                   |                | ND            | mg/L          | 1.0E-05     |      |           |                        |          |           |           |

# Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Report Date: 01/09/17

Work Order: B16121644

Project: TMPA-6706-15-0060

| Analyte |                   | Count         | Result      | Units           | RL          | %REC | Low Limit | High Limit     | RPD    | RPDLimit  | Qual      |
|---------|-------------------|---------------|-------------|-----------------|-------------|------|-----------|----------------|--------|-----------|-----------|
| Method: | E245.1            |               |             |                 |             |      |           | Analytica      | l Run: | HGCV202-B | _161223B  |
| Lab ID: | ICV               | Initial       | Calibration | on Verification | on Standard |      |           |                |        | 12/23     | /16 12:17 |
| Mercury |                   | C             | 0.00204     | mg/L            | 0.00010     | 102  | 90        | 110            |        |           |           |
| Method: | E245.1            |               |             |                 |             |      |           |                |        | Batc      | h: 105396 |
| Lab ID: | MB-105396         | Metho         | od Blank    |                 |             |      | Run: HGC\ | /202-B_161223B |        | 12/23     | /16 12:22 |
| Mercury |                   |               | ND          | mg/L            | 4E-06       |      |           |                |        |           |           |
| Lab ID: | LCS-105396        | Labo          | ratory Cor  | ntrol Sample    | •           |      | Run: HGC\ | /202-B_161223B |        | 12/23     | /16 12:23 |
| Mercury |                   | C             | 0.00204     | mg/L            | 0.00010     | 102  | 85        | 115            |        |           |           |
| Lab ID: | B16121398-001BMS  | Samp          | ole Matrix  | Spike           |             |      | Run: HGC\ | /202-B_161223B |        | 12/23     | /16 12:27 |
| Mercury |                   | C             | 0.00199     | mg/L            | 0.00010     | 100  | 70        | 130            |        |           |           |
| Lab ID: | B16121398-001BMSI | <b>D</b> Samp | ole Matrix  | Spike Dupli     | cate        |      | Run: HGC\ | /202-B_161223B |        | 12/23     | /16 12:29 |
| Mercury |                   | C             | 0.00203     | mg/L            | 0.00010     | 101  | 70        | 130            | 1.6    | 30        |           |
| Lab ID: | B16121644-008BMS  | Samp          | ole Matrix  | Spike           |             |      | Run: HGC\ | /202-B_161223B |        | 12/23     | /16 12:53 |
| Mercury |                   | C             | 0.00197     | mg/L            | 0.00010     | 96   | 70        | 130            |        |           |           |
| Lab ID: | B16121644-008BMSI | <b>D</b> Samp | ole Matrix  | Spike Dupli     | cate        |      | Run: HGC\ | /202-B_161223B |        | 12/23     | /16 12:55 |
| Mercury |                   | C             | 0.00200     | mg/L            | 0.00010     | 98   | 70        | 130            | 1.9    | 30        |           |
| Method: | E245.1            |               |             |                 |             |      |           | Analytica      | l Run: | HGCV202-B | _161228A  |
| Lab ID: | ICV               | Initial       | Calibration | on Verification | on Standard |      |           |                |        | 12/28     | /16 16:14 |
| Mercury |                   | C             | 0.00196     | mg/L            | 0.00010     | 98   | 90        | 110            |        |           |           |
| Method: | E245.1            |               |             |                 |             |      |           |                |        | Batc      | h: 105442 |
| Lab ID: | MB-105442         | Metho         | od Blank    |                 |             |      | Run: HGC\ | /202-B_161228A |        | 12/28     | /16 16:37 |
| Mercury |                   |               | ND          | mg/L            | 4E-06       |      |           |                |        |           |           |
| Lab ID: | LCS-105442        | Labo          | ratory Cor  | ntrol Sample    | )           |      | Run: HGC\ | /202-B_161228A |        | 12/28     | /16 16:39 |
| Mercury |                   | C             | 0.00199     | mg/L            | 0.00010     | 100  | 85        | 115            |        |           |           |
| Lab ID: | B16121260-001BMS  | Samp          | ole Matrix  | Spike           |             |      | Run: HGC\ | /202-B_161228A |        | 12/28     | /16 16:43 |
| Mercury |                   | C             | 0.00201     | mg/L            | 0.00010     | 101  | 70        | 130            |        |           |           |
| Lab ID: | B16121260-001BMSI | <b>D</b> Samp | ole Matrix  | Spike Dupli     | cate        |      | Run: HGC\ | /202-B_161228A |        | 12/28     | /16 16:45 |
| Mercury |                   | -             | 0.00201     |                 | 0.00010     | 101  | 70        | 130            | 0.0    | 30        |           |
| Lab ID: | B16121770-002AMS  | Samp          | ole Matrix  | Spike           |             |      | Run: HGC\ | /202-B_161228A |        | 12/28     | /16 17:23 |
| Mercury |                   |               | 0.00198     | mg/L            | 0.00010     | 98   | 70        | 130            |        |           |           |
| Lab ID: | B16121770-002AMSI | <b>D</b> Samr | ole Matrix  | Spike Dupli     | cate        |      | Run: HGC\ | /202-B 161228A |        | 12/28     | /16 17:25 |
| Mercury |                   |               | 0.00199     | mg/L            | 0.00010     | 99   | 70        | 130            | 0.8    | 30        |           |
|         |                   |               |             |                 |             |      |           |                |        |           |           |

Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:01/09/17Project:TMPA-6706-15-0060Work Order:B16121644

| Analyte |                   | Count        | Result        | Units        | RL            | %REC | Low Limit | High Limit             | RPD     | RPDLimit  | Qual      |
|---------|-------------------|--------------|---------------|--------------|---------------|------|-----------|------------------------|---------|-----------|-----------|
| Method: | E245.1            |              |               |              |               |      |           | Analytic               | al Run: | HGCV202-B | _161229A  |
| Lab ID: | ICV               | Init         | ial Calibrati | on Verificat | tion Standard |      |           |                        |         | 12/29/    | 16 14:48  |
| Mercury |                   |              | 0.00191       | mg/L         | 0.00010       | 96   | 90        | 110                    |         |           |           |
| Method: | E245.1            |              |               |              |               |      |           |                        |         | Batcl     | h: 105510 |
| Lab ID: | MB-105510         | Me           | thod Blank    |              |               |      | Run: HGC\ | /202-B_161229 <i>A</i> | ١       | 12/29/    | 16 15:16  |
| Mercury |                   |              | ND            | mg/L         | 4E-06         |      |           |                        |         |           |           |
| Lab ID: | LCS-105510        | Lak          | ooratory Co   | ntrol Samp   | le            |      | Run: HGC\ | /202-B_161229 <i>A</i> | 4       | 12/29/    | 16 15:18  |
| Mercury |                   |              | 0.00198       | mg/L         | 0.00010       | 99   | 85        | 115                    |         |           |           |
| Lab ID: | B16121958-001CMS  | Sai          | mple Matrix   | Spike        |               |      | Run: HGC\ | /202-B_161229 <i>A</i> | ١       | 12/29/    | 16 15:30  |
| Mercury |                   |              | 0.00208       | mg/L         | 0.00010       | 104  | 70        | 130                    |         |           |           |
| Lab ID: | B16121958-001CMSI | <b>D</b> Sai | mple Matrix   | Spike Dup    | licate        |      | Run: HGC\ | /202-B_161229 <i>A</i> | ١       | 12/29/    | 16 15:32  |
| Mercury |                   |              | 0.00206       | mg/L         | 0.00010       | 103  | 70        | 130                    | 1.1     | 30        |           |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:01/09/17Project:TMPA-6706-15-0060Work Order:B16121644

| Analyte  |                   | Count          | Result        | Units              | RL    | %REC | Low Limit  | High Limit  | RPD       | RPDLimit  | Qual      |
|----------|-------------------|----------------|---------------|--------------------|-------|------|------------|-------------|-----------|-----------|-----------|
| Method:  | E300.0            |                |               |                    |       |      |            | Analytical  | Run: IC M | IETROHM 1 | _161223A  |
| Lab ID:  | ICV               | 2 Initi        | al Calibratio | n Verification Sta | ndard |      |            |             |           | 12/23/    | /16 09:43 |
| Chloride |                   |                | 2.03          | mg/L               | 1.0   | 90   | 90         | 110         |           |           |           |
| Sulfate  |                   |                | 8.41          | mg/L               | 1.0   | 93   | 90         | 110         |           |           |           |
| Method:  | E300.0            |                |               |                    |       |      |            |             |           | Batch:    | R272287   |
| Lab ID:  | ICB               | 2 Me           | thod Blank    |                    |       |      | Run: IC ME | TROHM 1_16  | 1223A     | 12/23/    | /16 09:57 |
| Chloride |                   |                | ND            | mg/L               | 0.008 |      |            |             |           |           |           |
| Sulfate  |                   |                | ND            | mg/L               | 0.06  |      |            |             |           |           |           |
| Lab ID:  | LFB               | 2 Lab          | oratory For   | tified Blank       |       |      | Run: IC ME | TROHM 1_16  | 1223A     | 12/23/    | /16 10:11 |
| Chloride |                   |                | 9.99          | mg/L               | 1.0   | 100  | 90         | 110         |           |           |           |
| Sulfate  |                   |                | 29.6          | mg/L               | 1.0   | 99   | 90         | 110         |           |           |           |
| Lab ID:  | B16121644-002AMS  | 2 Sar          | nple Matrix   | Spike              |       |      | Run: IC ME | TROHM 1_16  | 1223A     | 12/23/    | /16 14:09 |
| Chloride |                   |                | 10.5          | mg/L               | 1.0   | 104  | 90         | 110         |           |           |           |
| Sulfate  |                   |                | 31.1          | mg/L               | 1.0   | 103  | 90         | 110         |           |           |           |
| Lab ID:  | B16121644-002AMSE | <b>)</b> 2 Sar | nple Matrix   | Spike Duplicate    |       |      | Run: IC ME | TROHM 1_16  | 1223A     | 12/23/    | /16 14:23 |
| Chloride |                   |                | 10.5          | mg/L               | 1.0   | 105  | 90         | 110         | 0.6       | 20        |           |
| Sulfate  |                   |                | 31.2          | mg/L               | 1.0   | 104  | 90         | 110         | 0.5       | 20        |           |
| Lab ID:  | B16121645-004AMS  | 2 Sar          | nple Matrix   | Spike              |       |      | Run: IC ME | TROHM 1_161 | 1223A     | 12/23/    | /16 17:25 |
| Chloride |                   |                | 53.1          | mg/L               | 1.0   | 103  | 90         | 110         |           |           |           |
| Sulfate  |                   |                | 163           | mg/L               | 1.0   | 102  | 90         | 110         |           |           |           |
| Lab ID:  | B16121645-004AMSE | <b>)</b> 2 Sar | nple Matrix   | Spike Duplicate    |       |      | Run: IC ME | TROHM 1_161 | 1223A     | 12/23/    | /16 17:39 |
| Chloride |                   |                | 53.4          | mg/L               | 1.0   | 103  | 90         | 110         | 0.6       | 20        |           |
| Sulfate  |                   |                | 165           | mg/L               | 1.0   | 103  | 90         | 110         | 0.7       | 20        |           |

# Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:01/09/17Project:TMPA-6706-15-0060Work Order:B16121644

| Analyte  |                   | Count  | Result          | Units              | RL     | %REC | Low Limit  | High Limit  | RPD       | RPDLimit  | Qual     |
|----------|-------------------|--------|-----------------|--------------------|--------|------|------------|-------------|-----------|-----------|----------|
| Method:  | E300.0            |        |                 |                    |        |      |            | Analytical  | Run: IC M | IETROHM 2 | _161227A |
| Lab ID:  | ICV               | 2 Init | tial Calibratio | n Verification Sta | andard |      |            |             |           | 12/27/    | 16 16:07 |
| Chloride |                   |        | 2.07            | mg/L               | 1.0    | 92   | 90         | 110         |           |           |          |
| Sulfate  |                   |        | 8.64            | mg/L               | 1.0    | 96   | 90         | 110         |           |           |          |
| Method:  | E300.0            |        |                 |                    |        |      |            |             |           | Batch:    | R272357  |
| Lab ID:  | ICB               | 2 Me   | thod Blank      |                    |        |      | Run: IC ME | TROHM 2_16  | 1227A     | 12/27/    | 16 16:22 |
| Chloride |                   |        | ND              | mg/L               | 0.004  |      |            |             |           |           |          |
| Sulfate  |                   |        | ND              | mg/L               | 0.02   |      |            |             |           |           |          |
| Lab ID:  | LFB               | 2 La   | boratory Fort   | ified Blank        |        |      | Run: IC ME | TROHM 2_161 | 1227A     | 12/27/    | 16 16:36 |
| Chloride |                   |        | 10.4            | mg/L               | 1.0    | 104  | 90         | 110         |           |           |          |
| Sulfate  |                   |        | 31.1            | mg/L               | 1.0    | 104  | 90         | 110         |           |           |          |
| Lab ID:  | B16121479-001AMS  | 2 Sa   | mple Matrix     | Spike              |        |      | Run: IC ME | TROHM 2_16  | 1227A     | 12/27/    | 16 17:19 |
| Chloride |                   |        | 1210            | mg/L               | 3.0    | 105  | 90         | 110         |           |           |          |
| Sulfate  |                   |        | 1620            | mg/L               | 9.1    | 105  | 90         | 110         |           |           |          |
| Lab ID:  | B16121479-001AMSI | D 2 Sa | mple Matrix     | Spike Duplicate    |        |      | Run: IC ME | TROHM 2_16  | 1227A     | 12/27/    | 16 17:34 |
| Chloride |                   |        | 1160            | mg/L               | 3.0    | 95   | 90         | 110         | 4.2       | 20        |          |
| Sulfate  |                   |        | 1610            | mg/L               | 9.1    | 104  | 90         | 110         | 0.3       | 20        |          |
| Lab ID:  | B16121644-017AMS  | 2 Sa   | mple Matrix     | Spike              |        |      | Run: IC ME | TROHM 2_161 | 1227A     | 12/27/    | 16 20:42 |
| Chloride |                   |        | 5130            | mg/L               | 12     | 99   | 90         | 110         |           |           |          |
| Sulfate  |                   |        | 8500            | mg/L               | 37     | 105  | 90         | 110         |           |           |          |
| Lab ID:  | B16121644-017AMSI | D 2 Sa | mple Matrix     | Spike Duplicate    |        |      | Run: IC ME | TROHM 2_161 | 1227A     | 12/27/    | 16 20:56 |
| Chloride |                   |        | 5110            | mg/L               | 12     | 98   | 90         | 110         | 0.4       | 20        |          |
| Sulfate  |                   |        | 8440            | mg/L               | 37     | 104  | 90         | 110         | 0.7       | 20        |          |

# Qualifiers:

RL - Analyte reporting limit.

Prepared by Casper, WY Branch

Client:Texas Municipal Power AgencyReport Date:01/12/17Project:TMPA-6706-15-0060Work Order:B16121644

| Analyte                   | Result Units                  | RL %REC Low Limit High Limit | RPD RPDLimit Qual |
|---------------------------|-------------------------------|------------------------------|-------------------|
| Method: E903.0            |                               |                              | Batch: RA226-8357 |
| Lab ID: LCS-RA226-8357    | Laboratory Control Sample     | Run: G542M_170103B           | 01/11/17 14:24    |
| Radium 226                | 10 pCi/L                      | 100 80 120                   |                   |
| Lab ID: MB-RA226-8357     | Method Blank                  | Run: G542M_170103B           | 01/11/17 14:24    |
| Radium 226                | 0.003 pCi/L                   |                              | U                 |
| Radium 226 precision (±)  | 0.1 pCi/L                     |                              |                   |
| Radium 226 MDC            | 0.2 pCi/L                     |                              |                   |
| Lab ID: B16121644-008CMS  | Sample Matrix Spike           | Run: G542M_170103B           | 01/11/17 14:24    |
| Radium 226                | 28 pCi/L                      | 96 70 130                    |                   |
| Lab ID: B16121644-008CMSD | Sample Matrix Spike Duplicate | Run: G542M_170103B           | 01/11/17 14:24    |
| Radium 226                | 24 pCi/L                      | 79 70 130                    | 17 20             |

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

Prepared by Casper, WY Branch

Client:Texas Municipal Power AgencyReport Date:01/12/17Project:TMPA-6706-15-0060Work Order:B16121644

| Analyte                    | Result        | Units           | RL | %REC | Low Limit | High Limit | RPD | RPDLimit  | Qual      |
|----------------------------|---------------|-----------------|----|------|-----------|------------|-----|-----------|-----------|
| Method: RA-05              |               |                 |    |      |           |            |     | Batch: RA | 228-5391  |
| Lab ID: LCS-228-RA226-8357 | Laboratory Co | ntrol Sample    |    |      | Run: G500 | 0W_170103B |     | 01/06     | /17 11:14 |
| Radium 228                 | 7.4           | pCi/L           |    | 105  | 80        | 120        |     |           |           |
| Lab ID: MB-RA226-8357      | Method Blank  |                 |    |      | Run: G500 | 0W_170103B |     | 01/06     | /17 12:23 |
| Radium 228                 | -0.2          | pCi/L           |    |      |           |            |     |           | U         |
| Radium 228 precision (±)   | 1             | pCi/L           |    |      |           |            |     |           |           |
| Radium 228 MDC             | 2             | pCi/L           |    |      |           |            |     |           |           |
| Lab ID: B16121644-015CMS   | Sample Matrix | (Spike          |    |      | Run: G500 | 0W_170103B |     | 01/06     | /17 11:15 |
| Radium 228                 | 25            | pCi/L           |    | 115  | 70        | 130        |     |           |           |
| Lab ID: B16121644-015CMSD  | Sample Matrix | Spike Duplicate |    |      | Run: G500 | 0W_170103B |     | 01/06     | /17 11:15 |
| Radium 228                 | 18            | pCi/L           |    | 76   | 70        | 130        | 31  | 20        | R         |

<sup>-</sup> Due to nonhomogeneity of the sample the Duplicate RPD is outside of the acceptance range for this analysis.

# **Work Order Receipt Checklist**

# Texas Municipal Power Agency

Login completed by: Leslie S. Cadreau

B16121644

Date Received: 12/22/2016

| 0 ,                                                                                         |                                 |           |      |                            |  |
|---------------------------------------------------------------------------------------------|---------------------------------|-----------|------|----------------------------|--|
| Reviewed by:                                                                                | BL2000\cindy                    |           | Re   | eceived by: lab            |  |
| Reviewed Date:                                                                              | 12/28/2016                      |           | Car  | rrier name: Return-UPS NDA |  |
| Shipping container/cooler in                                                                | good condition?                 | Yes ✓     | No 🗌 | Not Present                |  |
| Custody seals intact on all s                                                               | nipping container(s)/cooler(s)? | Yes √     | No 🗌 | Not Present                |  |
| Custody seals intact on all sa                                                              | ample bottles?                  | Yes       | No 🗌 | Not Present ✓              |  |
| Chain of custody present?                                                                   |                                 | Yes ✓     | No 🗌 |                            |  |
| Chain of custody signed who                                                                 | en relinquished and received?   | Yes ✓     | No 🗌 |                            |  |
| Chain of custody agrees with                                                                | n sample labels?                | Yes       | No ✓ |                            |  |
| Samples in proper container                                                                 | /bottle?                        | Yes ✓     | No 🗌 |                            |  |
| Sample containers intact?                                                                   |                                 | Yes ✓     | No 🗌 |                            |  |
| Sufficient sample volume for                                                                | indicated test?                 | Yes ✓     | No 🗌 |                            |  |
| All samples received within h<br>(Exclude analyses that are c<br>such as pH, DO, Res Cl, Su | onsidered field parameters      | Yes √     | No 🗌 |                            |  |
| Temp Blank received in all s                                                                | hipping container(s)/cooler(s)? | Yes 🗹     | No 🗌 | Not Applicable             |  |
| Container/Temp Blank tempe                                                                  | erature:                        | °C On Ice |      |                            |  |
| Water - VOA vials have zero                                                                 | headspace?                      | Yes       | No 🗌 | No VOA vials submitted 🗸   |  |
| Water - pH acceptable upon                                                                  | receipt?                        | Yes ✓     | No 🗌 | Not Applicable             |  |
|                                                                                             |                                 |           |      |                            |  |

# **Standard Reporting Procedures:**

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

### **Contact and Corrective Action Comments:**

Submitted via EnergyExpress on 12/22/2016 1:31:07 PM

The Temperature Blank temperature for Cooler 1 was 3.6°C melted ice and Cooler 2 was 1.5°C on ice.

The collection time for sample EQBK-MPS-122116 is 13:15 on the Chain of Custody but on the container label it's 13:00. Proceeded with the collection time as indicated on the Chain of Custody.

Samples AP-MW3, SFL-MW1, EQBK-MPS 12116, DUP-2, SSP-MW4, EQBK 12-20-16/SCM, AP-MW5, DUP-1, SFL-MW5, SFL-MW3, SFL-MW4 and EQBK 12-22-16/SCM were received on 12/23/16 at 09:45 by Lisa Bradley on ice from Return UPS NDA. The Temperature Blank temperature for Cooler 1 was 0.6°C, Cooler 2 was 0.2°C, Cooler 3 was 0.0°C and Cooler 4 was 0.1°C.



# Chain of Custody & Analytical Request Record

|                                                                                                                                                                                 |                                  | Report Inf                             | ormation (#       | f different than               | Report Information (if different than Account Information) | (u)       | Comments | rage oror                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------|-------------------|--------------------------------|------------------------------------------------------------|-----------|----------|----------------------------------------------------|
| ATEL TOTES                                                                                                                                                                      | Wheeler                          | Contract                               |                   | į                              |                                                            |           | Z        |                                                    |
|                                                                                                                                                                                 |                                  | Phone                                  |                   |                                |                                                            |           | 20       | Ε.                                                 |
| CAPITH                                                                                                                                                                          | DETK. HUN                        | Mailing Address                        |                   | //                             |                                                            |           | j (      |                                                    |
|                                                                                                                                                                                 | X FERCH                          | City, State, Zip                       |                   |                                |                                                            |           | ) (      | 512, 745, 0265                                     |
| 604                                                                                                                                                                             | FW.COM                           | Email                                  |                   |                                |                                                            |           | <u> </u> |                                                    |
| Receive Invoice Mard Copy Memail Receive Rep                                                                                                                                    | Receive Report CHard Copy SEmail | Receive Report                         | ard Copy          | Email                          |                                                            |           |          |                                                    |
|                                                                                                                                                                                 | Bottle Order                     | Special Report/Formats:                | ر<br>ک            | ☐ EDD/EDT (contact laboratory) | r (aboratory) □ Other                                      | er.       |          |                                                    |
| Project Information                                                                                                                                                             |                                  | Matrix Codes                           |                   |                                | Analysis Democrate                                         |           |          |                                                    |
| Project Name, PWSID, Permit, etc. TPPA-6-706-15.006.0                                                                                                                           | 5.0060                           | A - Air<br>W- Water                    |                   | -                              | Name of the last                                           | Dalcar    |          | All turnaround times are                           |
| Sampler Name (1450) STEVELLS Sampler Phone 512. 745. 0200                                                                                                                       | 512.745.0360                     | S Soils/<br>Solids                     | T                 |                                |                                                            |           | -        | standard unless marked as RUSH.                    |
| Sample Origin State TEXAS EPA/State Co                                                                                                                                          | EPA/State Compliance             | V - Vegetation<br>B - Bioassay         |                   | · ·                            |                                                            |           |          | Energy Laboratories                                |
| MINING CLIENTS, please indicate sample type. "If ore has been processed or refined, call before sending.  Byproduct 11 (e)2 material   Unprocessed ore (NOT ground or refined)* | OT ground or refined)*           | O - Other<br>DW - Drinking             | 7/43<br>7/43      |                                |                                                            |           | rsched   | RUSH sample submittal for charges and scheduling – |
| Sample Identification (Name, Location, Interval, etc.)                                                                                                                          | 9 8                              | Number of Matrix Containers (5ee Codes | भञ्ज              |                                |                                                            |           |          | 1.60                                               |
| SS/AP·MW.I                                                                                                                                                                      | 子さり                              |                                        | ×                 |                                |                                                            |           |          | 1000                                               |
| 250P.MW.Z                                                                                                                                                                       | 0191 9.08.2                      | 3                                      | ×                 |                                |                                                            |           |          | 50-11-15/8/A                                       |
| SSF. MW. J                                                                                                                                                                      | OBE! 01:07:21                    | 3                                      | ×                 |                                |                                                            |           |          |                                                    |
| 4EBEK-MRS-122016                                                                                                                                                                | 12:20:16 1750                    | 7                                      | ×                 |                                |                                                            |           |          | 000!                                               |
| 5 AP. MW.S                                                                                                                                                                      | 0110 0112.21                     | 7                                      | ×                 |                                |                                                            |           | -        | 3                                                  |
| SFL. MW.1                                                                                                                                                                       | 0211 91-1221                     | 2 N                                    | ×                 |                                |                                                            |           |          |                                                    |
| DFL MW. 6                                                                                                                                                                       | 7621 91.12.21                    | 3                                      | ×                 |                                |                                                            |           |          | 100%                                               |
| . CORT F(D) [22  0                                                                                                                                                              | 22/6/5/5                         | 3                                      | ×                 |                                |                                                            |           |          | -10,                                               |
| DUK.C                                                                                                                                                                           | 9.12.21                          | 3                                      | ×<br>×            |                                |                                                            |           |          | 20/                                                |
|                                                                                                                                                                                 |                                  |                                        |                   | #                              |                                                            |           | +        |                                                    |
| TELES                                                                                                                                                                           | Date/Time Signature Signature    | 交交                                     |                   | Received by (print)            | {}                                                         | Date/Time | Sig      | Signature                                          |
| Selinquished by (print) Mccon Da                                                                                                                                                | 8,                               | Some /                                 | 4                 | Scelved by Lan                 | ceived by Laboratory (print)                               | Date/Time | (1 0.1/V | Signatury / A                                      |
| Shipped By Cooler ID(s) Custody Seals                                                                                                                                           |                                  | Temp B                                 | LABORATORY USE OF | À                              |                                                            | 417-71    | - (2, 2  | ALL TOWN                                           |
|                                                                                                                                                                                 | O. N. X                          |                                        | <u>8</u> z<br>5 ≻ | CC Cash                        | Payment Type<br>h Check                                    | Amount    | Receipt  | Receipt Number (cash/check only)                   |
|                                                                                                                                                                                 |                                  | _                                      | _                 |                                |                                                            | <u>-</u>  | _        | )                                                  |

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested. This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.



# Chain of Custody & Analytical Request Record

| Account Information (Billing information)                                                                                              |                                                                         | Report Info                         | rmation //c         | Report Information # d#kmast   |                | (          | 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------|---------------------|--------------------------------|----------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ſ                                                                                                                                      | 1. 120                                                                  |                                     | אוווממוסוו ("       | niterent than Account Infor    | nation)        | Comments   | nts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11 20 000                                                                                                                              | wheele                                                                  | company/Name                        |                     |                                |                | (          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ge2 12                                                                                                                                 |                                                                         | Contact                             | /                   |                                |                | Deta U     | 10 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Phone 512-795-03                                                                                                                       | 090                                                                     | Phone                               | /                   | h                              |                | V<br>T     | /* T V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Mailing Address 3755 5, Cap. [a]                                                                                                       | of In How Ship                                                          | Mailing Address                     | /                   |                                |                | ¥ =        | Aites w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| City. State, Zip (2)                                                                                                                   |                                                                         |                                     |                     | /                              |                | )<br> -    | anestions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Email Greatecter Came                                                                                                                  | Fu. cam                                                                 | Email                               |                     |                                |                | <u> </u>   | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Hard Copy DEmail                                                                                                                       |                                                                         | Receive Report                      | ☐Hard Coov          |                                |                | <u></u>    | 512-795-03/n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Purchase Order Quote                                                                                                                   | 1                                                                       | Special Report/Formats:             | \<br>}              | (contact laboratory)           | John Charles   | )          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Project Information                                                                                                                    |                                                                         | Matrix Codes                        |                     |                                |                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                                                                                                                                      |                                                                         | A - Air                             |                     | Analysis Requested             | equested       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project Name, PWSID, Permit, etc.   M.P.A.                                                                                             | 6706150060                                                              | W- Water                            | _                   |                                |                |            | All turnaround times are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sampler Name Samuel Macon Sampler Phone 512-413                                                                                        | 10 512-413-387                                                          | S Solids                            | C                   |                                |                | -          | RUSH.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sample Origin State Texas EPA/State C                                                                                                  | EPA/State Compliance                                                    | V - Vegetation<br>B - Bioassay      | - To                |                                |                |            | Energy Laboratories<br>MUST be contacted prior to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MINING CLIENTS, please indicate sample type. *If ore has been processed or refined, call before sending.  □ Byproduct 11 (e)2 material | ple type. alt before sending.  Unprocessed ore (NOT around or refined)* | O - Other<br>DW - Drinking<br>Water | <u>'  </u>          | almin                          |                | sched      | RUSH sample submittal for charges and scheduling —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                        |                                                                         | Matrix                              | > 4 -<br>> 4 :      |                                |                | na e       | oce instructions rage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (Name, Location, Interval, etc.)                                                                                                       | ime                                                                     | Containers (See Codes Above)        | 5                   |                                |                | See        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 155P-MWH                                                                                                                               | 12-20-16 1652                                                           | 3                                   | ×                   |                                |                | ¥.         | Clark the conference of the co |
| 2 EQBK 12-20-16/5CM                                                                                                                    | 12-20-16 1800                                                           | 3                                   | メ<br>大              |                                |                | -          | SIO- Aholomia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3 AP-MW5                                                                                                                               | 9060 91-18-21                                                           | 3                                   | ×                   |                                |                |            | 5101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4 AP - MW +                                                                                                                            |                                                                         | 3                                   | -                   |                                |                |            | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5 AP - MW 1D                                                                                                                           | 12.                                                                     | 3                                   | X                   |                                |                | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| " EQBK 12-21-16/5CM                                                                                                                    |                                                                         | 3                                   | ×<br>入              |                                |                |            | 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7 Due - 1                                                                                                                              | -                                                                       | 3                                   | ×                   |                                |                |            | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8 5FL - MWS                                                                                                                            | 12-21-16 1539                                                           | 3                                   | ×<br>×              |                                |                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| o                                                                                                                                      |                                                                         |                                     |                     |                                |                |            | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10                                                                                                                                     |                                                                         |                                     |                     |                                |                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Relinquished by (print)                                                                                                                | Date/Time                                                               |                                     | Macca               | Received by (print)            | Date/Time      | Signature  | ture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                        |                                                                         | Signature                           |                     | Received by Laboratory (print) | Date/Time      | - 11       | tural b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                        | 11 5 7 CM                                                               |                                     | L ABORATORY USE ONE | THE VALLEY                     | 12-23-16 97-57 | 243        | SIA 5/11/11/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Shipped By Cooler ID(s) Custody Seals                                                                                                  | Intact Receipt Temp                                                     | Temp F                              | On Ice              | Payr                           | Amount         | Receipt Nu | Receipt Number (cash/chack only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                        | <u>.</u>                                                                |                                     |                     | CC Cash Check                  | \$             |            | Marin Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.
This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

| (ii)  | Trust our Date                   |  |
|-------|----------------------------------|--|
| NERGY | Trust our People, Trust our Data |  |

# Chain of Custody & Analytical Request Record

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

# **ANALYTICAL SUMMARY REPORT**

December 22, 2017

Texas Municipal Power Agency PO Box 7000 Bryan, TX 77805-7000

Work Order: B17021678 Quote ID: B3997 - CCRR

Project Name: TMPA 6706150060

Energy Laboratories Inc Billings MT received the following 19 samples for Texas Municipal Power Agency on 2/24/2017 for analysis.

| Lab ID        | Client Sample ID | Collect Date | Receive Date | Matrix       | Test                                                                                                                                                                                                                                                                  |
|---------------|------------------|--------------|--------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B17021678-001 | APMW-3           | 02/20/17 17: | 55 02/24/17  | Ground Water | Metals by ICP/ICPMS, Tot. Rec. Mercury, Total Recoverable Fluoride Anions by Ion Chromatography pH Metals Preparation by EPA 200.2 Digestion, Mercury by CVAA Preparation for TDS Radium 226 + Radium 228 Radium 226, Total Radium 228, Total Solids, Total Dissolved |
| B17021678-002 | APMW-1D          | 02/21/17 9:5 | 2 02/24/17   | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17021678-003 | APMW-5           | 02/21/17 11: | 31 02/24/17  | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17021678-004 | APMW-4           | 02/21/17 12: | 40 02/24/17  | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17021678-005 | EQBK-BJG-22117   | 02/21/17 13: | 45 02/24/17  | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17021678-006 | SSP/APMW-1       | 02/21/17 14: | 52 02/24/17  | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17021678-007 | SSPMW-2          | 02/21/17 15: | 55 02/24/17  | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17021678-008 | SSPMW-4          | 02/21/17 17: | 01 02/24/17  | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17021678-009 | SSPMW-3          | 02/22/17 9:3 | 7 02/24/17   | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17021678-011 | SLFMW-6          | 02/22/17 14: | 27 02/24/17  | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17021678-012 | SFLMW-4          | 02/22/17 15: | 50 02/24/17  | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17021678-013 | SFLMW-2          | 02/22/17 17: | 09 02/24/17  | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17021678-014 | EQBK-BJG-22217   | 02/22/17 17: | 55 02/24/17  | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17021678-015 | SFLMW-5          | 02/23/17 9:0 | 2 02/24/17   | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17021678-016 | SFLMW-3          | 02/23/17 10: | 16 02/24/17  | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17021678-017 | EQBK-BJG-22317   | 02/23/17 11: | 20 02/24/17  | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17021678-018 | DUP-1            | 02/21/17 0:0 | 0 02/24/17   | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17021678-019 | DUP-2            | 02/22/17 0:0 | 0 02/24/17   | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
|               |                  |              |              |              |                                                                                                                                                                                                                                                                       |

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

# **ANALYTICAL SUMMARY REPORT**

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

Texas Municipal Power Agency

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

Revised Date: 12/22/17

Report Date: 03/14/17

 Project:
 TMPA 6706150060
 Report Date: 03/14/17

 Work Order:
 B17021678
 CASE NARRATIVE

Tests associated with analyst identified as ELI-CA were subcontracted to Energy Laboratories, PO Box 247, Casper, WY, EPA Number WY00002 and WY00937.

The Total Dissolved Solids analysis for sample APMW-3 (B17021678-001) was performed outside the EPA recommended hold time.

We apologize for any inconvenience this may have caused.

For sample APMW-5 (B17021678-005) results for Major Ions, pH, TDS, Chloride, Sulfate, Fluoride and Barium were confirmed by re-analysis.

### Revised Report 12/22/2017

**CLIENT:** 

The reporting limits for the following analytes were lowered per request from Greg Seifert.

| Analyte                         | Original Reporting Limit (mg/L) | Revised Reporting limit (mg/L) |
|---------------------------------|---------------------------------|--------------------------------|
| Antimony<br>Cadmium<br>Thallium | 0.05<br>0.01<br>0.01            | 0.006<br>0.005<br>0.002        |
|                                 |                                 |                                |

The report has been revised and replaces any previously issued report in its entirety.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

 Project:
 TMPA 6706150060

 Lab ID:
 B17021678-001

 Client Sample ID:
 APMW-3

Revised Date: 12/22/17
Report Date: 03/14/17
Collection Date: 02/20/17 17:55
DateReceived: 02/24/17

Matrix: Ground Water

| MAJOR IONS           Calcium         132 mg/L         1         E200.7         02/28/17 23:38 / rlh           Magnesium         20 mg/L         1         E200.7         02/28/17 23:38 / rlh           Potassium         12 mg/L         1         E200.7         02/28/17 23:38 / rlh           Sodium         226 mg/L         1         E200.7         02/28/17 23:38 / rlh           PHYSICAL PROPERTIES         1         E200.7         02/28/17 23:38 / rlh           Solids, Total Dissolved TDS @ 180 C         1400 mg/L         DH         20         A2540 C         02/28/17 08:38 / rik |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calcium       132 mg/L       1       E200.7       02/28/17 23:38 / rlh         Magnesium       20 mg/L       1       E200.7       02/28/17 23:38 / rlh         Potassium       12 mg/L       1       E200.7       02/28/17 23:38 / rlh         Sodium       226 mg/L       1       E200.7       02/28/17 23:38 / rlh         PHYSICAL PROPERTIES         pH       5.4 s.u.       H       0.1       A4500-H B       02/24/17 14:16 / pjw                                                                                                                                                                |
| Magnesium       20 mg/L       1       E200.7       02/28/17 23:38 / rlh         Potassium       12 mg/L       1       E200.7       02/28/17 23:38 / rlh         Sodium       226 mg/L       1       E200.7       02/28/17 23:38 / rlh         PHYSICAL PROPERTIES         pH       5.4 s.u.       H       0.1       A4500-H B       02/24/17 14:16 / pjw                                                                                                                                                                                                                                               |
| Magnesium     20 mg/L     1     E200.7     02/28/17 23:38 / rlh       Potassium     12 mg/L     1     E200.7     02/28/17 23:38 / rlh       Sodium     226 mg/L     1     E200.7     02/28/17 23:38 / rlh       PHYSICAL PROPERTIES       pH     5.4 s.u.     H     0.1     A4500-H B     02/24/17 14:16 / pjw                                                                                                                                                                                                                                                                                         |
| Potassium       12 mg/L       1 E200.7       02/28/17 23:38 / rlh         Sodium       226 mg/L       1 E200.7       02/28/17 23:38 / rlh         PHYSICAL PROPERTIES         pH       5.4 s.u.       H 0.1       A4500-H B 02/24/17 14:16 / pjw                                                                                                                                                                                                                                                                                                                                                       |
| Sodium       226 mg/L       1       E200.7       02/28/17 23:38 / rlh         PHYSICAL PROPERTIES         pH       5.4 s.u.       H       0.1       A4500-H B       02/24/17 14:16 / pjw                                                                                                                                                                                                                                                                                                                                                                                                               |
| pH 5.4 s.u. H 0.1 A4500-H B 02/24/17 14:16 / pjw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Solids, Total Dissolved TDS @ 180 C 1400 mg/L DH 20 A2540 C 02/28/17 08:38 / rik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| INORGANICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Chloride 146 mg/L 1 E300.0 03/01/17 01:50 / mej                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sulfate 720 mg/L D 4 E300.0 03/01/17 01:50 / mej                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Fluoride ND mg/L 0.1 A4500-F C 02/28/17 11:09 / cjm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| METALS, TOTAL RECOVERABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Antimony ND mg/L 0.006 E200.8 03/01/17 02:11 / mas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Arsenic ND mg/L 0.01 E200.8 03/01/17 02:11 / mas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Barium 0.02 mg/L 0.01 E200.7 02/28/17 23:38 / rlh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Beryllium 0.003 mg/L 0.001 E200.7 02/28/17 23:38 / rlh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Boron 3.61 mg/L 0.05 E200.7 02/28/17 23:38 / rlh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Cadmium ND mg/L 0.005 E200.8 03/01/17 02:11 / mas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Chromium ND mg/L 0.01 E200.7 02/28/17 23:38 / rlh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Cobalt 0.04 mg/L 0.02 E200.7 02/28/17 23:38 / rlh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Lead ND mg/L 0.01 E200.8 03/01/17 02:11 / mas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Lithium 0.06 mg/L 0.01 E200.7 02/28/17 23:38 / rlh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Mercury ND mg/L 0.001 E245.1 02/27/17 16:01 / jh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Molybdenum ND mg/L 0.05 E200.7 02/28/17 23:38 / rlh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Selenium ND mg/L 0.01 E200.8 03/01/17 02:11 / mas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Thallium ND mg/L 0.002 E200.8 03/01/17 02:11 / mas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| RADIONUCLIDES - TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Radium 226 0.77 pCi/L E903.0 03/13/17 09:06 / eli-co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Radium 226 precision (±) 0.19 pCi/L E903.0 03/13/17 09:06 / eli-co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Radium 226 MDC 0.19 pCi/L E903.0 03/13/17 09:06 / eli-co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Radium 228 1.7 pCi/L RA-05 03/07/17 13:37 / eli-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Radium 228 precision (±) 0.84 pCi/L RA-05 03/07/17 13:37 / eli-co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Radium 228 MDC 1.4 pCi/L RA-05 03/07/17 13:37 / eli-co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Radium 226 + Radium 228 2.4 pCi/L A7500-RA 03/13/17 11:18 / eli-co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Radium 226 + Radium 228 precision (±) 0.9 pCi/L A7500-RA 03/13/17 11:18 / eli-co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Radium 226 + Radium 228 MDC 1.5 pCi/L A7500-RA 03/13/17 11:18 / eli-c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

ADD Main to the tele

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA 6706150060 Lab ID: B17021678-002 Client Sample ID: APMW-1D

Revised Date: 12/22/17 **Report Date:** 03/14/17 Collection Date: 02/21/17 09:52 DateReceived: 02/24/17

Matrix: Ground Water

| Analyses                              | Result | Unite | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| Allalyses                             | Nesuit | Units | Qualifiers | INE.  | QUL         | Wiethou   | Allalysis Date / Dy     |
| MAJOR IONS                            |        |       |            |       |             |           |                         |
| Calcium                               | 77     | mg/L  |            | 1     |             | E200.7    | 02/28/17 23:42 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |             | E200.7    | 02/28/17 23:42 / rlh    |
| Potassium                             | 12     | mg/L  |            | 1     |             | E200.7    | 02/28/17 23:42 / rlh    |
| Sodium                                | 322    | mg/L  |            | 1     |             | E200.7    | 02/28/17 23:42 / rlh    |
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| pH                                    | 6.1    | s.u.  | Н          | 0.1   |             | A4500-H B | 02/24/17 14:21 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 1310   | mg/L  | D          | 20    |             | A2540 C   | 02/28/17 08:38 / rik    |
| INORGANICS                            |        |       |            |       |             |           |                         |
| Chloride                              | 228    | mg/L  |            | 1     |             | E300.0    | 03/01/17 02:07 / mej    |
| Sulfate                               |        | mg/L  | D          | 4     |             | E300.0    | 03/01/17 02:07 / mej    |
| Fluoride                              | 0.7    | mg/L  |            | 0.1   |             | A4500-F C | 02/28/17 11:12 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 |             | E200.8    | 03/01/17 02:24 / mas    |
| Arsenic                               | 0.01   | mg/L  |            | 0.01  |             | E200.8    | 03/01/17 02:24 / mas    |
| Barium                                | 0.01   | mg/L  |            | 0.01  |             | E200.7    | 02/28/17 23:42 / rlh    |
| Beryllium                             | ND     | mg/L  |            | 0.001 |             | E200.7    | 02/28/17 23:42 / rlh    |
| Boron                                 | 4.88   | mg/L  |            | 0.05  |             | E200.7    | 02/28/17 23:42 / rlh    |
| Cadmium                               | ND     | mg/L  |            | 0.005 |             | E200.7    | 02/28/17 23:42 / rlh    |
| Chromium                              | ND     | mg/L  |            | 0.01  |             | E200.7    | 02/28/17 23:42 / rlh    |
| Cobalt                                | ND     | mg/L  |            | 0.02  |             | E200.7    | 02/28/17 23:42 / rlh    |
| Lead                                  | ND     | mg/L  |            | 0.01  |             | E200.8    | 03/01/17 02:24 / mas    |
| Lithium                               | 0.04   | mg/L  |            | 0.01  |             | E200.7    | 02/28/17 23:42 / rlh    |
| Mercury                               | ND     | mg/L  |            | 0.001 |             | E245.1    | 02/27/17 16:03 / jh     |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.7    | 02/28/17 23:42 / rlh    |
| Selenium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 03/01/17 02:24 / mas    |
| Thallium                              | ND     | mg/L  |            | 0.002 |             | E200.8    | 03/01/17 02:24 / mas    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 226                            | 0.37   | pCi/L |            |       |             | E903.0    | 03/13/17 09:06 / eli-ca |
| Radium 226 precision (±)              | 0.16   | pCi/L |            |       |             | E903.0    | 03/13/17 09:06 / eli-ca |
| Radium 226 MDC                        | 0.21   | pCi/L |            |       |             | E903.0    | 03/13/17 09:06 / eli-ca |
| Radium 228                            | 0.21   | pCi/L | U          |       |             | RA-05     | 03/07/17 13:37 / eli-ca |
| Radium 228 precision (±)              |        | pCi/L |            |       |             | RA-05     | 03/07/17 13:37 / eli-ca |
| Radium 228 MDC                        | 1.6    | pCi/L |            |       |             | RA-05     | 03/07/17 13:37 / eli-ca |
| Radium 226 + Radium 228               | 0.6    | pCi/L | U          |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1      | pCi/L |            |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.6    | pCi/L |            |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA 6706150060 Lab ID: B17021678-003 Client Sample ID: APMW-5

Revised Date: 12/22/17 **Report Date:** 03/14/17 Collection Date: 02/21/17 11:31 DateReceived: 02/24/17

Matrix: Ground Water

|                                       |        |        |            |       | MCL/ |           |                                              |
|---------------------------------------|--------|--------|------------|-------|------|-----------|----------------------------------------------|
| Analyses                              | Result | Units  | Qualifiers | RL    | QCL  | Method    | Analysis Date / By                           |
| MAJOR IONS                            |        |        |            |       |      |           |                                              |
| Calcium                               | 494    | mg/L   |            | 1     |      | E200.7    | 02/28/17 23:45 / rlh                         |
| Magnesium                             |        | mg/L   |            | 1     |      | E200.7    | 02/28/17 23:45 / rlh                         |
| Potassium                             |        | mg/L   |            | 1     |      | E200.7    | 02/28/17 23:45 / rlh                         |
| Sodium                                |        | mg/L   | D          | 4     |      | E200.7    | 02/28/17 23:45 / rlh                         |
| PHYSICAL PROPERTIES                   |        |        |            |       |      |           |                                              |
| pH                                    | 3.6    | s.u.   | Н          | 0.1   |      | A4500-H B | 02/24/17 14:23 / pjw                         |
| Solids, Total Dissolved TDS @ 180 C   | 4860   |        | D          | 40    |      | A2540 C   | 02/28/17 08:38 / rik                         |
| INORGANICS                            |        |        |            |       |      |           |                                              |
| Chloride                              | 490    | mg/L   | D          | 6     |      | E300.0    | 03/01/17 02:23 / mej                         |
| Sulfate                               | 2880   | •      | D          | 20    |      | E300.0    | •                                            |
| Fluoride                              |        | mg/L   | D          | 0.1   |      | A4500-F C | 03/01/17 02:23 / mej<br>02/28/17 11:21 / cjm |
| ridonde                               | 1.2    | IIIg/L |            | 0.1   |      | A4300-F C | 02/20/17 11.21 / GJIII                       |
| METALS, TOTAL RECOVERABLE             |        |        |            |       |      |           |                                              |
| Antimony                              |        | mg/L   |            | 0.006 |      | E200.8    | 03/01/17 02:28 / mas                         |
| Arsenic                               |        | mg/L   |            | 0.01  |      | E200.8    | 03/01/17 02:28 / mas                         |
| Barium                                | 0.04   | mg/L   |            | 0.01  |      | E200.7    | 02/28/17 23:45 / rlh                         |
| Beryllium                             | 0.089  | mg/L   |            | 0.001 |      | E200.7    | 02/28/17 23:45 / rlh                         |
| Boron                                 | 3.32   | mg/L   |            | 0.05  |      | E200.7    | 02/28/17 23:45 / rlh                         |
| Cadmium                               | 0.010  | mg/L   |            | 0.005 |      | E200.8    | 03/01/17 02:28 / mas                         |
| Chromium                              | ND     | mg/L   |            | 0.01  |      | E200.8    | 03/01/17 02:28 / mas                         |
| Cobalt                                | 0.18   | mg/L   |            | 0.02  |      | E200.8    | 03/01/17 02:28 / mas                         |
| Lead                                  | ND     | mg/L   |            | 0.01  |      | E200.8    | 03/01/17 02:28 / mas                         |
| Lithium                               | 0.53   | mg/L   | D          | 0.04  |      | E200.7    | 02/28/17 23:45 / rlh                         |
| Mercury                               | ND     | mg/L   |            | 0.001 |      | E245.1    | 02/27/17 16:05 / jh                          |
| Molybdenum                            | ND     | mg/L   |            | 0.05  |      | E200.8    | 03/01/17 02:28 / mas                         |
| Selenium                              | 0.01   | mg/L   |            | 0.01  |      | E200.8    | 03/01/17 02:28 / mas                         |
| Thallium                              | 0.002  | mg/L   |            | 0.002 |      | E200.8    | 03/01/17 02:28 / mas                         |
| RADIONUCLIDES - TOTAL                 |        |        |            |       |      |           |                                              |
| Radium 226                            | 1.5    | pCi/L  |            |       |      | E903.0    | 03/13/17 09:06 / eli-ca                      |
| Radium 226 precision (±)              | 0.40   | pCi/L  |            |       |      | E903.0    | 03/13/17 09:06 / eli-ca                      |
| Radium 226 MDC                        | 0.20   | pCi/L  |            |       |      | E903.0    | 03/13/17 09:06 / eli-ca                      |
| Radium 228                            | 0.31   | pCi/L  | U          |       |      | RA-05     | 03/07/17 15:12 / eli-ca                      |
| Radium 228 precision (±)              | 1.1    | pCi/L  |            |       |      | RA-05     | 03/07/17 15:12 / eli-ca                      |
| Radium 228 MDC                        | 1.8    | pCi/L  |            |       |      | RA-05     | 03/07/17 15:12 / eli-ca                      |
| Radium 226 + Radium 228               | 1.8    | pCi/L  | U          |       |      | A7500-RA  | 03/13/17 11:18 / eli-ca                      |
| Radium 226 + Radium 228 precision (±) | 1.2    | pCi/L  |            |       |      | A7500-RA  | 03/13/17 11:18 / eli-ca                      |
| Radium 226 + Radium 228 MDC           | 1.8    | pCi/L  |            |       |      | A7500-RA  | 03/13/17 11:18 / eli-ca                      |
|                                       |        |        |            |       |      |           |                                              |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

 Project:
 TMPA 6706150060

 Lab ID:
 B17021678-004

 Client Sample ID:
 APMW-4

Collection Date: 02/21/17 12:40
DateReceived: 02/24/17
Matrix: Ground Water

**Report Date:** 03/14/17

Revised Date: 12/22/17

| Solids, Total Dissolved TDS @ 180 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analyses                                | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| Calcium         488 mg/L         1         E200.7         02/28/17 23:56 / rlh           Magnesium         112 mg/L         1         E200.7         02/28/17 23:56 / rlh           Potassium         45 mg/L         1         E200.7         02/28/17 23:56 / rlh           Sodium         490 mg/L         D         2         E200.7         02/28/17 23:56 / rlh           PHYSICAL PROPERTIES           pH         5.9 s.u.         H         0.1         A4500-H B         02/24/17 14:26 / pjw           Solids, Total Dissolved TDS @ 180 C         4130 mg/L         D         40         A2540 C         02/28/17 08:38 / rik           INORGANICS           Chloride         503 mg/L         D         3         E300.0         03/01/17 02:40 / mej           Sulfate         2290 mg/L         D         9         E300.0         03/01/17 02:40 / mej           Fluoride         ND mg/L         0.1         A4500-F C         02/27/17 14:31 / cjm           METALS, TOTAL RECOVERABLE           Antimony         ND mg/L         0.006         E200.8         03/01/17 02:31 / mas           Arsenic         ND mg/L         0.01         E200.8         03/01/17 02:31 / mas      <                                                                                                             | MA IOD IONS                             |        |       |            |       |             |           |                         |
| Magnesium         112 mg/L         1 mg/L         2 mg/L         1 mg/L         1 mg/L         1 mg/L         2 mg/L         1 mg/L         1 mg/L         1 mg/L         2 mg/L         1 mg/L         1 mg/L         1 mg/L         1 mg/L         1 mg/L         2 |                                         | 400    | · /1  |            | 4     |             | F200 7    | 00/00/47 00.50 /        |
| Potassium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |        | •     |            |       |             |           |                         |
| Sodium         490 mg/L         D         2         E200.7         02/28/17 23:56 / rlh           PHYSICAL PROPERTIES           pH         5.9 s.u.         H         0.1         A4500-H B         02/24/17 14:26 / pjw           Solids, Total Dissolved TDS @ 180 C         4130 mg/L         D         40         A2540 C         02/28/17 08:38 / rik           INORGANICS           Chloride         503 mg/L         D         3         E300.0         03/01/17 02:40 / mej           Sulfate         2290 mg/L         D         9         E300.0         03/01/17 02:40 / mej           METALS, TOTAL RECOVERABLE           Antimony         ND         mg/L         0.006         E200.8         03/01/17 02:31 / mas           Arsenic         ND         mg/L         0.01         E200.8         03/01/17 02:31 / mas           Barium         0.01         mg/L         0.01         E200.7         02/28/17 23:56 / rlh           Beryllium         ND         mg/L         0.001         E200.7         02/28/17 23:56 / rlh           Boron         1.89         mg/L         0.05         E200.7         02/28/17 23:56 / rlh                                                                                                                                                                   | -                                       |        | •     |            |       |             |           |                         |
| PHYSICAL PROPERTIES pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |        | •     | 5          | -     |             |           |                         |
| pH         5.9 s.u.         H         0.1         A4500-H B         02/24/17 14:26 / pjw           Solids, Total Dissolved TDS @ 180 C         4130 mg/L         D         40         A2540 C         02/28/17 08:38 / rik           INORGANICS           Chloride         503 mg/L         D         3         E300.0         03/01/17 02:40 / mej           Sulfate         2290 mg/L         D         9         E300.0         03/01/17 02:40 / mej           METALS, TOTAL RECOVERABLE           METALS, TOTAL RECOVERABLE           Antimony         ND mg/L         0.006         E200.8         03/01/17 02:31 / mas           Arsenic         ND mg/L         0.01         E200.8         03/01/17 02:31 / mas           Barium         0.01         mg/L         0.01         E200.7         02/2/8/17 23:56 / rlh           Boron         1.89 mg/L         0.001         E200.7         02/2/8/17 23:56 / rlh           Chromium         ND mg/L         0.005         E200.7         02/2/8/17 23:56 / rlh           Chobalt         ND mg/L         0.01         E200.8         03/01/17 02:31 / mas           Lead         ND mg/L         0.02         E200.8         03/01/17 02:31 / mas                                                                                                         | Sodium                                  | 490    | mg/L  | D          | 2     |             | E200.7    | 02/28/17 23:56 / rin    |
| Solids, Total Dissolved TDS @ 180 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PHYSICAL PROPERTIES                     |        |       |            |       |             |           |                         |
| NORGANICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pH                                      | 5.9    | s.u.  | Н          | 0.1   |             | A4500-H B | 02/24/17 14:26 / pjw    |
| Chloride         503         mg/L         D         3         E300.0         03/01/17 02:40 / mej           Sulfate         2290         mg/L         D         9         E300.0         03/01/17 02:40 / mej           Fluoride         ND         mg/L         0.1         A4500-F C         02/27/17 14:31 / cjm           METALS, TOTAL RECOVERABLE           Antimony         ND         mg/L         0.006         E200.8         03/01/17 02:31 / mas           Arsenic         ND         mg/L         0.01         E200.8         03/01/17 02:31 / mas           Barium         0.01         mg/L         0.01         E200.8         03/01/17 02:31 / mas           Beryllium         ND         mg/L         0.001         E200.7         02/28/17 23:56 / rlh           Boron         1.89         mg/L         0.05         E200.7         02/28/17 23:56 / rlh           Cadmium         ND         mg/L         0.005         E200.7         02/28/17 23:56 / rlh           Chromium         ND         mg/L         0.01         E200.8         03/01/17 02:31 / mas           Cobalt         ND         mg/L         0.02         E200.8         03/01/17 02:31 / mas           Lead         ND                                                                                                   | Solids, Total Dissolved TDS @ 180 C     | 4130   | mg/L  | D          | 40    |             | A2540 C   | 02/28/17 08:38 / rik    |
| Sulfate         2290 mg/L         D         9         E300.0         03/01/17 02:40 / mej           Fluoride         ND mg/L         D         9         E300.0         03/01/17 02:40 / mej           METALS, TOTAL RECOVERABLE           Antimony         ND mg/L         0.006         E200.8         03/01/17 02:31 / mas           Arsenic         ND mg/L         0.01         E200.8         03/01/17 02:31 / mas           Barium         0.01 mg/L         0.01         E200.7         02/28/17 23:56 / rlh           Beryllium         ND mg/L         0.001         E200.7         02/28/17 23:56 / rlh           Boron         1.89 mg/L         0.05         E200.7         02/28/17 23:56 / rlh           Cadmium         ND mg/L         0.005         E200.7         02/28/17 23:56 / rlh           Chromium         ND mg/L         0.01         E200.8         03/01/17 02:31 / mas           Cobalt         ND mg/L         0.02         E200.8         03/01/17 02:31 / mas           Lead         ND mg/L         0.01         E200.8         03/01/17 02:31 / mas           Lithium         0.87 mg/L         D         0.02         E200.7         02/28/17 23:56 / rlh                                                                                                                     | INORGANICS                              |        |       |            |       |             |           |                         |
| Sulfate         2290 mg/L         D         9         E300.0         03/01/17 02:40 / mej           Fluoride         ND mg/L         0.1         A4500-F C         02/27/17 14:31 / cjm           METALS, TOTAL RECOVERABLE           Antimony         ND mg/L         0.006         E200.8         03/01/17 02:31 / mas           Arsenic         ND mg/L         0.01         E200.8         03/01/17 02:31 / mas           Barium         0.01 mg/L         0.01         E200.7         02/28/17 23:56 / rlh           Beryllium         ND mg/L         0.001         E200.7         02/28/17 23:56 / rlh           Boron         1.89 mg/L         0.05         E200.7         02/28/17 23:56 / rlh           Cadmium         ND mg/L         0.005         E200.7         02/28/17 23:56 / rlh           Chromium         ND mg/L         0.01         E200.8         03/01/17 02:31 / mas           Cobalt         ND mg/L         0.02         E200.8         03/01/17 02:31 / mas           Lead         ND mg/L         0.01         E200.8         03/01/17 02:31 / mas           Lithium         0.87 mg/L         D         0.02         E200.7         02/28/17 23:56 / rlh                                                                                                                          | Chloride                                | 503    | mg/L  | D          | 3     |             | E300.0    | 03/01/17 02:40 / mej    |
| METALS, TOTAL RECOVERABLE         ND mg/L         0.1         A4500-F C         02/27/17 14:31 / cjm           Antimony         ND mg/L         0.006         E200.8         03/01/17 02:31 / mas           Arsenic         ND mg/L         0.01         E200.8         03/01/17 02:31 / mas           Barium         0.01 mg/L         0.01         E200.7         02/28/17 23:56 / rlh           Beryllium         ND mg/L         0.001         E200.7         02/28/17 23:56 / rlh           Boron         1.89 mg/L         0.05         E200.7         02/28/17 23:56 / rlh           Cadmium         ND mg/L         0.005         E200.7         02/28/17 23:56 / rlh           Chromium         ND mg/L         0.01         E200.8         03/01/17 02:31 / mas           Cobalt         ND mg/L         0.02         E200.8         03/01/17 02:31 / mas           Lead         ND mg/L         0.01         E200.8         03/01/17 02:31 / mas           Lithium         0.87 mg/L         D         0.02         E200.7         02/28/17 23:56 / rlh                                                                                                                                                                                                                                                 | Sulfate                                 |        | •     | D          |       |             | E300.0    | •                       |
| Antimony         ND         mg/L         0.006         E200.8         03/01/17 02:31 / mas           Arsenic         ND         mg/L         0.01         E200.8         03/01/17 02:31 / mas           Barium         0.01         mg/L         0.01         E200.7         02/28/17 23:56 / rlh           Beryllium         ND         mg/L         0.001         E200.7         02/28/17 23:56 / rlh           Boron         1.89         mg/L         0.05         E200.7         02/28/17 23:56 / rlh           Cadmium         ND         mg/L         0.005         E200.7         02/28/17 23:56 / rlh           Chromium         ND         mg/L         0.01         E200.8         03/01/17 02:31 / mas           Cobalt         ND         mg/L         0.02         E200.8         03/01/17 02:31 / mas           Lead         ND         mg/L         0.01         E200.8         03/01/17 02:31 / mas           Lithium         0.87         mg/L         D         0.02         E200.7         02/28/17 23:56 / rlh                                                                                                                                                                                                                                                                                | Fluoride                                |        | •     |            | 0.1   |             | A4500-F C | •                       |
| Antimony         ND         mg/L         0.006         E200.8         03/01/17 02:31 / mas           Arsenic         ND         mg/L         0.01         E200.8         03/01/17 02:31 / mas           Barium         0.01         mg/L         0.01         E200.7         02/28/17 23:56 / rlh           Beryllium         ND         mg/L         0.001         E200.7         02/28/17 23:56 / rlh           Boron         1.89         mg/L         0.05         E200.7         02/28/17 23:56 / rlh           Cadmium         ND         mg/L         0.005         E200.7         02/28/17 23:56 / rlh           Chromium         ND         mg/L         0.01         E200.8         03/01/17 02:31 / mas           Cobalt         ND         mg/L         0.02         E200.8         03/01/17 02:31 / mas           Lead         ND         mg/L         0.01         E200.8         03/01/17 02:31 / mas           Lithium         0.87         mg/L         D         0.02         E200.7         02/28/17 23:56 / rlh                                                                                                                                                                                                                                                                                | METALS, TOTAL RECOVERABLE               |        |       |            |       |             |           |                         |
| Arsenic         ND mg/L         0.01         E200.8         03/01/17 02:31 / mas           Barium         0.01 mg/L         0.01         E200.7         02/28/17 23:56 / rlh           Beryllium         ND mg/L         0.001         E200.7         02/28/17 23:56 / rlh           Boron         1.89 mg/L         0.05         E200.7         02/28/17 23:56 / rlh           Cadmium         ND mg/L         0.005         E200.7         02/28/17 23:56 / rlh           Chromium         ND mg/L         0.01         E200.8         03/01/17 02:31 / mas           Cobalt         ND mg/L         0.02         E200.8         03/01/17 02:31 / mas           Lead         ND mg/L         0.01         E200.8         03/01/17 02:31 / mas           Lithium         0.87 mg/L         D         0.02         E200.7         02/28/17 23:56 / rlh                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                       | ND     | mg/L  |            | 0.006 |             | E200.8    | 03/01/17 02:31 / mas    |
| Barium         0.01 mg/L         0.01 mg/L         E200.7 o2/28/17 23:56 / rlh           Beryllium         ND mg/L         0.001 E200.7 o2/28/17 23:56 / rlh           Boron         1.89 mg/L         0.05 E200.7 o2/28/17 23:56 / rlh           Cadmium         ND mg/L         0.005 E200.7 o2/28/17 23:56 / rlh           Chromium         ND mg/L         0.01 E200.8 o3/01/17 02:31 / mas           Cobalt         ND mg/L         0.02 E200.8 o3/01/17 02:31 / mas           Lead         ND mg/L         0.01 E200.8 o3/01/17 02:31 / mas           Lithium         0.87 mg/L         D 0.02 E200.7 o2/28/17 23:56 / rlh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                       |        | •     |            | 0.01  |             | E200.8    | 03/01/17 02:31 / mas    |
| Beryllium         ND         mg/L         0.001         E200.7         02/28/17 23:56 / rlh           Boron         1.89         mg/L         0.05         E200.7         02/28/17 23:56 / rlh           Cadmium         ND         mg/L         0.005         E200.7         02/28/17 23:56 / rlh           Chromium         ND         mg/L         0.01         E200.8         03/01/17 02:31 / mas           Cobalt         ND         mg/L         0.02         E200.8         03/01/17 02:31 / mas           Lead         ND         mg/L         0.01         E200.8         03/01/17 02:31 / mas           Lithium         0.87         mg/L         D         0.02         E200.7         02/28/17 23:56 / rlh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Barium                                  |        | _     |            | 0.01  |             | E200.7    | 02/28/17 23:56 / rlh    |
| Cadmium         ND         mg/L         0.005         E200.7         02/28/17 23:56 / rlh           Chromium         ND         mg/L         0.01         E200.8         03/01/17 02:31 / mas           Cobalt         ND         mg/L         0.02         E200.8         03/01/17 02:31 / mas           Lead         ND         mg/L         0.01         E200.8         03/01/17 02:31 / mas           Lithium         0.87         mg/L         D         0.02         E200.7         02/28/17 23:56 / rlh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Beryllium                               |        | •     |            | 0.001 |             | E200.7    | 02/28/17 23:56 / rlh    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Boron                                   | 1.89   | mg/L  |            | 0.05  |             | E200.7    | 02/28/17 23:56 / rlh    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cadmium                                 | ND     | mg/L  |            | 0.005 |             | E200.7    | 02/28/17 23:56 / rlh    |
| Lead         ND mg/L         0.01         E200.8         03/01/17 02:31 / mas           Lithium         0.87 mg/L         D 0.02         E200.7         02/28/17 23:56 / rlh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chromium                                | ND     | mg/L  |            | 0.01  |             | E200.8    | 03/01/17 02:31 / mas    |
| Lithium 0.87 mg/L D 0.02 E200.7 02/28/17 23:56 / rlh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cobalt                                  | ND     | mg/L  |            | 0.02  |             | E200.8    | 03/01/17 02:31 / mas    |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lead                                    | ND     | mg/L  |            | 0.01  |             | E200.8    | 03/01/17 02:31 / mas    |
| Mercury ND ma/L 0.001 F245.1 02/27/17 16:06 / ih                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lithium                                 | 0.87   | mg/L  | D          | 0.02  |             | E200.7    | 02/28/17 23:56 / rlh    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mercury                                 | ND     | mg/L  |            | 0.001 |             | E245.1    | 02/27/17 16:06 / jh     |
| Molybdenum ND mg/L 0.05 E200.7 02/28/17 23:56 / rlh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Molybdenum                              | ND     | mg/L  |            | 0.05  |             | E200.7    | 02/28/17 23:56 / rlh    |
| Selenium ND mg/L 0.01 E200.8 03/01/17 02:31 / mas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Selenium                                | ND     | mg/L  |            | 0.01  |             | E200.8    | 03/01/17 02:31 / mas    |
| Thallium ND mg/L 0.002 E200.8 03/01/17 02:31 / mas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Thallium                                | ND     | mg/L  |            | 0.002 |             | E200.8    | 03/01/17 02:31 / mas    |
| RADIONUCLIDES - TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RADIONUCLIDES - TOTAL                   |        |       |            |       |             |           |                         |
| Radium 226 0.92 pCi/L E903.0 03/13/17 09:06 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Radium 226                              | 0.92   | pCi/L |            |       |             | E903.0    | 03/13/17 09:06 / eli-ca |
| Radium 226 precision (±) 0.21 pCi/L E903.0 03/13/17 09:06 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Radium 226 precision (±)                | 0.21   | pCi/L |            |       |             | E903.0    | 03/13/17 09:06 / eli-ca |
| Radium 226 MDC 0.20 pCi/L E903.0 03/13/17 09:06 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Radium 226 MDC                          | 0.20   | pCi/L |            |       |             | E903.0    | 03/13/17 09:06 / eli-ca |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Radium 228                              | 0.29   | pCi/L | U          |       |             | RA-05     |                         |
| Radium 228 precision (±)  1.1 pCi/L  RA-05  03/07/17 15:12 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Radium 228 precision (±)                | 1.1    | pCi/L |            |       |             | RA-05     | 03/07/17 15:12 / eli-ca |
| Radium 228 MDC 1.8 pCi/L RA-05 03/07/17 15:12 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | * * * * * * * * * * * * * * * * * * * * |        |       |            |       |             | RA-05     | 03/07/17 15:12 / eli-ca |
| Radium 226 + Radium 228 1.2 pCi/L U A7500-RA 03/13/17 11:18 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Radium 226 + Radium 228                 | 1.2    | pCi/L | U          |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |
| Radium 226 + Radium 228 precision (±) 1.1 pCi/L A7500-RA 03/13/17 11:18 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Radium 226 + Radium 228 precision (±)   | 1.1    | pCi/L |            |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |
| Radium 226 + Radium 228 MDC 1.8 pCi/L A7500-RA 03/13/17 11:18 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Radium 226 + Radium 228 MDC             | 1.8    | pCi/L |            |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit. D - RL increased due to sample matrix.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

TMPA 6706150060 Project: Lab ID: B17021678-005 Client Sample ID: EQBK-BJG-22117

Revised Date: 12/22/17 **Report Date:** 03/14/17 Collection Date: 02/21/17 13:45 DateReceived: 02/24/17

Matrix: Ground Water

| Analyses                              | Result | Unite  | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|--------|------------|-------|-------------|-----------|-------------------------|
| Allalyses                             | Result | Ullits | Qualifiers | - INL | WOL.        | Wiethou   | Analysis Date / By      |
| MAJOR IONS                            |        |        |            |       |             |           |                         |
| Calcium                               | 41     | mg/L   |            | 1     |             | E200.7    | 02/28/17 23:59 / rlh    |
| Magnesium                             |        | mg/L   |            | 1     |             | E200.7    | 02/28/17 23:59 / rlh    |
| Potassium                             | 3      | mg/L   |            | 1     |             | E200.7    | 02/28/17 23:59 / rlh    |
| Sodium                                | 25     | mg/L   |            | 1     |             | E200.7    | 02/28/17 23:59 / rlh    |
| PHYSICAL PROPERTIES                   |        |        |            |       |             |           |                         |
| pН                                    | 7.8    | s.u.   | Н          | 0.1   |             | A4500-H B | 02/24/17 14:29 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 279    | mg/L   |            | 10    |             | A2540 C   | 02/28/17 08:39 / rik    |
| INORGANICS                            |        |        |            |       |             |           |                         |
| Chloride                              | 31     | mg/L   |            | 1     |             | E300.0    | 03/01/17 02:56 / mej    |
| Sulfate                               |        | mg/L   |            | 1     |             | E300.0    | 03/01/17 02:56 / mej    |
| Fluoride                              |        | mg/L   |            | 0.1   |             | A4500-F C | 03/13/17 14:03 / bas    |
| METALS, TOTAL RECOVERABLE             |        |        |            |       |             |           |                         |
| Antimony                              | ND     | mg/L   |            | 0.006 |             | E200.8    | 03/01/17 02:34 / mas    |
| Arsenic                               | ND     | mg/L   |            | 0.01  |             | E200.8    | 03/01/17 02:34 / mas    |
| Barium                                | 0.07   | mg/L   |            | 0.01  |             | E200.7    | 02/28/17 23:59 / rlh    |
| Beryllium                             | ND     | mg/L   |            | 0.001 |             | E200.7    | 02/28/17 23:59 / rlh    |
| Boron                                 | ND     | mg/L   |            | 0.05  |             | E200.7    | 02/28/17 23:59 / rlh    |
| Cadmium                               | ND     | mg/L   |            | 0.005 |             | E200.7    | 02/28/17 23:59 / rlh    |
| Chromium                              | ND     | mg/L   |            | 0.01  |             | E200.7    | 02/28/17 23:59 / rlh    |
| Cobalt                                | ND     | mg/L   |            | 0.02  |             | E200.7    | 02/28/17 23:59 / rlh    |
| Lead                                  | ND     | mg/L   |            | 0.01  |             | E200.8    | 03/01/17 02:34 / mas    |
| Lithium                               | ND     | mg/L   |            | 0.01  |             | E200.7    | 02/28/17 23:59 / rlh    |
| Mercury                               | ND     | mg/L   |            | 0.001 |             | E245.1    | 02/27/17 16:08 / jh     |
| Molybdenum                            | ND     | mg/L   |            | 0.05  |             | E200.7    | 02/28/17 23:59 / rlh    |
| Selenium                              | ND     | mg/L   |            | 0.01  |             | E200.8    | 03/01/17 02:34 / mas    |
| Thallium                              | ND     | mg/L   |            | 0.002 |             | E200.8    | 03/01/17 02:34 / mas    |
| RADIONUCLIDES - TOTAL                 |        |        |            |       |             |           |                         |
| Radium 226                            | 0.54   | pCi/L  |            |       |             | E903.0    | 03/13/17 09:06 / eli-ca |
| Radium 226 precision (±)              | 0.18   | pCi/L  |            |       |             | E903.0    | 03/13/17 09:06 / eli-ca |
| Radium 226 MDC                        | 0.20   | pCi/L  |            |       |             | E903.0    | 03/13/17 09:06 / eli-ca |
| Radium 228                            | 0.13   | pCi/L  | U          |       |             | RA-05     | 03/07/17 15:12 / eli-ca |
| Radium 228 precision (±)              |        | pCi/L  |            |       |             | RA-05     | 03/07/17 15:12 / eli-ca |
| Radium 228 MDC                        | 1.8    | pCi/L  |            |       |             | RA-05     | 03/07/17 15:12 / eli-ca |
| Radium 226 + Radium 228               | 0.7    | pCi/L  | U          |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |
| Radium 226 + Radium 228 precision (±) |        | pCi/L  |            |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.8    | pCi/L  |            |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

U - Not detected at minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA 6706150060 Lab ID: B17021678-006 Client Sample ID: SSP/APMW-1

Revised Date: 12/22/17 **Report Date:** 03/14/17 Collection Date: 02/21/17 14:52 DateReceived: 02/24/17

Matrix: Ground Water

| Acabasas                              |        |        | o !!!      | D.    | MCL/<br>QCL | Made at   | Aurabasta Bata (Ba                           |
|---------------------------------------|--------|--------|------------|-------|-------------|-----------|----------------------------------------------|
| Analyses                              | Result | Units  | Qualifiers | RL    | QCL         | Method    | Analysis Date / By                           |
| MAJOR IONS                            |        |        |            |       |             |           |                                              |
| Calcium                               | 617    | mg/L   |            | 1     |             | E200.7    | 03/01/17 00:03 / rlh                         |
| Magnesium                             |        | mg/L   |            | 1     |             | E200.7    | 03/01/17 00:03 / rlh                         |
| Potassium                             |        | mg/L   |            | 1     |             | E200.7    | 03/01/17 00:03 / rlh                         |
| Sodium                                |        | mg/L   | D          | 4     |             | E200.7    | 03/01/17 00:03 / rlh                         |
| PHYSICAL PROPERTIES                   |        |        |            |       |             |           |                                              |
| pH                                    | 6.2    | s.u.   | Н          | 0.1   |             | A4500-H B | 02/24/17 14:31 / pjw                         |
| Solids, Total Dissolved TDS @ 180 C   |        | mg/L   | D          | 100   |             | A2540 C   | 02/28/17 08:39 / rik                         |
| INORGANICS                            |        |        |            |       |             |           |                                              |
| Chloride                              | 1520   | mg/L   | D          | 6     |             | E300.0    | 03/01/17 03:13 / mej                         |
| Sulfate                               |        | mg/L   | D          | 20    |             | E300.0    | •                                            |
| Fluoride                              |        | mg/L   | D          | 0.1   |             | A4500-F C | 03/01/17 03:13 / mej<br>02/27/17 14:42 / cjm |
| ridolide                              | 0.1    | IIIg/L |            | 0.1   |             | A4300-P C | 02/27/17 14.42 / Gjili                       |
| METALS, TOTAL RECOVERABLE             |        |        |            |       |             |           |                                              |
| Antimony                              |        | mg/L   |            | 0.006 |             | E200.8    | 03/01/17 02:38 / mas                         |
| Arsenic                               |        | mg/L   |            | 0.01  |             | E200.8    | 03/01/17 02:38 / mas                         |
| Barium                                |        | mg/L   |            | 0.01  |             | E200.7    | 03/01/17 00:03 / rlh                         |
| Beryllium                             | ND     | mg/L   |            | 0.001 |             | E200.8    | 03/01/17 02:38 / mas                         |
| Boron                                 | 0.77   | mg/L   |            | 0.05  |             | E200.7    | 03/01/17 00:03 / rlh                         |
| Cadmium                               |        | mg/L   |            | 0.005 |             | E200.8    | 03/01/17 02:38 / mas                         |
| Chromium                              |        | mg/L   |            | 0.01  |             | E200.8    | 03/01/17 02:38 / mas                         |
| Cobalt                                |        | mg/L   |            | 0.02  |             | E200.8    | 03/01/17 02:38 / mas                         |
| Lead                                  |        | mg/L   |            | 0.01  |             | E200.8    | 03/01/17 02:38 / mas                         |
| Lithium                               |        | mg/L   | D          | 0.04  |             | E200.7    | 03/01/17 00:03 / rlh                         |
| Mercury                               |        | mg/L   |            | 0.001 |             | E245.1    | 02/27/17 16:10 / jh                          |
| Molybdenum                            |        | mg/L   |            | 0.05  |             | E200.8    | 03/01/17 02:38 / mas                         |
| Selenium                              |        | mg/L   |            | 0.01  |             | E200.8    | 03/01/17 02:38 / mas                         |
| Thallium                              | ND     | mg/L   |            | 0.002 |             | E200.8    | 03/01/17 02:38 / mas                         |
| RADIONUCLIDES - TOTAL                 |        |        |            |       |             |           |                                              |
| Radium 226                            | 0.63   | pCi/L  |            |       |             | E903.0    | 03/13/17 09:06 / eli-ca                      |
| Radium 226 precision (±)              | 0.19   | pCi/L  |            |       |             | E903.0    | 03/13/17 09:06 / eli-ca                      |
| Radium 226 MDC                        | 0.21   | pCi/L  |            |       |             | E903.0    | 03/13/17 09:06 / eli-ca                      |
| Radium 228                            | -0.05  | pCi/L  | U          |       |             | RA-05     | 03/07/17 15:12 / eli-ca                      |
| Radium 228 precision (±)              | 1.1    | pCi/L  |            |       |             | RA-05     | 03/07/17 15:12 / eli-ca                      |
| Radium 228 MDC                        | 1.9    | pCi/L  |            |       |             | RA-05     | 03/07/17 15:12 / eli-ca                      |
| Radium 226 + Radium 228               | 0.6    | pCi/L  | U          |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca                      |
| Radium 226 + Radium 228 precision (±) |        | pCi/L  |            |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca                      |
| Radium 226 + Radium 228 MDC           | 1.9    | pCi/L  |            |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca                      |
|                                       |        |        |            |       |             |           |                                              |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA 6706150060 Lab ID: B17021678-007 Client Sample ID: SSPMW-2

Revised Date: 12/22/17 **Report Date:** 03/14/17 Collection Date: 02/21/17 15:55 DateReceived: 02/24/17

Matrix: Ground Water

| Analyses                              | Result | Unite  | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|--------|------------|-------|-------------|-----------|-------------------------|
| Analyses                              | Nesuit | Offics | Qualificis |       | QUL         | Wictiloa  | Analysis Date / By      |
| MAJOR IONS                            |        |        |            |       |             |           |                         |
| Calcium                               | 818    | mg/L   |            | 1     |             | E200.7    | 03/01/17 00:06 / rlh    |
| Magnesium                             | 190    | mg/L   |            | 1     |             | E200.7    | 03/01/17 00:06 / rlh    |
| Potassium                             | 58     | mg/L   |            | 1     |             | E200.7    | 03/01/17 00:06 / rlh    |
| Sodium                                | 1080   | mg/L   | D          | 4     |             | E200.7    | 03/01/17 00:06 / rlh    |
| PHYSICAL PROPERTIES                   |        |        |            |       |             |           |                         |
| Hq                                    | 5.4    | s.u.   | Н          | 0.1   |             | A4500-H B | 02/24/17 14:34 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 6990   | mg/L   | D          | 100   |             | A2540 C   | 02/28/17 08:39 / rik    |
| INORGANICS                            |        |        |            |       |             |           |                         |
| Chloride                              | 2550   | mg/L   | D          | 6     |             | E300.0    | 03/01/17 04:35 / mej    |
| Sulfate                               |        | mg/L   | D          | 20    |             | E300.0    | 03/01/17 04:35 / mej    |
| Fluoride                              |        | mg/L   |            | 0.1   |             | A4500-F C | 02/27/17 14:47 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |        |            |       |             |           |                         |
| Antimony                              | ND     | mg/L   |            | 0.006 |             | E200.8    | 03/01/17 02:41 / mas    |
| Arsenic                               |        | mg/L   |            | 0.01  |             | E200.8    | 03/01/17 02:41 / mas    |
| Barium                                |        | mg/L   |            | 0.01  |             | E200.7    | 03/01/17 00:06 / rlh    |
| Beryllium                             | 0.026  | •      |            | 0.001 |             | E200.7    | 03/01/17 00:06 / rlh    |
| Boron                                 |        | mg/L   |            | 0.05  |             | E200.7    | 03/01/17 00:06 / rlh    |
| Cadmium                               |        | mg/L   |            | 0.005 |             | E200.8    | 03/01/17 02:41 / mas    |
| Chromium                              | ND     | mg/L   |            | 0.01  |             | E200.8    | 03/01/17 02:41 / mas    |
| Cobalt                                | 0.06   | mg/L   |            | 0.02  |             | E200.8    | 03/01/17 02:41 / mas    |
| Lead                                  | ND     | mg/L   |            | 0.01  |             | E200.8    | 03/01/17 02:41 / mas    |
| Lithium                               | 0.86   | mg/L   | D          | 0.04  |             | E200.7    | 03/01/17 00:06 / rlh    |
| Mercury                               | ND     | mg/L   |            | 0.001 |             | E245.1    | 02/27/17 16:12 / jh     |
| Molybdenum                            | ND     | mg/L   |            | 0.05  |             | E200.8    | 03/01/17 02:41 / mas    |
| Selenium                              | ND     | mg/L   |            | 0.01  |             | E200.8    | 03/01/17 02:41 / mas    |
| Thallium                              | ND     | mg/L   |            | 0.002 |             | E200.8    | 03/01/17 02:41 / mas    |
| RADIONUCLIDES - TOTAL                 |        |        |            |       |             |           |                         |
| Radium 226                            | 0.84   | pCi/L  |            |       |             | E903.0    | 03/13/17 09:06 / eli-ca |
| Radium 226 precision (±)              | 0.19   | pCi/L  |            |       |             | E903.0    | 03/13/17 09:06 / eli-ca |
| Radium 226 MDC                        | 0.20   | pCi/L  |            |       |             | E903.0    | 03/13/17 09:06 / eli-ca |
| Radium 228                            | 14     | pCi/L  |            |       |             | RA-05     | 03/07/17 15:12 / eli-ca |
| Radium 228 precision (±)              | 2.8    | pCi/L  |            |       |             | RA-05     | 03/07/17 15:12 / eli-ca |
| Radium 228 MDC                        | 1.8    | pCi/L  |            |       |             | RA-05     | 03/07/17 15:12 / eli-ca |
| Radium 226 + Radium 228               | 14.6   | pCi/L  |            |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 2.8    | pCi/L  |            |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.8    | pCi/L  |            |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA 6706150060 Lab ID: B17021678-008 Client Sample ID: SSPMW-4

Revised Date: 12/22/17 **Report Date:** 03/14/17 Collection Date: 02/21/17 17:01 DateReceived: 02/24/17

Matrix: Ground Water

| Amaluaca                              | Daguit | l luita | Ovalitiana | RL    | MCL/<br>QCL | Method    | Analysia Data / By      |
|---------------------------------------|--------|---------|------------|-------|-------------|-----------|-------------------------|
| Analyses                              | Result | Units   | Qualifiers | KL    | QCL         | Wethod    | Analysis Date / By      |
| MAJOR IONS                            |        |         |            |       |             |           |                         |
| Calcium                               | 390    | mg/L    |            | 1     |             | E200.7    | 03/01/17 00:17 / rlh    |
| Magnesium                             |        | mg/L    |            | 1     |             | E200.7    | 03/01/17 00:17 / rlh    |
| Potassium                             | 53     | mg/L    |            | 1     |             | E200.7    | 03/01/17 00:17 / rlh    |
| Sodium                                | 678    | mg/L    | D          | 4     |             | E200.7    | 03/01/17 00:17 / rlh    |
| PHYSICAL PROPERTIES                   |        |         |            |       |             |           |                         |
| рН                                    | 6.5    | s.u.    | Н          | 0.1   |             | A4500-H B | 02/24/17 14:36 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 3890   | mg/L    | D          | 40    |             | A2540 C   | 02/28/17 08:39 / rik    |
| INORGANICS                            |        |         |            |       |             |           |                         |
| Chloride                              | 1180   | mg/L    | D          | 6     |             | E300.0    | 03/01/17 04:51 / mej    |
| Sulfate                               |        | mg/L    | D          | 20    |             | E300.0    | 03/01/17 04:51 / mej    |
| Fluoride                              |        | mg/L    |            | 0.1   |             | A4500-F C | 02/27/17 14:50 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |         |            |       |             |           |                         |
| Antimony                              | ND     | mg/L    |            | 0.006 |             | E200.8    | 03/01/17 20:45 / mas    |
| Arsenic                               |        | mg/L    |            | 0.01  |             | E200.8    | 03/01/17 20:45 / mas    |
| Barium                                |        | mg/L    |            | 0.01  |             | E200.7    | 03/01/17 00:17 / rlh    |
| Beryllium                             | ND     | mg/L    |            | 0.001 |             | E200.8    | 03/01/17 20:45 / mas    |
| Boron                                 | 1.24   | mg/L    |            | 0.05  |             | E200.7    | 03/01/17 00:17 / rlh    |
| Cadmium                               | ND     | mg/L    |            | 0.005 |             | E200.8    | 03/01/17 20:45 / mas    |
| Chromium                              | ND     | mg/L    |            | 0.01  |             | E200.8    | 03/01/17 20:45 / mas    |
| Cobalt                                | ND     | mg/L    |            | 0.02  |             | E200.8    | 03/01/17 20:45 / mas    |
| Lead                                  | ND     | mg/L    |            | 0.01  |             | E200.8    | 03/01/17 20:45 / mas    |
| Lithium                               | 0.87   | mg/L    | D          | 0.04  |             | E200.7    | 03/01/17 00:17 / rlh    |
| Mercury                               | ND     | mg/L    |            | 0.001 |             | E245.1    | 02/27/17 16:21 / jh     |
| Molybdenum                            | ND     | mg/L    |            | 0.05  |             | E200.8    | 03/01/17 20:45 / mas    |
| Selenium                              |        | mg/L    |            | 0.01  |             | E200.8    | 03/01/17 20:45 / mas    |
| Thallium                              | ND     | mg/L    |            | 0.002 |             | E200.8    | 03/01/17 20:45 / mas    |
| RADIONUCLIDES - TOTAL                 |        |         |            |       |             |           |                         |
| Radium 226                            | 1.6    | pCi/L   |            |       |             | E903.0    | 03/13/17 09:06 / eli-ca |
| Radium 226 precision (±)              | 0.39   | pCi/L   |            |       |             | E903.0    | 03/13/17 09:06 / eli-ca |
| Radium 226 MDC                        |        | pCi/L   |            |       |             | E903.0    | 03/13/17 09:06 / eli-ca |
| Radium 228                            | 1.9    | pCi/L   |            |       |             | RA-05     | 03/07/17 15:12 / eli-ca |
| Radium 228 precision (±)              |        | pCi/L   |            |       |             | RA-05     | 03/07/17 15:12 / eli-ca |
| Radium 228 MDC                        |        | pCi/L   |            |       |             | RA-05     | 03/07/17 15:12 / eli-ca |
| Radium 226 + Radium 228               |        | pCi/L   |            |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |
| Radium 226 + Radium 228 precision (±) |        | pCi/L   |            |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.8    | pCi/L   |            |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

 Project:
 TMPA 6706150060

 Lab ID:
 B17021678-009

 Client Sample ID:
 SSPMW-3

Revised Date: 12/22/17
Report Date: 03/14/17
Collection Date: 02/22/17 09:37
DateReceived: 02/24/17

Matrix: Ground Water

| Analyses                              | Result | Unite  | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|--------|------------|-------|-------------|-----------|-------------------------|
| Analyses                              | Nesuit | Offics | Qualificis |       | QUL         | Wictiloa  | Analysis Date / By      |
| MAJOR IONS                            |        |        |            |       |             |           |                         |
| Calcium                               | 694    | mg/L   |            | 1     |             | E200.7    | 03/01/17 00:42 / rlh    |
| Magnesium                             | 173    | mg/L   |            | 1     |             | E200.7    | 03/01/17 00:42 / rlh    |
| Potassium                             | 48     | mg/L   |            | 1     |             | E200.7    | 03/01/17 00:42 / rlh    |
| Sodium                                | 1060   | mg/L   | D          | 4     |             | E200.7    | 03/01/17 00:42 / rlh    |
| PHYSICAL PROPERTIES                   |        |        |            |       |             |           |                         |
| рН                                    | 4.5    | s.u.   | Н          | 0.1   |             | A4500-H B | 02/24/17 14:39 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 6450   | mg/L   | D          | 100   |             | A2540 C   | 02/28/17 08:39 / rik    |
| INORGANICS                            |        |        |            |       |             |           |                         |
| Chloride                              | 1830   | mg/L   | D          | 6     |             | E300.0    | 03/01/17 05:08 / mej    |
| Sulfate                               |        | mg/L   | D          | 20    |             | E300.0    | 03/01/17 05:08 / mej    |
| Fluoride                              |        | mg/L   |            | 0.1   |             | A4500-F C | 02/27/17 14:57 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |        |            |       |             |           |                         |
| Antimony                              | ND     | mg/L   |            | 0.006 |             | E200.8    | 03/01/17 20:49 / mas    |
| Arsenic                               |        | mg/L   |            | 0.01  |             | E200.8    | 03/01/17 20:49 / mas    |
| Barium                                |        | mg/L   |            | 0.01  |             | E200.7    | 03/01/17 00:42 / rlh    |
| Beryllium                             | 0.121  | •      |            | 0.001 |             | E200.8    | 03/01/17 20:49 / mas    |
| Boron                                 |        | mg/L   |            | 0.05  |             | E200.7    | 03/01/17 00:42 / rlh    |
| Cadmium                               | 0.067  | mg/L   |            | 0.005 |             | E200.8    | 03/01/17 20:49 / mas    |
| Chromium                              | ND     | mg/L   |            | 0.01  |             | E200.8    | 03/01/17 20:49 / mas    |
| Cobalt                                | 0.62   | mg/L   |            | 0.02  |             | E200.8    | 03/01/17 20:49 / mas    |
| Lead                                  | ND     | mg/L   |            | 0.01  |             | E200.8    | 03/01/17 20:49 / mas    |
| Lithium                               | 0.66   | mg/L   | D          | 0.04  |             | E200.7    | 03/01/17 00:42 / rlh    |
| Mercury                               | ND     | mg/L   |            | 0.001 |             | E245.1    | 02/27/17 16:30 / jh     |
| Molybdenum                            | ND     | mg/L   |            | 0.05  |             | E200.8    | 03/01/17 20:49 / mas    |
| Selenium                              | ND     | mg/L   |            | 0.01  |             | E200.8    | 03/01/17 20:49 / mas    |
| Thallium                              | 0.010  | mg/L   |            | 0.002 |             | E200.8    | 03/01/17 20:49 / mas    |
| RADIONUCLIDES - TOTAL                 |        |        |            |       |             |           |                         |
| Radium 226                            | 7.9    | pCi/L  |            |       |             | E903.0    | 03/13/17 09:06 / eli-ca |
| Radium 226 precision (±)              | 1.6    | pCi/L  |            |       |             | E903.0    | 03/13/17 09:06 / eli-ca |
| Radium 226 MDC                        | 0.20   | pCi/L  |            |       |             | E903.0    | 03/13/17 09:06 / eli-ca |
| Radium 228                            | 20     | pCi/L  |            |       |             | RA-05     | 03/07/17 15:12 / eli-ca |
| Radium 228 precision (±)              | 3.8    | pCi/L  |            |       |             | RA-05     | 03/07/17 15:12 / eli-ca |
| Radium 228 MDC                        | 1.8    | pCi/L  |            |       |             | RA-05     | 03/07/17 15:12 / eli-ca |
| Radium 226 + Radium 228               | 27.8   | pCi/L  |            |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 4.1    | pCi/L  |            |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.8    | pCi/L  |            |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDO Minimum data table and

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA 6706150060 Lab ID: B17021678-011 Client Sample ID: SLFMW-6

Revised Date: 12/22/17 **Report Date:** 03/14/17 Collection Date: 02/22/17 14:27 DateReceived: 02/24/17

Matrix: Ground Water

|                                       |        |       |            |       | MCL/ |             |                         |
|---------------------------------------|--------|-------|------------|-------|------|-------------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    |      | ethod       | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |      |             |                         |
| Calcium                               | 852    | mg/L  | D          | 2     | E2   | 200.7       | 03/01/17 00:49 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |      | 200.7       | 03/01/17 00:49 / rlh    |
| Potassium                             |        | mg/L  |            | 1     | E2   | 200.7       | 03/01/17 00:49 / rlh    |
| Sodium                                | 1570   | mg/L  | D          | 8     | E2   | 200.7       | 03/01/17 00:49 / rlh    |
| PHYSICAL PROPERTIES                   |        |       |            |       |      |             |                         |
| pH                                    | 4.0    | s.u.  | Н          | 0.1   | A4   | 500-H B     | 02/24/17 14:44 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 8790   | mg/L  | D          | 100   | A2   | 2540 C      | 02/24/17 10:38 / rik    |
| INORGANICS                            |        |       |            |       |      |             |                         |
| Chloride                              | 3570   | mg/L  | D          | 10    | E3   | 800.0       | 03/01/17 05:41 / mej    |
| Sulfate                               | 2260   | mg/L  | D          | 40    | E3   | 800.0       | 03/01/17 05:41 / mej    |
| Fluoride                              | 0.9    | mg/L  |            | 0.1   | A4   | 500-F C     | 02/27/17 15:20 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |      |             |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 | E2   | 8.00        | 03/01/17 20:55 / mas    |
| Arsenic                               | 0.01   | mg/L  |            | 0.01  | E2   | 8.00        | 03/01/17 20:55 / mas    |
| Barium                                | 0.04   | mg/L  |            | 0.01  | E2   | 200.7       | 03/01/17 00:49 / rlh    |
| Beryllium                             | 0.056  | mg/L  |            | 0.001 | E2   | 8.00        | 03/01/17 20:55 / mas    |
| Boron                                 | 0.24   | mg/L  | D          | 0.07  | E2   | 200.7       | 03/01/17 00:49 / rlh    |
| Cadmium                               | 0.013  | mg/L  |            | 0.005 | E2   | 8.00        | 03/01/17 20:55 / mas    |
| Chromium                              | ND     | mg/L  |            | 0.01  | E2   | 8.00        | 03/01/17 20:55 / mas    |
| Cobalt                                | 0.13   | mg/L  |            | 0.02  | E2   | 8.00        | 03/01/17 20:55 / mas    |
| Lead                                  | ND     | mg/L  |            | 0.01  | E2   | 8.00        | 03/01/17 20:55 / mas    |
| Lithium                               | 0.74   | mg/L  | D          | 0.09  | E2   | 200.7       | 03/01/17 00:49 / rlh    |
| Mercury                               | ND     | mg/L  |            | 0.001 | E2   | 245.1       | 02/27/17 16:34 / jh     |
| Molybdenum                            | ND     | mg/L  |            | 0.05  | E2   | 8.00        | 03/01/17 20:55 / mas    |
| Selenium                              | 0.01   | mg/L  |            | 0.01  | E2   | 8.00        | 03/01/17 20:55 / mas    |
| Thallium                              | 0.004  | mg/L  |            | 0.002 | E2   | 8.00        | 03/01/17 20:55 / mas    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |      |             |                         |
| Radium 226                            | 4.5    | pCi/L |            |       | E9   | 0.800       | 03/13/17 10:39 / eli-ca |
| Radium 226 precision (±)              | 0.92   | pCi/L |            |       | E9   | 0.800       | 03/13/17 10:39 / eli-ca |
| Radium 226 MDC                        | 0.18   | pCi/L |            |       | E9   | 0.800       | 03/13/17 10:39 / eli-ca |
| Radium 228                            | 2.3    | pCi/L |            |       | R/   | <b>\-05</b> | 03/07/17 13:37 / eli-ca |
| Radium 228 precision (±)              | 0.93   | pCi/L |            |       | R/   | <b>\-05</b> | 03/07/17 13:37 / eli-ca |
| Radium 228 MDC                        | 1.4    | pCi/L |            |       | R/   | <b>\-05</b> | 03/07/17 13:37 / eli-ca |
| Radium 226 + Radium 228               | 6.8    | pCi/L |            |       | A7   | '500-RA     | 03/13/17 11:18 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.3    | pCi/L |            |       | A7   | '500-RA     | 03/13/17 11:18 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.4    | pCi/L |            |       | A7   | ′500-RA     | 03/13/17 11:18 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

 Project:
 TMPA 6706150060

 Lab ID:
 B17021678-012

 Client Sample ID:
 SFLMW-4

Revised Date: 12/22/17
Report Date: 03/14/17
Collection Date: 02/22/17 15:50
DateReceived: 02/24/17

Matrix: Ground Water

| Analyses                              | Daault | l luita | Ovalitiana | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|---------|------------|-------|-------------|-----------|-------------------------|
| Analyses                              | Result | Units   | Qualifiers | KL    | QCL         | Wethod    | Analysis Date / By      |
| MAJOR IONS                            |        |         |            |       |             |           |                         |
| Calcium                               | 721    | mg/L    |            | 1     |             | E200.7    | 03/01/17 00:52 / rlh    |
| Magnesium                             |        | mg/L    |            | 1     |             | E200.7    | 03/01/17 00:52 / rlh    |
| Potassium                             |        | mg/L    |            | 1     |             | E200.7    | 03/01/17 00:52 / rlh    |
| Sodium                                | 957    | mg/L    | D          | 4     |             | E200.7    | 03/01/17 00:52 / rlh    |
| PHYSICAL PROPERTIES                   |        |         |            |       |             |           |                         |
| рН                                    | 6.5    | s.u.    | Н          | 0.1   |             | A4500-H B | 02/24/17 14:49 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 6000   | mg/L    | D          | 100   |             | A2540 C   | 02/24/17 10:38 / rik    |
| INORGANICS                            |        |         |            |       |             |           |                         |
| Chloride                              | 1730   | mg/L    | D          | 6     |             | E300.0    | 03/01/17 05:57 / mej    |
| Sulfate                               |        | mg/L    | D          | 20    |             | E300.0    | 03/01/17 05:57 / mej    |
| Fluoride                              |        | mg/L    |            | 0.1   |             | A4500-F C | 02/27/17 15:23 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |         |            |       |             |           |                         |
| Antimony                              | ND     | mg/L    |            | 0.006 |             | E200.8    | 03/01/17 20:59 / mas    |
| Arsenic                               |        | mg/L    |            | 0.01  |             | E200.8    | 03/01/17 20:59 / mas    |
| Barium                                |        | mg/L    |            | 0.01  |             | E200.7    | 03/01/17 00:52 / rlh    |
| Beryllium                             |        | mg/L    |            | 0.001 |             | E200.8    | 03/01/17 20:59 / mas    |
| Boron                                 | 0.55   | mg/L    |            | 0.05  |             | E200.7    | 03/01/17 00:52 / rlh    |
| Cadmium                               | ND     | mg/L    |            | 0.005 |             | E200.8    | 03/01/17 20:59 / mas    |
| Chromium                              | ND     | mg/L    |            | 0.01  |             | E200.8    | 03/01/17 20:59 / mas    |
| Cobalt                                | ND     | mg/L    |            | 0.02  |             | E200.8    | 03/01/17 20:59 / mas    |
| Lead                                  | ND     | mg/L    |            | 0.01  |             | E200.8    | 03/01/17 20:59 / mas    |
| Lithium                               | 0.45   | mg/L    | D          | 0.04  |             | E200.7    | 03/01/17 00:52 / rlh    |
| Mercury                               | ND     | mg/L    |            | 0.001 |             | E245.1    | 02/27/17 16:36 / jh     |
| Molybdenum                            | ND     | mg/L    |            | 0.05  |             | E200.8    | 03/01/17 20:59 / mas    |
| Selenium                              |        | mg/L    |            | 0.01  |             | E200.8    | 03/01/17 20:59 / mas    |
| Thallium                              | ND     | mg/L    |            | 0.002 |             | E200.8    | 03/01/17 20:59 / mas    |
| RADIONUCLIDES - TOTAL                 |        |         |            |       |             |           |                         |
| Radium 226                            | 1.1    | pCi/L   |            |       |             | E903.0    | 03/13/17 10:39 / eli-ca |
| Radium 226 precision (±)              | 0.29   | pCi/L   |            |       |             | E903.0    | 03/13/17 10:39 / eli-ca |
| Radium 226 MDC                        |        | pCi/L   |            |       |             | E903.0    | 03/13/17 10:39 / eli-ca |
| Radium 228                            | 2.1    | pCi/L   |            |       |             | RA-05     | 03/07/17 15:12 / eli-ca |
| Radium 228 precision (±)              |        | pCi/L   |            |       |             | RA-05     | 03/07/17 15:12 / eli-ca |
| Radium 228 MDC                        |        | pCi/L   |            |       |             | RA-05     | 03/07/17 15:12 / eli-ca |
| Radium 226 + Radium 228               |        | pCi/L   |            |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |
| Radium 226 + Radium 228 precision (±) |        | pCi/L   |            |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.7    | pCi/L   |            |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC Military solution military

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

 Project:
 TMPA 6706150060

 Lab ID:
 B17021678-013

 Client Sample ID:
 SFLMW-2

Revised Date: 12/22/17
Report Date: 03/14/17
Collection Date: 02/22/17 17:09
DateReceived: 02/24/17

Matrix: Ground Water

|                                       |        |       |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |      |           |                         |
| Calcium                               | 578    | mg/L  |            | 1     |      | E200.7    | 03/01/17 00:56 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |      | E200.7    | 03/01/17 00:56 / rlh    |
| Potassium                             |        | mg/L  |            | 1     |      | E200.7    | 03/01/17 00:56 / rlh    |
| Sodium                                | 1460   | mg/L  | D          | 4     |      | E200.7    | 03/01/17 00:56 / rlh    |
| PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| pH                                    | 6.8    | s.u.  | Н          | 0.1   |      | A4500-H B | 02/24/17 14:52 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 6630   | mg/L  | D          | 100   |      | A2540 C   | 02/24/17 10:38 / rik    |
| INORGANICS                            |        |       |            |       |      |           |                         |
| Chloride                              | 2480   | mg/L  | D          | 6     |      | E300.0    | 03/01/17 06:14 / mej    |
| Sulfate                               | 1740   | mg/L  | D          | 20    |      | E300.0    | 03/01/17 06:14 / mej    |
| Fluoride                              | 0.4    | mg/L  |            | 0.1   |      | A4500-F C | 02/27/17 15:25 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 |      | E200.8    | 03/01/17 21:02 / mas    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |      | E200.8    | 03/01/17 21:02 / mas    |
| Barium                                | 0.02   | mg/L  |            | 0.01  |      | E200.7    | 03/01/17 00:56 / rlh    |
| Beryllium                             | ND     | mg/L  |            | 0.001 |      | E200.8    | 03/01/17 21:02 / mas    |
| Boron                                 | 0.55   | mg/L  |            | 0.05  |      | E200.7    | 03/01/17 00:56 / rlh    |
| Cadmium                               | ND     | mg/L  |            | 0.005 |      | E200.8    | 03/01/17 21:02 / mas    |
| Chromium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 03/01/17 21:02 / mas    |
| Cobalt                                | ND     | mg/L  |            | 0.02  |      | E200.8    | 03/01/17 21:02 / mas    |
| Lead                                  | ND     | mg/L  |            | 0.01  |      | E200.8    | 03/01/17 21:02 / mas    |
| Lithium                               | 0.49   | mg/L  | D          | 0.04  |      | E200.7    | 03/01/17 00:56 / rlh    |
| Mercury                               | ND     | mg/L  |            | 0.001 |      | E245.1    | 02/27/17 16:37 / jh     |
| Molybdenum                            |        | mg/L  |            | 0.05  |      | E200.8    | 03/01/17 21:02 / mas    |
| Selenium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 03/01/17 21:02 / mas    |
| Thallium                              | ND     | mg/L  |            | 0.002 |      | E200.8    | 03/01/17 21:02 / mas    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 226                            | 2.6    | pCi/L |            |       |      | E903.0    | 03/13/17 10:39 / eli-ca |
| Radium 226 precision (±)              |        | pCi/L |            |       |      | E903.0    | 03/13/17 10:39 / eli-ca |
| Radium 226 MDC                        | 0.19   | pCi/L |            |       |      | E903.0    | 03/13/17 10:39 / eli-ca |
| Radium 228                            | 4.5    | pCi/L |            |       |      | RA-05     | 03/07/17 15:12 / eli-ca |
| Radium 228 precision (±)              | 1.4    | pCi/L |            |       |      | RA-05     | 03/07/17 15:12 / eli-ca |
| Radium 228 MDC                        | 1.7    | pCi/L |            |       |      | RA-05     | 03/07/17 15:12 / eli-ca |
| Radium 226 + Radium 228               | 7.1    | pCi/L |            |       |      | A7500-RA  | 03/13/17 11:18 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.5    | pCi/L |            |       |      | A7500-RA  | 03/13/17 11:18 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.7    | pCi/L |            |       |      | A7500-RA  | 03/13/17 11:18 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

4DO Minimum data table and

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

 Project:
 TMPA 6706150060

 Lab ID:
 B17021678-014

 Client Sample ID:
 EQBK-BJG-22217

Revised Date: 12/22/17
Report Date: 03/14/17
Collection Date: 02/22/17 17:55
DateReceived: 02/24/17

Matrix: Ground Water

| Analyses                              | Result | l luito | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|---------|------------|-------|-------------|-----------|-------------------------|
| Analyses                              | Result | Units   | Qualifiers | KL .  | QUL         | Wethou    | Alialysis Date / By     |
| MAJOR IONS                            |        |         |            |       |             |           |                         |
| Calcium                               | ND     | mg/L    |            | 1     |             | E200.7    | 03/01/17 01:00 / rlh    |
| Magnesium                             |        | mg/L    |            | 1     |             | E200.7    | 03/01/17 01:00 / rlh    |
| Potassium                             | ND     | mg/L    |            | 1     |             | E200.7    | 03/01/17 01:00 / rlh    |
| Sodium                                | ND     | mg/L    |            | 1     |             | E200.7    | 03/01/17 01:00 / rlh    |
| PHYSICAL PROPERTIES                   |        |         |            |       |             |           |                         |
| pH                                    | 6.4    | s.u.    | Н          | 0.1   |             | A4500-H B | 02/24/17 14:54 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | ND     | mg/L    |            | 10    |             | A2540 C   | 02/24/17 10:39 / rik    |
| INORGANICS                            |        |         |            |       |             |           |                         |
| Chloride                              | ND     | mg/L    |            | 1     |             | E300.0    | 03/01/17 06:30 / mej    |
| Sulfate                               |        | mg/L    |            | 1     |             | E300.0    | 03/01/17 06:30 / mej    |
| Fluoride                              |        | mg/L    |            | 0.1   |             | A4500-F C | 02/27/17 15:45 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |         |            |       |             |           |                         |
| Antimony                              | ND     | mg/L    |            | 0.006 |             | E200.8    | 03/01/17 21:05 / mas    |
| Arsenic                               | ND     | mg/L    |            | 0.01  |             | E200.8    | 03/01/17 21:05 / mas    |
| Barium                                | ND     | mg/L    |            | 0.01  |             | E200.7    | 03/01/17 01:00 / rlh    |
| Beryllium                             | ND     | mg/L    |            | 0.001 |             | E200.7    | 03/01/17 01:00 / rlh    |
| Boron                                 | ND     | mg/L    |            | 0.05  |             | E200.7    | 03/01/17 01:00 / rlh    |
| Cadmium                               | ND     | mg/L    |            | 0.005 |             | E200.7    | 03/01/17 01:00 / rlh    |
| Chromium                              | ND     | mg/L    |            | 0.01  |             | E200.7    | 03/01/17 01:00 / rlh    |
| Cobalt                                | ND     | mg/L    |            | 0.02  |             | E200.7    | 03/01/17 01:00 / rlh    |
| Lead                                  | ND     | mg/L    |            | 0.01  |             | E200.8    | 03/01/17 21:05 / mas    |
| Lithium                               | ND     | mg/L    |            | 0.01  |             | E200.7    | 03/01/17 01:00 / rlh    |
| Mercury                               | ND     | mg/L    |            | 0.001 |             | E245.1    | 02/27/17 16:39 / jh     |
| Molybdenum                            | ND     | mg/L    |            | 0.05  |             | E200.7    | 03/01/17 01:00 / rlh    |
| Selenium                              | ND     | mg/L    |            | 0.01  |             | E200.8    | 03/01/17 21:05 / mas    |
| Thallium                              | ND     | mg/L    |            | 0.002 |             | E200.8    | 03/01/17 21:05 / mas    |
| RADIONUCLIDES - TOTAL                 |        |         |            |       |             |           |                         |
| Radium 226                            | 0.09   | pCi/L   | U          |       |             | E903.0    | 03/13/17 10:39 / eli-ca |
| Radium 226 precision (±)              | 0.12   | pCi/L   |            |       |             | E903.0    | 03/13/17 10:39 / eli-ca |
| Radium 226 MDC                        | 0.20   | pCi/L   |            |       |             | E903.0    | 03/13/17 10:39 / eli-ca |
| Radium 228                            | 0.13   | pCi/L   | U          |       |             | RA-05     | 03/07/17 15:12 / eli-ca |
| Radium 228 precision (±)              |        | pCi/L   |            |       |             | RA-05     | 03/07/17 15:12 / eli-ca |
| Radium 228 MDC                        | 1.8    | pCi/L   |            |       |             | RA-05     | 03/07/17 15:12 / eli-ca |
| Radium 226 + Radium 228               | 0.2    | pCi/L   | U          |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |
| Radium 226 + Radium 228 precision (±) |        | pCi/L   |            |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.8    | pCi/L   |            |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |

Report Definitions:

RL - Analyte reporting limit.

QCL - Quality control limit.

MDC - Minimum detectable concentration

U - Not detected at minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA 6706150060 Lab ID: B17021678-015 Client Sample ID: SFLMW-5

Revised Date: 12/22/17 **Report Date:** 03/14/17 Collection Date: 02/23/17 09:02 DateReceived: 02/24/17

Matrix: Ground Water

|                                       |        |       |            |       | MCL/      |      |                         |
|---------------------------------------|--------|-------|------------|-------|-----------|------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL Metho | d    | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |           |      |                         |
| Calcium                               | 755    | mg/L  | D          | 2     | E200.7    | ,    | 03/01/17 01:03 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     | E200.7    |      | 03/01/17 01:03 / rlh    |
| Potassium                             |        | mg/L  |            | 1     | E200.7    | ,    | 03/01/17 01:03 / rlh    |
| Sodium                                | 1490   | mg/L  | D          | 8     | E200.7    | ,    | 03/01/17 01:03 / rlh    |
| PHYSICAL PROPERTIES                   |        |       |            |       |           |      |                         |
| pH                                    | 5.1    | s.u.  | Н          | 0.1   | A4500     | -Н В | 02/24/17 14:57 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 7530   | mg/L  | D          | 100   | A2540     | С    | 02/24/17 10:39 / rik    |
| INORGANICS                            |        |       |            |       |           |      |                         |
| Chloride                              | 3020   | mg/L  | D          | 10    | E300.0    | )    | 03/01/17 06:47 / mej    |
| Sulfate                               | 2120   | mg/L  | D          | 40    | E300.0    | )    | 03/01/17 06:47 / mej    |
| Fluoride                              | 0.2    | mg/L  |            | 0.1   | A4500     | -F C | 02/27/17 15:56 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |           |      |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 | E200.8    | 3    | 03/01/17 21:19 / mas    |
| Arsenic                               | ND     | mg/L  |            | 0.01  | E200.8    | 3    | 03/01/17 21:19 / mas    |
| Barium                                | 0.02   | mg/L  |            | 0.01  | E200.7    | ,    | 03/01/17 01:03 / rlh    |
| Beryllium                             | 0.010  | mg/L  |            | 0.001 | E200.8    | 3    | 03/01/17 21:19 / mas    |
| Boron                                 | 2.98   | mg/L  | D          | 0.07  | E200.7    | ,    | 03/01/17 01:03 / rlh    |
| Cadmium                               | ND     | mg/L  |            | 0.005 | E200.8    | 3    | 03/01/17 21:19 / mas    |
| Chromium                              | ND     | mg/L  |            | 0.01  | E200.8    | 3    | 03/01/17 21:19 / mas    |
| Cobalt                                | 0.05   | mg/L  |            | 0.02  | E200.8    | 3    | 03/01/17 21:19 / mas    |
| Lead                                  | ND     | mg/L  |            | 0.01  | E200.8    | 3    | 03/01/17 21:19 / mas    |
| Lithium                               | 0.72   | mg/L  | D          | 0.09  | E200.7    | ,    | 03/01/17 01:03 / rlh    |
| Mercury                               | ND     | mg/L  |            | 0.001 | E245.1    |      | 02/27/17 16:41 / jh     |
| Molybdenum                            | ND     | mg/L  |            | 0.05  | E200.8    | 3    | 03/01/17 21:19 / mas    |
| Selenium                              | ND     | mg/L  |            | 0.01  | E200.8    | 3    | 03/01/17 21:19 / mas    |
| Thallium                              | ND     | mg/L  |            | 0.002 | E200.8    | 3    | 03/01/17 21:19 / mas    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |           |      |                         |
| Radium 226                            | 5.5    | pCi/L |            |       | E903.0    | )    | 03/13/17 10:39 / eli-ca |
| Radium 226 precision (±)              |        | pCi/L |            |       | E903.0    | )    | 03/13/17 10:39 / eli-ca |
| Radium 226 MDC                        | 0.19   | pCi/L |            |       | E903.0    | )    | 03/13/17 10:39 / eli-ca |
| Radium 228                            | 6.5    | pCi/L |            |       | RA-05     |      | 03/07/17 15:12 / eli-ca |
| Radium 228 precision (±)              | 1.7    | pCi/L |            |       | RA-05     |      | 03/07/17 15:12 / eli-ca |
| Radium 228 MDC                        | 1.8    | pCi/L |            |       | RA-05     |      | 03/07/17 15:12 / eli-ca |
| Radium 226 + Radium 228               | 11.9   | pCi/L |            |       | A7500     | -RA  | 03/13/17 11:18 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 2.1    | pCi/L |            |       | A7500     | -RA  | 03/13/17 11:18 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.8    | pCi/L |            |       | A7500     | -RA  | 03/13/17 11:18 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA 6706150060 Lab ID: B17021678-016 Client Sample ID: SFLMW-3

Revised Date: 12/22/17 **Report Date:** 03/14/17 Collection Date: 02/23/17 10:16 DateReceived: 02/24/17

Matrix: Ground Water

| Analyses                              | Result | Unito | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | KL .  | QUL         | Wethou    | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |             |           |                         |
| Calcium                               | 628    | mg/L  |            | 1     |             | E200.7    | 03/01/17 01:07 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |             | E200.7    | 03/01/17 01:07 / rlh    |
| Potassium                             | 49     | mg/L  |            | 1     |             | E200.7    | 03/01/17 01:07 / rlh    |
| Sodium                                | 815    | mg/L  | D          | 4     |             | E200.7    | 03/01/17 01:07 / rlh    |
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| pH                                    | 3.8    | s.u.  | Н          | 0.1   |             | A4500-H B | 02/24/17 15:00 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 5440   | mg/L  | D          | 100   |             | A2540 C   | 02/24/17 10:39 / rik    |
| INORGANICS                            |        |       |            |       |             |           |                         |
| Chloride                              | 1440   | mg/L  | D          | 6     |             | E300.0    | 03/01/17 07:03 / mej    |
| Sulfate                               | 2280   | mg/L  | D          | 20    |             | E300.0    | 03/01/17 07:03 / mej    |
| Fluoride                              | 0.6    | mg/L  |            | 0.1   |             | A4500-F C | 02/27/17 16:04 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 |             | E200.8    | 03/01/17 21:22 / mas    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 03/01/17 21:22 / mas    |
| Barium                                | 0.02   | mg/L  |            | 0.01  |             | E200.7    | 03/01/17 01:07 / rlh    |
| Beryllium                             | 0.040  | mg/L  |            | 0.001 |             | E200.8    | 03/01/17 21:22 / mas    |
| Boron                                 | 2.54   | mg/L  |            | 0.05  |             | E200.7    | 03/01/17 01:07 / rlh    |
| Cadmium                               | 0.008  | mg/L  |            | 0.005 |             | E200.8    | 03/01/17 21:22 / mas    |
| Chromium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 03/01/17 21:22 / mas    |
| Cobalt                                | 0.07   | mg/L  |            | 0.02  |             | E200.8    | 03/01/17 21:22 / mas    |
| Lead                                  | 0.03   | mg/L  |            | 0.01  |             | E200.8    | 03/01/17 21:22 / mas    |
| Lithium                               |        | mg/L  | D          | 0.04  |             | E200.7    | 03/01/17 01:07 / rlh    |
| Mercury                               | 0.002  | mg/L  |            | 0.001 |             | E245.1    | 02/28/17 13:09 / jh     |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.8    | 03/01/17 21:22 / mas    |
| Selenium                              |        | mg/L  |            | 0.01  |             | E200.8    | 03/01/17 21:22 / mas    |
| Thallium                              | 0.006  | mg/L  |            | 0.002 |             | E200.8    | 03/01/17 21:22 / mas    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 226                            | 3.1    | pCi/L |            |       |             | E903.0    | 03/13/17 10:39 / eli-ca |
| Radium 226 precision (±)              | 0.67   | pCi/L |            |       |             | E903.0    | 03/13/17 10:39 / eli-ca |
| Radium 226 MDC                        | 0.20   | pCi/L |            |       |             | E903.0    | 03/13/17 10:39 / eli-ca |
| Radium 228                            | 4.5    | pCi/L |            |       |             | RA-05     | 03/07/17 15:12 / eli-ca |
| Radium 228 precision (±)              |        | pCi/L |            |       |             | RA-05     | 03/07/17 15:12 / eli-ca |
| Radium 228 MDC                        | 1.8    | pCi/L |            |       |             | RA-05     | 03/07/17 15:12 / eli-ca |
| Radium 226 + Radium 228               |        | pCi/L |            |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |
| Radium 226 + Radium 228 precision (±) |        | pCi/L |            |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.8    | pCi/L |            |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

 Project:
 TMPA 6706150060

 Lab ID:
 B17021678-017

 Client Sample ID:
 EQBK-BJG-22317

Revised Date: 12/22/17
Report Date: 03/14/17
Collection Date: 02/23/17 11:20
DateReceived: 02/24/17

Matrix: Ground Water

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| MAJOR IONS                            |        |       |            |       |             |           |                         |
| Calcium                               | ND     | mg/L  |            | 1     |             | E200.7    | 03/01/17 01:10 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |             | E200.7    | 03/01/17 01:10 / rlh    |
| Potassium                             |        | mg/L  |            | 1     |             | E200.7    | 03/01/17 01:10 / rlh    |
| Sodium                                |        | mg/L  |            | 1     |             | E200.7    | 03/01/17 01:10 / rlh    |
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| рН                                    | 6.0    | s.u.  | Н          | 0.1   |             | A4500-H B | 02/24/17 15:02 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | ND     | mg/L  |            | 10    |             | A2540 C   | 02/24/17 10:39 / rik    |
| INORGANICS                            |        |       |            |       |             |           |                         |
| Chloride                              | ND     | mg/L  |            | 1     |             | E300.0    | 03/01/17 08:26 / mej    |
| Sulfate                               | ND     | mg/L  |            | 1     |             | E300.0    | 03/01/17 08:26 / mej    |
| Fluoride                              | ND     | mg/L  |            | 0.1   |             | A4500-F C | 02/27/17 16:13 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 |             | E200.8    | 03/01/17 21:26 / mas    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 03/01/17 21:26 / mas    |
| Barium                                | ND     | mg/L  |            | 0.01  |             | E200.7    | 03/01/17 01:10 / rlh    |
| Beryllium                             | ND     | mg/L  |            | 0.001 |             | E200.7    | 03/01/17 01:10 / rlh    |
| Boron                                 | ND     | mg/L  |            | 0.05  |             | E200.7    | 03/01/17 01:10 / rlh    |
| Cadmium                               | ND     | mg/L  |            | 0.005 |             | E200.7    | 03/01/17 01:10 / rlh    |
| Chromium                              | ND     | mg/L  |            | 0.01  |             | E200.7    | 03/01/17 01:10 / rlh    |
| Cobalt                                | ND     | mg/L  |            | 0.02  |             | E200.7    | 03/01/17 01:10 / rlh    |
| Lead                                  | ND     | mg/L  |            | 0.01  |             | E200.8    | 03/01/17 21:26 / mas    |
| Lithium                               | ND     | mg/L  |            | 0.01  |             | E200.7    | 03/01/17 01:10 / rlh    |
| Mercury                               | ND     | mg/L  |            | 0.001 |             | E245.1    | 02/27/17 16:45 / jh     |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.7    | 03/01/17 01:10 / rlh    |
| Selenium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 03/01/17 21:26 / mas    |
| Thallium                              | ND     | mg/L  |            | 0.002 |             | E200.8    | 03/01/17 21:26 / mas    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 226                            | 0.12   | •     | U          |       |             | E903.0    | 03/13/17 10:39 / eli-ca |
| Radium 226 precision (±)              | 0.12   | pCi/L |            |       |             | E903.0    | 03/13/17 10:39 / eli-ca |
| Radium 226 MDC                        | 0.19   | pCi/L |            |       |             | E903.0    | 03/13/17 10:39 / eli-ca |
| Radium 228                            | 0.46   | pCi/L | U          |       |             | RA-05     | 03/07/17 15:12 / eli-ca |
| Radium 228 precision (±)              | 1.1    | pCi/L |            |       |             | RA-05     | 03/07/17 15:12 / eli-ca |
| Radium 228 MDC                        | 1.7    | pCi/L |            |       |             | RA-05     | 03/07/17 15:12 / eli-ca |
| Radium 226 + Radium 228               | 0.6    | pCi/L | U          |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.1    | pCi/L |            |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.7    | pCi/L |            |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |

Report Definitions:

RL - Analyte reporting limit.

QCL - Quality control limit.

MDC - Minimum detectable concentration

U - Not detected at minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA 6706150060 Lab ID: B17021678-018

Client Sample ID: DUP-1

Revised Date: 12/22/17 **Report Date:** 03/14/17 Collection Date: 02/21/17 DateReceived: 02/24/17

Matrix: Ground Water

|                                       |        |              |            |               | MCL/ |                  |                                                |
|---------------------------------------|--------|--------------|------------|---------------|------|------------------|------------------------------------------------|
| Analyses                              | Result | Units        | Qualifiers | RL            | QCL  | Method           | Analysis Date / By                             |
| MAJOR IONS                            |        |              |            |               |      |                  |                                                |
| Calcium                               | 409    | mg/L         |            | 1             |      | E200.7           | 03/01/17 01:46 / rlh                           |
| Magnesium                             |        | mg/L         |            | 1             |      | E200.7           | 03/01/17 01:46 / rlh                           |
| Potassium                             |        | mg/L         |            | 1             |      | E200.7           | 03/01/17 01:46 / rlh                           |
| Sodium                                |        | mg/L         | D          | 4             |      | E200.7           | 03/01/17 01:46 / rlh                           |
| PHYSICAL PROPERTIES                   |        |              |            |               |      |                  |                                                |
| pH                                    | 6.5    | s.u.         | Н          | 0.1           |      | A4500-H B        | 02/24/17 15:05 / pjw                           |
| Solids, Total Dissolved TDS @ 180 C   | 3820   | mg/L         | D          | 40            |      | A2540 C          | 02/24/17 10:39 / rik                           |
| INORGANICS                            |        |              |            |               |      |                  |                                                |
| Chloride                              | 1170   | mg/L         | D          | 6             |      | E300.0           | 03/01/17 08:42 / mej                           |
| Sulfate                               |        | mg/L         | D          | 20            |      | E300.0           | 03/01/17 08:42 / mej                           |
| Fluoride                              |        | mg/L         | D          | 0.1           |      | A4500-F C        | 02/27/17 16:17 / cjm                           |
| METALC TOTAL DECOVERABLE              |        | 3            |            |               |      |                  | ,                                              |
| METALS, TOTAL RECOVERABLE             | ND     | m a/l        |            | 0.006         |      | E200 9           | 02/04/47 24:20 / mag                           |
| Antimony                              |        | mg/L         |            | 0.006<br>0.01 |      | E200.8           | 03/01/17 21:29 / mas                           |
| Arsenic                               |        | mg/L         |            |               |      | E200.8           | 03/01/17 21:29 / mas                           |
| Barium                                |        | mg/L         |            | 0.01          |      | E200.7           | 03/01/17 01:46 / rlh                           |
| Beryllium                             |        | mg/L         |            | 0.001<br>0.05 |      | E200.8<br>E200.7 | 03/01/17 21:29 / mas<br>03/01/17 01:46 / rlh   |
| Boron<br>Cadmium                      |        | mg/L         |            |               |      | E200.7<br>E200.8 | 03/01/17 01:40 / IIII<br>03/01/17 21:29 / mas  |
| Chromium                              |        | mg/L<br>mg/L |            | 0.005<br>0.01 |      | E200.8           | 03/01/17 21:29 / mas                           |
| Cobalt                                |        | mg/L         |            | 0.01          |      | E200.8           | 03/01/17 21:29 / mas                           |
| Lead                                  |        | mg/L         |            | 0.02          |      | E200.8           | 03/01/17 21:29 / mas                           |
| Lithium                               |        | mg/L         | D          | 0.01          |      | E200.6<br>E200.7 | 03/01/17 21:29 / Illas<br>03/01/17 01:46 / rlh |
| Mercury                               |        | mg/L         | Ь          | 0.04          |      | E245.1           | 02/27/17 16:46 / jh                            |
| Molybdenum                            |        | mg/L         |            | 0.05          |      | E200.8           | 03/01/17 21:29 / mas                           |
| Selenium                              |        | mg/L         |            | 0.03          |      | E200.8           | 03/01/17 21:29 / mas                           |
| Thallium                              |        | mg/L         |            | 0.002         |      | E200.8           | 03/01/17 21:29 / mas                           |
|                                       |        | 9, =         |            | 0.002         |      |                  | 00,0 1, 11 21120 , 11140                       |
| RADIONUCLIDES - TOTAL                 | 4.0    | C:/I         |            |               |      | E002.0           | 00/40/47 40:00 / -1:                           |
| Radium 226                            |        | pCi/L        |            |               |      | E903.0           | 03/13/17 10:39 / eli-ca                        |
| Radium 226 precision (±)              |        | pCi/L        |            |               |      | E903.0           | 03/13/17 10:39 / eli-ca                        |
| Radium 226 MDC                        |        | pCi/L        |            |               |      | E903.0           | 03/13/17 10:39 / eli-ca                        |
| Radium 228                            |        | pCi/L        |            |               |      | RA-05            | 03/07/17 15:12 / eli-ca                        |
| Radium 228 precision (±)              |        | pCi/L        |            |               |      | RA-05            | 03/07/17 15:12 / eli-ca                        |
| Radium 228 MDC                        |        | pCi/L        |            |               |      | RA-05            | 03/07/17 15:12 / eli-ca                        |
| Radium 226 + Radium 228               |        | pCi/L        |            |               |      | A7500-RA         | 03/13/17 11:18 / eli-ca                        |
| Radium 226 + Radium 228 precision (±) |        | pCi/L        |            |               |      | A7500-RA         | 03/13/17 11:18 / eli-ca                        |
| Radium 226 + Radium 228 MDC           | 1.8    | pCi/L        |            |               |      | A7500-RA         | 03/13/17 11:18 / eli-ca                        |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA 6706150060 Lab ID: B17021678-019

Client Sample ID: DUP-2

Revised Date: 12/22/17 **Report Date:** 03/14/17 Collection Date: 02/22/17 DateReceived: 02/24/17

Matrix: Ground Water

| Analyses                              | Result | l luita | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysia Data / Dy      |
|---------------------------------------|--------|---------|------------|-------|-------------|-----------|-------------------------|
| Analyses                              | Result | Units   | Qualifiers | KL.   | QCL         | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |         |            |       |             |           |                         |
| Calcium                               | 785    | mg/L    |            | 1     |             | E200.7    | 03/01/17 02:03 / rlh    |
| Magnesium                             |        | mg/L    |            | 1     |             | E200.7    | 03/01/17 02:03 / rlh    |
| Potassium                             | 56     | mg/L    |            | 1     |             | E200.7    | 03/01/17 02:03 / rlh    |
| Sodium                                | 1070   | mg/L    | D          | 4     |             | E200.7    | 03/01/17 02:03 / rlh    |
| PHYSICAL PROPERTIES                   |        |         |            |       |             |           |                         |
| рН                                    | 6.6    | s.u.    | Н          | 0.1   |             | A4500-H B | 02/24/17 15:07 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 6050   | mg/L    | D          | 100   |             | A2540 C   | 02/24/17 10:40 / rik    |
| INORGANICS                            |        |         |            |       |             |           |                         |
| Chloride                              | 1730   | mg/L    | D          | 6     |             | E300.0    | 03/01/17 08:59 / mej    |
| Sulfate                               |        | mg/L    | D          | 20    |             | E300.0    | 03/01/17 08:59 / mej    |
| Fluoride                              |        | mg/L    |            | 0.1   |             | A4500-F C | 02/27/17 16:20 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |         |            |       |             |           |                         |
| Antimony                              | ND     | mg/L    |            | 0.006 |             | E200.8    | 03/01/17 21:32 / mas    |
| Arsenic                               |        | mg/L    |            | 0.01  |             | E200.8    | 03/01/17 21:32 / mas    |
| Barium                                |        | mg/L    |            | 0.01  |             | E200.7    | 03/01/17 02:03 / rlh    |
| Beryllium                             |        | mg/L    |            | 0.001 |             | E200.8    | 03/01/17 21:32 / mas    |
| Boron                                 | 0.61   | mg/L    |            | 0.05  |             | E200.7    | 03/01/17 02:03 / rlh    |
| Cadmium                               | ND     | mg/L    |            | 0.005 |             | E200.8    | 03/01/17 21:32 / mas    |
| Chromium                              | ND     | mg/L    |            | 0.01  |             | E200.8    | 03/01/17 21:32 / mas    |
| Cobalt                                | ND     | mg/L    |            | 0.02  |             | E200.8    | 03/01/17 21:32 / mas    |
| Lead                                  | ND     | mg/L    |            | 0.01  |             | E200.8    | 03/01/17 21:32 / mas    |
| Lithium                               | 0.53   | mg/L    | D          | 0.04  |             | E200.7    | 03/01/17 02:03 / rlh    |
| Mercury                               | ND     | mg/L    |            | 0.001 |             | E245.1    | 02/27/17 16:52 / jh     |
| Molybdenum                            | ND     | mg/L    |            | 0.05  |             | E200.8    | 03/01/17 21:32 / mas    |
| Selenium                              |        | mg/L    |            | 0.01  |             | E200.8    | 03/01/17 21:32 / mas    |
| Thallium                              | ND     | mg/L    |            | 0.002 |             | E200.8    | 03/01/17 21:32 / mas    |
| RADIONUCLIDES - TOTAL                 |        |         |            |       |             |           |                         |
| Radium 226                            | 0.99   | pCi/L   |            |       |             | E903.0    | 03/13/17 10:39 / eli-ca |
| Radium 226 precision (±)              | 0.20   | pCi/L   |            |       |             | E903.0    | 03/13/17 10:39 / eli-ca |
| Radium 226 MDC                        |        | pCi/L   |            |       |             | E903.0    | 03/13/17 10:39 / eli-ca |
| Radium 228                            | 1.2    | pCi/L   | U          |       |             | RA-05     | 03/07/17 15:12 / eli-ca |
| Radium 228 precision (±)              |        | pCi/L   |            |       |             | RA-05     | 03/07/17 15:12 / eli-ca |
| Radium 228 MDC                        |        | pCi/L   |            |       |             | RA-05     | 03/07/17 15:12 / eli-ca |
| Radium 226 + Radium 228               |        | pCi/L   |            |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |
| Radium 226 + Radium 228 precision (±) |        | pCi/L   |            |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.6    | pCi/L   |            |       |             | A7500-RA  | 03/13/17 11:18 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

U - Not detected at minimum detectable concentration



Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**Revised Date:** 12/22/17 **Report Date:** 03/14/17

**Project:** TMPA 6706150060

Work Order: B17021678

| Qual     | RPD RPDLimit         | High Limit  | Low Limit  | %REC | RL           | Units            | unt Result        | C                 | Analyte   |
|----------|----------------------|-------------|------------|------|--------------|------------------|-------------------|-------------------|-----------|
| 170228   | ytical Run: ICP203-B | Analy       |            |      |              |                  |                   | E200.7            | Method:   |
| 17 09:57 | 02/28                |             |            | rd   | ation Standa | ibration Verific | 12 Continuing Cal | ICV               | Lab ID:   |
|          |                      | 105         | 95         | 99   | 0.10         | mg/L             | 2.49              |                   | Barium    |
|          |                      | 105         | 95         | 97   | 0.010        | mg/L             | 1.21              |                   | Beryllium |
|          |                      | 105         | 95         | 97   | 0.10         | mg/L             | 2.42              |                   | Boron     |
|          |                      | 105         | 95         | 97   | 0.010        | mg/L             | 2.41              |                   | Cadmium   |
|          |                      | 105         | 95         | 103  | 1.0          | mg/L             | 25.7              |                   | Calcium   |
|          |                      | 105         | 95         | 96   | 0.050        | mg/L             | 2.41              |                   | Chromium  |
|          |                      | 105         | 95         | 96   | 0.020        | mg/L             | 2.40              |                   | Cobalt    |
|          |                      | 105         | 95         | 105  | 0.10         | mg/L             | 1.31              |                   | Lithium   |
|          |                      | 105         | 95         | 103  | 1.0          | mg/L             | 25.7              | ı                 | Magnesium |
|          |                      | 105         | 95         | 95   | 0.10         | mg/L             | 2.38              | m                 | Molybdenu |
|          |                      | 105         | 95         | 103  | 1.0          | mg/L             | 25.9              |                   | Potassium |
|          |                      | 105         | 95         | 104  | 1.0          | mg/L             | 26.0              |                   | Sodium    |
| n: 10699 | Batc                 |             |            |      |              |                  |                   | E200.7            | Method:   |
| 17 22:01 | 02/28                | 3-B_170228A | Run: ICP20 |      |              |                  | 12 Method Blank   | MB-106999         | Lab ID:   |
|          |                      |             |            |      | 0.0005       | mg/L             | ND                |                   | Barium    |
|          |                      |             |            |      | 0.0001       | mg/L             | ND                |                   | Beryllium |
|          |                      |             |            |      | 0.003        | mg/L             | ND                |                   | Boron     |
|          |                      |             |            |      | 0.0010       | mg/L             | ND                |                   | Cadmium   |
|          |                      |             |            |      | 0.08         | mg/L             | ND                |                   | Calcium   |
|          |                      |             |            |      | 0.002        | mg/L             | ND                |                   | Chromium  |
|          |                      |             |            |      | 0.005        | mg/L             | ND                |                   | Cobalt    |
|          |                      |             |            |      | 0.004        | mg/L             | ND                |                   | Lithium   |
|          |                      |             |            |      | 0.01         | mg/L             | ND                | า                 | Magnesium |
|          |                      |             |            |      | 0.007        | mg/L             | ND                | m                 | Molybdenu |
|          |                      |             |            |      | 0.07         | mg/L             | ND                |                   | Potassium |
|          |                      |             |            |      | 0.03         | mg/L             | 0.04              |                   | Sodium    |
| 17 22:05 | 02/28                | 3-B_170228A | Run: ICP20 |      |              | ntrol Sample     | 12 Laboratory Cor | LCS-106999        | Lab ID:   |
|          |                      | 115         | 85         | 99   | 0.10         | mg/L             | 0.494             |                   | Barium    |
|          |                      | 115         | 85         | 99   | 0.010        | mg/L             | 0.249             |                   | Beryllium |
|          |                      | 115         | 85         | 96   | 0.10         | mg/L             | 0.479             |                   | Boron     |
|          |                      | 115         | 85         | 98   | 0.010        | mg/L             | 0.245             |                   | Cadmium   |
|          |                      | 115         | 85         | 100  | 1.0          | mg/L             | 25.1              |                   | Calcium   |
|          |                      | 115         | 85         | 95   | 0.050        | mg/L             | 0.475             |                   | Chromium  |
|          |                      | 115         | 85         | 98   | 0.050        | mg/L             | 0.492             |                   | Cobalt    |
|          |                      | 115         | 85         | 100  | 0.10         | mg/L             | 0.499             |                   | Lithium   |
|          |                      | 115         | 85         | 99   | 1.0          | mg/L             | 24.8              | ı                 | Magnesium |
|          |                      | 115         | 85         | 94   | 0.10         | mg/L             | 0.469             | m                 | Molybdenu |
|          |                      | 115         | 85         | 99   | 1.0          | mg/L             | 24.8              |                   | Potassium |
|          |                      | 115         | 85         | 98   | 1.0          | mg/L             | 24.6              |                   | Sodium    |
| 17 23:24 | 02/28                | 3-B_170228A | Run: ICP20 |      |              | Spike            | 12 Sample Matrix  | B17021674-011BMS3 | Lab ID:   |
| 0¬       | 32/20                | 130         | 70         | 100  | 0.050        | mg/L             | 0.510             |                   | Barium    |
|          |                      | 130         | 70         | 100  | 0.0010       | mg/L             | 0.251             |                   | Beryllium |

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA 6706150060

**Revised Date:** 12/22/17 **Report Date:** 03/14/17

Work Order: B17021678

| Analyte   |                   | Count Result    | t Units      | RL       | %REC | Low Limit  | High Limit  | RPD | RPDLimit | Qual      |
|-----------|-------------------|-----------------|--------------|----------|------|------------|-------------|-----|----------|-----------|
| Method:   | E200.7            |                 |              |          |      |            |             |     | Batcl    | h: 106999 |
| Lab ID:   | B17021674-011BMS  | 3 12 Sample Mat | rix Spike    |          |      | Run: ICP20 | 3-B_170228A |     | 02/28/   | 17 23:24  |
| Boron     |                   | 1.85            | 5 mg/L       | 0.050    | 111  | 70         | 130         |     |          |           |
| Cadmium   |                   | 0.242           | 2 mg/L       | 0.0050   | 97   | 70         | 130         |     |          |           |
| Calcium   |                   | 330             | ) mg/L       | 1.0      |      | 70         | 130         |     |          | Α         |
| Chromium  | ı                 | 0.470           | ) mg/L       | 0.010    | 94   | 70         | 130         |     |          |           |
| Cobalt    |                   | 0.488           | 3 mg/L       | 0.026    | 98   | 70         | 130         |     |          |           |
| Lithium   |                   | 0.618           | 3 mg/L       | 0.10     | 102  | 70         | 130         |     |          |           |
| Magnesiur | m                 | 295             | 5 mg/L       | 1.0      |      | 70         | 130         |     |          | Α         |
| Molybdenu | um                | 0.468           | 3 mg/L       | 0.036    | 94   | 70         | 130         |     |          |           |
| Potassium | 1                 | 38.7            | mg/L         | 1.0      | 103  | 70         | 130         |     |          |           |
| Sodium    |                   | 364             | l mg/L       | 2.1      |      | 70         | 130         |     |          | Α         |
| Lab ID:   | B17021674-011BMSI | D 12 Sample Mat | rix Spike Du | ıplicate |      | Run: ICP20 | 3-B_170228A |     | 02/28/   | 17 23:27  |
| Barium    |                   | 0.492           | 2 mg/L       | 0.050    | 97   | 70         | 130         | 3.5 | 20       |           |
| Beryllium |                   | 0.245           | 5 mg/L       | 0.0010   | 98   | 70         | 130         | 2.4 | 20       |           |
| Boron     |                   | 1.79            | mg/L         | 0.050    | 99   | 70         | 130         | 3.1 | 20       |           |
| Cadmium   |                   | 0.243           | 3 mg/L       | 0.0050   | 97   | 70         | 130         | 0.4 | 20       |           |
| Calcium   |                   | 324             | l mg/L       | 1.0      |      | 70         | 130         | 1.7 | 20       | Α         |
| Chromium  | ı                 | 0.475           | 5 mg/L       | 0.010    | 95   | 70         | 130         | 1.0 | 20       |           |
| Cobalt    |                   | 0.488           | B mg/L       | 0.026    | 98   | 70         | 130         | 0.0 | 20       |           |
| Lithium   |                   | 0.596           | 6 mg/L       | 0.10     | 98   | 70         | 130         | 3.6 | 20       |           |
| Magnesiur | m                 | 291             | l mg/L       | 1.0      |      | 70         | 130         | 1.3 | 20       | Α         |
| Molybdenu | um                | 0.447           | mg/L         | 0.036    | 89   | 70         | 130         | 4.5 | 20       |           |
| Potassium | 1                 | 37.8            | 3 mg/L       | 1.0      | 100  | 70         | 130         | 2.4 | 20       |           |
| Sodium    |                   | 356             | 6 mg/L       | 2.1      |      | 70         | 130         | 2.0 | 20       | Α         |
| Method:   | E200.7            |                 |              |          |      |            |             |     | Batcl    | h: 107000 |
| Lab ID:   | MB-107000         | 12 Method Blar  | nk           |          |      | Run: ICP20 | 3-B_170228A |     | 03/01/   | 17 00:10  |
| Barium    |                   | NE              | ) mg/L       | 0.0005   |      |            |             |     |          |           |
| Beryllium |                   | NE              | ) mg/L       | 0.0001   |      |            |             |     |          |           |
| Boron     |                   | NE              | ) mg/L       | 0.003    |      |            |             |     |          |           |
| Cadmium   |                   | NE              | ) mg/L       | 0.0010   |      |            |             |     |          |           |
| Calcium   |                   | NE              | ) mg/L       | 0.08     |      |            |             |     |          |           |
| Chromium  | l                 | NE              | ) mg/L       | 0.002    |      |            |             |     |          |           |
| Cobalt    |                   | NE              | ) mg/L       | 0.005    |      |            |             |     |          |           |
| Lithium   |                   | 0.005           | 5 mg/L       | 0.004    |      |            |             |     |          |           |
| Magnesiur | m                 | NE              | ) mg/L       | 0.01     |      |            |             |     |          |           |
| Molybdenu | um                | NE              | ) mg/L       | 0.007    |      |            |             |     |          |           |
| Potassium | 1                 | 0.08            | -            | 0.07     |      |            |             |     |          |           |
| Sodium    |                   | 0.04            | l mg/L       | 0.03     |      |            |             |     |          |           |
| Lab ID:   | LCS-107000        | 12 Laboratory 0 | Control Sam  | ple      |      | Run: ICP20 | 3-B_170228A |     | 03/01/   | 17 00:14  |
| Barium    |                   | 0.471           | l mg/L       | 0.10     | 94   | 85         | 115         |     |          |           |
| Beryllium |                   | 0.238           | 3 mg/L       | 0.010    | 95   | 85         | 115         |     |          |           |
| Boron     |                   | 0.458           | 3 mg/L       | 0.10     | 92   | 85         | 115         |     |          |           |
| Cadmium   |                   | 0.239           | mg/L         | 0.010    | 96   | 85         | 115         |     |          |           |

### Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

MDC - Minimum detectable concentration

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**Revised Date:** 12/22/17 **Report Date:** 03/14/17

**Project:** TMPA 6706150060

Work Order: B17021678

| Analyte   |                   | Count           | Result      | Units          | RL     | %REC | Low Limit  | High Limit   | RPD | RPDLimit | Qual      |
|-----------|-------------------|-----------------|-------------|----------------|--------|------|------------|--------------|-----|----------|-----------|
| Method:   | E200.7            |                 |             |                |        |      |            |              |     | Batc     | h: 107000 |
| Lab ID:   | LCS-107000        | 12 Lat          | oratory Co  | ntrol Sample   |        |      | Run: ICP20 | 3-B_170228A  |     | 03/01/   | /17 00:14 |
| Calcium   |                   |                 | 24.4        | mg/L           | 1.0    | 97   | 85         | 115          |     |          |           |
| Chromium  |                   |                 | 0.456       | mg/L           | 0.050  | 91   | 85         | 115          |     |          |           |
| Cobalt    |                   |                 | 0.477       | mg/L           | 0.050  | 95   | 85         | 115          |     |          |           |
| Lithium   |                   |                 | 0.471       | mg/L           | 0.10   | 93   | 85         | 115          |     |          |           |
| Magnesium | า                 |                 | 24.3        | mg/L           | 1.0    | 97   | 85         | 115          |     |          |           |
| Molybdenu | m                 |                 | 0.452       | mg/L           | 0.10   | 90   | 85         | 115          |     |          |           |
| Potassium |                   |                 | 23.9        | mg/L           | 1.0    | 95   | 85         | 115          |     |          |           |
| Sodium    |                   |                 | 23.9        | mg/L           | 1.0    | 96   | 85         | 115          |     |          |           |
| Lab ID:   | B17021678-008BMS3 | 12 Saı          | mple Matrix | Spike          |        |      | Run: ICP20 | 03-B_170228A |     | 03/01/   | /17 00:28 |
| Barium    |                   |                 | 0.536       | mg/L           | 0.050  | 101  | 70         | 130          |     |          |           |
| Beryllium |                   |                 | 0.255       | mg/L           | 0.0014 | 102  | 70         | 130          |     |          |           |
| Boron     |                   |                 | 1.84        | mg/L           | 0.050  | 122  | 70         | 130          |     |          |           |
| Cadmium   |                   |                 | 0.250       | mg/L           | 0.0099 | 100  | 70         | 130          |     |          |           |
| Calcium   |                   |                 | 428         | mg/L           | 1.0    |      | 70         | 130          |     |          | Α         |
| Chromium  |                   |                 | 0.495       | mg/L           | 0.020  | 99   | 70         | 130          |     |          |           |
| Cobalt    |                   |                 | 0.500       | mg/L           | 0.052  | 100  | 70         | 130          |     |          |           |
| Lithium   |                   |                 | 1.42        | mg/L           | 0.10   | 109  | 70         | 130          |     |          |           |
| Magnesium | ı                 |                 | 108         | mg/L           | 1.0    | 110  | 70         | 130          |     |          |           |
| Molybdenu | m                 |                 | 0.467       | mg/L           | 0.071  | 93   | 70         | 130          |     |          |           |
| Potassium |                   |                 | 79.4        | mg/L           | 1.0    | 107  | 70         | 130          |     |          |           |
| Sodium    |                   |                 | 735         | mg/L           | 4.2    |      | 70         | 130          |     |          | Α         |
| Lab ID:   | B17021678-008BMSI | <b>)</b> 12 Sai | mple Matrix | Spike Duplicat | e      |      | Run: ICP20 | 03-B_170228A |     | 03/01/   | /17 00:38 |
| Barium    |                   |                 | 0.513       | mg/L           | 0.050  | 96   | 70         | 130          | 4.3 | 20       |           |
| Beryllium |                   |                 | 0.247       | mg/L           | 0.0014 | 99   | 70         | 130          | 3.5 | 20       |           |
| Boron     |                   |                 | 1.74        | mg/L           | 0.050  | 100  | 70         | 130          | 6.0 | 20       |           |
| Cadmium   |                   |                 | 0.254       | mg/L           | 0.0099 | 101  | 70         | 130          | 1.6 | 20       |           |
| Calcium   |                   |                 | 419         | mg/L           | 1.0    |      | 70         | 130          | 2.1 | 20       | Α         |
| Chromium  |                   |                 | 0.481       | mg/L           | 0.020  | 96   | 70         | 130          | 3.0 | 20       |           |
| Cobalt    |                   |                 | 0.487       | mg/L           | 0.052  | 97   | 70         | 130          | 2.7 | 20       |           |
| Lithium   |                   |                 | 1.36        | mg/L           | 0.10   | 98   | 70         | 130          | 3.9 | 20       |           |
| Magnesium | n                 |                 | 105         | mg/L           | 1.0    | 100  | 70         | 130          | 2.3 | 20       |           |
| Molybdenu | m                 |                 | 0.437       | mg/L           | 0.071  | 87   | 70         | 130          | 6.6 | 20       |           |
| Potassium |                   |                 | 76.8        | mg/L           | 1.0    | 97   | 70         | 130          | 3.3 | 20       |           |
| Sodium    |                   |                 | 706         | mg/L           | 4.2    |      | 70         | 130          | 4.1 | 20       | Α         |
| Lab ID:   | B17021678-018BMS3 | 3 12 Sai        | mple Matrix | Spike          |        |      | Run: ICP20 | 3-B_170228A  |     | 03/01/   | /17 01:56 |
| Barium    |                   |                 | 0.527       | mg/L           | 0.050  | 99   | 70         | 130          |     |          |           |
| Beryllium |                   |                 | 0.254       | mg/L           | 0.0014 | 102  | 70         | 130          |     |          |           |
| Boron     |                   |                 | 1.83        | mg/L           | 0.050  | 105  | 70         | 130          |     |          |           |
| Cadmium   |                   |                 | 0.248       | mg/L           | 0.0099 | 99   | 70         | 130          |     |          |           |
| Calcium   |                   |                 | 433         | mg/L           | 1.0    |      | 70         | 130          |     |          | Α         |
| Chromium  |                   |                 | 0.515       | mg/L           | 0.020  | 103  | 70         | 130          |     |          |           |
| Cobalt    |                   |                 | 0.491       | mg/L           | 0.052  | 98   | 70         | 130          |     |          |           |

### Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

MDC - Minimum detectable concentration

Revised Date: 12/22/17



### **QA/QC Summary Report**

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**Report Date:** 03/14/17 Project: TMPA 6706150060 Work Order: B17021678

| Analyte   |                   | Count           | Result      | Units           | RL     | %REC | Low Limit  | High Limit  | RPD | RPDLimit | Qual      |
|-----------|-------------------|-----------------|-------------|-----------------|--------|------|------------|-------------|-----|----------|-----------|
| Method:   | E200.7            |                 |             |                 |        |      |            |             |     | Batch    | h: 107000 |
| Lab ID:   | B17021678-018BMS3 | 12 Sar          | mple Matrix | Spike           |        |      | Run: ICP20 | 3-B_170228A |     | 03/01/   | 17 01:56  |
| Lithium   |                   |                 | 1.44        | mg/L            | 0.10   | 99   | 70         | 130         |     |          |           |
| Magnesiun | n                 |                 | 109         | mg/L            | 1.0    | 98   | 70         | 130         |     |          |           |
| Molybdenu | ım                |                 | 0.513       | mg/L            | 0.071  | 103  | 70         | 130         |     |          |           |
| Potassium |                   |                 | 79.8        | mg/L            | 1.0    | 96   | 70         | 130         |     |          |           |
| Sodium    |                   |                 | 742         | mg/L            | 4.2    |      | 70         | 130         |     |          | Α         |
| Lab ID:   | B17021678-018BMSE | <b>)</b> 12 Sar | mple Matrix | Spike Duplicate |        |      | Run: ICP20 | 3-B_170228A |     | 03/01/   | 17 02:00  |
| Barium    |                   |                 | 0.529       | mg/L            | 0.050  | 100  | 70         | 130         | 0.4 | 20       |           |
| Beryllium |                   |                 | 0.253       | mg/L            | 0.0014 | 101  | 70         | 130         | 0.5 | 20       |           |
| Boron     |                   |                 | 1.80        | mg/L            | 0.050  | 100  | 70         | 130         | 1.5 | 20       |           |
| Cadmium   |                   |                 | 0.246       | mg/L            | 0.0099 | 98   | 70         | 130         | 1.1 | 20       |           |
| Calcium   |                   |                 | 432         | mg/L            | 1.0    |      | 70         | 130         | 0.2 | 20       | Α         |
| Chromium  |                   |                 | 0.506       | mg/L            | 0.020  | 101  | 70         | 130         | 1.9 | 20       |           |
| Cobalt    |                   |                 | 0.497       | mg/L            | 0.052  | 99   | 70         | 130         | 1.1 | 20       |           |
| Lithium   |                   |                 | 1.44        | mg/L            | 0.10   | 99   | 70         | 130         | 0.1 | 20       |           |
| Magnesiun | n                 |                 | 109         | mg/L            | 1.0    | 95   | 70         | 130         | 0.6 | 20       |           |
| Molybdenu | ım                |                 | 0.526       | mg/L            | 0.071  | 105  | 70         | 130         | 2.6 | 20       |           |
| Potassium |                   |                 | 80.0        | mg/L            | 1.0    | 97   | 70         | 130         | 0.3 | 20       |           |
| Sodium    |                   |                 | 743         | mg/L            | 4.2    |      | 70         | 130         | 0.2 | 20       | Α         |

### Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

MDC - Minimum detectable concentration

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**Project:** TMPA 6706150060

**Revised Date:** 12/22/17 **Report Date:** 03/14/17

Work Order: B17021678

| Analyte   |                   | Count R      | esult     | Units       | RL           | %REC | Low Limit | High Limit     | RPD      | RPDLimit  | Qual      |
|-----------|-------------------|--------------|-----------|-------------|--------------|------|-----------|----------------|----------|-----------|-----------|
| Method:   | E200.8            |              |           |             |              |      |           | Analytical     | Run: I   | CPMS206-B | _170228A  |
| Lab ID:   | QCS               | 10 Initial C | alibratio | n Verificat | ion Standard |      |           |                |          | 02/28     | /17 09:40 |
| Antimony  |                   | 0.           | .0512     | mg/L        | 0.050        | 102  | 90        | 110            |          |           |           |
| Arsenic   |                   | 0.           | .0521     | mg/L        | 0.0050       | 104  | 90        | 110            |          |           |           |
| Beryllium |                   | 0.           | .0256     | mg/L        | 0.0010       | 102  | 90        | 110            |          |           |           |
| Cadmium   |                   | 0.           | .0257     | mg/L        | 0.0010       | 103  | 90        | 110            |          |           |           |
| Chromium  |                   | 0.           | .0511     | mg/L        | 0.010        | 102  | 90        | 110            |          |           |           |
| Cobalt    |                   | 0.           | .0534     | mg/L        | 0.010        | 107  | 90        | 110            |          |           |           |
| Lead      |                   | 0.           | .0504     | mg/L        | 0.010        | 101  | 90        | 110            |          |           |           |
| Molybdenu | ım                | 0.           | .0507     | mg/L        | 0.0050       | 101  | 90        | 110            |          |           |           |
| Selenium  |                   | 0.           | .0514     | mg/L        | 0.0050       | 103  | 90        | 110            |          |           |           |
| Thallium  |                   | 0.           | .0509     | mg/L        | 0.10         | 102  | 90        | 110            |          |           |           |
| Method:   | E200.8            |              |           |             |              |      |           |                |          | Batc      | h: 106999 |
| Lab ID:   | MB-106999         | 10 Method    | Blank     |             |              |      | Run: ICPM | S206-B_170228A | <u>.</u> | 03/01     | /17 01:14 |
| Antimony  |                   |              | ND        | mg/L        | 0.00004      |      |           |                |          |           |           |
| Arsenic   |                   |              | ND        | mg/L        | 0.0002       |      |           |                |          |           |           |
| Beryllium |                   |              | ND        | mg/L        | 0.00008      |      |           |                |          |           |           |
| Cadmium   |                   |              | ND        | mg/L        | 0.00003      |      |           |                |          |           |           |
| Chromium  |                   |              | ND        | mg/L        | 0.0001       |      |           |                |          |           |           |
| Cobalt    |                   | 0.0          | 00005     | mg/L        | 0.00002      |      |           |                |          |           |           |
| Lead      |                   |              | ND        | mg/L        | 0.00003      |      |           |                |          |           |           |
| Molybdenu | ım                | 0.0          | 00006     | mg/L        | 0.00003      |      |           |                |          |           |           |
| Selenium  |                   |              | ND        | mg/L        | 0.0004       |      |           |                |          |           |           |
| Thallium  |                   |              | ND        | mg/L        | 7E-06        |      |           |                |          |           |           |
| Lab ID:   | LCS-106999        | 10 Laborat   | tory Con  | itrol Sampl | e            |      | Run: ICPM | S206-B_170228A |          | 03/01/    | /17 02:45 |
| Antimony  |                   | (            | 0.477     | mg/L        | 0.0050       | 95   | 85        | 115            |          |           |           |
| Arsenic   |                   | (            | 0.477     | mg/L        | 0.0010       | 95   | 85        | 115            |          |           |           |
| Beryllium |                   | (            | 0.235     | mg/L        | 0.0010       | 94   | 85        | 115            |          |           |           |
| Cadmium   |                   | (            | 0.247     | mg/L        | 0.0010       | 99   | 85        | 115            |          |           |           |
| Chromium  |                   | (            | 0.478     | mg/L        | 0.0010       | 96   | 85        | 115            |          |           |           |
| Cobalt    |                   | (            | 0.488     | mg/L        | 0.0010       | 98   | 85        | 115            |          |           |           |
| Lead      |                   | (            | 0.471     | mg/L        | 0.0010       | 94   | 85        | 115            |          |           |           |
| Molybdenu | ım                |              | 0.468     | mg/L        | 0.0050       | 94   | 85        | 115            |          |           |           |
| Selenium  |                   | (            | 0.467     | mg/L        | 0.0050       | 93   | 85        | 115            |          |           |           |
| Thallium  |                   |              | 0.496     | mg/L        | 0.0010       | 99   | 85        | 115            |          |           |           |
| Lab ID:   | B17021674-001BMS3 | 10 Sample    | Matrix    | Spike       |              |      | Run: ICPM | S206-B_170228A |          | 03/01/    | /17 02:48 |
| Antimony  |                   | (            | 0.487     | mg/L        | 0.0010       | 97   | 70        | 130            |          |           |           |
| Arsenic   |                   | (            | 0.492     | mg/L        | 0.0010       | 99   | 70        | 130            |          |           |           |
| Beryllium |                   | (            | 0.242     | mg/L        | 0.0010       | 97   | 70        | 130            |          |           |           |
| Cadmium   |                   | (            | 0.248     | mg/L        | 0.0010       | 99   | 70        | 130            |          |           |           |
| Chromium  |                   | (            | 0.483     | mg/L        | 0.0050       | 97   | 70        | 130            |          |           |           |
| Cobalt    |                   | (            | 0.493     | mg/L        | 0.0050       | 99   | 70        | 130            |          |           |           |
| Lead      |                   | (            | 0.466     | mg/L        | 0.0010       | 93   | 70        | 130            |          |           |           |
| Molybdenu | ım                | (            | 0.481     | mg/L        | 0.0010       | 96   | 70        | 130            |          |           |           |

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

Revised Date: 12/22/17



### **QA/QC Summary Report**

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:03/14/17Project:TMPA 6706150060Work Order:B17021678

Result Units RL %REC Low Limit High Limit **RPD RPDLimit Analyte** Count Qual Method: E200.8 Batch: 106999 Lab ID: B17021674-001BMS3 10 Sample Matrix Spike Run: ICPMS206-B\_170228A 03/01/17 02:48 0.470 Selenium 0.0018 94 70 130 Thallium 0.467 0.00050 70 130 mg/L 93 Lab ID: B17021674-001BMSD 10 Sample Matrix Spike Duplicate Run: ICPMS206-B 170228A 03/01/17 02:51 Antimony 0.510 0.0010 102 4.5 20 mg/L 70 130 0.516 70 Arsenic mg/L 0.0010 103 130 4.8 20 Beryllium 0.247 mg/L 0.0010 99 70 130 2.1 20 Cadmium 0.254 mg/L 0.0010 102 70 130 2.4 20 Chromium 0.504 mg/L 0.0050 101 70 130 4.3 20 Cobalt 0.511 mg/L 0.0050 102 70 130 3.6 20 Lead 0.478 0.0010 70 130 2.5 20 mg/L 96 Molybdenum 0.501 mg/L 0.0010 100 70 130 4.1 20 70 Selenium 0.497 mg/L 0.0018 99 130 5.5 20 Thallium 0.477 mg/L 0.00050 95 70 130 2.3 20

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**Revised Date:** 12/22/17 **Report Date:** 03/14/17

**Project**: TMPA 6706150060 **Work Order**: B17021678

| Method:<br>Lab ID: |                   |               |           |               |             |     |            | High Limit     | RPD RPDLimit    | Qual      |
|--------------------|-------------------|---------------|-----------|---------------|-------------|-----|------------|----------------|-----------------|-----------|
| Lab ID.            | E200.8            |               |           |               |             |     |            | Analytical     | Run: ICPMS206-B | _170301A  |
| Lab ID:            | QCS               | 10 Initial Ca | libratior | n Verificatio | on Standard |     |            |                | 03/01/          | 17 20:22  |
| Antimony           |                   | 0.0           | )518      | mg/L          | 0.050       | 104 | 90         | 110            |                 |           |
| Arsenic            |                   | 0.0           | )513      | mg/L          | 0.0050      | 103 | 90         | 110            |                 |           |
| Beryllium          |                   | 0.0           | 261       | mg/L          | 0.0010      | 104 | 90         | 110            |                 |           |
| Cadmium            |                   | 0.0           | 251       | mg/L          | 0.0010      | 101 | 90         | 110            |                 |           |
| Chromium           |                   | 0.0           | )525      | mg/L          | 0.010       | 105 | 90         | 110            |                 |           |
| Cobalt             |                   | 0.0           | )534      | mg/L          | 0.010       | 107 | 90         | 110            |                 |           |
| Lead               |                   | 0.0           | )496      | mg/L          | 0.010       | 99  | 90         | 110            |                 |           |
| Molybdenum         | n                 | 0.0           | 502       | mg/L          | 0.0050      | 100 | 90         | 110            |                 |           |
| Selenium           |                   | 0.0           | 503       | mg/L          | 0.0050      | 101 | 90         | 110            |                 |           |
| Thallium           |                   | 0.0           | )506      | mg/L          | 0.10        | 101 | 90         | 110            |                 |           |
| Method:            | E200.8            |               |           |               |             |     |            |                | Batcl           | h: 107000 |
| Lab ID:            | MB-107000         | 10 Method E   | Blank     |               |             |     | Run: ICPMS | S206-B_170301A | 03/01/          | 17 20:42  |
| Antimony           |                   |               | ND        | mg/L          | 0.00004     |     |            | _              |                 |           |
| Arsenic            |                   |               | ND        | mg/L          | 0.0002      |     |            |                |                 |           |
| Beryllium          |                   |               | ND        | mg/L          | 0.00008     |     |            |                |                 |           |
| Cadmium            |                   |               | ND        | mg/L          | 0.00003     |     |            |                |                 |           |
| Chromium           |                   |               | ND        | mg/L          | 0.0001      |     |            |                |                 |           |
| Cobalt             |                   |               | ND        | mg/L          | 0.00002     |     |            |                |                 |           |
| Lead               |                   |               | ND        | mg/L          | 0.00003     |     |            |                |                 |           |
| Molybdenum         | n                 |               | ND        | mg/L          | 0.00003     |     |            |                |                 |           |
| Selenium           |                   |               | ND        | mg/L          | 0.0004      |     |            |                |                 |           |
| Thallium           |                   |               | ND        | mg/L          | 7E-06       |     |            |                |                 |           |
| Lab ID:            | LCS-107000        | 10 Laborato   | ry Cont   | rol Sample    | <b>:</b>    |     | Run: ICPMS | S206-B_170301A | 03/01/          | 17 22:13  |
| Antimony           |                   | 0.            | .526      | mg/L          | 0.0050      | 105 | 85         | 115            |                 |           |
| Arsenic            |                   | 0.            | .501      | mg/L          | 0.0010      | 100 | 85         | 115            |                 |           |
| Beryllium          |                   | 0.            | .254      | mg/L          | 0.0010      | 101 | 85         | 115            |                 |           |
| Cadmium            |                   | 0.            | .253      | mg/L          | 0.0010      | 101 | 85         | 115            |                 |           |
| Chromium           |                   | 0.            | .486      | mg/L          | 0.0010      | 97  | 85         | 115            |                 |           |
| Cobalt             |                   | 0.            | .540      | mg/L          | 0.0010      | 108 | 85         | 115            |                 |           |
| Lead               |                   | 0.            | .494      | mg/L          | 0.0010      | 99  | 85         | 115            |                 |           |
| Molybdenum         | n                 | 0.            | .522      | mg/L          | 0.0050      | 104 | 85         | 115            |                 |           |
| Selenium           |                   | 0.            | .485      | mg/L          | 0.0050      | 97  | 85         | 115            |                 |           |
| Thallium           |                   | 0.            | .495      | mg/L          | 0.0010      | 99  | 85         | 115            |                 |           |
| Lab ID:            | B17021678-008BMS3 | 10 Sample I   | Matrix S  | Spike         |             |     | Run: ICPMS | S206-B_170301A | 03/01/          | 17 22:16  |
| Antimony           |                   | 0.            | .545      | mg/L          | 0.0010      | 109 | 70         | 130            |                 |           |
| Arsenic            |                   | 0.            | .520      | mg/L          | 0.0010      | 103 | 70         | 130            |                 |           |
| Beryllium          |                   | 0.            | .263      | mg/L          | 0.0010      | 105 | 70         | 130            |                 |           |
| Cadmium            |                   | 0.            | .248      | mg/L          | 0.0010      | 99  | 70         | 130            |                 |           |
| Chromium           |                   | 0.            | .502      | mg/L          | 0.0050      | 101 | 70         | 130            |                 |           |
| Cobalt             |                   | 0.            | .540      | mg/L          | 0.0050      | 108 | 70         | 130            |                 |           |
| Lead               |                   | 0.            | .537      | mg/L          | 0.0010      | 107 | 70         | 130            |                 |           |
| Molybdenum         | n                 | 0.            | .533      | mg/L          | 0.0010      | 106 | 70         | 130            |                 |           |

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

Revised Date: 12/22/17



### **QA/QC Summary Report**

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:03/14/17Project:TMPA 6706150060Work Order:B17021678

| Analyte   |                   | Count           | Result     | Units    | RL      | %REC | Low Limit | High Limit     | RPD | RPDLimit | Qual      |
|-----------|-------------------|-----------------|------------|----------|---------|------|-----------|----------------|-----|----------|-----------|
| Method:   | E200.8            |                 |            |          |         |      |           |                |     | Batch    | n: 107000 |
| Lab ID:   | B17021678-008BMS  | 3 10 Sam        | ple Matrix | Spike    |         |      | Run: ICPM | S206-B_170301A |     | 03/01/   | 17 22:16  |
| Selenium  |                   |                 | 0.496      | mg/L     | 0.0018  | 99   | 70        | 130            |     |          |           |
| Thallium  |                   |                 | 0.407      | mg/L     | 0.00050 | 81   | 70        | 130            |     |          |           |
| Lab ID:   | B17021678-008BMSI | <b>D</b> 10 Sam | ple Matrix | Spike Du | plicate |      | Run: ICPM | S206-B_170301A |     | 03/01/   | 17 22:20  |
| Antimony  |                   |                 | 0.538      | mg/L     | 0.0010  | 108  | 70        | 130            | 1.2 | 20       |           |
| Arsenic   |                   |                 | 0.536      | mg/L     | 0.0010  | 106  | 70        | 130            | 3.0 | 20       |           |
| Beryllium |                   |                 | 0.267      | mg/L     | 0.0010  | 107  | 70        | 130            | 1.3 | 20       |           |
| Cadmium   |                   |                 | 0.263      | mg/L     | 0.0010  | 105  | 70        | 130            | 5.8 | 20       |           |
| Chromium  |                   |                 | 0.508      | mg/L     | 0.0050  | 102  | 70        | 130            | 1.0 | 20       |           |
| Cobalt    |                   |                 | 0.541      | mg/L     | 0.0050  | 108  | 70        | 130            | 0.3 | 20       |           |
| Lead      |                   |                 | 0.540      | mg/L     | 0.0010  | 108  | 70        | 130            | 0.4 | 20       |           |
| Molybdenu | ım                |                 | 0.528      | mg/L     | 0.0010  | 105  | 70        | 130            | 1.0 | 20       |           |
| Selenium  |                   |                 | 0.513      | mg/L     | 0.0018  | 103  | 70        | 130            | 3.5 | 20       |           |
| Thallium  |                   |                 | 0.429      | mg/L     | 0.00050 | 86   | 70        | 130            | 5.3 | 20       |           |



Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Report Date: 03/14/17

Revised Date: 12/22/17

**Project:** TMPA 6706150060

Work Order: B17021678

| Analyte |                  | Count Re        | sult      | Units         | RL          | %REC | Low Limit | High Limit     | RPD    | RPDLimit  | Qual      |
|---------|------------------|-----------------|-----------|---------------|-------------|------|-----------|----------------|--------|-----------|-----------|
| Method: | E245.1           |                 |           |               |             |      |           | Analytica      | l Run: | HGCV202-B | _170227A  |
| Lab ID: | ICV              | Initial Ca      | alibratio | on Verificati | on Standard |      |           |                |        | 02/27     | /17 13:22 |
| Mercury |                  | 0.00            | 0216      | mg/L          | 0.00010     | 108  | 90        | 110            |        |           |           |
| Method: | E245.1           |                 |           |               |             |      |           |                |        | Batc      | h: 107018 |
| Lab ID: | MB-107018        | Method          | Blank     |               |             |      | Run: HGCV | /202-B_170227A |        | 02/27     | /17 15:23 |
| Mercury |                  |                 | ND        | mg/L          | 6E-06       |      |           |                |        |           |           |
| Lab ID: | LCS-107018       | Laborato        | ory Co    | ntrol Sample  | Э           |      | Run: HGCV | /202-B_170227A |        | 02/27     | /17 15:25 |
| Mercury |                  | 0.00            | )213      | mg/L          | 0.00010     | 106  | 85        | 115            |        |           |           |
| Lab ID: | B17021678-007BMS | Sample          | Matrix    | Spike         |             |      | Run: HGCV | /202-B_170227A |        | 02/27     | /17 16:14 |
| Mercury |                  | 0.00            | )197      | mg/L          | 0.00010     | 99   | 70        | 130            |        |           |           |
| Lab ID: | B17021678-007BMS | <b>D</b> Sample | Matrix    | Spike Dupli   | icate       |      | Run: HGCV | /202-B_170227A |        | 02/27     | /17 16:16 |
| Mercury |                  | 0.00            | )197      | mg/L          | 0.00010     | 99   | 70        | 130            | 0.1    | 30        |           |
| Method: | E245.1           |                 |           |               |             |      |           |                |        | Batc      | h: 107019 |
| Lab ID: | MB-107019        | Method          | Blank     |               |             |      | Run: HGCV | /202-B_170227A |        | 02/27     | /17 16:17 |
| Mercury |                  |                 | ND        | mg/L          | 6E-06       |      |           |                |        |           |           |
| Lab ID: | LCS-107019       | Laborato        | ory Coi   | ntrol Sample  | Э           |      | Run: HGCV | /202-B_170227A |        | 02/27     | /17 16:19 |
| Mercury |                  | 0.00            | )215      | mg/L          | 0.00010     | 107  | 85        | 115            |        |           |           |
| Lab ID: | B17021678-008BMS | Sample          | Matrix    | Spike         |             |      | Run: HGCV | /202-B_170227A |        | 02/27     | /17 16:23 |
| Mercury |                  | 0.00            | )212      | mg/L          | 0.00010     | 106  | 70        | 130            |        |           |           |
| Lab ID: | B17021678-008BMS | <b>D</b> Sample | Matrix    | Spike Dupli   | icate       |      | Run: HGCV | /202-B_170227A |        | 02/27     | /17 16:25 |
| Mercury |                  | 0.00            | )213      | mg/L          | 0.00010     | 106  | 70        | 130            | 0.3    | 30        |           |
| Lab ID: | B17021723-001BMS | Sample          | Matrix    | Spike         |             |      | Run: HGCV | /202-B_170227A |        | 02/27     | /17 17:03 |
| Mercury |                  | 0.00            | )222      | mg/L          | 0.00010     | 110  | 70        | 130            |        |           |           |
| Lab ID: | B17021723-001BMS | <b>D</b> Sample | Matrix    | Spike Dupli   | icate       |      | Run: HGCV | /202-B_170227A |        | 02/27     | /17 17:05 |
| Mercury |                  | 0.00            | )220      | mg/L          | 0.00010     | 110  | 70        | 130            | 0.7    | 30        |           |
|         |                  |                 |           |               |             |      |           |                |        |           |           |



www.energylab.com

Billings, MT 800.735.4489 . Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

### **QA/QC Summary Report**

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency Revised Date: 12/22/17 **Report Date:** 03/14/17

Project: TMPA 6706150060

Work Order: B17021678

| Analyte |                  | Count       | Result          | Units        | RL           | %REC | Low Limit | High Limit     | RPD        | RPDLimit   | Qual      |
|---------|------------------|-------------|-----------------|--------------|--------------|------|-----------|----------------|------------|------------|-----------|
| Method: | E245.1           |             |                 |              |              |      |           | Analytic       | cal Run: I | HGCV202-B_ | 170228B   |
| Lab ID: | ICV              | Ini         | tial Calibratio | on Verificat | ion Standard |      |           |                |            | 02/28/     | 17 12:57  |
| Mercury |                  |             | 0.00192         | mg/L         | 0.00010      | 96   | 90        | 110            |            |            |           |
| Method: | E245.1           |             |                 |              |              |      |           |                |            | Batch      | n: 107054 |
| Lab ID: | MB-107054        | Me          | thod Blank      |              |              |      | Run: HGCV | /202-B_170228I | В          | 02/28/     | 17 13:02  |
| Mercury |                  |             | ND              | mg/L         | 6E-06        |      |           |                |            |            |           |
| Lab ID: | LCS-107054       | La          | boratory Cor    | ntrol Samp   | le           |      | Run: HGCV | /202-B_170228I | В          | 02/28/     | 17 13:04  |
| Mercury |                  |             | 0.00196         | mg/L         | 0.00010      | 98   | 85        | 115            |            |            |           |
| Lab ID: | B17021678-016BMS | Sa          | mple Matrix     | Spike        |              |      | Run: HGCV | /202-B_170228I | В          | 02/28/     | 17 13:13  |
| Mercury |                  |             | 0.00374         | mg/L         | 0.00010      | 77   | 70        | 130            |            |            |           |
| Lab ID: | B17021678-016BMS | <b>D</b> Sa | mple Matrix     | Spike Dup    | licate       |      | Run: HGCV | /202-B_170228E | В          | 02/28/     | 17 13:15  |
| Mercury |                  |             | 0.00369         | mg/L         | 0.00010      | 75   | 70        | 130            | 1.3        | 30         |           |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:03/09/17Project:TMPA 6706150060Work Order:B17021678

| Analyte                       | Count R          | esult l     | Units     | RL  | %REC | Low Limit  | High Limit    | RPD | RPDLimit | Qual      |
|-------------------------------|------------------|-------------|-----------|-----|------|------------|---------------|-----|----------|-----------|
| Method: A2540 C               |                  |             |           |     |      |            |               |     | Batch    | n: 106994 |
| Lab ID: LCS-106994            | Labora           | tory Contro | ol Sample |     |      | Run: BAL#  | SD-15_170224E |     | 02/24/   | 17 10:35  |
| Solids, Total Dissolved TDS @ | 180 C            | 985 r       | mg/L      | 10  | 97   | 90         | 110           |     |          |           |
| Lab ID: B17021678-010A D      | UP Sample        | Duplicate   | :         |     |      | Run: BAL # | SD-15_170224E |     | 02/24/   | 17 10:38  |
| Solids, Total Dissolved TDS @ | 180 C            | 8390 r      | mg/L      | 97  |      |            |               | 0.2 | 5        |           |
| Lab ID: MB-106994             | Method           | l Blank     |           |     |      | Run: BAL # | SD-15_170224E |     | 02/24/   | 17 22:23  |
| Solids, Total Dissolved TDS @ | 180 C            | ND r        | mg/L      | 4   |      |            |               |     |          |           |
| Method: A2540 C               |                  |             |           |     |      |            |               |     | Batch    | n: 107073 |
| Lab ID: MB-107073             | Method           | l Blank     |           |     |      | Run: BAL # | SD-15_170228B |     | 02/28/   | 17 08:35  |
| Solids, Total Dissolved TDS @ | 180 C            | ND r        | mg/L      | 4   |      |            |               |     |          |           |
| Lab ID: LCS-107073            | Labora           | tory Contro | ol Sample |     |      | Run: BAL # | SD-15_170228B |     | 02/28/   | 17 08:35  |
| Solids, Total Dissolved TDS @ | 180 C            | 1000 r      | mg/L      | 10  | 100  | 90         | 110           |     |          |           |
| Lab ID: B17021776-003A D      | <b>UP</b> Sample | Duplicate   | •         |     |      | Run: BAL#  | SD-15_170228B |     | 02/28/   | 17 08:35  |
| Solids, Total Dissolved TDS @ | 180 C            | 17000 r     | mg/L      | 140 |      |            |               | 7.0 | 5        | R         |
| Lab ID: B17021678-002A D      | <b>UP</b> Sample | e Duplicate | •         |     |      | Run: BAL#  | SD-15_170228B |     | 02/28/   | 17 08:38  |
| Solids, Total Dissolved TDS @ | 180 C            | 1330 r      | mg/L      | 20  |      |            |               | 1.4 | 5        |           |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:03/09/17Project:TMPA 6706150060Work Order:B17021678

| Analyte  |                  | Count        | Result       | Units              | RL     | %REC | Low Limit | High Limit   | RPD     | RPDLimit | Qual      |
|----------|------------------|--------------|--------------|--------------------|--------|------|-----------|--------------|---------|----------|-----------|
| Method:  | A4500-F C        |              |              |                    |        |      |           | Analytic     | al Run: | MAN-TECH | _170227B  |
| Lab ID:  | ICV              | Initi        | al Calibrati | on Verification St | andard |      |           |              |         | 02/27    | /17 14:28 |
| Fluoride |                  |              | 1.00         | mg/L               | 0.10   | 100  | 90        | 110          |         |          |           |
| Method:  | A4500-F C        |              |              |                    |        |      |           |              |         | Batch    | R275522   |
| Lab ID:  | MBLK             | Met          | thod Blank   |                    |        |      | Run: MAN- | TECH_170227B |         | 02/27    | /17 14:23 |
| Fluoride |                  |              | ND           | mg/L               | 0.02   |      |           |              |         |          |           |
| Lab ID:  | LFB              | Lab          | oratory Fo   | tified Blank       |        |      | Run: MAN- | TECH_170227B |         | 02/27    | /17 14:25 |
| Fluoride |                  |              | 1.02         | mg/L               | 0.10   | 102  | 90        | 110          |         |          |           |
| Lab ID:  | B17021678-004AMS | Sar          | mple Matrix  | Spike              |        |      | Run: MAN- | TECH_170227B |         | 02/27    | /17 14:34 |
| Fluoride |                  |              | 1.06         | mg/L               | 0.10   | 99   | 80        | 120          |         |          |           |
| Lab ID:  | B17021678-004AMS | <b>D</b> Sar | mple Matrix  | Spike Duplicate    |        |      | Run: MAN- | TECH_170227B |         | 02/27    | /17 14:37 |
| Fluoride |                  |              | 1.12         | mg/L               | 0.10   | 105  | 80        | 120          | 5.5     | 10       |           |
| Lab ID:  | B17021678-014AMS | Sar          | mple Matrix  | Spike              |        |      | Run: MAN- | TECH_170227B |         | 02/27    | /17 15:48 |
| Fluoride |                  |              | 1.03         | mg/L               | 0.10   | 103  | 80        | 120          |         |          |           |
| Lab ID:  | B17021678-014AMS | <b>D</b> Sar | mple Matrix  | Spike Duplicate    |        |      | Run: MAN- | TECH_170227B |         | 02/27    | /17 15:50 |
| Fluoride |                  |              | 1.04         | mg/L               | 0.10   | 104  | 80        | 120          | 1.0     | 10       |           |
| Lab ID:  | B17021720-005AMS | Sar          | mple Matrix  | Spike              |        |      | Run: MAN- | TECH_170227B |         | 02/27    | /17 17:49 |
| Fluoride |                  |              | 1.27         | mg/L               | 0.10   | 105  | 80        | 120          |         |          |           |
| Lab ID:  | B17021720-005AMS | <b>D</b> Sar | nple Matrix  | Spike Duplicate    |        |      | Run: MAN- | TECH_170227B |         | 02/27    | /17 17:51 |
| Fluoride |                  |              | 1.28         | mg/L               | 0.10   | 106  | 80        | 120          | 8.0     | 10       |           |
| Method:  | A4500-F C        |              |              |                    |        |      |           | Analytic     | al Run: | MAN-TECH | _170228A  |
| Lab ID:  | ICV              | Initi        | al Calibrati | on Verification St | andard |      |           |              |         | 02/28    | /17 09:55 |
| Fluoride |                  |              | 1.01         | mg/L               | 0.10   | 101  | 90        | 110          |         |          |           |
| Method:  | A4500-F C        |              |              |                    |        |      |           |              |         | Batch    | R275550   |
| Lab ID:  | MBLK             | Met          | thod Blank   |                    |        |      | Run: MAN- | TECH_170228A |         | 02/28    | /17 09:50 |
| Fluoride |                  |              | ND           | mg/L               | 0.02   |      |           |              |         |          |           |
| Lab ID:  | LFB              | Lab          | oratory Fo   | tified Blank       |        |      | Run: MAN- | TECH_170228A |         | 02/28    | /17 09:52 |
| Fluoride |                  |              | 1.00         | mg/L               | 0.10   | 100  | 90        | 110          |         |          |           |
| Lab ID:  | B17021674-007AMS | Sar          | mple Matrix  | Spike              |        |      | Run: MAN- | TECH_170228A |         | 02/28    | /17 10:45 |
| Fluoride |                  |              | 1.37         | mg/L               | 0.10   | 96   | 80        | 120          |         |          |           |
| Lab ID:  | B17021674-007AMS | <b>D</b> Sar | nple Matrix  | Spike Duplicate    |        |      | Run: MAN- | TECH_170228A |         | 02/28    | /17 10:48 |
| Fluoride |                  |              | 1.39         | mg/L               | 0.10   | 98   | 80        | 120          | 1.4     | 10       |           |
|          |                  |              |              |                    |        |      |           |              |         |          |           |

### Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:03/09/17Project:TMPA 6706150060Work Order:B17021678

| Analyte |                   | Count        | Result        | Units      | RL            | %REC | Low Limit | High Limit   | RPD        | RPDLimit    | Qual     |
|---------|-------------------|--------------|---------------|------------|---------------|------|-----------|--------------|------------|-------------|----------|
| Method: | A4500-H B         |              |               |            |               |      |           | Analytica    | al Run: Pl | HSC _101-B_ | _170224A |
| Lab ID: | pH 8              | Initi        | al Calibratio | n Verifica | tion Standard |      |           |              |            | 02/24/      | 17 09:00 |
| рН      |                   |              | 7.98          | s.u.       | 0.10          | 100  | 98        | 102          |            |             |          |
| Method: | A4500-H B         |              |               |            |               |      |           |              |            | Batch:      | R275368  |
| Lab ID: | B17021678-001ADUF | <b>P</b> Sar | nple Duplica  | ate        |               |      | Run: PHSC | _101-B_17022 | 24A        | 02/24/      | 17 14:18 |
| рН      |                   |              | 5.38          | s.u.       | 0.10          |      |           |              | 0.0        | 3           |          |
| Lab ID: | B17021678-011ADUF | <b>S</b> ar  | nple Duplica  | ate        |               |      | Run: PHSC | _101-B_17022 | 24A        | 02/24/      | 17 14:47 |
| рН      |                   |              | 4.05          | s.u.       | 0.10          |      |           |              | 0.0        | 3           |          |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:03/09/17Project:TMPA 6706150060Work Order:B17021678

| Analyte  |                   | Count   | Result         | Units               | RL    | %REC | Low Limit  | High Limit  | RPD       | RPDLimit  | Qual      |
|----------|-------------------|---------|----------------|---------------------|-------|------|------------|-------------|-----------|-----------|-----------|
| Method:  | E300.0            |         |                |                     |       |      |            | Analytical  | Run: IC N | IETROHM 1 | _170228A  |
| Lab ID:  | ICV               | 2 Initi | al Calibration | on Verification Sta | ndard |      |            |             |           | 02/28     | /17 11:43 |
| Chloride |                   |         | 2.17           | mg/L                | 1.0   | 97   | 90         | 110         |           |           |           |
| Sulfate  |                   |         | 9.05           | mg/L                | 1.0   | 101  | 90         | 110         |           |           |           |
| Method:  | E300.0            |         |                |                     |       |      |            |             |           | Batch:    | R275568   |
| Lab ID:  | ICB               | 2 Met   | thod Blank     |                     |       |      | Run: IC ME | TROHM 1_17  | 0228A     | 02/28     | /17 12:00 |
| Chloride |                   |         | ND             | mg/L                | 0.03  |      |            |             |           |           |           |
| Sulfate  |                   |         | ND             | mg/L                | 0.03  |      |            |             |           |           |           |
| Lab ID:  | LFB               | 2 Lab   | oratory For    | tified Blank        |       |      | Run: IC ME | TROHM 1_17  | 0228A     | 02/28     | /17 12:16 |
| Chloride |                   |         | 9.90           | mg/L                | 1.0   | 99   | 90         | 110         |           |           |           |
| Sulfate  |                   |         | 30.2           | mg/L                | 1.0   | 101  | 90         | 110         |           |           |           |
| Lab ID:  | B17021678-006AMS  | 2 Sar   | nple Matrix    | Spike               |       |      | Run: IC ME | TROHM 1_17  | 0228A     | 03/01/    | /17 03:29 |
| Chloride |                   |         | 2560           | mg/L                | 6.1   | 102  | 90         | 110         |           |           |           |
| Sulfate  |                   |         | 6070           | mg/L                | 18    | 106  | 90         | 110         |           |           |           |
| Lab ID:  | B17021678-006AMSI | D 2 Sar | nple Matrix    | Spike Duplicate     |       |      | Run: IC ME | TROHM 1_17  | 0228A     | 03/01     | /17 04:18 |
| Chloride |                   |         | 2540           | mg/L                | 6.1   | 100  | 90         | 110         | 8.0       | 20        |           |
| Sulfate  |                   |         | 6000           | mg/L                | 18    | 103  | 90         | 110         | 1.2       | 20        |           |
| Lab ID:  | B17021678-016AMS  | 2 Sar   | mple Matrix    | Spike               |       |      | Run: IC ME | TROHM 1_170 | 0228A     | 03/01     | /17 07:20 |
| Chloride |                   |         | 2450           | mg/L                | 6.1   | 100  | 90         | 110         |           |           |           |
| Sulfate  |                   |         | 5430           | mg/L                | 18    | 105  | 90         | 110         |           |           |           |
| Lab ID:  | B17021678-016AMSI | D 2 Sar | nple Matrix    | Spike Duplicate     |       |      | Run: IC ME | TROHM 1_170 | 0228A     | 03/01     | /17 08:09 |
| Chloride |                   |         | 2430           | mg/L                | 6.1   | 99   | 90         | 110         | 0.5       | 20        |           |
| Sulfate  |                   |         | 5420           | mg/L                | 18    | 105  | 90         | 110         | 0.2       | 20        |           |
| Lab ID:  | B17021712-001AMS  | 2 Sar   | nple Matrix    | Spike               |       |      | Run: IC ME | TROHM 1_170 | 0228A     | 03/01     | /17 10:05 |
| Chloride |                   |         | 554            | mg/L                | 3.0   | 106  | 90         | 110         |           |           |           |
| Sulfate  |                   |         | 3930           | mg/L                | 9.1   | 99   | 90         | 110         |           |           |           |
| Lab ID:  | B17021712-001AMSI | D 2 Sar | mple Matrix    | Spike Duplicate     |       |      | Run: IC ME | TROHM 1_170 | 0228A     | 03/01     | /17 10:22 |
| Chloride |                   |         | 556            | mg/L                | 3.0   | 106  | 90         | 110         | 0.4       | 20        |           |
| Sulfate  |                   |         | 3950           | mg/L                | 9.1   | 100  | 90         | 110         | 0.5       | 20        |           |

### Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.



Prepared by Casper, WY Branch

Client:Texas Municipal Power AgencyReport Date:03/13/17Project:TMPA 6706150060Work Order:B17021678

| Analyte                   | Result Units          | RL %REG   | Low Limit High Limit | RPD RPDLimit Qual |
|---------------------------|-----------------------|-----------|----------------------|-------------------|
| Method: E903.0            |                       |           |                      | Batch: RA226-8422 |
| Lab ID: LCS-RA226-8422    | Laboratory Control Sa | ample     | Run: G5000W_170228C  | 03/13/17 09:06    |
| Radium 226                | 9.3 pCi/L             | 88        | 80 120               |                   |
| Lab ID: MB-RA226-8422     | Method Blank          |           | Run: G5000W_170228C  | 03/13/17 09:06    |
| Radium 226                | 0.2 pCi/L             |           |                      |                   |
| Radium 226 precision (±)  | 0.1 pCi/L             |           |                      |                   |
| Radium 226 MDC            | 0.2 pCi/L             |           |                      |                   |
| Lab ID: B17021678-001CMS  | Sample Matrix Spike   |           | Run: G5000W_170228C  | 03/13/17 09:06    |
| Radium 226                | 21 pCi/L              | 96        | 70 130               |                   |
| Lab ID: B17021678-001CMSD | Sample Matrix Spike   | Duplicate | Run: G5000W_170228C  | 03/13/17 09:06    |
| Radium 226                | 19 pCi/L              | 90        | 70 130               | 6.8 20            |

Prepared by Casper, WY Branch

Client:Texas Municipal Power AgencyReport Date:03/13/17Project:TMPA 6706150060Work Order:B17021678

| Analyte                    | Result         | Units           | RL | %REC | Low Limit | High Limit     | RPD | RPDLimit  | Qual      |
|----------------------------|----------------|-----------------|----|------|-----------|----------------|-----|-----------|-----------|
| Method: RA-05              |                |                 |    |      |           |                |     | Batch: RA | 228-5442  |
| Lab ID: LCS-228-RA226-8422 | Laboratory Cor | ntrol Sample    |    |      | Run: TENN | NELEC-3_170228 | 8C  | 03/07     | /17 13:37 |
| Radium 228                 | 9.6            | pCi/L           |    | 93   | 80        | 120            |     |           |           |
| Lab ID: MB-RA226-8422      | Method Blank   |                 |    |      | Run: TENN | NELEC-3_170228 | 8C  | 03/07     | /17 13:37 |
| Radium 228                 | 0.6            | pCi/L           |    |      |           |                |     |           | U         |
| Radium 228 precision (±)   | 0.9            | pCi/L           |    |      |           |                |     |           |           |
| Radium 228 MDC             | 1              | pCi/L           |    |      |           |                |     |           |           |
| Lab ID: B17021678-011CMS   | Sample Matrix  | Spike           |    |      | Run: TENN | NELEC-3_170228 | 8C  | 03/07     | /17 13:37 |
| Radium 228                 | 24             | pCi/L           |    | 109  | 70        | 130            |     |           |           |
| Lab ID: B17021678-011CMSD  | Sample Matrix  | Spike Duplicate |    |      | Run: TENN | NELEC-3_170228 | 8C  | 03/07     | /17 13:37 |
| Radium 228                 | 22             | pCi/L           |    | 100  | 70        | 130            | 8.4 | 20        |           |

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

### **Work Order Receipt Checklist**

### Texas Municipal Power Agency

Login completed by: Tabitha Edwards

### B17021678

Date Received: 2/24/2017

| Reviewed by:                                                                                 | BL2000\cindy                    |           | Re   | eceived by: lab            |
|----------------------------------------------------------------------------------------------|---------------------------------|-----------|------|----------------------------|
| Reviewed Date:                                                                               | 2/28/2017                       |           | Cai  | rrier name: Return-UPS NDA |
| Shipping container/cooler in                                                                 | good condition?                 | Yes ✓     | No 🗌 | Not Present                |
| Custody seals intact on all sh                                                               | nipping container(s)/cooler(s)? | Yes ✓     | No 🗌 | Not Present                |
| Custody seals intact on all sa                                                               | ample bottles?                  | Yes       | No 🗌 | Not Present 🗹              |
| Chain of custody present?                                                                    |                                 | Yes 🔽     | No 🗌 |                            |
| Chain of custody signed whe                                                                  | en relinquished and received?   | Yes 🔽     | No 🗌 |                            |
| Chain of custody agrees with                                                                 | sample labels?                  | Yes       | No 🗹 |                            |
| Samples in proper container/                                                                 | /bottle?                        | Yes 🔽     | No 🗌 |                            |
| Sample containers intact?                                                                    |                                 | Yes ✓     | No 🗌 |                            |
| Sufficient sample volume for                                                                 | indicated test?                 | Yes ✓     | No 🗌 |                            |
| All samples received within h<br>(Exclude analyses that are co<br>such as pH, DO, Res Cl, Su | onsidered field parameters      | Yes ✓     | No 🗌 |                            |
| Temp Blank received in all sh                                                                | nipping container(s)/cooler(s)? | Yes 🔽     | No 🗌 | Not Applicable             |
| Container/Temp Blank tempe                                                                   | erature:                        | °C On Ice |      |                            |
| Water - VOA vials have zero                                                                  | headspace?                      | Yes       | No 🗌 | No VOA vials submitted 🔽   |
| Water - pH acceptable upon                                                                   | receipt?                        | Yes 🗹     | No 🗌 | Not Applicable             |

### **Standard Reporting Procedures:**

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

### **Contact and Corrective Action Comments:**

The Temperature Blank temperature for shipping container 1 was 1.1°C, shipping container 2 was 1.3°C, shipping container 3 was 0.6°C, shipping container 4 was 1.0°C, shipping container 5 was 0.4°C and shipping container 6 was 0.7°C.

One 2 Liter Plastic Nitric preserved container was received with no identification. Only one 2 Liter Plastic Nitric preserved container was received for sample SFLMW-1 all other samples had two. Labeled the container with no identification as SFLMW-1 per Cindy Rohrer, Energy Laboratories Branch Manager.



# Chain of Custody & Analytical Request Record

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.



Contact Phone

Email

## Chain of Custody & Analytical Request Record

J Q

Comments **Analysis Requested** □ EDD/EDT (contact laboratory) □ Other Report Information (if different than Account Information) □Email □ LEVEL IV □ NELAC Special Report/Formats: Secupany/Name Mailing Address Matrix Codes City, State, Zip Contact Phone Email K mail Mailing Address 3755 S. (apital of TX Hwy, #375 **Bottle Order** greg. Seifert @amectus com Sheeler Sheeler 78704 Account Information (Billing information, 512-715-0360 Foster Austin, Company/Name Amec Sign City, State, Zip Purchase Order

MUST be contacted prior to All tumaround times are standard unless marked as RUSH sample submittal for charges and scheduling -See Instructions Page Energy Laboratories See Attached V - Vegetation B - Bioassay DW - Drinking Water S - Soils/ Solids W- Water O - Other A- Air **2**□ Sampler Phone 512-241-332 ☐ Unprocessed ore (NOT ground or refined)\* EPA/State Compliance XYes 6706150060 MINING CLIENTS, please indicate sample type. Project Name, PWSID, Permit, etc. 7MPA Sampler Name Brian Chieselman □ Byproduct 11 (e)2 material Project Information Sample Origin State

50 010 Lateratory Use Only かべ ELLAB ID 10-86 MBOUTE Matrix (See Codes  $\exists$ Number of Containers 1 0902 1550 709 1755 9/0/ 1427 1130 Time Collection 123/17 11/60 43/17 2/41/17 Date EQBK-BJG-22217 Eabk-BJG-223/7 Sample Identification (Name, Location, Interval, etc.) SFL MW-3 SFL MW-5 SFL MW-2 SFL MW-6 SFLMW-4 DUP-2 DUP-1

|                                                             | Alla                              | confy)                           |
|-------------------------------------------------------------|-----------------------------------|----------------------------------|
| Signature                                                   | Say The A sa                      | Receipt Number (cash/check only) |
| Date/Time                                                   | Date/Time                         | 1 1                              |
| Received by (print)                                         | Received by Labdratory (print)    | ONLY Payment Type CC Cash Check  |
| alm                                                         |                                   | ABORATORY USE C                  |
| Signature High                                              | Signature                         | ipt Temp   Temp Blank            |
| 2/33/17@1410                                                | Date/Time                         | Intact Receipt                   |
|                                                             |                                   | Custody Seals                    |
| Custody Relinquished by (print) Record MUST Brian Giese man | be signed Relinquished by (print) | Cooler ID(s)                     |
| Custody<br>Record MUST                                      | be signed                         | Shipped By                       |

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.
This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.



### Trust our People. Trust our Data.



### **BOTTLE ORDER 109818**

| SHIFF    | SHIPPED 10: Amec - Austin                     | - AUSTII               | 1                             |       |                          |              |                              |                   |
|----------|-----------------------------------------------|------------------------|-------------------------------|-------|--------------------------|--------------|------------------------------|-------------------|
| Contact: | Contact: Brian Gieselman                      |                        |                               |       |                          |              | Order Created by: Shari Endv |                   |
|          | 3755 South Capital of Texas Highway Suite 375 | al of Texa             | s Highway                     |       |                          |              | Shipped From: Billings, MT   |                   |
|          | Austin TX 78704                               |                        |                               |       |                          |              | Ship Date: 2/13/2017         |                   |
| Phone:   |                                               |                        |                               |       |                          |              | VIA: Ground                  |                   |
| Project: | Project: CCRR                                 |                        |                               |       |                          |              | Quote Used: 3997             |                   |
| Bot      | Bottle Size/Type                              | Bottles<br>Per<br>Samp | sottles<br>Per<br>Samp Method | Tests | Critical<br>Hold<br>Time | Preservative | Notes                        | Num<br>of<br>Same |

Num of Samp

| Appendix III & IV ( 20 Sets) | 20 S | ets)               |                            |             |      |       |
|------------------------------|------|--------------------|----------------------------|-------------|------|-------|
| 1 Liter Plastic              | 1    | A2540 C            |                            |             |      | -     |
|                              |      | A4500-H B pH       |                            | 0.24<br>hrs |      | _     |
|                              |      | E300.0             |                            |             |      | · · · |
|                              |      | A4500-F C Fluoride | Fluoride                   |             |      |       |
| 250 mL Plastic               |      | E200.7_8           |                            |             | HN03 | -     |
|                              |      | E245.1             | Mercury, Total Recoverable |             |      |       |
| 2 Liter Plastic              | 2    | 2 E903.0           | Radium 226, Total          |             | HN03 | -     |

| We strongly suggest that the samples are  | shipped the same day as they are collected. | Sheets                                           | a skin irritant.                                                   |
|-------------------------------------------|---------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------|
| NaOH - Sodium Hydroxide                   | H3PO4 - Phosphoric Acid                     | EnergyLab.com ->Services -> MSDS Sheets          | Acids and Sodium Hydroxide. Zinc Acetate is a skin irritant.       |
| HNO3 - Nitric Acid  H2SO4 - Sulfuric Acid | HCI - Hydrochloric<br>Acid                  | Material Safety Data Sheets(MSDS) Available @ En | Corrosive Chemicals: Nitric, Suffuric, Phosphoric, Hydrochloric Ac |
| HNO3 - Nitric Acid                        | ZnAc - Zinc Acetate HCI - Hydrochloric Acid | Material Safety Data She                         | Corrosive Chemicals: Nitric, Su                                    |

A7500-RA Radium 226 + Radium 228

Radium 228, Total

RA-05

1 of 2

### **ANALYTICAL SUMMARY REPORT**

December 21, 2017

Texas Municipal Power Agency PO Box 7000 Bryan, TX 77805-7000

Work Order: B17050467 Quote ID: B3997 - CCRR

Project Name: TMPA 6706150060

Energy Laboratories Inc Billings MT received the following 9 samples for Texas Municipal Power Agency on 5/4/2017 for analysis.

| Lab ID        | Client Sample ID | Collect Date  | Receive Date | Matrix       | Test                                                                                                                                                                                                                                                                  |
|---------------|------------------|---------------|--------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B17050467-001 | SFL MW-3         | 05/02/17 9:3  | 5 05/04/17   | Ground Water | Metals by ICP/ICPMS, Tot. Rec. Mercury, Total Recoverable Fluoride Anions by Ion Chromatography pH Metals Preparation by EPA 200.2 Digestion, Mercury by CVAA Preparation for TDS Radium 226 + Radium 228 Radium 226, Total Radium 228, Total Solids, Total Dissolved |
| B17050467-002 | SFL MW-4         | 05/02/17 10:  | 38 05/04/17  | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17050467-003 | MNW-18           | 05/02/17 12:  | 38 05/04/17  | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
|               |                  |               |              |              |                                                                                                                                                                                                                                                                       |
| B17050467-006 | MNW-15           | 05/02/17 17:  | 51 05/04/17  | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
|               |                  |               |              |              |                                                                                                                                                                                                                                                                       |
| B17050467-008 | EQBK-SCM-50217   | 05/02/17 18:4 | 45 05/04/17  | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17050467-009 | DUP-1            | 05/02/17 0:0  | 0 05/04/17   | Ground Water | Same As Above                                                                                                                                                                                                                                                         |

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

Texas Municipal Power Agency

Billings, MT **800.735.4489** • Casper, WY **888.235.0515** Gillette, WY **866.686.7175** • Helena, MT **877.472.0711** 

Revised Date: 12/21/17

Report Date: 06/07/17

 Project:
 TMPA 6706150060

 Work Order:
 B17050467

 CASE NARRATIVE

Tests associated with analyst identified as ELI-CA were subcontracted to Energy Laboratories, PO Box 247, Casper, WY, EPA Number WY00002 and WY00937.

Revised Report 12/21/2017

**CLIENT:** 

The reporting limits for the following analytes were lowered per request from Greg Seifert.

Analyte Original Reporting Limit (mg/L)

Antimony 0.05 0.006
Cadmium 0.01 0.005
Thallium 0.01 0.002

The report has been revised and replaces any previously issued report in its entirety.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA 6706150060 Lab ID: B17050467-001 Client Sample ID: SFL MW-3

Revised Date: 12/21/17 **Report Date:** 06/07/17 Collection Date: 05/02/17 09:35 DateReceived: 05/04/17

Matrix: Ground Water

| Analyses                              | Result | Unite  | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|--------|------------|-------|-------------|-----------|-------------------------|
| Allalyses                             | Nesuit | Ullits | Qualifiers | IXE.  | QUL         | Wiethou   | Allalysis Date / By     |
| MAJOR IONS                            |        |        |            |       |             |           |                         |
| Calcium                               | 590    | mg/L   |            | 1     |             | E200.7    | 05/09/17 05:33 / rlh    |
| Magnesium                             | 113    | mg/L   |            | 1     |             | E200.7    | 05/09/17 05:33 / rlh    |
| Potassium                             | 47     | mg/L   |            | 1     |             | E200.7    | 05/09/17 05:33 / rlh    |
| Sodium                                | 772    | mg/L   | D          | 4     |             | E200.7    | 05/09/17 05:33 / rlh    |
| PHYSICAL PROPERTIES                   |        |        |            |       |             |           |                         |
| pH                                    | 3.8    | s.u.   | Н          | 0.1   |             | A4500-H B | 05/04/17 19:20 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 5130   | mg/L   | D          | 100   |             | A2540 C   | 05/05/17 09:07 / rik    |
| INORGANICS                            |        |        |            |       |             |           |                         |
| Chloride                              | 1390   | mg/L   | D          | 6     |             | E300.0    | 05/07/17 02:28 / cjm    |
| Sulfate                               |        | mg/L   | D          | 20    |             | E300.0    | 05/07/17 02:28 / cjm    |
| Fluoride                              | 0.6    | mg/L   |            | 0.1   |             | A4500-F C | 05/08/17 17:44 / bas    |
| METALS, TOTAL RECOVERABLE             |        |        |            |       |             |           |                         |
| Antimony                              | ND     | mg/L   |            | 0.006 |             | E200.8    | 05/09/17 03:59 / jpv    |
| Arsenic                               | ND     | mg/L   |            | 0.01  |             | E200.8    | 05/09/17 03:59 / jpv    |
| Barium                                |        | mg/L   |            | 0.01  |             | E200.8    | 05/09/17 03:59 / jpv    |
| Beryllium                             | 0.034  | mg/L   |            | 0.001 |             | E200.8    | 05/09/17 03:59 / jpv    |
| Boron                                 | 2.49   | mg/L   |            | 0.05  |             | E200.7    | 05/09/17 05:33 / rlh    |
| Cadmium                               | 0.008  | mg/L   |            | 0.005 |             | E200.8    | 05/09/17 03:59 / jpv    |
| Chromium                              | ND     | mg/L   |            | 0.01  |             | E200.8    | 05/09/17 03:59 / jpv    |
| Cobalt                                | 0.07   | mg/L   |            | 0.02  |             | E200.8    | 05/09/17 03:59 / jpv    |
| Lead                                  | 0.02   | mg/L   |            | 0.01  |             | E200.8    | 05/09/17 03:59 / jpv    |
| Lithium                               | 0.29   | mg/L   | D          | 0.04  |             | E200.7    | 05/09/17 05:33 / rlh    |
| Mercury                               | 0.002  | mg/L   |            | 0.001 |             | E245.1    | 05/08/17 15:46 / mas    |
| Molybdenum                            | ND     | mg/L   |            | 0.05  |             | E200.8    | 05/09/17 03:59 / jpv    |
| Selenium                              | ND     | mg/L   |            | 0.01  |             | E200.8    | 05/09/17 03:59 / jpv    |
| Thallium                              | 0.006  | mg/L   |            | 0.002 |             | E200.8    | 05/09/17 03:59 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |        |            |       |             |           |                         |
| Radium 226                            | 1.5    | pCi/L  |            |       |             | E903.0    | 05/30/17 11:21 / eli-ca |
| Radium 226 precision (±)              | 0.34   | pCi/L  |            |       |             | E903.0    | 05/30/17 11:21 / eli-ca |
| Radium 226 MDC                        | 0.11   | pCi/L  |            |       |             | E903.0    | 05/30/17 11:21 / eli-ca |
| Radium 228                            | 5.4    | pCi/L  |            |       |             | RA-05     | 05/22/17 14:28 / eli-ca |
| Radium 228 precision (±)              |        | pCi/L  |            |       |             | RA-05     | 05/22/17 14:28 / eli-ca |
| Radium 228 MDC                        | 1.6    | pCi/L  |            |       |             | RA-05     | 05/22/17 14:28 / eli-ca |
| Radium 226 + Radium 228               | 6.9    | pCi/L  |            |       |             | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 precision (±) |        | pCi/L  |            |       |             | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.6    | pCi/L  |            |       |             | A7500-RA  | 05/31/17 11:00 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA 6706150060 Lab ID: B17050467-002 Client Sample ID: SFL MW-4

Revised Date: 12/21/17 **Report Date:** 06/07/17 Collection Date: 05/02/17 10:38 DateReceived: 05/04/17

Matrix: Ground Water

|                                           |        |       |            |       | MCL/ |                      |                                              |
|-------------------------------------------|--------|-------|------------|-------|------|----------------------|----------------------------------------------|
| Analyses                                  | Result | Units | Qualifiers | RL    | QCL  | Method               | Analysis Date / By                           |
| MAJOR IONS                                |        |       |            |       |      |                      |                                              |
| Calcium                                   | 735    | mg/L  |            | 1     |      | E200.7               | 05/09/17 06:08 / rlh                         |
| Magnesium                                 |        | mg/L  |            | 1     |      | E200.7               | 05/09/17 06:08 / rlh                         |
| Potassium                                 |        | mg/L  |            | 1     |      | E200.7               | 05/09/17 06:08 / rlh                         |
| Sodium                                    |        | mg/L  | D          | 4     |      | E200.7               | 05/09/17 06:08 / rlh                         |
| DUVEICAL DEODEDTIES                       |        | Ü     |            |       |      |                      |                                              |
| PHYSICAL PROPERTIES                       | 6.5    | s.u.  | Н          | 0.1   |      | A 4500 LI D          | 05/04/17 10:22 / piw                         |
| pH<br>Solids, Total Dissolved TDS @ 180 C |        |       | п<br>D     | 90    |      | A4500-H B<br>A2540 C | 05/04/17 19:23 / pjw<br>05/05/17 09:07 / rik |
| Solids, Total Dissolved TDS (@ 160 C      | 3700   | mg/L  | Ь          | 90    |      | A2540 C              | 05/05/17 09.07 / 11K                         |
| INORGANICS                                |        |       |            |       |      |                      |                                              |
| Chloride                                  | 1730   | mg/L  | D          | 6     |      | E300.0               | 05/07/17 02:48 / cjm                         |
| Sulfate                                   | 2280   | mg/L  | D          | 20    |      | E300.0               | 05/07/17 02:48 / cjm                         |
| Fluoride                                  | ND     | mg/L  |            | 0.1   |      | A4500-F C            | 05/08/17 17:57 / bas                         |
| METALS, TOTAL RECOVERABLE                 |        |       |            |       |      |                      |                                              |
| Antimony                                  | ND     | mg/L  |            | 0.006 |      | E200.8               | 05/09/17 04:02 / jpv                         |
| Arsenic                                   | ND     | mg/L  |            | 0.01  |      | E200.8               | 05/11/17 19:56 / jpv                         |
| Barium                                    |        | mg/L  |            | 0.01  |      | E200.7               | 05/09/17 06:08 / rlh                         |
| Beryllium                                 |        | mg/L  |            | 0.001 |      | E200.8               | 05/09/17 04:02 / jpv                         |
| Boron                                     | 0.58   | mg/L  |            | 0.05  |      | E200.7               | 05/09/17 06:08 / rlh                         |
| Cadmium                                   | ND     | mg/L  |            | 0.005 |      | E200.8               | 05/09/17 04:02 / jpv                         |
| Chromium                                  | ND     | mg/L  |            | 0.01  |      | E200.8               | 05/09/17 04:02 / jpv                         |
| Cobalt                                    | ND     | mg/L  |            | 0.02  |      | E200.8               | 05/09/17 04:02 / jpv                         |
| Lead                                      | ND     | mg/L  |            | 0.01  |      | E200.8               | 05/09/17 04:02 / jpv                         |
| Lithium                                   | 0.42   | mg/L  | D          | 0.04  |      | E200.7               | 05/09/17 06:08 / rlh                         |
| Mercury                                   | ND     | mg/L  |            | 0.001 |      | E245.1               | 05/05/17 15:01 / mas                         |
| Molybdenum                                | ND     | mg/L  |            | 0.05  |      | E200.8               | 05/09/17 04:02 / jpv                         |
| Selenium                                  | ND     | mg/L  |            | 0.01  |      | E200.8               | 05/09/17 04:02 / jpv                         |
| Thallium                                  | ND     | mg/L  |            | 0.002 |      | E200.8               | 05/09/17 04:02 / jpv                         |
| RADIONUCLIDES - TOTAL                     |        |       |            |       |      |                      |                                              |
| Radium 226                                | 0.47   | pCi/L |            |       |      | E903.0               | 05/30/17 13:01 / eli-ca                      |
| Radium 226 precision (±)                  | 0.12   | pCi/L |            |       |      | E903.0               | 05/30/17 13:01 / eli-ca                      |
| Radium 226 MDC                            | 0.11   | pCi/L |            |       |      | E903.0               | 05/30/17 13:01 / eli-ca                      |
| Radium 228                                | 1.1    | pCi/L | U          |       |      | RA-05                | 05/22/17 14:28 / eli-ca                      |
| Radium 228 precision (±)                  | 1.1    | pCi/L |            |       |      | RA-05                | 05/22/17 14:28 / eli-ca                      |
| Radium 228 MDC                            | 1.6    | pCi/L |            |       |      | RA-05                | 05/22/17 14:28 / eli-ca                      |
| Radium 226 + Radium 228                   | 1.5    | pCi/L | U          |       |      | A7500-RA             | 05/31/17 11:00 / eli-ca                      |
| Radium 226 + Radium 228 precision (±)     |        | pCi/L |            |       |      | A7500-RA             | 05/31/17 11:00 / eli-ca                      |
| Radium 226 + Radium 228 MDC               | 1.6    | pCi/L |            |       |      | A7500-RA             | 05/31/17 11:00 / eli-ca                      |
|                                           |        |       |            |       |      |                      |                                              |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

U - Not detected at minimum detectable concentration

Revised Date: 12/21/17

**Report Date:** 06/07/17

Collection Date: 05/02/17 12:38

### LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA 6706150060 Lab ID: B17050467-003

DateReceived: 05/04/17 Client Sample ID: MNW-18 Matrix: Ground Water

|                                       |        |        |            |       | MCL/ |           |                         |
|---------------------------------------|--------|--------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units  | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |        |            |       |      |           |                         |
| Calcium                               | 201    | mg/L   |            | 1     |      | E200.7    | 05/09/17 06:11 / rlh    |
| Magnesium                             |        | mg/L   |            | 1     |      | E200.7    | 05/09/17 06:11 / rlh    |
| Potassium                             |        | mg/L   |            | 1     |      | E200.7    | 05/09/17 06:11 / rlh    |
| Sodium                                |        | mg/L   | D          | 2     |      | E200.7    | 05/09/17 06:11 / rlh    |
| Codium                                | 703    | IIIg/L | D          | 2     |      | L200.7    | 03/09/17 00.1171111     |
| PHYSICAL PROPERTIES                   |        |        |            |       |      |           |                         |
| pH                                    | 7.5    | s.u.   | Н          | 0.1   |      | A4500-H B | 05/04/17 19:25 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 3050   | mg/L   | D          | 40    |      | A2540 C   | 05/05/17 09:07 / rik    |
| INORGANICS                            |        |        |            |       |      |           |                         |
| Chloride                              | 547    | mg/L   | D          | 3     |      | E300.0    | 05/07/17 03:07 / cjm    |
| Sulfate                               | 1470   | mg/L   | D          | 9     |      | E300.0    | 05/07/17 03:07 / cjm    |
| Fluoride                              | 0.2    | mg/L   |            | 0.1   |      | A4500-F C | 05/08/17 18:05 / bas    |
| METALS, TOTAL RECOVERABLE             |        |        |            |       |      |           |                         |
| Antimony                              | ND     | mg/L   |            | 0.006 |      | E200.8    | 05/09/17 04:05 / jpv    |
| Arsenic                               |        | mg/L   |            | 0.01  |      | E200.8    | 05/11/17 19:59 / jpv    |
| Barium                                |        | mg/L   |            | 0.01  |      | E200.7    | 05/09/17 06:11 / rlh    |
| Beryllium                             |        | mg/L   |            | 0.001 |      | E200.7    | 05/09/17 06:11 / rlh    |
| Boron                                 | 0.45   | mg/L   |            | 0.05  |      | E200.7    | 05/09/17 06:11 / rlh    |
| Cadmium                               |        | mg/L   |            | 0.005 |      | E200.8    | 05/09/17 04:05 / jpv    |
| Chromium                              | ND     | mg/L   |            | 0.01  |      | E200.8    | 05/09/17 04:05 / jpv    |
| Cobalt                                | ND     | mg/L   |            | 0.02  |      | E200.8    | 05/09/17 04:05 / jpv    |
| Lead                                  | ND     | mg/L   |            | 0.01  |      | E200.8    | 05/09/17 04:05 / jpv    |
| Lithium                               | 0.39   | mg/L   | D          | 0.02  |      | E200.7    | 05/09/17 06:11 / rlh    |
| Mercury                               | ND     | mg/L   |            | 0.001 |      | E245.1    | 05/05/17 15:03 / mas    |
| Molybdenum                            | ND     | mg/L   |            | 0.05  |      | E200.7    | 05/09/17 06:11 / rlh    |
| Selenium                              | ND     | mg/L   |            | 0.01  |      | E200.8    | 05/09/17 04:05 / jpv    |
| Thallium                              | ND     | mg/L   |            | 0.002 |      | E200.8    | 05/09/17 04:05 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |        |            |       |      |           |                         |
| Radium 226                            | 1.2    | pCi/L  |            |       |      | E903.0    | 05/30/17 13:01 / eli-ca |
| Radium 226 precision (±)              |        | pCi/L  |            |       |      | E903.0    | 05/30/17 13:01 / eli-ca |
| Radium 226 MDC                        |        | pCi/L  |            |       |      | E903.0    | 05/30/17 13:01 / eli-ca |
| Radium 228                            |        | pCi/L  |            |       |      | RA-05     | 05/22/17 14:28 / eli-ca |
| Radium 228 precision (±)              |        | pCi/L  |            |       |      | RA-05     | 05/22/17 14:28 / eli-ca |
| Radium 228 MDC                        |        | pCi/L  |            |       |      | RA-05     | 05/22/17 14:28 / eli-ca |
| Radium 226 + Radium 228               |        | pCi/L  |            |       |      | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 precision (±) |        | pCi/L  |            |       |      | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 MDC           |        | pCi/L  |            |       |      | A7500-RA  | 05/31/17 11:00 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

Revised Date: 12/21/17

**Report Date:** 06/07/17

Collection Date: 05/02/17 17:51

### LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

TMPA 6706150060 Project: Lab ID: B17050467-006

DateReceived: 05/04/17 Client Sample ID: MNW-15 Matrix: Ground Water

| Analyses                              | Result | Unite | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| Analyses                              | Nesuit | Onits | Quanners   |       |             | Metriod   | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |             |           |                         |
| Calcium                               | 280    | mg/L  |            | 1     |             | E200.7    | 05/09/17 06:50 / rlh    |
| Magnesium                             | 53     | mg/L  |            | 1     |             | E200.7    | 05/09/17 06:50 / rlh    |
| Potassium                             | 27     | mg/L  |            | 1     |             | E200.7    | 05/09/17 06:50 / rlh    |
| Sodium                                | 459    | mg/L  | D          | 2     |             | E200.7    | 05/09/17 06:50 / rlh    |
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| pH                                    | 3.7    | s.u.  | Н          | 0.1   |             | A4500-H B | 05/04/17 19:33 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 2540   | mg/L  | D          | 40    |             | A2540 C   | 05/05/17 10:08 / rik    |
| INORGANICS                            |        |       |            |       |             |           |                         |
| Chloride                              | 730    | mg/L  | D          | 3     |             | E300.0    | 05/07/17 04:06 / cjm    |
| Sulfate                               |        | mg/L  | D          | 9     |             | E300.0    | 05/07/17 04:06 / cjm    |
| Fluoride                              |        | mg/L  | _          | 0.1   |             | A4500-F C | 05/08/17 18:16 / bas    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 |             | E200.8    | 05/09/17 07:38 / jpv    |
| Arsenic                               |        | mg/L  |            | 0.01  |             | E200.8    | 05/11/17 20:29 / jpv    |
| Barium                                |        | mg/L  |            | 0.01  |             | E200.7    | 05/09/17 06:50 / rlh    |
| Beryllium                             | 0.077  |       |            | 0.001 |             | E200.7    | 05/09/17 06:50 / rlh    |
| Boron                                 |        | mg/L  |            | 0.05  |             | E200.7    | 05/09/17 06:50 / rlh    |
| Cadmium                               | 0.093  | mg/L  |            | 0.005 |             | E200.7    | 05/09/17 06:50 / rlh    |
| Chromium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 05/09/17 07:38 / jpv    |
| Cobalt                                | 0.27   | mg/L  |            | 0.02  |             | E200.8    | 05/09/17 07:38 / jpv    |
| Lead                                  | ND     | mg/L  |            | 0.01  |             | E200.8    | 05/09/17 07:38 / jpv    |
| Lithium                               | 0.09   | mg/L  | D          | 0.02  |             | E200.7    | 05/09/17 06:50 / rlh    |
| Mercury                               | ND     | mg/L  |            | 0.001 |             | E245.1    | 05/05/17 15:12 / mas    |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.7    | 05/09/17 06:50 / rlh    |
| Selenium                              |        | mg/L  |            | 0.01  |             | E200.8    | 05/09/17 07:38 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.002 |             | E200.8    | 05/09/17 07:38 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 226                            | 0.15   | pCi/L |            |       |             | E903.0    | 05/30/17 13:01 / eli-ca |
| Radium 226 precision (±)              | 0.09   | pCi/L |            |       |             | E903.0    | 05/30/17 13:01 / eli-ca |
| Radium 226 MDC                        | 0.12   | pCi/L |            |       |             | E903.0    | 05/30/17 13:01 / eli-ca |
| Radium 228                            | 0.55   | pCi/L | U          |       |             | RA-05     | 05/22/17 16:03 / eli-ca |
| Radium 228 precision (±)              | 1.2    | pCi/L |            |       |             | RA-05     | 05/22/17 16:03 / eli-ca |
| Radium 228 MDC                        | 1.9    | pCi/L |            |       |             | RA-05     | 05/22/17 16:03 / eli-ca |
| Radium 226 + Radium 228               | 0.7    | pCi/L | U          |       |             | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.2    | pCi/L |            |       |             | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.9    | pCi/L |            |       |             | A7500-RA  | 05/31/17 11:00 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

U - Not detected at minimum detectable concentration

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

TMPA 6706150060 Project: Lab ID: B17050467-008 Client Sample ID: EQBK-SCM-50217

Revised Date: 12/21/17 **Report Date:** 06/07/17 Collection Date: 05/02/17 18:45 DateReceived: 05/04/17

Matrix: Ground Water

| Analyses                              | Result | Unito  | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|--------|------------|-------|-------------|-----------|-------------------------|
| Allalyses                             | Result | Ullits | Qualifiers | NL .  | QUL.        | Wethou    | Allalysis Date / By     |
| MAJOR IONS                            |        |        |            |       |             |           |                         |
| Calcium                               | ND     | mg/L   |            | 1     |             | E200.7    | 05/09/17 06:57 / rlh    |
| Magnesium                             |        | mg/L   |            | 1     |             | E200.7    | 05/09/17 06:57 / rlh    |
| Potassium                             | ND     | mg/L   |            | 1     |             | E200.7    | 05/09/17 06:57 / rlh    |
| Sodium                                | ND     | mg/L   |            | 1     |             | E200.7    | 05/09/17 06:57 / rlh    |
| PHYSICAL PROPERTIES                   |        |        |            |       |             |           |                         |
| pH                                    | 5.6    | s.u.   | Н          | 0.1   |             | A4500-H B | 05/04/17 19:38 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | ND     | mg/L   |            | 10    |             | A2540 C   | 05/05/17 11:16 / rik    |
| INORGANICS                            |        |        |            |       |             |           |                         |
| Chloride                              | ND     | mg/L   |            | 1     |             | E300.0    | 05/07/17 05:24 / cjm    |
| Sulfate                               |        | mg/L   |            | 1     |             | E300.0    | 05/07/17 05:24 / cjm    |
| Fluoride                              |        | mg/L   |            | 0.1   |             | A4500-F C | 05/08/17 18:28 / bas    |
| METALS, TOTAL RECOVERABLE             |        |        |            |       |             |           |                         |
| Antimony                              | ND     | mg/L   |            | 0.006 |             | E200.8    | 05/09/17 07:45 / jpv    |
| Arsenic                               |        | mg/L   |            | 0.01  |             | E200.8    | 05/09/17 07:45 / jpv    |
| Barium                                |        | mg/L   |            | 0.01  |             | E200.7    | 05/09/17 06:57 / rlh    |
| Beryllium                             |        | mg/L   |            | 0.001 |             | E200.7    | 05/09/17 06:57 / rlh    |
| Boron                                 | ND     | mg/L   |            | 0.05  |             | E200.7    | 05/09/17 06:57 / rlh    |
| Cadmium                               | ND     | mg/L   |            | 0.005 |             | E200.7    | 05/09/17 06:57 / rlh    |
| Chromium                              | ND     | mg/L   |            | 0.01  |             | E200.7    | 05/09/17 06:57 / rlh    |
| Cobalt                                | ND     | mg/L   |            | 0.02  |             | E200.7    | 05/09/17 06:57 / rlh    |
| Lead                                  | ND     | mg/L   |            | 0.01  |             | E200.8    | 05/09/17 07:45 / jpv    |
| Lithium                               | ND     | mg/L   |            | 0.01  |             | E200.7    | 05/09/17 06:57 / rlh    |
| Mercury                               | ND     | mg/L   |            | 0.001 |             | E245.1    | 05/05/17 15:16 / mas    |
| Molybdenum                            | ND     | mg/L   |            | 0.05  |             | E200.7    | 05/09/17 06:57 / rlh    |
| Selenium                              | ND     | mg/L   |            | 0.01  |             | E200.8    | 05/09/17 07:45 / jpv    |
| Thallium                              | ND     | mg/L   |            | 0.002 |             | E200.8    | 05/09/17 07:45 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |        |            |       |             |           |                         |
| Radium 226                            | 0.08   | pCi/L  | U          |       |             | E903.0    | 05/30/17 13:01 / eli-ca |
| Radium 226 precision (±)              | 0.08   | pCi/L  |            |       |             | E903.0    | 05/30/17 13:01 / eli-ca |
| Radium 226 MDC                        | 0.12   | pCi/L  |            |       |             | E903.0    | 05/30/17 13:01 / eli-ca |
| Radium 228                            | 2.5    | pCi/L  |            |       |             | RA-05     | 05/22/17 16:03 / eli-ca |
| Radium 228 precision (±)              |        | pCi/L  |            |       |             | RA-05     | 05/22/17 16:03 / eli-ca |
| Radium 228 MDC                        | 2.0    | pCi/L  |            |       |             | RA-05     | 05/22/17 16:03 / eli-ca |
| Radium 226 + Radium 228               | 2.6    | pCi/L  |            |       |             | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.2    | pCi/L  |            |       |             | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 MDC           | 2.1    | pCi/L  |            |       |             | A7500-RA  | 05/31/17 11:00 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

U - Not detected at minimum detectable concentration

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

Matrix: Ground Water

### LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**Project:** TMPA 6706150060 **Lab ID:** B17050467-009

Client Sample ID: DUP-1

Revised Date: 12/21/17 Report Date: 06/07/17 Collection Date: 05/02/17 DateReceived: 05/04/17

MCL/ QCL **Analyses** Result Units Qualifiers RL Method Analysis Date / By **MAJOR IONS** Calcium 852 mg/L 1 E200.7 05/09/17 07:01 / rlh Magnesium 129 mg/L 1 E200.7 05/09/17 07:01 / rlh Potassium 59 mg/L 1 E200.7 05/09/17 07:01 / rlh Sodium 1160 mg/L D 4 E200.7 05/09/17 07:01 / rlh **PHYSICAL PROPERTIES** 6.5 s.u. Н 0.1 A4500-H B 05/04/17 19:44 / pjw рΗ Solids, Total Dissolved TDS @ 180 C D 05/05/17 11:16 / rik 6240 mg/L 90 A2540 C **INORGANICS** 1680 mg/L D 6 E300.0 05/07/17 06:22 / cjm Chloride Sulfate 2200 mg/L D 20 E300.0 05/07/17 06:22 / cjm A4500-F C 05/08/17 18:31 / bas Fluoride ND mg/L 0.1 **METALS, TOTAL RECOVERABLE** Antimony ND mg/L 0.006 E200.8 05/09/17 07:48 / jpv Arsenic ND mg/L 0.01 E200.8 05/11/17 20:33 / jpv Barium 0.03 mg/L 0.01 E200.7 05/09/17 07:01 / rlh Beryllium ND mg/L 0.001 E200.8 05/09/17 07:48 / jpv 0.65 mg/L 0.05 E200.7 05/09/17 07:01 / rlh Boron 0.005 Cadmium ND mg/L F2008 05/09/17 07:48 / ipv Chromium ND mg/L 0.01 F200 8 05/09/17 07:48 / jpv Cobalt ND mg/L 0.02 E200.8 05/09/17 07:48 / jpv Lead ND mg/L 0.01 E200.8 05/09/17 07:48 / ipv D 0.04 Lithium 0.48 mg/L F200.7 05/09/17 07:01 / rlh Mercury ND mg/L 0.001 F245 1 05/05/17 15:18 / mas Molybdenum ND mg/L 0.05 E200.8 05/09/17 07:48 / jpv Selenium ND mg/L 0.01 E200.8 05/09/17 07:48 / jpv Thallium mg/L 0.002 E200.8 05/09/17 07:48 / jpv ND **RADIONUCLIDES - TOTAL** 0.33 pCi/L E903.0 Radium 226 05/30/17 13:01 / eli-ca Radium 226 precision (±) 0.11 pCi/L E903.0 05/30/17 13:01 / eli-ca Radium 226 MDC 0.11 pCi/L E903.0 05/30/17 13:01 / eli-ca Radium 228 0.59 pCi/L U **RA-05** 05/22/17 16:03 / eli-ca Radium 228 precision (±) 1.1 pCi/L **RA-05** 05/22/17 16:03 / eli-ca Radium 228 MDC 1.8 pCi/L **RA-05** 05/22/17 16:03 / eli-ca Radium 226 + Radium 228 0.9 pCi/L U A7500-RA 05/31/17 11:00 / eli-ca Radium 226 + Radium 228 precision (±) 1.1 pCi/L A7500-RA 05/31/17 11:00 / eli-ca Radium 226 + Radium 228 MDC 1.8 pCi/L A7500-RA 05/31/17 11:00 / eli-ca

Report RL - Analyte reporting limit.

Definitions: OCL - Quality control limit.

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

U - Not detected at minimum detectable concentration

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:05/24/17Project:TMPA 6706150060Work Order:B17050467

| Analyte                     | Count Res      | ult Units        | RL | %REC | Low Limit  | High Limit    | RPD | RPDLimit | Qual      |
|-----------------------------|----------------|------------------|----|------|------------|---------------|-----|----------|-----------|
| Method: A2540 C             |                |                  |    |      |            |               |     | Batch    | n: 109212 |
| Lab ID: LCS-109212          | Laborator      | y Control Sample |    |      | Run: BAL#  | SD-15_170505B |     | 05/05/   | 17 09:04  |
| Solids, Total Dissolved TDS | @ 180 C        | 996 mg/L         | 10 | 100  | 90         | 110           |     |          |           |
| Lab ID: B17050467-005A      | A DUP Sample D | uplicate         |    |      | Run: BAL # | SD-15_170505B |     | 05/05/   | 17 09:05  |
| Solids, Total Dissolved TDS | @ 180 C 82     | 210 mg/L         | 93 |      |            |               | 0.3 | 5        | D         |
| Lab ID: MB-109212           | Method B       | lank             |    |      | Run: BAL # | SD-15_170505B |     | 05/08/   | 17 08:58  |
| Solids, Total Dissolved TDS | @ 180 C        | ND mg/L          | 4  |      |            |               |     |          |           |
| Method: A2540 C             |                |                  |    |      |            |               |     | Batch    | n: 109229 |
| Lab ID: LCS-109229          | Laborator      | y Control Sample |    |      | Run: BAL # | SD-15_170505C |     | 05/05/   | 17 11:15  |
| Solids, Total Dissolved TDS | @ 180 C        | 991 mg/L         | 10 | 100  | 90         | 110           |     |          |           |
| Lab ID: B17050467-007A      | A DUP Sample D | uplicate         |    |      | Run: BAL # | SD-15_170505C |     | 05/05/   | 17 11:15  |
| Solids, Total Dissolved TDS | @ 180 C        | 379 mg/L         | 10 |      |            |               | 1.6 | 5        |           |
| Lab ID: MB-109229           | Method B       | lank             |    |      | Run: BAL # | SD-15_170505C |     | 05/08/   | 17 09:07  |
| Solids, Total Dissolved TDS | @ 180 C        | ND mg/L          | 4  |      |            |               |     |          |           |

### Qualifiers:

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date: 05/24/17Project:TMPA 6706150060Work Order: B17050467

| Analyte  |                  | Count        | Result        | Units               | RL    | %REC | Low Limit | High Limit   | RPD     | RPDLimit  | Qual     |
|----------|------------------|--------------|---------------|---------------------|-------|------|-----------|--------------|---------|-----------|----------|
| Method:  | A4500-F C        |              |               |                     |       |      |           | Analytic     | al Run: | MAN-TECH_ | _170508B |
| Lab ID:  | ICV              | Initi        | al Calibratio | on Verification Sta | ndard |      |           |              |         | 05/08/    | 17 16:59 |
| Fluoride |                  |              | 1.01          | mg/L                | 0.10  | 101  | 90        | 110          |         |           |          |
| Method:  | A4500-F C        |              |               |                     |       |      |           |              |         | Batch:    | R279515  |
| Lab ID:  | MBLK             | Met          | hod Blank     |                     |       |      | Run: MAN- | TECH_170508B |         | 05/08/    | 17 16:54 |
| Fluoride |                  |              | ND            | mg/L                | 0.02  |      |           |              |         |           |          |
| Lab ID:  | LFB              | Lab          | oratory For   | tified Blank        |       |      | Run: MAN- | TECH_170508B |         | 05/08/    | 17 16:56 |
| Fluoride |                  |              | 0.980         | mg/L                | 0.10  | 98   | 90        | 110          |         |           |          |
| Lab ID:  | B17050467-002AMS | Sar          | nple Matrix   | Spike               |       |      | Run: MAN- | TECH_170508B |         | 05/08/    | 17 17:59 |
| Fluoride |                  |              | 1.03          | mg/L                | 0.10  | 95   | 80        | 120          |         |           |          |
| Lab ID:  | B17050467-002AMS | <b>D</b> Sar | nple Matrix   | Spike Duplicate     |       |      | Run: MAN- | TECH_170508B |         | 05/08/    | 17 18:02 |
| Fluoride |                  |              | 1.04          | mg/L                | 0.10  | 96   | 80        | 120          | 1.0     | 10        |          |
| Lab ID:  | B17050507-003AMS | Sar          | nple Matrix   | Spike               |       |      | Run: MAN- | TECH_170508B |         | 05/08/    | 17 18:53 |
| Fluoride |                  |              | 2.57          | mg/L                | 0.10  | 100  | 80        | 120          |         |           |          |
| Lab ID:  | B17050507-003AMS | <b>D</b> Sar | nple Matrix   | Spike Duplicate     |       |      | Run: MAN- | TECH_170508B |         | 05/08/    | 17 18:56 |
| Fluoride |                  |              | 2.56          | mg/L                | 0.10  | 99   | 80        | 120          | 0.4     | 10        |          |



Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date: 05/24/17Project:TMPA 6706150060Work Order: B17050467

| Analyte |                   | Count  | Result        | Units      | RL                 | %REC | Low Limit | High Limit   | RPD R       | PDLimit  | Qual     |
|---------|-------------------|--------|---------------|------------|--------------------|------|-----------|--------------|-------------|----------|----------|
| Method: | A4500-H B         |        |               |            |                    |      |           | Analytica    | al Run: PHS | C_101-B_ | 170504A  |
| Lab ID: | pH 8              | Initia | al Calibratio | n Verifica | tion Standard      |      |           |              |             | 05/04/   | 17 08:42 |
| рН      |                   |        | 7.98          | s.u.       | 0.10               | 100  | 98        | 102          |             |          |          |
| Lab ID: | CCV - pH 7        | Con    | tinuing Cali  | bration Ve | erification Standa | rd   |           |              |             | 05/04/   | 17 19:02 |
| рН      |                   |        | 7.03          | s.u.       | 0.10               | 100  | 98        | 102          |             |          |          |
| Method: | A4500-H B         |        |               |            |                    |      |           |              |             | Batch:   | R279245  |
| Lab ID: | B17050467-008ADUF | P Sam  | ple Duplica   | ate        |                    |      | Run: PHSC | _101-B_17050 | )4A         | 05/04/   | 17 19:41 |
| рН      |                   |        | 5.54          | s.u.       | 0.10               |      |           |              | 1.6         | 3        |          |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date: 05/24/17Project:TMPA 6706150060Work Order: B17050467

| Analyte  |                   | Count   | Result        | Units              | RL     | %REC | Low Limit  | High Limit | RPD       | RPDLimit  | Qual     |
|----------|-------------------|---------|---------------|--------------------|--------|------|------------|------------|-----------|-----------|----------|
| Method:  | E300.0            |         |               |                    |        |      |            | Analytical | Run: IC M | 1ETROHM 2 | _170505A |
| Lab ID:  | ICV               | 2 Init  | al Calibratio | n Verification Sta | ındard |      |            |            |           | 05/05/    | 17 16:40 |
| Chloride |                   |         | 2.15          | mg/L               | 1.0    | 96   | 90         | 110        |           |           |          |
| Sulfate  |                   |         | 8.94          | mg/L               | 1.0    | 99   | 90         | 110        |           |           |          |
| Method:  | E300.0            |         |               |                    |        |      |            |            |           | Batch:    | R279451  |
| Lab ID:  | ICB               | 2 Me    | thod Blank    |                    |        |      | Run: IC ME | TROHM 2_17 | 0505A     | 05/05/    | 17 16:59 |
| Chloride |                   |         | 0.009         | mg/L               | 0.002  |      |            |            |           |           |          |
| Sulfate  |                   |         | ND            | mg/L               | 0.03   |      |            |            |           |           |          |
| Lab ID:  | LFB               | 2 Lab   | oratory Fort  | ified Blank        |        |      | Run: IC ME | TROHM 2_17 | 0505A     | 05/05/    | 17 17:19 |
| Chloride |                   |         | 10.3          | mg/L               | 1.0    | 103  | 90         | 110        |           |           |          |
| Sulfate  |                   |         | 31.1          | mg/L               | 1.0    | 104  | 90         | 110        |           |           |          |
| Lab ID:  | B17050448-005AMS  | 2 Sar   | nple Matrix   | Spike              |        |      | Run: IC ME | TROHM 2_17 | 0505A     | 05/07/    | 17 01:10 |
| Chloride |                   |         | 55.4          | mg/L               | 1.0    | 108  | 90         | 110        |           |           |          |
| Sulfate  |                   |         | 338           | mg/L               | 1.0    | 101  | 90         | 110        |           |           |          |
| Lab ID:  | B17050448-005AMSI | D 2 Sar | mple Matrix   | Spike Duplicate    |        |      | Run: IC ME | TROHM 2_17 | 0505A     | 05/07/    | 17 01:29 |
| Chloride |                   |         | 55.5          | mg/L               | 1.0    | 109  | 90         | 110        | 0.3       | 20        |          |
| Sulfate  |                   |         | 339           | mg/L               | 1.0    | 102  | 90         | 110        | 0.5       | 20        |          |
| Lab ID:  | B17050467-008AMS  | 2 Sar   | mple Matrix   | Spike              |        |      | Run: IC ME | TROHM 2_17 | 0505A     | 05/07/    | 17 05:43 |
| Chloride |                   |         | 11.0          | mg/L               | 1.0    | 110  | 90         | 110        |           |           |          |
| Sulfate  |                   |         | 33.2          | mg/L               | 1.0    | 110  | 90         | 110        |           |           |          |
| Lab ID:  | B17050467-008AMSI | D 2 Sar | mple Matrix   | Spike Duplicate    |        |      | Run: IC ME | TROHM 2_17 | 0505A     | 05/07/    | 17 06:03 |
| Chloride |                   |         | 11.1          | mg/L               | 1.0    | 110  | 90         | 110        | 0.2       | 20        |          |
| Sulfate  |                   |         | 33.2          | mg/L               | 1.0    | 110  | 90         | 110        | 0.1       | 20        |          |

### Qualifiers:

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**Revised Date:** 12/21/17 **Report Date:** 06/07/17

**Project:** TMPA 6706150060

Work Order: B17050467

| Qual      | RPDLimit     | RPD        | High Limit  | Low Limit  | %REC           | RL           | Units           | Result        | Count            |                  | Analyte   |
|-----------|--------------|------------|-------------|------------|----------------|--------------|-----------------|---------------|------------------|------------------|-----------|
| _170508/  | n: ICP203-B_ | ytical Rur | Analy       |            |                |              |                 |               |                  | E200.7           | Method:   |
| /17 11:07 | 05/08/       |            |             |            | <sup>-</sup> d | ation Standa | bration Verific | ntinuing Cali | 12 Co            | ICV              | Lab ID:   |
|           |              |            | 105         | 95         | 101            | 0.10         | mg/L            | 2.53          |                  |                  | Barium    |
|           |              |            | 105         | 95         | 100            | 0.010        | mg/L            | 1.25          |                  |                  | Beryllium |
|           |              |            | 105         | 95         | 100            | 0.10         | mg/L            | 2.50          |                  |                  | Boron     |
|           |              |            | 105         | 95         | 100            | 0.010        | mg/L            | 2.49          |                  |                  | Cadmium   |
|           |              |            | 105         | 95         | 102            | 1.0          | mg/L            | 25.5          |                  |                  | Calcium   |
|           |              |            | 105         | 95         | 99             | 0.050        | mg/L            | 2.48          |                  |                  | Chromium  |
|           |              |            | 105         | 95         | 99             | 0.020        | mg/L            | 2.48          |                  |                  | Cobalt    |
|           |              |            | 105         | 95         | 103            | 0.10         | mg/L            | 1.29          |                  |                  | Lithium   |
|           |              |            | 105         | 95         | 103            | 1.0          | mg/L            | 25.8          |                  | า                | Magnesium |
|           |              |            | 105         | 95         | 101            | 0.10         | mg/L            | 2.52          |                  | m                | Molybdenu |
|           |              |            | 105         | 95         | 102            | 1.0          | mg/L            | 25.4          |                  |                  | Potassium |
|           |              |            | 105         | 95         | 102            | 1.0          | mg/L            | 25.4          |                  |                  | Sodium    |
| h: 109200 | Batcl        |            |             |            |                |              |                 |               |                  | E200.7           | Method:   |
| /17 04:03 | 05/09/       |            | 3-B_170508A | Run: ICP20 |                |              |                 | thod Blank    | 9 Me             | MB-109200        | Lab ID:   |
|           |              |            |             |            |                | 0.0005       | mg/L            | ND            |                  |                  | Barium    |
|           |              |            |             |            |                | 0.0001       | mg/L            | ND            |                  |                  | Beryllium |
|           |              |            |             |            |                | 0.003        | mg/L            | ND            |                  |                  | Boron     |
|           |              |            |             |            |                | 0.08         | mg/L            | ND            |                  |                  | Calcium   |
|           |              |            |             |            |                | 0.004        | mg/L            | ND            |                  |                  | Lithium   |
|           |              |            |             |            |                | 0.01         | mg/L            | ND            |                  | า                | Magnesium |
|           |              |            |             |            |                | 0.007        | mg/L            | ND            |                  | m                | Molybdenu |
|           |              |            |             |            |                | 0.07         | mg/L            | ND            |                  |                  | Potassium |
|           |              |            |             |            |                | 0.03         | mg/L            | 0.03          |                  |                  | Sodium    |
| /17 04:06 | 05/09/       |            | 3-B_170508A | Run: ICP20 |                |              | ntrol Sample    | boratory Cor  | 9 La             | LCS-109200       | Lab ID:   |
|           |              |            | 115         | 85         | 109            | 0.10         | mg/L            | 0.546         |                  |                  | Barium    |
|           |              |            | 115         | 85         | 111            | 0.010        | mg/L            | 0.277         |                  |                  | Beryllium |
|           |              |            | 115         | 85         | 107            | 0.10         | mg/L            | 0.533         |                  |                  | Boron     |
|           |              |            | 115         | 85         | 110            | 1.0          | mg/L            | 27.4          |                  |                  | Calcium   |
|           |              |            | 115         | 85         | 111            | 0.10         | mg/L            | 0.553         |                  |                  | Lithium   |
|           |              |            | 115         | 85         | 111            | 1.0          | mg/L            | 27.9          |                  | า                | Magnesium |
|           |              |            | 115         | 85         | 105            | 0.10         | mg/L            | 0.524         |                  | m                | Molybdenu |
|           |              |            | 115         | 85         | 110            | 1.0          | mg/L            | 27.4          |                  |                  | Potassium |
|           |              |            | 115         | 85         | 112            | 1.0          | mg/L            | 28.0          |                  |                  | Sodium    |
| /17 05:16 | 05/09/       |            | 3-B_170508A | Run: ICP20 |                |              | Spike           | mple Matrix   | <b>DMS3</b> 9 Sa | B17050448-005DMS | Lab ID:   |
|           |              |            | 130         | 70         | 90             | 0.050        | mg/L            | 0.462         |                  |                  | Barium    |
|           |              |            | 130         | 70         | 93             | 0.0010       | mg/L            | 0.235         |                  |                  | Beryllium |
|           |              |            | 130         | 70         | 90             | 0.050        | mg/L            | 0.448         |                  |                  | Boron     |
|           |              |            | 130         | 70         | 95             | 1.0          | mg/L            | 48.9          |                  |                  | Calcium   |
|           |              |            | 130         | 70         | 95             | 0.10         | mg/L            | 0.497         |                  |                  | Lithium   |
|           |              |            | 130         | 70         | 98             | 1.0          | mg/L            | 30.2          |                  | า                | Magnesium |
|           |              |            |             |            |                |              | -               |               |                  |                  | -         |
|           |              |            | 130         | 70         | 91             | 0.0071       | mg/L            | 0.457         |                  | m                | Molybdenu |

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**Revised Date:** 12/21/17 **Report Date:** 06/07/17

**Project:** TMPA 6706150060

Work Order: B17050467

| Analyte                  |                   | Count | Result      | Units           | RL     | %REC | Low Limit  | High Limit  | RPD | RPDLimit | Qual      |
|--------------------------|-------------------|-------|-------------|-----------------|--------|------|------------|-------------|-----|----------|-----------|
| Method:                  | E200.7            |       |             |                 |        |      |            |             |     | Batc     | h: 10920  |
| Lab ID:                  | B17050448-005DMS3 | 9 Sa  | mple Matrix | Spike           |        |      | Run: ICP20 | 3-B_170508A |     | 05/09    | /17 05:16 |
| Sodium                   |                   |       | 43.8        | mg/L            | 1.0    | 92   | 70         | 130         |     |          |           |
| Lab ID:                  | B17050448-005DMSE | 9 Sa  | mple Matrix | Spike Duplicate |        |      | Run: ICP20 | 3-B_170508A |     | 05/09    | /17 05:19 |
| Barium                   |                   |       | 0.445       | mg/L            | 0.050  | 86   | 70         | 130         | 3.8 | 20       |           |
| Beryllium                |                   |       | 0.225       | mg/L            | 0.0010 | 89   | 70         | 130         | 4.3 | 20       |           |
| Boron                    |                   |       | 0.434       | mg/L            | 0.050  | 87   | 70         | 130         | 3.3 | 20       |           |
| Calcium                  |                   |       | 46.7        | mg/L            | 1.0    | 86   | 70         | 130         | 4.5 | 20       |           |
| Lithium                  |                   |       | 0.478       | mg/L            | 0.10   | 91   | 70         | 130         | 3.9 | 20       |           |
| Magnesiun                | n                 |       | 28.9        | mg/L            | 1.0    | 93   | 70         | 130         | 4.3 | 20       |           |
| Molybdenu                | ım                |       | 0.427       | mg/L            | 0.0071 | 85   | 70         | 130         | 6.7 | 20       |           |
| Potassium                |                   |       | 28.0        | mg/L            | 1.0    | 91   | 70         | 130         | 4.2 | 20       |           |
| Sodium                   |                   |       | 42.3        | mg/L            | 1.0    | 86   | 70         | 130         | 3.6 | 20       |           |
| Method:                  | E200.7            |       |             |                 |        |      |            |             |     | Batc     | h: 10920  |
| Lab ID:                  | MB-109201         | 12 Me | thod Blank  |                 |        |      | Run: ICP20 | 3-B_170508A |     | 05/09    | /17 06:15 |
| Barium                   |                   |       | ND          | mg/L            | 0.0005 |      |            |             |     |          |           |
| Beryllium                |                   |       | ND          | mg/L            | 0.0001 |      |            |             |     |          |           |
| Boron                    |                   |       | ND          | mg/L            | 0.003  |      |            |             |     |          |           |
| Cadmium                  |                   |       | ND          | mg/L            | 0.0010 |      |            |             |     |          |           |
| Calcium                  |                   |       | ND          | mg/L            | 0.08   |      |            |             |     |          |           |
| Chromium                 |                   |       | ND          | mg/L            | 0.002  |      |            |             |     |          |           |
| Cobalt                   |                   |       | ND          | mg/L            | 0.005  |      |            |             |     |          |           |
| Lithium                  |                   |       | ND          | mg/L            | 0.004  |      |            |             |     |          |           |
| Magnesiun                | n                 |       | ND          | mg/L            | 0.01   |      |            |             |     |          |           |
| Molybdenu                | ım                |       | ND          | mg/L            | 0.007  |      |            |             |     |          |           |
| Potassium                |                   |       | ND          | mg/L            | 0.07   |      |            |             |     |          |           |
| Sodium                   |                   |       | ND          | mg/L            | 0.03   |      |            |             |     |          |           |
| Lab ID:                  | LCS-109201        | 12 La | ooratory Co | ntrol Sample    |        |      | Run: ICP20 | 3-B_170508A |     | 05/09    | /17 06:19 |
| Barium                   |                   |       | 0.497       | mg/L            | 0.10   | 99   | 85         | 115         |     |          |           |
| Beryllium                |                   |       | 0.250       | mg/L            | 0.010  | 100  | 85         | 115         |     |          |           |
| Boron                    |                   |       | 0.467       | mg/L            | 0.10   | 93   | 85         | 115         |     |          |           |
| Cadmium                  |                   |       | 0.245       | mg/L            | 0.010  | 98   | 85         | 115         |     |          |           |
| Calcium                  |                   |       | 24.7        | mg/L            | 1.0    | 99   | 85         | 115         |     |          |           |
| Chromium                 |                   |       | 0.509       | mg/L            | 0.050  | 102  | 85         | 115         |     |          |           |
| Cobalt                   |                   |       | 0.487       | mg/L            | 0.050  | 97   | 85         | 115         |     |          |           |
| Lithium                  |                   |       | 0.488       | mg/L            | 0.10   | 98   | 85         | 115         |     |          |           |
| Magnesiun                | n                 |       | 25.1        | mg/L            | 1.0    | 101  | 85         | 115         |     |          |           |
| Molybdenu                | ım                |       | 0.489       | mg/L            | 0.10   | 98   | 85         | 115         |     |          |           |
| Potassium                |                   |       | 24.5        | mg/L            | 1.0    | 98   | 85         | 115         |     |          |           |
| Sodium                   |                   |       | 25.0        | mg/L            | 1.0    | 100  | 85         | 115         |     |          |           |
|                          | B17050467-005BMS3 | 12 Sa | mple Matrix | Spike           |        |      | Run: ICP20 | 3-B_170508A |     | 05/09    | /17 06:36 |
| Lab ID:                  |                   |       |             |                 |        |      |            |             |     |          |           |
| <b>Lab ID:</b><br>Barium |                   |       | 0.566       | mg/L            | 0.050  | 108  | 70         | 130         |     |          |           |

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency Revised Date: 12/21/17 **Report Date:** 06/07/17

Work Order: B17050467

Project: TMPA 6706150060

| Analyte   |                   | Count R     | Result   | Units           | RL     | %REC | Low Limit  | High Limit  | RPD | RPDLimit | Qual      |
|-----------|-------------------|-------------|----------|-----------------|--------|------|------------|-------------|-----|----------|-----------|
| Method:   | E200.7            |             |          |                 |        |      |            |             |     | Batcl    | h: 109201 |
| Lab ID:   | B17050467-005BMS3 | 3 12 Sample | e Matrix | Spike           |        |      | Run: ICP20 | 3-B_170508A |     | 05/09/   | /17 06:36 |
| Boron     |                   |             | 2.17     | mg/L            | 0.068  | 130  | 70         | 130         |     |          |           |
| Cadmium   |                   |             | 0.241    | mg/L            | 0.020  | 96   | 70         | 130         |     |          |           |
| Calcium   |                   |             | 887      | mg/L            | 1.6    |      | 70         | 130         |     |          | Α         |
| Chromium  |                   |             | 0.619    | mg/L            | 0.041  | 124  | 70         | 130         |     |          |           |
| Cobalt    |                   |             | 0.566    | mg/L            | 0.10   | 113  | 70         | 130         |     |          |           |
| Lithium   |                   |             | 1.77     | mg/L            | 0.10   | 123  | 70         | 130         |     |          |           |
| Magnesiur | n                 |             | 150      | mg/L            | 1.5    |      | 70         | 130         |     |          | Α         |
| Molybdenu | ım                |             | 0.588    | mg/L            | 0.14   | 118  | 70         | 130         |     |          |           |
| Potassium | 1                 |             | 97.6     | mg/L            | 1.4    | 156  | 70         | 130         |     |          | S         |
| Sodium    |                   |             | 2100     | mg/L            | 8.4    |      | 70         | 130         |     |          | Α         |
| Lab ID:   | B17050467-005BMSE | 12 Sample   | e Matrix | Spike Duplicate | e      |      | Run: ICP20 | 3-B_170508A |     | 05/09/   | /17 06:40 |
| Barium    |                   |             | 0.535    | mg/L            | 0.050  | 102  | 70         | 130         | 5.6 | 20       |           |
| Beryllium |                   |             | 0.251    | mg/L            | 0.0029 | 100  | 70         | 130         | 5.7 | 20       |           |
| Boron     |                   |             | 2.09     | mg/L            | 0.068  | 114  | 70         | 130         | 3.8 | 20       |           |
| Cadmium   |                   |             | 0.231    | mg/L            | 0.020  | 92   | 70         | 130         | 4.4 | 20       |           |
| Calcium   |                   |             | 864      | mg/L            | 1.6    |      | 70         | 130         | 2.7 | 20       | Α         |
| Chromium  |                   |             | 0.574    | mg/L            | 0.041  | 115  | 70         | 130         | 7.6 | 20       |           |
| Cobalt    |                   |             | 0.533    | mg/L            | 0.10   | 107  | 70         | 130         | 6.1 | 20       |           |
| Lithium   |                   |             | 1.72     | mg/L            | 0.10   | 112  | 70         | 130         | 3.1 | 20       |           |
| Magnesiur | n                 |             | 145      | mg/L            | 1.5    |      | 70         | 130         | 3.6 | 20       | Α         |
| Molybdenu | ım                |             | 0.557    | mg/L            | 0.14   | 111  | 70         | 130         | 5.5 | 20       |           |
| Potassium | 1                 |             | 83.1     | mg/L            | 1.4    | 98   | 70         | 130         | 16  | 20       |           |
| Sodium    |                   |             | 2010     | mg/L            | 8.4    |      | 70         | 130         | 4.3 | 20       | Α         |

### Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

S - Spike recovery outside of advisory limits.

MDC - Minimum detectable concentration

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**Revised Date:** 12/21/17 **Report Date:** 06/07/17

**Project:** TMPA 6706150060

Work Order: B17050467

| Analyte   |                   | Count Result       | Units         | RL             | %REC | Low Limit | High Limit     | RPD RPDLimi    | t Qual      |
|-----------|-------------------|--------------------|---------------|----------------|------|-----------|----------------|----------------|-------------|
| Method:   | E200.8            |                    |               |                |      |           | Analytica      | Run: ICPMS206- | B_170508A   |
| Lab ID:   | QCS               | 11 Initial Calibra | tion Verifica | ation Standard |      |           |                | 05/0           | 08/17 23:52 |
| Antimony  |                   | 0.0478             | mg/L          | 0.050          | 96   | 90        | 110            |                |             |
| Arsenic   |                   | 0.0497             | mg/L          | 0.0050         | 99   | 90        | 110            |                |             |
| Barium    |                   | 0.0482             | mg/L          | 0.10           | 96   | 90        | 110            |                |             |
| Beryllium |                   | 0.0246             | mg/L          | 0.0010         | 98   | 90        | 110            |                |             |
| Cadmium   |                   | 0.0272             | mg/L          | 0.0010         | 109  | 90        | 110            |                |             |
| Chromium  |                   | 0.0514             | mg/L          | 0.010          | 103  | 90        | 110            |                |             |
| Cobalt    |                   | 0.0509             | mg/L          | 0.010          | 102  | 90        | 110            |                |             |
| Lead      |                   | 0.0488             | mg/L          | 0.010          | 98   | 90        | 110            |                |             |
| Molybdenu | m                 | 0.0478             | mg/L          | 0.0050         | 96   | 90        | 110            |                |             |
| Selenium  |                   | 0.0498             | mg/L          | 0.0050         | 100  | 90        | 110            |                |             |
| Thallium  |                   | 0.0487             | mg/L          | 0.10           | 97   | 90        | 110            |                |             |
| Method:   | E200.8            |                    |               |                |      |           |                | Ва             | tch: 109200 |
| Lab ID:   | MB-109200         | 11 Method Blan     | k             |                |      | Run: ICPM | S206-B_170508A | 05/0           | 08/17 13:32 |
| Antimony  |                   | 0.0003             | mg/L          | 0.00004        |      |           | _              |                |             |
| Arsenic   |                   | ND                 | mg/L          | 0.0002         |      |           |                |                |             |
| Barium    |                   | ND                 | mg/L          | 0.00005        |      |           |                |                |             |
| Beryllium |                   | 0.0002             | mg/L          | 0.00008        |      |           |                |                |             |
| Cadmium   |                   | ND                 | mg/L          | 0.00003        |      |           |                |                |             |
| Chromium  |                   | ND                 | mg/L          | 0.0001         |      |           |                |                |             |
| Cobalt    |                   | ND                 | mg/L          | 0.00002        |      |           |                |                |             |
| Lead      |                   | ND                 | mg/L          | 0.00003        |      |           |                |                |             |
| Molybdenu | m                 | ND                 | mg/L          | 0.00003        |      |           |                |                |             |
| Selenium  |                   | ND                 | mg/L          | 0.0004         |      |           |                |                |             |
| Thallium  |                   | 0.00006            | mg/L          | 7E-06          |      |           |                |                |             |
| Lab ID:   | LCS-109200        | 11 Laboratory C    | ontrol Sam    | ple            |      | Run: ICPM | S206-B_170508A | 05/0           | 08/17 14:46 |
| Antimony  |                   | 0.507              | mg/L          | 0.0010         | 101  | 85        | 115            |                |             |
| Arsenic   |                   | 0.509              | mg/L          | 0.0010         | 102  | 85        | 115            |                |             |
| Barium    |                   | 0.510              | mg/L          | 0.050          | 102  | 85        | 115            |                |             |
| Beryllium |                   | 0.247              | mg/L          | 0.0010         | 99   | 85        | 115            |                |             |
| Cadmium   |                   | 0.248              | mg/L          | 0.0010         | 99   | 85        | 115            |                |             |
| Chromium  |                   | 0.498              | mg/L          | 0.0050         | 100  | 85        | 115            |                |             |
| Cobalt    |                   | 0.516              | mg/L          | 0.0050         | 103  | 85        | 115            |                |             |
| Lead      |                   | 0.512              | mg/L          | 0.0010         | 102  | 85        | 115            |                |             |
| Molybdenu | m                 | 0.495              | mg/L          | 0.0010         | 99   | 85        | 115            |                |             |
| Selenium  |                   | 0.508              | mg/L          | 0.0010         | 102  | 85        | 115            |                |             |
| Thallium  |                   | 0.508              | mg/L          | 0.00050        | 102  | 85        | 115            |                |             |
| Lab ID:   | B17050448-005DMS3 | 11 Sample Matr     | ix Spike      |                |      | Run: ICPM | S206-B_170508A | 05/0           | 9/17 03:25  |
| Antimony  |                   | 0.505              | •             | 0.0010         | 101  | 70        | 130            |                |             |
| Arsenic   |                   | 0.514              | mg/L          | 0.0010         | 98   | 70        | 130            |                |             |
| Barium    |                   | 0.515              |               | 0.050          | 100  | 70        | 130            |                |             |
| Beryllium |                   | 0.222              |               | 0.0010         | 88   | 70        | 130            |                |             |
| Cadmium   |                   | 0.259              | mg/L          | 0.0010         | 103  | 70        | 130            |                |             |

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

Revised Date: 12/21/17

# **QA/QC Summary Report**

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:06/07/17Project:TMPA 6706150060Work Order:B17050467

| ınt | yte C                | Result      | Units     | RL      | %REC | Low Limit | High Limit     | RPD | RPDLimit | Qual      |
|-----|----------------------|-------------|-----------|---------|------|-----------|----------------|-----|----------|-----------|
|     | nod: E200.8          |             |           |         |      |           |                |     | Batc     | h: 109200 |
| 1 5 | D: B17050448-005DMS3 | mple Matrix | Spike     |         |      | Run: ICPM | S206-B_170508A |     | 05/09    | /17 03:25 |
|     | mium                 | 0.483       | mg/L      | 0.0050  | 97   | 70        | 130            |     |          |           |
|     | alt                  | 0.487       | mg/L      | 0.0050  | 96   | 70        | 130            |     |          |           |
|     | I                    | 0.493       | mg/L      | 0.0010  | 98   | 70        | 130            |     |          |           |
|     | bdenum               | 0.486       | mg/L      | 0.0010  | 97   | 70        | 130            |     |          |           |
|     | nium                 | 0.494       | mg/L      | 0.0010  | 99   | 70        | 130            |     |          |           |
|     | lium                 | 0.493       | mg/L      | 0.00050 | 97   | 70        | 130            |     |          |           |
| 1 5 | D: B17050448-005DMSD | mple Matrix | Spike Du  | plicate |      | Run: ICPM | S206-B_170508A |     | 05/09    | /17 03:28 |
|     | mony                 | 0.502       | mg/L      | 0.0010  | 100  | 70        | 130            | 0.5 | 20       |           |
|     | nic                  | 0.508       | mg/L      | 0.0010  | 97   | 70        | 130            | 1.1 | 20       |           |
|     | ım                   | 0.512       | mg/L      | 0.050   | 100  | 70        | 130            | 0.6 | 20       |           |
|     | llium                | 0.221       | mg/L      | 0.0010  | 87   | 70        | 130            | 0.5 | 20       |           |
|     | mium                 | 0.263       | mg/L      | 0.0010  | 105  | 70        | 130            | 1.7 | 20       |           |
|     | mium                 | 0.491       | mg/L      | 0.0050  | 98   | 70        | 130            | 1.6 | 20       |           |
|     | alt                  | 0.479       | mg/L      | 0.0050  | 95   | 70        | 130            | 1.6 | 20       |           |
|     | I                    | 0.485       | mg/L      | 0.0010  | 97   | 70        | 130            | 1.6 | 20       |           |
|     | bdenum               | 0.488       | mg/L      | 0.0010  | 97   | 70        | 130            | 0.3 | 20       |           |
|     | nium                 | 0.486       | mg/L      | 0.0010  | 97   | 70        | 130            | 1.5 | 20       |           |
|     | lium                 | 0.485       | mg/L      | 0.00050 | 96   | 70        | 130            | 1.5 | 20       |           |
|     | nod: E200.8          |             |           |         |      |           |                |     | Batc     | h: 109201 |
| 0 1 | D: MB-109201         | thod Blank  |           |         |      | Run: ICPM | S206-B_170508A |     | 05/09    | /17 07:01 |
|     | mony                 | ND          | mg/L      | 0.00004 |      |           |                |     |          |           |
|     | nic                  | ND          | mg/L      | 0.0002  |      |           |                |     |          |           |
|     | llium                | ND          | mg/L      | 0.00008 |      |           |                |     |          |           |
|     | mium                 | ND          | mg/L      | 0.00003 |      |           |                |     |          |           |
|     | mium                 | ND          | mg/L      | 0.0001  |      |           |                |     |          |           |
|     | alt                  | ND          | mg/L      | 0.00002 |      |           |                |     |          |           |
|     | I                    | ND          | mg/L      | 0.00003 |      |           |                |     |          |           |
|     | bdenum               | ND          | mg/L      | 0.00003 |      |           |                |     |          |           |
|     | nium                 | ND          | mg/L      | 0.0004  |      |           |                |     |          |           |
|     | lium                 | 7E-06       | mg/L      | 7E-06   |      |           |                |     |          |           |
| 0 μ | D: LCS-109201        | oratory Cor | ntrol Sam | ple     |      | Run: ICPM | S206-B_170508A |     | 05/09    | /17 07:11 |
|     | mony                 | 0.510       | mg/L      | 0.0010  | 102  | 85        | 115            |     |          |           |
|     | nic                  | 0.515       | mg/L      | 0.0010  | 103  | 85        | 115            |     |          |           |
|     | llium                | 0.231       | mg/L      | 0.0010  | 92   | 85        | 115            |     |          |           |
|     | mium                 | 0.257       | mg/L      | 0.0010  | 103  | 85        | 115            |     |          |           |
|     | mium                 | 0.472       | mg/L      | 0.0050  | 94   | 85        | 115            |     |          |           |
|     | alt                  | 0.473       | mg/L      | 0.0050  | 95   | 85        | 115            |     |          |           |
|     | I                    | 0.490       | mg/L      | 0.0010  | 98   | 85        | 115            |     |          |           |
|     | bdenum               | 0.487       | mg/L      | 0.0010  | 97   | 85        | 115            |     |          |           |
|     | nium                 | 0.495       | mg/L      | 0.0010  | 99   | 85        | 115            |     |          |           |
|     | lium                 | 0.491       | mg/L      | 0.00050 | 98   | 85        | 115            |     |          |           |
|     |                      |             |           |         |      |           |                |     |          |           |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.



Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**Revised Date:** 12/21/17 **Report Date:** 06/07/17

**Project:** TMPA 6706150060

Work Order: B17050467

| Analyte   |                   | Count R     | Result     | Units       | RL             | %REC | Low Limit | High Limit     | RPD    | RPDLimit  | Qual      |
|-----------|-------------------|-------------|------------|-------------|----------------|------|-----------|----------------|--------|-----------|-----------|
| Method:   | E200.8            |             |            |             |                |      |           |                |        | Batc      | h: 109201 |
| Lab ID:   | B17050467-005BMS3 | 3 10 Sample | e Matrix   | Spike       |                |      | Run: ICPM | S206-B_170508A |        | 05/09/    | /17 07:14 |
| Antimony  |                   |             | 0.501      | mg/L        | 0.0010         | 100  | 70        | 130            |        |           |           |
| Arsenic   |                   |             | 0.503      | mg/L        | 0.0016         | 101  | 70        | 130            |        |           |           |
| Beryllium |                   |             | 0.237      | mg/L        | 0.0010         | 95   | 70        | 130            |        |           |           |
| Cadmium   |                   |             | 0.234      | mg/L        | 0.0010         | 93   | 70        | 130            |        |           |           |
| Chromium  |                   |             | 0.469      | mg/L        | 0.0050         | 92   | 70        | 130            |        |           |           |
| Cobalt    |                   |             | 0.494      | mg/L        | 0.0050         | 98   | 70        | 130            |        |           |           |
| Lead      |                   |             | 0.492      | mg/L        | 0.0010         | 97   | 70        | 130            |        |           |           |
| Molybdenu | m                 |             | 0.488      | mg/L        | 0.0010         | 98   | 70        | 130            |        |           |           |
| Selenium  |                   |             | 0.463      | mg/L        | 0.0036         | 93   | 70        | 130            |        |           |           |
| Thallium  |                   |             | 0.476      | mg/L        | 0.00050        | 95   | 70        | 130            |        |           |           |
| Lab ID:   | B17050467-005BMSI | 10 Sample   | e Matrix   | Spike Du    | plicate        |      | Run: ICPM | S206-B_170508A |        | 05/09/    | /17 07:18 |
| Antimony  |                   |             | 0.496      | mg/L        | 0.0010         | 99   | 70        | 130            | 0.9    | 20        |           |
| Arsenic   |                   |             | 0.496      | mg/L        | 0.0016         | 99   | 70        | 130            | 1.2    | 20        |           |
| Beryllium |                   |             | 0.231      | mg/L        | 0.0010         | 92   | 70        | 130            | 2.7    | 20        |           |
| Cadmium   |                   |             | 0.246      | mg/L        | 0.0010         | 98   | 70        | 130            | 4.8    | 20        |           |
| Chromium  |                   |             | 0.472      | mg/L        | 0.0050         | 92   | 70        | 130            | 0.6    | 20        |           |
| Cobalt    |                   |             | 0.486      | mg/L        | 0.0050         | 97   | 70        | 130            | 1.5    | 20        |           |
| Lead      |                   |             | 0.483      | mg/L        | 0.0010         | 95   | 70        | 130            | 1.8    | 20        |           |
| Molybdenu | m                 |             | 0.475      | mg/L        | 0.0010         | 95   | 70        | 130            | 2.7    | 20        |           |
| Selenium  |                   |             | 0.443      | mg/L        | 0.0036         | 89   | 70        | 130            | 4.4    | 20        |           |
| Thallium  |                   |             | 0.466      | mg/L        | 0.00050        | 93   | 70        | 130            | 2.2    | 20        |           |
| Method:   | E200.8            |             |            |             |                |      |           | Analytical     | Run: I | CPMS206-B | _170511A  |
| Lab ID:   | QCS               | Initial (   | Calibratio | on Verifica | ition Standard |      |           |                |        | 05/11/    | /17 11:02 |
| Arsenic   |                   | C           | 0.0481     | mg/L        | 0.0050         | 96   | 90        | 110            |        |           |           |
| Method:   | E200.8            |             |            |             |                |      |           |                |        | Batc      | h: 109200 |
| Lab ID:   | MB-109200         | Method      | d Blank    |             |                |      | Run: ICPM | S206-B_170511A |        | 05/11/    | /17 19:15 |
| Arsenic   |                   |             | ND         | mg/L        | 0.0002         |      |           | _              |        |           |           |
| Method:   | E200.8            |             |            |             |                |      |           |                |        | Batc      | h: 109201 |
| Lab ID:   | MB-109201         | Method      | d Blank    |             |                |      | Run: ICPM | S206-B 170511A |        | 05/11/    | /17 20:19 |
| Arsenic   |                   |             | ND         | mg/L        | 0.0002         |      |           | _              |        |           |           |



Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Report Date: 06/07/17
Work Order: B17050467

Revised Date: 12/21/17

**Project:** TMPA 6706150060

|         | 1111 71 07 00 100000 |              |              |                 |             |      |           |                |          | 2 000 10   |           |
|---------|----------------------|--------------|--------------|-----------------|-------------|------|-----------|----------------|----------|------------|-----------|
| Analyte |                      | Count        | Result       | Units           | RL          | %REC | Low Limit | High Limit     | RPD      | RPDLimit   | Qual      |
| Method: | E245.1               |              |              |                 |             |      |           | Analytica      | Run: I   | HGCV202-B_ | _170505A  |
| Lab ID: | ICV                  | Initia       | al Calibrati | on Verification | on Standard |      |           |                |          | 05/05/     | 17 09:05  |
| Mercury |                      |              | 0.00210      | mg/L            | 0.00010     | 105  | 90        | 110            |          |            |           |
| Method: | E245.1               |              |              |                 |             |      |           |                |          | Batch      | n: 109219 |
| Lab ID: | MB-109219            | Meth         | hod Blank    |                 |             |      | Run: HGC\ | /202-B_170505A |          | 05/05/     | 17 14:33  |
| Mercury |                      |              | ND           | mg/L            | 6E-06       |      |           |                |          |            |           |
| Lab ID: | LCS-109219           | Labo         | oratory Co   | ntrol Sample    | •           |      | Run: HGC\ | /202-B_170505A |          | 05/05/     | 17 14:35  |
| Mercury |                      |              | 0.00195      | mg/L            | 0.00010     | 97   | 85        | 115            |          |            |           |
| Lab ID: | B17050340-001CMS     | Sam          | nple Matrix  | Spike           |             |      | Run: HGC\ | /202-B_170505A |          | 05/05/     | 17 14:39  |
| Mercury |                      |              | 0.00199      | mg/L            | 0.00010     | 100  | 70        | 130            |          |            |           |
| Lab ID: | B17050340-001CMSI    | <b>)</b> Sam | nple Matrix  | Spike Dupli     | cate        |      | Run: HGC\ | /202-B_170505A |          | 05/05/     | 17 14:46  |
| Mercury |                      |              | 0.00203      | mg/L            | 0.00010     | 101  | 70        | 130            | 1.6      | 30         |           |
| Lab ID: | B17050467-009BMS     | Sam          | nple Matrix  | Spike           |             |      | Run: HGC\ | /202-B_170505A |          | 05/05/     | 17 15:20  |
| Mercury |                      |              | 0.00196      | mg/L            | 0.00010     | 98   | 70        | 130            |          |            |           |
| Lab ID: | B17050467-009BMSI    | <b>)</b> Sam | nple Matrix  | Spike Dupli     | cate        |      | Run: HGC\ | /202-B_170505A |          | 05/05/     | 17 15:22  |
| Mercury |                      |              | 0.00196      | mg/L            | 0.00010     | 98   | 70        | 130            | 0.0      | 30         |           |
| Method: | E245.1               |              |              |                 |             |      |           | Analytica      | l Run: I | HGCV202-B_ | _170508A  |
| Lab ID: | ICV                  | Initia       | al Calibrati | on Verification | on Standard |      |           |                |          | 05/08/     | 17 14:18  |
| Mercury |                      |              | 0.00216      | mg/L            | 0.00010     | 108  | 90        | 110            |          |            |           |
| Method: | E245.1               |              |              |                 |             |      |           |                |          | Batch      | n: 109273 |
| Lab ID: | MB-109273            | Meth         | hod Blank    |                 |             |      | Run: HGC\ | /202-B_170508A |          | 05/08/     | 17 15:43  |
| Mercury |                      |              | ND           | mg/L            | 6E-06       |      |           |                |          |            |           |
| Lab ID: | LCS-109273           | Labo         | oratory Co   | ntrol Sample    | )           |      | Run: HGC\ | /202-B_170508A |          | 05/08/     | 17 15:45  |
| Mercury |                      |              | 0.00224      | mg/L            | 0.00010     | 112  | 85        | 115            |          |            |           |
| Lab ID: | B17050467-001BMS     | Sam          | nple Matrix  | Spike           |             |      | Run: HGC\ | /202-B_170508A |          | 05/08/     | 17 15:48  |
| Mercury |                      |              | 0.00377      | mg/L            | 0.00010     | 89   | 70        | 130            |          |            |           |
| Lab ID: | B17050467-001BMSI    | O Sam        | nple Matrix  | Spike Dupli     | cate        |      | Run: HGC\ | /202-B_170508A |          | 05/08/     | 17 15:50  |
|         |                      |              |              |                 |             |      |           |                |          |            |           |

0.00010

89

70

130

0.3

30

0.00375

mg/L

### Qualifiers:

Mercury



Prepared by Casper, WY Branch

Client:Texas Municipal Power AgencyReport Date:06/06/17Project:TMPA 6706150060Work Order:B17050467

| Analyte                   | Result Units                  | RL %REC Low Limit High Limit RPD RPDLimit Qual |
|---------------------------|-------------------------------|------------------------------------------------|
| Method: E903.0            |                               | Batch: RA226-8497                              |
| Lab ID: LCS-RA226-8497    | Laboratory Control Sample     | Run: G542M-2_170510A 05/30/17 11:21            |
| Radium 226                | 9.2 pCi/L                     | 90 80 120                                      |
| Lab ID: MB-RA226-8497     | Method Blank                  | Run: G542M-2_170510A 05/30/17 11:21            |
| Radium 226                | 0.1 pCi/L                     | U                                              |
| Radium 226 precision (±)  | 0.09 pCi/L                    |                                                |
| Radium 226 MDC            | 0.1 pCi/L                     |                                                |
| Lab ID: C17040837-001CMS  | Sample Matrix Spike           | Run: G542M-2_170510A 05/30/17 11:21            |
| Radium 226                | 16 pCi/L                      | 80 70 130                                      |
| Lab ID: C17040837-001CMSD | Sample Matrix Spike Duplicate | Run: G542M-2_170510A 05/30/17 11:21            |
| Radium 226                | 17 pCi/L                      | 83 70 130 3.6 20                               |





Prepared by Casper, WY Branch

Client:Texas Municipal Power AgencyReport Date:06/06/17Project:TMPA 6706150060Work Order:B17050467

| Analyte                    | Result l          | Units RL       | . %REC | Low Limit | High Limit     | RPD | RPDLimit  | Qual      |
|----------------------------|-------------------|----------------|--------|-----------|----------------|-----|-----------|-----------|
| Method: RA-05              |                   |                |        |           |                |     | Batch: RA | 228-5498  |
| Lab ID: LCS-228-RA226-8497 | Laboratory Contro | •              |        |           | IELEC-3_170510 | В   | 05/22     | /17 14:28 |
| Radium 228                 | 10 p              | oCi/L          | 103    | 80        | 120            |     |           |           |
| Lab ID: MB-RA226-8497      | Method Blank      |                |        | Run: TENN | NELEC-3_170510 | В   | 05/22     | /17 14:28 |
| Radium 228                 | -0.3 p            | oCi/L          |        |           |                |     |           | U         |
| Radium 228 precision (±)   | 1 p               | oCi/L          |        |           |                |     |           |           |
| Radium 228 MDC             | 2 p               | oCi/L          |        |           |                |     |           |           |
| Lab ID: C17050117-003CMS   | Sample Matrix Sp  | pike           |        | Run: TENN | IELEC-3_170510 | В   | 05/22     | /17 14:28 |
| Radium 228                 | 21 p              | oCi/L          | 99     | 70        | 130            |     |           |           |
| Lab ID: C17050117-003CMSD  | Sample Matrix Sp  | pike Duplicate |        | Run: TENN | NELEC-3_170510 | В   | 05/22     | /17 14:28 |
| Radium 228                 | 19 p              | oCi/L          | 87     | 70        | 130            | 12  | 20        |           |

# **Work Order Receipt Checklist**

# **Texas Municipal Power Agency**

Login completed by: Cindy Rohrer

### B17050467

Date Received: 5/4/2017

|                                                                                          |                                 |           | _    |                            |
|------------------------------------------------------------------------------------------|---------------------------------|-----------|------|----------------------------|
| Reviewed by:                                                                             | BL2000\tedwards                 |           | Re   | eceived by: rs4            |
| Reviewed Date:                                                                           | 5/7/2017                        |           | Cai  | rrier name: Return-UPS NDA |
| Shipping container/cooler in                                                             | good condition?                 | Yes √     | No 🗌 | Not Present                |
| Custody seals intact on all sl                                                           | nipping container(s)/cooler(s)? | Yes 🔽     | No 🗌 | Not Present                |
| Custody seals intact on all sa                                                           | ample bottles?                  | Yes       | No 🗌 | Not Present ✓              |
| Chain of custody present?                                                                |                                 | Yes 🔽     | No 🗌 |                            |
| Chain of custody signed whe                                                              | en relinquished and received?   | Yes 🔽     | No 🗌 |                            |
| Chain of custody agrees with                                                             | sample labels?                  | Yes 🔽     | No 🗌 |                            |
| Samples in proper container                                                              | /bottle?                        | Yes 🔽     | No 🗌 |                            |
| Sample containers intact?                                                                |                                 | Yes 🔽     | No 🗌 |                            |
| Sufficient sample volume for                                                             | indicated test?                 | Yes 🔽     | No 🗌 |                            |
| All samples received within h<br>(Exclude analyses that are countries pH, DO, Res Cl, Su | onsidered field parameters      | Yes ✓     | No 🗌 |                            |
| Temp Blank received in all sl                                                            | nipping container(s)/cooler(s)? | Yes       | No 🔽 | Not Applicable             |
| Container/Temp Blank tempe                                                               | erature:                        | °C On Ice |      |                            |
| Water - VOA vials have zero                                                              | headspace?                      | Yes       | No 🗌 | No VOA vials submitted     |
| Water - pH acceptable upon                                                               | receipt?                        | Yes ✓     | No 🗌 | Not Applicable             |
|                                                                                          |                                 |           |      |                            |

### **Standard Reporting Procedures:**

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

### **Contact and Corrective Action Comments:**

The Temperature Blank temperature for shipping container 1 was 1.4°C and shipping container 2 was 2.2°C. The temperature of the sample(s) for shipping container 3 was -1.0°C.



# Chain of Custody & Analytical Request Record

\* No temp. blank Sent with small cooler. Page / of (Three coolers Comments

Report Information (if different than Account Information) ☐ LEVEL IV ☐ NELAC ☐ EDD/EDT (contact laboratory) ☐ Other Special Report/Formats Company/Name Mailing Address City, State, Zip Matrix Codes Contact Phone Email **Æ**mail #375 greg. seifert @ amechu.com

Mailing Address 3755 S, Capital of TX

Phone 512-795-0360

Gres Seifert

Contact

Austin, TX 78704

City, State, Zip

Email

Company/Name Amec Foster Wheeler

Account Information (Billing information)

**Analysis Requested** A-Air **Bottle Order** 6706150060 Project Name, PWSID, Permit, etc. TMPA Quote Project Information Purchase Order

V - Vegetation B - Bioassay DW - Drinking Water S - Solits/ Solids W- Water 0 - Other

All turnaround times are standard unless marked as RUSH.

MUST be contacted prior to RUSH sample submittal for

Energy Laboratories

charges and scheduling -

See Instructions Page

See Attached

ELILABID

BA-DSOULD-COU

43

B D00 SSS 8 60 000

600

YP5

Matrix (See Codes Above)

3

1

Number of Containers

0935 Time

**%** □

Š

EPA/State Compliance

Sampler Phone 5/2-24/-252

Sampler Name Brian Gieselman

Sample Origin State

MINING CLIENTS, please indicate sample type. "If ore has been processed or refined, call before sending.

Collection

☐ Unprocessed ore (NOT ground or refined)\*

☐ Byproduct 11 (e)2 material

Date

Sample Identification Name, Location, Inferval, etc.) SFL MW-3

SFL MW-4

MNW-18

1H37 1609

1238

1038

MNW-16 MNW-15 MNW-17

EQBK-SCM-SOUT DuP-1

18/1

121

1845

Signature Brian Gicselman Relinquished by (print)

Relinquished by (print)

Record MUST

be signed

Received by Laboratory (print) Received by (print) LABORATORY USE ONLY on <u>S</u> ✓ Temp Blank Signature Receipt Temp Date/Time 5/3/17 @ 0900 Date/Time \_ ≺ Intact Custody Seals Y N C B

Payment Type sh Check Cash ပ္ပ

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

Page 26 of 26

Receipt Number (cash/check only)

Amount \$

Signature

Date/Time

02:2 CIMING

Cooler ID(s)

Shipped By

# **ANALYTICAL SUMMARY REPORT**

December 21, 2017

Texas Municipal Power Agency PO Box 7000 Bryan, TX 77805-7000

Work Order: B17050604 Quote ID: B3997 - CCRR

Project Name: TMPA 6706150060

Energy Laboratories Inc Billings MT received the following 13 samples for Texas Municipal Power Agency on 5/5/2017 for analysis.

| Lab ID        | Client Sample ID | Collect Date Receive Date | Matrix       | Test                                                                                                                                                                                                                                                                  |
|---------------|------------------|---------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B17050604-001 | SFL MW-2         | 05/03/17 10:06 05/05/17   | Ground Water | Metals by ICP/ICPMS, Tot. Rec. Mercury, Total Recoverable Fluoride Anions by Ion Chromatography pH Metals Preparation by EPA 200.2 Digestion, Mercury by CVAA Preparation for TDS Radium 226 + Radium 228 Radium 226, Total Radium 228, Total Solids, Total Dissolved |
| B17050604-002 | SFL MW-5         | 05/03/17 11:10 05/05/17   | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17050604-003 | SSP/APMW-1       | 05/03/17 14:20 05/05/17   | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17050604-004 | SFL MW-6         | 05/03/17 14:22 05/05/17   | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17050604-005 | SSP MW-2         | 05/03/17 15:45 05/05/17   | Ground Water | Metals by ICP/ICPMS, Tot. Rec.<br>Mercury, Total Recoverable<br>Fluoride<br>Anions by Ion Chromatography<br>pH<br>Metals Preparation by EPA 200.2<br>Digestion, Mercury by CVAA<br>Preparation for TDS<br>Solids, Total Dissolved                                     |
| B17050604-006 | AP MW-3          | 05/03/17 16:16 05/05/17   | Ground Water | Metals by ICP/ICPMS, Tot. Rec. Mercury, Total Recoverable Fluoride Anions by Ion Chromatography pH Metals Preparation by EPA 200.2 Digestion, Mercury by CVAA Preparation for TDS Radium 226 + Radium 228 Radium 226, Total Radium 228, Total Solids, Total Dissolved |
| B17050604-007 | EQBK-SCM-050317  | 05/03/17 16:50 05/05/17   | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17050604-008 | APMW-1D          | 05/04/17 8:57 05/05/17    | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17050604-009 | APMW-5           | 05/04/17 11:01 05/05/17   | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17050604-010 | APMW-4           | 05/04/17 12:56 05/05/17   | Ground Water | Same As Above                                                                                                                                                                                                                                                         |

# **ANALYTICAL SUMMARY REPORT**

| B17050604-011 | DUP-2          | 05/04/17 0:00 05  | 5/05/17 | Ground Water | Same As Above |
|---------------|----------------|-------------------|---------|--------------|---------------|
| B17050604-012 | DUP-3          | 05/04/17 0:00 05  | 5/05/17 | Ground Water | Same As Above |
| B17050604-013 | EQBK-BJG-50417 | 05/04/17 13:54 05 | 5/05/17 | Ground Water | Same As Above |

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

Texas Municipal Power Agency

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

**Revised Date:** 12/21/17 **Report Date:** 05/31/17

 Project:
 TMPA 6706150060

 Work Order:
 B17050604

 CASE NARRATIVE

Tests associated with analyst identified as ELI-CA were subcontracted to Energy Laboratories, PO Box 247, Casper, WY, EPA Number WY00002 and WY00937.

Revised Report 12/21/2017

CLIENT:

The reporting limits for the following analytes were lowered per request from Greg Seifert.

Analyte Original Reporting Limit (mg/L) Revised Reporting limit (mg/L)

 Antimony
 0.05
 0.006

 Cadmium
 0.01
 0.005

 Thallium
 0.01
 0.002

The laboratory was unable to lower the reporting limit for Antimony to 0.006 mg/L for the following samples:

Sample Revised Reporting Limit

EQBK-SCM-050317 (B17050604-007) 0.02 mg/L APMW-1D (B17050604-008) 0.04 mg/L EQBK-BJG-50417 (B17050604-013) 0.02 mg/L

The report has been revised and replaces any previously issued report in its entirety.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

 Project:
 TMPA 6706150060

 Lab ID:
 B17050604-001

 Client Sample ID:
 SFL MW-2

Revised Date: 12/21/17
Report Date: 05/31/17
Collection Date: 05/03/17 10:06
DateReceived: 05/05/17

Matrix: Ground Water

| Analyses                              | Result | Unite  | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|--------|------------|-------|-------------|-----------|-------------------------|
| Analyses                              | Nesun  | Offics | Qualifiers | 11.   | 401         | Wethou    | Analysis Date / By      |
| MAJOR IONS                            |        |        |            |       |             |           |                         |
| Calcium                               | 806    | mg/L   | D          | 2     |             | E200.7    | 05/11/17 00:11 / rlh    |
| Magnesium                             | 122    | mg/L   |            | 1     |             | E200.7    | 05/11/17 00:11 / rlh    |
| Potassium                             | 47     | mg/L   |            | 1     |             | E200.7    | 05/11/17 00:11 / rlh    |
| Sodium                                | 1610   | mg/L   | D          | 8     |             | E200.7    | 05/11/17 00:11 / rlh    |
| PHYSICAL PROPERTIES                   |        |        |            |       |             |           |                         |
| pH                                    | 6.6    | s.u.   | Н          | 0.1   |             | A4500-H B | 05/05/17 19:28 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 6720   | mg/L   | D          | 90    |             | A2540 C   | 05/08/17 11:07 / rik    |
| INORGANICS                            |        |        |            |       |             |           |                         |
| Chloride                              | 2760   | mg/L   | D          | 10    |             | E300.0    | 05/10/17 03:21 / cjm    |
| Sulfate                               |        | mg/L   | D          | 40    |             | E300.0    | 05/10/17 03:21 / cjm    |
| Fluoride                              |        | mg/L   |            | 0.1   |             | A4500-F C | 05/08/17 20:29 / bas    |
| METALS, TOTAL RECOVERABLE             |        |        |            |       |             |           |                         |
| Antimony                              | ND     | mg/L   |            | 0.006 |             | E200.8    | 05/12/17 03:50 / jpv    |
| Arsenic                               | ND     | mg/L   |            | 0.01  |             | E200.8    | 05/12/17 03:50 / jpv    |
| Barium                                |        | mg/L   |            | 0.01  |             | E200.7    | 05/11/17 00:11 / rlh    |
| Beryllium                             | 0.002  | mg/L   |            | 0.001 |             | E200.8    | 05/12/17 03:50 / jpv    |
| Boron                                 | 0.55   | mg/L   | D          | 0.07  |             | E200.7    | 05/11/17 00:11 / rlh    |
| Cadmium                               | ND     | mg/L   |            | 0.005 |             | E200.8    | 05/12/17 03:50 / jpv    |
| Chromium                              | ND     | mg/L   |            | 0.01  |             | E200.8    | 05/12/17 03:50 / jpv    |
| Cobalt                                | ND     | mg/L   |            | 0.02  |             | E200.8    | 05/12/17 03:50 / jpv    |
| Lead                                  | ND     | mg/L   |            | 0.01  |             | E200.8    | 05/12/17 03:50 / jpv    |
| Lithium                               | 0.53   | mg/L   | D          | 0.09  |             | E200.7    | 05/11/17 00:11 / rlh    |
| Mercury                               | ND     | mg/L   |            | 0.001 |             | E245.1    | 05/08/17 15:52 / mas    |
| Molybdenum                            | ND     | mg/L   |            | 0.05  |             | E200.8    | 05/12/17 03:50 / jpv    |
| Selenium                              | ND     | mg/L   |            | 0.01  |             | E200.8    | 05/12/17 03:50 / jpv    |
| Thallium                              | ND     | mg/L   |            | 0.002 |             | E200.8    | 05/12/17 03:50 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |        |            |       |             |           |                         |
| Radium 226                            | 2.1    | pCi/L  |            |       |             | E903.0    | 05/30/17 11:45 / eli-ca |
| Radium 226 precision (±)              | 0.46   | pCi/L  |            |       |             | E903.0    | 05/30/17 11:45 / eli-ca |
| Radium 226 MDC                        | 0.16   | pCi/L  |            |       |             | E903.0    | 05/30/17 11:45 / eli-ca |
| Radium 228                            | 5.2    | pCi/L  |            |       |             | RA-05     | 05/24/17 10:30 / eli-ca |
| Radium 228 precision (±)              |        | pCi/L  |            |       |             | RA-05     | 05/24/17 10:30 / eli-ca |
| Radium 228 MDC                        | 1.0    | pCi/L  |            |       |             | RA-05     | 05/24/17 10:30 / eli-ca |
| Radium 226 + Radium 228               |        | pCi/L  |            |       |             | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 precision (±) |        | pCi/L  |            |       |             | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.1    | pCi/L  |            |       |             | A7500-RA  | 05/31/17 11:00 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDO ME

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

 Project:
 TMPA 6706150060

 Lab ID:
 B17050604-002

 Client Sample ID:
 SFL MW-5

Revised Date: 12/21/17
Report Date: 05/31/17

Collection Date: 05/03/17 11:10

DateReceived: 05/05/17

Matrix: Ground Water

|                                       |        |       |            |       | MCL/       |                         |
|---------------------------------------|--------|-------|------------|-------|------------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL Method | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |            |                         |
| Calcium                               | 883    | mg/L  | D          | 2     | E200.7     | 05/11/17 00:29 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     | E200.7     | 05/11/17 00:29 / rlh    |
| Potassium                             |        | mg/L  |            | 1     | E200.7     | 05/11/17 00:29 / rlh    |
| Sodium                                | 1680   | mg/L  | D          | 8     | E200.7     | 05/11/17 00:29 / rlh    |
| PHYSICAL PROPERTIES                   |        |       |            |       |            |                         |
| Н                                     | 4.8    | s.u.  | Н          | 0.1   | A4500-H B  | 05/05/17 19:33 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 7380   | mg/L  | D          | 90    | A2540 C    | 05/08/17 11:07 / rik    |
| NORGANICS                             |        |       |            |       |            |                         |
| Chloride                              | 3040   | mg/L  | D          | 10    | E300.0     | 05/10/17 03:40 / cjm    |
| Sulfate                               | 2150   | mg/L  | D          | 40    | E300.0     | 05/10/17 03:40 / cjm    |
| Fluoride                              | 0.2    | mg/L  |            | 0.1   | A4500-F C  | 05/08/17 20:35 / bas    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |            |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 | E200.8     | 05/13/17 12:04 / jpv    |
| Arsenic                               | ND     | mg/L  |            | 0.01  | E200.8     | 05/12/17 04:17 / jpv    |
| Barium                                | 0.03   | mg/L  |            | 0.01  | E200.7     | 05/11/17 00:29 / rlh    |
| Beryllium                             | 0.012  | mg/L  |            | 0.001 | E200.8     | 05/13/17 12:04 / jpv    |
| Boron                                 | 3.97   | mg/L  | D          | 0.07  | E200.7     | 05/11/17 00:29 / rlh    |
| Cadmium                               | 0.005  | mg/L  |            | 0.005 | E200.8     | 05/12/17 04:17 / jpv    |
| Chromium                              | ND     | mg/L  |            | 0.01  | E200.8     | 05/12/17 04:17 / jpv    |
| Cobalt                                | 0.05   | mg/L  |            | 0.02  | E200.8     | 05/12/17 04:17 / jpv    |
| _ead                                  | ND     | mg/L  |            | 0.01  | E200.8     | 05/12/17 04:17 / jpv    |
| _ithium                               |        | mg/L  | D          | 0.09  | E200.7     | 05/11/17 00:29 / rlh    |
| Mercury                               | ND     | mg/L  |            | 0.001 | E245.1     | 05/08/17 15:54 / mas    |
| Molybdenum                            | ND     | mg/L  |            | 0.05  | E200.8     | 05/13/17 12:04 / jpv    |
| Selenium                              | ND     | mg/L  |            | 0.01  | E200.8     | 05/12/17 04:17 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.002 | E200.8     | 05/12/17 04:17 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |            |                         |
| Radium 226                            | 2.1    | pCi/L |            |       | E903.0     | 05/30/17 11:45 / eli-ca |
| Radium 226 precision (±)              | 0.46   | pCi/L |            |       | E903.0     | 05/30/17 11:45 / eli-ca |
| Radium 226 MDC                        | 0.16   | pCi/L |            |       | E903.0     | 05/30/17 11:45 / eli-ca |
| Radium 228                            | 7.8    | pCi/L |            |       | RA-05      | 05/24/17 10:30 / eli-ca |
| Radium 228 precision (±)              | 1.7    | pCi/L |            |       | RA-05      | 05/24/17 10:30 / eli-ca |
| Radium 228 MDC                        | 1.0    | pCi/L |            |       | RA-05      | 05/24/17 10:30 / eli-ca |
| Radium 226 + Radium 228               |        | pCi/L |            |       | A7500-RA   | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.8    | pCi/L |            |       | A7500-RA   | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.1    | pCi/L |            |       | A7500-RA   | 05/31/17 11:00 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDO ME

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA 6706150060 Lab ID: B17050604-003 Client Sample ID: SSP/APMW-1

Revised Date: 12/21/17 **Report Date:** 05/31/17 Collection Date: 05/03/17 14:20 DateReceived: 05/05/17

Matrix: Ground Water

|                                       |        |       |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |      |           |                         |
| Calcium                               | 681    | mg/L  |            | 1     |      | E200.7    | 05/11/17 00:33 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |      | E200.7    | 05/11/17 00:33 / rlh    |
| Potassium                             |        | mg/L  |            | 1     |      | E200.7    | 05/11/17 00:33 / rlh    |
| Sodium                                |        | mg/L  | D          | 4     |      | E200.7    | 05/11/17 00:33 / rlh    |
| PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| рН                                    | 6.1    | s.u.  | Н          | 0.1   |      | A4500-H B | 05/05/17 19:36 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 6460   | mg/L  | D          | 90    |      | A2540 C   | 05/08/17 11:07 / rik    |
| INORGANICS                            |        |       |            |       |      |           |                         |
| Chloride                              | 1550   | mg/L  | D          | 6     |      | E300.0    | 05/10/17 04:00 / cjm    |
| Sulfate                               | 3050   | mg/L  | D          | 20    |      | E300.0    | 05/10/17 04:00 / cjm    |
| Fluoride                              | 0.1    | mg/L  |            | 0.1   |      | A4500-F C | 05/08/17 20:38 / bas    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 |      | E200.8    | 05/13/17 12:08 / jpv    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |      | E200.8    | 05/12/17 04:20 / jpv    |
| Barium                                | 0.04   | mg/L  |            | 0.01  |      | E200.7    | 05/11/17 00:33 / rlh    |
| Beryllium                             | ND     | mg/L  |            | 0.001 |      | E200.8    | 05/13/17 12:08 / jpv    |
| Boron                                 | 0.81   | mg/L  |            | 0.05  |      | E200.7    | 05/11/17 00:33 / rlh    |
| Cadmium                               | ND     | mg/L  |            | 0.005 |      | E200.8    | 05/12/17 04:20 / jpv    |
| Chromium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 05/12/17 04:20 / jpv    |
| Cobalt                                | ND     | mg/L  |            | 0.02  |      | E200.8    | 05/12/17 04:20 / jpv    |
| Lead                                  | ND     | mg/L  |            | 0.01  |      | E200.8    | 05/12/17 04:20 / jpv    |
| Lithium                               | 1.50   | mg/L  | D          | 0.04  |      | E200.7    | 05/11/17 00:33 / rlh    |
| Mercury                               | ND     | mg/L  |            | 0.001 |      | E245.1    | 05/08/17 16:24 / mas    |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |      | E200.8    | 05/13/17 12:08 / jpv    |
| Selenium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 05/12/17 04:20 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.002 |      | E200.8    | 05/12/17 04:20 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 226                            | 0.26   | pCi/L |            |       |      | E903.0    | 05/30/17 11:46 / eli-ca |
| Radium 226 precision (±)              | 0.13   | pCi/L |            |       |      | E903.0    | 05/30/17 11:46 / eli-ca |
| Radium 226 MDC                        | 0.20   | pCi/L |            |       |      | E903.0    | 05/30/17 11:46 / eli-ca |
| Radium 228                            | 1.3    | pCi/L |            |       |      | RA-05     | 05/24/17 10:30 / eli-ca |
| Radium 228 precision (±)              | 0.70   | pCi/L |            |       |      | RA-05     | 05/24/17 10:30 / eli-ca |
| Radium 228 MDC                        | 1.3    | pCi/L |            |       |      | RA-05     | 05/24/17 10:30 / eli-ca |
| Radium 226 + Radium 228               | 1.5    | pCi/L |            |       |      | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 0.7    | pCi/L |            |       |      | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.3    | pCi/L |            |       |      | A7500-RA  | 05/31/17 11:00 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA 6706150060 Lab ID: B17050604-004 Client Sample ID: SFL MW-6

Revised Date: 12/21/17 **Report Date:** 05/31/17 Collection Date: 05/03/17 14:22 DateReceived: 05/05/17

Matrix: Ground Water

|                                       |        |       |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |      |           |                         |
| Calcium                               | 955    | mg/L  | D          | 2     |      | E200.7    | 05/11/17 00:36 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |      | E200.7    | 05/11/17 00:36 / rlh    |
| Potassium                             |        | mg/L  |            | 1     |      | E200.7    | 05/11/17 00:36 / rlh    |
| Sodium                                |        | mg/L  | D          | 8     |      | E200.7    | 05/11/17 00:36 / rlh    |
| PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| pH                                    | 4.1    | s.u.  | Н          | 0.1   |      | A4500-H B | 05/05/17 19:38 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 8020   | mg/L  | D          | 90    |      | A2540 C   | 05/08/17 11:07 / rik    |
| INORGANICS                            |        |       |            |       |      |           |                         |
| Chloride                              | 3560   | mg/L  | D          | 10    |      | E300.0    | 05/10/17 04:19 / cjm    |
| Sulfate                               | 2260   | mg/L  | D          | 40    |      | E300.0    | 05/10/17 04:19 / cjm    |
| Fluoride                              | 8.0    | mg/L  |            | 0.1   |      | A4500-F C | 05/08/17 20:50 / bas    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 |      | E200.8    | 05/13/17 12:11 / jpv    |
| Arsenic                               | 0.02   | mg/L  |            | 0.01  |      | E200.8    | 05/12/17 04:24 / jpv    |
| Barium                                | 0.03   | mg/L  |            | 0.01  |      | E200.7    | 05/11/17 00:36 / rlh    |
| Beryllium                             | 0.054  | mg/L  |            | 0.001 |      | E200.8    | 05/13/17 12:11 / jpv    |
| Boron                                 | 0.30   | mg/L  | D          | 0.07  |      | E200.7    | 05/11/17 00:36 / rlh    |
| Cadmium                               | 0.010  | mg/L  |            | 0.005 |      | E200.8    | 05/12/17 04:24 / jpv    |
| Chromium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 05/12/17 04:24 / jpv    |
| Cobalt                                | 0.11   | mg/L  |            | 0.02  |      | E200.8    | 05/12/17 04:24 / jpv    |
| Lead                                  | ND     | mg/L  |            | 0.01  |      | E200.8    | 05/12/17 04:24 / jpv    |
| Lithium                               | 0.72   | mg/L  | D          | 0.09  |      | E200.7    | 05/11/17 00:36 / rlh    |
| Mercury                               | ND     | mg/L  |            | 0.001 |      | E245.1    | 05/08/17 16:26 / mas    |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |      | E200.8    | 05/13/17 12:11 / jpv    |
| Selenium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 05/12/17 04:24 / jpv    |
| Thallium                              | 0.003  | mg/L  |            | 0.002 |      | E200.8    | 05/12/17 04:24 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 226                            | 2.7    | pCi/L |            |       |      | E903.0    | 05/30/17 11:46 / eli-ca |
| Radium 226 precision (±)              | 0.60   | pCi/L |            |       |      | E903.0    | 05/30/17 11:46 / eli-ca |
| Radium 226 MDC                        | 0.19   | pCi/L |            |       |      | E903.0    | 05/30/17 11:46 / eli-ca |
| Radium 228                            | 5.8    | pCi/L |            |       |      | RA-05     | 05/24/17 10:30 / eli-ca |
| Radium 228 precision (±)              | 1.4    | pCi/L |            |       |      | RA-05     | 05/24/17 10:30 / eli-ca |
| Radium 228 MDC                        | 1.2    | pCi/L |            |       |      | RA-05     | 05/24/17 10:30 / eli-ca |
| Radium 226 + Radium 228               | 8.6    | pCi/L |            |       |      | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.5    | pCi/L |            |       |      | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.2    | pCi/L |            |       |      | A7500-RA  | 05/31/17 11:00 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

TMPA 6706150060 Project: Lab ID: B17050604-005 Client Sample ID: SSP MW-2

Revised Date: 12/21/17 **Report Date:** 05/31/17 Collection Date: 05/03/17 15:45 DateReceived: 05/05/17

Matrix: Ground Water

| Analyses                            | Result | l lucita | Qualifiers | RL    | MCL/<br>QCL Method | Analysis Date / By   |
|-------------------------------------|--------|----------|------------|-------|--------------------|----------------------|
| Analyses                            | Result | Units    | Quaimers   | KL    | QCL Method         | Analysis Date / By   |
| MAJOR IONS                          |        |          |            |       |                    |                      |
| Calcium                             | 899    | mg/L     |            | 1     | E200.7             | 05/11/17 23:03 / rlh |
| Magnesium                           | 209    | mg/L     |            | 1     | E200.7             | 05/11/17 23:03 / rlh |
| Potassium                           | 62     | mg/L     |            | 1     | E200.7             | 05/11/17 23:03 / rlh |
| Sodium                              | 1190   | mg/L     | D          | 4     | E200.7             | 05/11/17 23:03 / rlh |
| PHYSICAL PROPERTIES                 |        |          |            |       |                    |                      |
| Н                                   | 5.4    | s.u.     | Н          | 0.1   | A4500-H E          | 05/05/17 19:41 / pjw |
| Solids, Total Dissolved TDS @ 180 C | 5960   | mg/L     | D          | 90    | A2540 C            | 05/08/17 11:08 / rik |
| NORGANICS                           |        |          |            |       |                    |                      |
| Chloride                            | 2520   | mg/L     | D          | 6     | E300.0             | 05/10/17 05:18 / cjm |
| Sulfate                             | 2080   | mg/L     | D          | 20    | E300.0             | 05/10/17 05:18 / cjm |
| luoride                             | 0.2    | mg/L     |            | 0.1   | A4500-F C          | 05/08/17 20:56 / bas |
| METALS, TOTAL RECOVERABLE           |        |          |            |       |                    |                      |
| Antimony                            | ND     | mg/L     |            | 0.006 | E200.8             | 05/13/17 12:14 / jpv |
| Arsenic                             | ND     | mg/L     |            | 0.01  | E200.8             | 05/12/17 04:27 / jpv |
| Barium                              | 0.06   | mg/L     |            | 0.01  | E200.7             | 05/11/17 23:03 / rlh |
| Beryllium                           | 0.030  | mg/L     |            | 0.001 | E200.8             | 05/13/17 12:14 / jpv |
| Boron                               | 0.50   | mg/L     |            | 0.05  | E200.7             | 05/11/17 23:03 / rlh |
| Cadmium                             | ND     | mg/L     |            | 0.005 | E200.8             | 05/12/17 04:27 / jpv |
| Chromium                            | ND     | mg/L     |            | 0.01  | E200.8             | 05/12/17 04:27 / jpv |
| Cobalt                              | 0.06   | mg/L     |            | 0.02  | E200.8             | 05/12/17 04:27 / jpv |
| Lead                                | ND     | mg/L     |            | 0.01  | E200.8             | 05/12/17 04:27 / jpv |
| ithium                              | 0.90   | mg/L     | D          | 0.04  | E200.7             | 05/11/17 23:03 / rlh |
| Mercury                             | ND     | mg/L     |            | 0.001 | E245.1             | 05/08/17 16:27 / mas |
| Molybdenum                          | ND     | mg/L     |            | 0.05  | E200.8             | 05/13/17 12:14 / jpv |
| Selenium                            | ND     | mg/L     |            | 0.01  | E200.8             | 05/12/17 04:27 / jpv |
| Γhallium                            | ND     | mg/L     |            | 0.002 | E200.8             | 05/12/17 04:27 / jpv |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA 6706150060 Lab ID: B17050604-006 Client Sample ID: AP MW-3

Revised Date: 12/21/17 **Report Date:** 05/31/17 Collection Date: 05/03/17 16:16 DateReceived: 05/05/17

Matrix: Ground Water

|                                       |        |       |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |      |           |                         |
| Calcium                               | 139    | mg/L  |            | 1     |      | E200.7    | 05/11/17 23:06 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |      | E200.7    | 05/11/17 23:06 / rlh    |
| Potassium                             |        | mg/L  |            | 1     |      | E200.7    | 05/11/17 23:06 / rlh    |
| Sodium                                |        | mg/L  |            | 1     |      | E200.7    | 05/11/17 23:06 / rlh    |
| PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| рН                                    | 5.4    | s.u.  | Н          | 0.1   |      | A4500-H B | 05/05/17 19:43 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 1300   | mg/L  | D          | 20    |      | A2540 C   | 05/08/17 11:08 / rik    |
| INORGANICS                            |        |       |            |       |      |           |                         |
| Chloride                              | 148    | mg/L  |            | 1     |      | E300.0    | 05/10/17 06:16 / cjm    |
| Sulfate                               |        | mg/L  | D          | 4     |      | E300.0    | 05/10/17 06:16 / cjm    |
| Fluoride                              |        | mg/L  |            | 0.1   |      | A4500-F C | 05/08/17 20:59 / bas    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 |      | E200.8    | 05/13/17 12:18 / jpv    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |      | E200.8    | 05/12/17 04:31 / jpv    |
| Barium                                |        | mg/L  |            | 0.01  |      | E200.8    | 05/12/17 04:31 / jpv    |
| Beryllium                             | 0.003  | mg/L  |            | 0.001 |      | E200.8    | 05/13/17 12:18 / jpv    |
| Boron                                 | 3.73   | mg/L  |            | 0.05  |      | E200.7    | 05/11/17 23:06 / rlh    |
| Cadmium                               | ND     | mg/L  |            | 0.005 |      | E200.8    | 05/12/17 04:31 / jpv    |
| Chromium                              | ND     | mg/L  |            | 0.01  |      | E200.7    | 05/11/17 23:06 / rlh    |
| Cobalt                                | 0.05   | mg/L  |            | 0.02  |      | E200.7    | 05/11/17 23:06 / rlh    |
| Lead                                  | ND     | mg/L  |            | 0.01  |      | E200.8    | 05/12/17 04:31 / jpv    |
| Lithium                               | 0.05   | mg/L  |            | 0.01  |      | E200.7    | 05/11/17 23:06 / rlh    |
| Mercury                               | ND     | mg/L  |            | 0.001 |      | E245.1    | 05/08/17 16:29 / mas    |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |      | E200.7    | 05/11/17 23:06 / rlh    |
| Selenium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 05/12/17 04:31 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.002 |      | E200.8    | 05/12/17 04:31 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 226                            | 0.67   | pCi/L |            |       |      | E903.0    | 05/30/17 11:46 / eli-ca |
| Radium 226 precision (±)              | 0.18   | pCi/L |            |       |      | E903.0    | 05/30/17 11:46 / eli-ca |
| Radium 226 MDC                        | 0.18   | pCi/L |            |       |      | E903.0    | 05/30/17 11:46 / eli-ca |
| Radium 228                            | 2.2    | pCi/L |            |       |      | RA-05     | 05/24/17 10:30 / eli-ca |
| Radium 228 precision (±)              | 0.88   | pCi/L |            |       |      | RA-05     | 05/24/17 10:30 / eli-ca |
| Radium 228 MDC                        | 1.2    | pCi/L |            |       |      | RA-05     | 05/24/17 10:30 / eli-ca |
| Radium 226 + Radium 228               | 2.9    | pCi/L |            |       |      | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 precision (±) |        | pCi/L |            |       |      | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.2    | pCi/L |            |       |      | A7500-RA  | 05/31/17 11:00 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

 Project:
 TMPA 6706150060

 Lab ID:
 B17050604-007

 Client Sample ID:
 EQBK-SCM-050317

Revised Date: 12/21/17
Report Date: 05/31/17
Collection Date: 05/03/17 16:50
DateReceived: 05/05/17

Matrix: Ground Water

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| MAJOR IONS                            |        |       |            |       |             |           |                         |
| Calcium                               | ND     | mg/L  |            | 1     |             | E200.7    | 05/11/17 23:10 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |             | E200.7    | 05/11/17 23:10 / rlh    |
| Potassium                             |        | mg/L  |            | 1     |             | E200.7    | 05/11/17 23:10 / rlh    |
| Sodium                                |        | mg/L  |            | 1     |             | E200.7    | 05/11/17 23:10 / rlh    |
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| рН                                    | 5.8    | s.u.  | Н          | 0.1   |             | A4500-H B | 05/05/17 19:46 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | ND     | mg/L  |            | 10    |             | A2540 C   | 05/08/17 11:08 / rik    |
| INORGANICS                            |        |       |            |       |             |           |                         |
| Chloride                              | ND     | mg/L  |            | 1     |             | E300.0    | 05/10/17 06:35 / cjm    |
| Sulfate                               | ND     | mg/L  |            | 1     |             | E300.0    | 05/10/17 06:35 / cjm    |
| Fluoride                              | ND     | mg/L  |            | 0.1   |             | A4500-F C | 05/08/17 21:08 / bas    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Antimony                              | ND     | mg/L  | L          | 0.02  |             | E200.7    | 05/11/17 23:10 / rlh    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 05/12/17 04:34 / jpv    |
| Barium                                | ND     | mg/L  |            | 0.01  |             | E200.7    | 05/11/17 23:10 / rlh    |
| Beryllium                             | ND     | mg/L  |            | 0.001 |             | E200.7    | 05/11/17 23:10 / rlh    |
| Boron                                 | ND     | mg/L  |            | 0.05  |             | E200.7    | 05/11/17 23:10 / rlh    |
| Cadmium                               | ND     | mg/L  |            | 0.005 |             | E200.8    | 05/12/17 04:34 / jpv    |
| Chromium                              |        | mg/L  |            | 0.01  |             | E200.7    | 05/11/17 23:10 / rlh    |
| Cobalt                                | ND     | mg/L  |            | 0.02  |             | E200.7    | 05/11/17 23:10 / rlh    |
| Lead                                  | ND     | mg/L  |            | 0.01  |             | E200.8    | 05/12/17 04:34 / jpv    |
| Lithium                               | ND     | mg/L  |            | 0.01  |             | E200.7    | 05/11/17 23:10 / rlh    |
| Mercury                               | ND     | mg/L  |            | 0.001 |             | E245.1    | 05/08/17 16:31 / mas    |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.7    | 05/11/17 23:10 / rlh    |
| Selenium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 05/12/17 04:34 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.002 |             | E200.8    | 05/12/17 04:34 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 226                            |        | pCi/L |            |       |             | E903.0    | 05/30/17 11:46 / eli-ca |
| Radium 226 precision (±)              |        | pCi/L |            |       |             | E903.0    | 05/30/17 11:46 / eli-ca |
| Radium 226 MDC                        | 0.18   | pCi/L |            |       |             | E903.0    | 05/30/17 11:46 / eli-ca |
| Radium 228                            | 2.7    | pCi/L |            |       |             | RA-05     | 05/24/17 10:30 / eli-ca |
| Radium 228 precision (±)              |        | pCi/L |            |       |             | RA-05     | 05/24/17 10:30 / eli-ca |
| Radium 228 MDC                        |        | pCi/L |            |       |             | RA-05     | 05/24/17 10:30 / eli-ca |
| Radium 226 + Radium 228               | 4.6    | pCi/L |            |       |             | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.1    | •     |            |       |             | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.2    | pCi/L |            |       |             | A7500-RA  | 05/31/17 11:00 / eli-ca |

Report Definitions:

RL - Analyte reporting limit.

QCL - Quality control limit.

MDC - Minimum detectable concentration

L - Lowest available reporting limit for the analytical

method used.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA 6706150060 Lab ID: B17050604-008 Client Sample ID: APMW-1D

Revised Date: 12/21/17 **Report Date:** 05/31/17 Collection Date: 05/04/17 08:57 DateReceived: 05/05/17

Matrix: Ground Water

|                                       |        |       |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |      |           |                         |
| Calcium                               | 74     | mg/L  |            | 1     |      | E200.7    | 05/11/17 23:13 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |      | E200.7    | 05/11/17 23:13 / rlh    |
| Potassium                             |        | mg/L  |            | 1     |      | E200.7    | 05/11/17 23:13 / rlh    |
| Sodium                                | 317    | mg/L  |            | 1     |      | E200.7    | 05/11/17 23:13 / rlh    |
| PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| pH                                    | 6.3    | s.u.  | Н          | 0.1   |      | A4500-H B | 05/05/17 19:49 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 1240   | mg/L  | D          | 20    |      | A2540 C   | 05/08/17 11:08 / rik    |
| INORGANICS                            |        |       |            |       |      |           |                         |
| Chloride                              | 227    | mg/L  |            | 1     |      | E300.0    | 05/10/17 06:55 / cjm    |
| Sulfate                               | 527    | mg/L  | D          | 4     |      | E300.0    | 05/10/17 06:55 / cjm    |
| Fluoride                              | 0.7    | mg/L  |            | 0.1   |      | A4500-F C | 05/08/17 21:11 / bas    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Antimony                              | ND     | mg/L  | D          | 0.04  |      | E200.7    | 05/11/17 23:13 / rlh    |
| Arsenic                               | 0.01   | mg/L  |            | 0.01  |      | E200.8    | 05/12/17 04:37 / jpv    |
| Barium                                | 0.01   | mg/L  |            | 0.01  |      | E200.7    | 05/11/17 23:13 / rlh    |
| Beryllium                             | ND     | mg/L  |            | 0.001 |      | E200.7    | 05/11/17 23:13 / rlh    |
| Boron                                 | 4.72   | mg/L  |            | 0.05  |      | E200.7    | 05/11/17 23:13 / rlh    |
| Cadmium                               | ND     | mg/L  |            | 0.005 |      | E200.8    | 05/12/17 04:37 / jpv    |
| Chromium                              | ND     | mg/L  |            | 0.01  |      | E200.7    | 05/11/17 23:13 / rlh    |
| Cobalt                                | ND     | mg/L  |            | 0.02  |      | E200.7    | 05/11/17 23:13 / rlh    |
| Lead                                  | ND     | mg/L  |            | 0.01  |      | E200.8    | 05/12/17 04:37 / jpv    |
| Lithium                               | 0.03   | mg/L  |            | 0.01  |      | E200.7    | 05/11/17 23:13 / rlh    |
| Mercury                               | ND     | mg/L  |            | 0.001 |      | E245.1    | 05/08/17 16:33 / mas    |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |      | E200.7    | 05/11/17 23:13 / rlh    |
| Selenium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 05/12/17 04:37 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.002 |      | E200.8    | 05/12/17 04:37 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 226                            | 0.50   | pCi/L |            |       |      | E903.0    | 05/30/17 11:46 / eli-ca |
| Radium 226 precision (±)              | 0.16   | pCi/L |            |       |      | E903.0    | 05/30/17 11:46 / eli-ca |
| Radium 226 MDC                        | 0.19   | pCi/L |            |       |      | E903.0    | 05/30/17 11:46 / eli-ca |
| Radium 228                            | 2.0    | pCi/L |            |       |      | RA-05     | 05/24/17 10:30 / eli-ca |
| Radium 228 precision (±)              | 0.93   | pCi/L |            |       |      | RA-05     | 05/24/17 10:30 / eli-ca |
| Radium 228 MDC                        | 1.2    | pCi/L |            |       |      | RA-05     | 05/24/17 10:30 / eli-ca |
| Radium 226 + Radium 228               | 2.5    | pCi/L |            |       |      | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 0.9    | pCi/L |            |       |      | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.3    | pCi/L |            |       |      | A7500-RA  | 05/31/17 11:00 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA 6706150060 Lab ID: B17050604-009 Client Sample ID: APMW-5

Revised Date: 12/21/17 **Report Date:** 05/31/17 Collection Date: 05/04/17 11:01 DateReceived: 05/05/17

Matrix: Ground Water

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| MAJOR IONS                            |        |       |            |       |             |           |                         |
| Calcium                               | 522    | mg/L  |            | 1     |             | E200.7    | 05/11/17 23:31 / rlh    |
| Magnesium                             | 116    | mg/L  |            | 1     |             | E200.7    | 05/11/17 23:31 / rlh    |
| Potassium                             | 43     | mg/L  |            | 1     |             | E200.7    | 05/11/17 23:31 / rlh    |
| Sodium                                | 662    | mg/L  | D          | 4     |             | E200.7    | 05/11/17 23:31 / rlh    |
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| рН                                    | 3.6    | s.u.  | Н          | 0.1   |             | A4500-H B | 05/05/17 19:51 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 4530   | mg/L  | D          | 40    |             | A2540 C   | 05/08/17 11:08 / rik    |
| INORGANICS                            |        |       |            |       |             |           |                         |
| Chloride                              | 472    | mg/L  | D          | 6     |             | E300.0    | 05/10/17 07:14 / cjm    |
| Sulfate                               | 2930   | mg/L  | D          | 20    |             | E300.0    | 05/10/17 07:14 / cjm    |
| Fluoride                              | 1.2    | mg/L  |            | 0.1   |             | A4500-F C | 05/09/17 10:32 / bas    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 |             | E200.8    | 05/13/17 02:28 / jpv    |
| Arsenic                               | 0.02   | mg/L  |            | 0.01  |             | E200.8    | 05/12/17 05:01 / jpv    |
| Barium                                | 0.02   | mg/L  |            | 0.01  |             | E200.7    | 05/11/17 23:31 / rlh    |
| Beryllium                             | 0.084  | mg/L  |            | 0.001 |             | E200.8    | 05/13/17 02:28 / jpv    |
| Boron                                 | 3.39   | mg/L  |            | 0.05  |             | E200.7    | 05/11/17 23:31 / rlh    |
| Cadmium                               | 0.009  | mg/L  |            | 0.005 |             | E200.8    | 05/12/17 05:01 / jpv    |
| Chromium                              |        | mg/L  |            | 0.01  |             | E200.8    | 05/12/17 05:01 / jpv    |
| Cobalt                                | 0.19   | mg/L  |            | 0.02  |             | E200.8    | 05/13/17 02:28 / jpv    |
| Lead                                  | ND     | mg/L  |            | 0.01  |             | E200.8    | 05/12/17 05:01 / jpv    |
| Lithium                               |        | mg/L  | D          | 0.04  |             | E200.7    | 05/11/17 23:31 / rlh    |
| Mercury                               | ND     | mg/L  |            | 0.001 |             | E245.1    | 05/08/17 16:35 / mas    |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.8    | 05/13/17 02:28 / jpv    |
| Selenium                              |        | mg/L  |            | 0.01  |             | E200.8    | 05/12/17 05:01 / jpv    |
| Thallium                              | 0.002  | mg/L  |            | 0.002 |             | E200.8    | 05/12/17 05:01 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 226                            | 0.79   | pCi/L |            |       |             | E903.0    | 05/30/17 11:46 / eli-ca |
| Radium 226 precision (±)              | 0.18   | pCi/L |            |       |             | E903.0    | 05/30/17 11:46 / eli-ca |
| Radium 226 MDC                        | 0.17   | pCi/L |            |       |             | E903.0    | 05/30/17 11:46 / eli-ca |
| Radium 228                            | 2.2    | pCi/L |            |       |             | RA-05     | 05/24/17 10:30 / eli-ca |
| Radium 228 precision (±)              | 0.87   | pCi/L |            |       |             | RA-05     | 05/24/17 10:30 / eli-ca |
| Radium 228 MDC                        | 1.1    | pCi/L |            |       |             | RA-05     | 05/24/17 10:30 / eli-ca |
| Radium 226 + Radium 228               | 2.9    | pCi/L |            |       |             | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 0.9    | pCi/L |            |       |             | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.1    | pCi/L |            |       |             | A7500-RA  | 05/31/17 11:00 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA 6706150060 Lab ID: B17050604-010 Client Sample ID: APMW-4

Revised Date: 12/21/17 **Report Date:** 05/31/17 Collection Date: 05/04/17 12:56 DateReceived: 05/05/17

Matrix: Ground Water

|                                       |        |       |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |      |           |                         |
| Calcium                               | 532    | mg/L  |            | 1     |      | E200.7    | 05/11/17 23:48 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |      | E200.7    | 05/11/17 23:48 / rlh    |
| Potassium                             |        | mg/L  |            | 1     |      | E200.7    | 05/11/17 23:48 / rlh    |
| Sodium                                |        | mg/L  | D          | 2     |      | E200.7    | 05/11/17 23:48 / rlh    |
| PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| рН                                    | 6.0    | s.u.  | Н          | 0.1   |      | A4500-H B | 05/05/17 19:54 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 3930   | mg/L  | D          | 40    |      | A2540 C   | 05/08/17 11:08 / rik    |
| INORGANICS                            |        |       |            |       |      |           |                         |
| Chloride                              | 505    | mg/L  | D          | 3     |      | E300.0    | 05/10/17 07:34 / cjm    |
| Sulfate                               | 2330   | mg/L  | D          | 9     |      | E300.0    | 05/10/17 07:34 / cjm    |
| Fluoride                              | ND     | mg/L  |            | 0.1   |      | A4500-F C | 05/09/17 11:20 / bas    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 |      | E200.8    | 05/13/17 02:31 / jpv    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |      | E200.8    | 05/12/17 05:21 / jpv    |
| Barium                                | 0.01   | mg/L  |            | 0.01  |      | E200.7    | 05/11/17 23:48 / rlh    |
| Beryllium                             | ND     | mg/L  |            | 0.001 |      | E200.7    | 05/11/17 23:48 / rlh    |
| Boron                                 | 2.07   | mg/L  |            | 0.05  |      | E200.7    | 05/11/17 23:48 / rlh    |
| Cadmium                               | ND     | mg/L  |            | 0.005 |      | E200.7    | 05/11/17 23:48 / rlh    |
| Chromium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 05/12/17 05:21 / jpv    |
| Cobalt                                | ND     | mg/L  |            | 0.02  |      | E200.8    | 05/13/17 02:31 / jpv    |
| Lead                                  | ND     | mg/L  |            | 0.01  |      | E200.8    | 05/12/17 05:21 / jpv    |
| Lithium                               | 0.93   | mg/L  | D          | 0.02  |      | E200.7    | 05/11/17 23:48 / rlh    |
| Mercury                               | ND     | mg/L  |            | 0.001 |      | E245.1    | 05/08/17 16:37 / mas    |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |      | E200.7    | 05/11/17 23:48 / rlh    |
| Selenium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 05/12/17 05:21 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.002 |      | E200.8    | 05/12/17 05:21 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 226                            | 0.38   | pCi/L |            |       |      | E903.0    | 05/30/17 11:46 / eli-ca |
| Radium 226 precision (±)              | 0.15   | pCi/L |            |       |      | E903.0    | 05/30/17 11:46 / eli-ca |
| Radium 226 MDC                        | 0.17   | pCi/L |            |       |      | E903.0    | 05/30/17 11:46 / eli-ca |
| Radium 228                            | 2.0    | pCi/L |            |       |      | RA-05     | 05/24/17 10:30 / eli-ca |
| Radium 228 precision (±)              | 1.0    | pCi/L |            |       |      | RA-05     | 05/24/17 10:30 / eli-ca |
| Radium 228 MDC                        | 1.1    | pCi/L |            |       |      | RA-05     | 05/24/17 10:30 / eli-ca |
| Radium 226 + Radium 228               | 2.4    | pCi/L |            |       |      | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 precision (±) |        | pCi/L |            |       |      | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.1    | pCi/L |            |       |      | A7500-RA  | 05/31/17 11:00 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Matrix: Ground Water

### LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA 6706150060 Lab ID: B17050604-011

Client Sample ID: DUP-2

Revised Date: 12/21/17 **Report Date:** 05/31/17 Collection Date: 05/04/17 DateReceived: 05/05/17

| MAJOR IONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |        |       |            |       | MCL/ |           |                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Calcium         724 mg/L         1 mg/L         2 m                                                                                                                                                                                                                                               | Analyses                              | Result | Units | Qualifiers | RL    |      | Method    | Analysis Date / By      |
| Calcium         724 mg/L         1 mg/L         2 m                                                                                                                                                                                                                                               | MA IOR IONS                           |        |       |            |       |      |           |                         |
| Magnesium         182 mg/L         1         E200.7 b(5111/17 23:52 / rlh           Potassium         51 mg/L         1         E200.7 b(5111/17 23:52 / rlh           Sodium         1130 mg/L         D         4         E200.7 b(5111/17 23:52 / rlh           PHYSICAL PROPERTIES           pH         4.5 s.u.         H         0.1         A4500-H B         05/05/17 20:04 / plw           Solidas, Total Dissolved TDS @ 180 C         6490 mg/L         D         90         A2540 C         05/08/17 15:22 / rik           INORGANICS           Chloride         1860 mg/L         D         6         E300.0 05/10/17 07:53 / cjm           Sulfate         2510 mg/L         D         6         E300.0 05/10/17 07:53 / cjm           Fluoride         2510 mg/L         D         6         E300.0 05/10/17 07:53 / cjm           Sulfate         2510 mg/L         D         6         E300.0 05/10/17 07:53 / cjm           EWETALS, TOTAL RECOVERABLE           Antimony         ND mg/L         0.006         E200.8 05/13/17 02:35 / jpv           Barium         0.03 mg/L         0.01         E200.8 05/12/17 05:24 / jpv           Barium         0.03 mg/                                                                                                                                                                                                                                                                                                                                                                              |                                       | 724    | ma/l  |            | 1     |      | F200.7    | 05/11/17 23·52 / rlh    |
| Potassium         51 mg/L         1 mg/L         1 mg/L         1 mg/L         1 mg/L         1 mg/L         2 mg/L         2 mg/L         2 mg/L         2 mg/L         2 mg/L         200.7         05/11/17 23:52 / rlh         25/11/17 23:52 / rlh         < |                                       |        | Ū     |            |       |      |           |                         |
| Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                     |        | •     |            | -     |      |           |                         |
| PHYSICAL PROPERTIES           pH         4.5 s.u.         H 0.1         A4500-H B 05/05/17 20:04 / pjw           Solids, Total Dissolved TDS @ 180 C         6490 mg/L         D 90         A2540 C 05/08/17 15:22 / rik           INORGANICS           Chloride         1860 mg/L         D 6         E300.0 05/10/17 07:53 / cjm           Sulfate         2510 mg/L         D 20         E300.0 05/10/17 07:53 / cjm           Fluoride         2510 mg/L         D 20         E300.0 05/10/17 07:53 / cjm           Sulfate         2510 mg/L         D 20         E300.0 05/10/17 07:53 / cjm           Fluoride         2510 mg/L         D 1.4 A4500-F C 05/09/17 11:27 / bas           METALS, TOTAL RECOVERABLE           Antimony         ND mg/L         0.006         E200.8 05/13/17 02:35 / jpv           Arsenic         ND mg/L         0.01         E200.8 05/12/17 05:24 / jpv           Arsenic         ND mg/L         0.01         E200.8 05/12/17 05:24 / jpv           Beryllium         0.119 mg/L         0.001         E200.8 05/12/17 05:24 / jpv           Beryllium         0.119 mg/L         0.005         E200.8 05/12/17 05:24 / jpv           Beryllium <td></td> <td></td> <td>Ū</td> <td>D</td> <td>-</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                     |                                       |        | Ū     | D          | -     |      |           |                         |
| pH         4.5         s.u.         H         0.1         A4500-H B         05/05/17 20:04 / pjw           Solids, Total Dissolved TDS @ 180 C         6490 mg/L         D         90         A2540 C         05/08/17 20:04 / pjw           INORGANICS           Sulfate         1860 mg/L         D         6         E300.0         05/10/17 07:53 / cjm           Fluoride         2510 mg/L         D         20         E300.0         05/10/17 07:53 / cjm           Fluoride         2510 mg/L         D         20         E300.0         05/10/17 07:53 / cjm           Fluoride         2510 mg/L         D         20         E300.0         05/10/17 07:53 / cjm           Fluoride         2510 mg/L         D         20         E300.0         05/10/17 07:53 / cjm           Fluoride         2510 mg/L         D         20         E300.0         05/10/17 07:53 / cjm           METALS, TOTAL RECOVERABLE           Antimony         ND         mg/L         0.001         E200.8         05/13/17 02:35 / jpv           Arsenic         ND         mg/L         0.01         E200.8         05/13/17 02:35 / jpv           Barium                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | 1100   | 9/ =  | ٥          | •     |      | 2200.7    | 00/11/11/20:02/1111     |
| Solids, Total Dissolved TDS @ 180 C   6490 mg/L   D   90   A2540 C   05/08/17 15:22 / rik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| NORGANICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | рН                                    | 4.5    | s.u.  |            |       |      | A4500-H B | 05/05/17 20:04 / pjw    |
| Chloride 1860 mg/L D 6 E300.0 05/10/17 07:53 / cjm Sulfate 2510 mg/L D 20 E300.0 05/10/17 07:53 / cjm Fluoride 0.7 mg/L D 20 E300.0 05/10/17 07:53 / cjm Fluoride 0.7 mg/L D.1 A4500-F C 05/09/17 11:27 / bas METALS, TOTAL RECOVERABLE  Antimony ND mg/L 0.006 E200.8 05/13/17 02:35 / jpv Arsenic ND mg/L 0.01 E200.8 05/12/17 05:24 / jpv Barium 0.03 mg/L 0.01 E200.8 05/12/17 05:24 / jpv Barium 0.03 mg/L 0.01 E200.7 05/11/17 23:52 / rlh Beryllium 0.119 mg/L 0.001 E200.8 05/13/17 02:35 / jpv Boron 2.50 mg/L 0.05 E200.7 05/11/17 23:52 / rlh Cadmium 0.073 mg/L 0.005 E200.8 05/12/17 05:24 / jpv Chromium ND mg/L 0.001 E200.8 05/12/17 05:24 / jpv Chromium ND mg/L 0.01 E200.8 05/12/17 05:24 / jpv Chromium ND mg/L 0.01 E200.8 05/12/17 05:24 / jpv Lead ND mg/L 0.02 E200.8 05/13/17 02:35 / jpv Lead ND mg/L 0.01 E200.8 05/12/17 05:24 / jpv Lithium 0.67 mg/L 0.01 E200.8 05/12/17 05:24 / jpv Lithium 0.67 mg/L 0.01 E200.8 05/12/17 05:24 / jpv Selenium ND mg/L 0.001 E245.1 05/08/17 12:35 / rlh Mercury ND mg/L 0.001 E245.1 05/08/17 16:39 / mas Molybdenum ND mg/L 0.05 E200.8 05/13/17 02:35 / jpv Selenium ND mg/L 0.05 E200.8 05/13/17 02:35 / jpv RabloNUCLIDES - TOTAL Radium 226 precision (±) 1.2 pCi/L E903.0 05/30/17 11:46 / eli-ca Radium 226 precision (±) 1.2 pCi/L E903.0 05/30/17 11:46 / eli-ca Radium 228 precision (±) 3.8 pCi/L                                       | Solids, Total Dissolved TDS @ 180 C   | 6490   | mg/L  | D          | 90    |      | A2540 C   | 05/08/17 15:22 / rik    |
| Sulfate         2510 mg/L         D         20         E300.0         05/10/17 07:53 / cjm           Fluoride         0.7 mg/L         0.1         A4500-F C         05/09/17 11:27 / bas           METALS, TOTAL RECOVERABLE           Antimony         ND mg/L         0.006         E200.8         05/13/17 02:35 / jpv           Arsenic         ND mg/L         0.01         E200.8         05/13/17 02:35 / jpv           Beryllium         0.19 mg/L         0.01         E200.8         05/13/17 02:35 / jpv           Beryllium         0.119 mg/L         0.001         E200.8         05/13/17 02:35 / jpv           Boron         2.50 mg/L         0.001         E200.8         05/13/17 02:35 / jpv           Boron         2.50 mg/L         0.05         E200.7         05/11/17 23:52 / rlh           Cadmium         0.073 mg/L         0.005         E200.8         05/13/17 02:35 / jpv           Chromium         ND mg/L         0.01         E200.8         05/13/17 02:34 / jpv           Chobalt         0.62 mg/L         0.01         E200.8         05/13/17 02:34 / jpv           Lead         ND mg/L         0.01         E200.8         05/13/17 02:34 / jpv           Lithium         0.67 mg/L         D .04 <t< td=""><td>INORGANICS</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                 | INORGANICS                            |        |       |            |       |      |           |                         |
| Fluoride         0.7 mg/L         0.1         A4500-F C         05/09/17 11:27 / bas           METALS, TOTAL RECOVERABLE           Antimony         ND mg/L         0.006         E200.8         05/13/17 02:35 / jpv           Arsenic         ND mg/L         0.01         E200.8         05/12/17 05:24 / jpv           Barium         0.03 mg/L         0.01         E200.7         05/11/17 23:52 / rlh           Beryllium         0.119 mg/L         0.001         E200.8         05/13/17 02:35 / jpv           Boron         2.50 mg/L         0.05         E200.7         05/11/17 23:52 / rlh           Cadmium         0.073 mg/L         0.005         E200.8         05/12/17 05:24 / jpv           Chromium         ND mg/L         0.01         E200.8         05/12/17 05:24 / jpv           Chotal         0.62 mg/L         0.02         E200.8         05/12/17 05:24 / jpv           Chadium         0.62 mg/L         0.02         E200.8         05/12/17 05:24 / jpv           Lithium         0.67 mg/L         0.04         E200.8         05/12/17 05:24 / jpv           Mercury         ND mg/L         0.001         E245.1         05/08/17 11:39 / mas           Molybdenum         N                                                                                                                                                                                                                                                                                                                                             | Chloride                              | 1860   | mg/L  | D          | 6     |      | E300.0    | 05/10/17 07:53 / cjm    |
| Fluoride         0.7 mg/L         0.1         A4500-F C         05/09/17 11:27 / bas           METALS, TOTAL RECOVERABLE           Antimony         ND mg/L         0.006         E200.8         05/13/17 02:35 / jpv           Arsenic         ND mg/L         0.01         E200.8         05/12/17 05:24 / jpv           Barium         0.03 mg/L         0.01         E200.7         05/11/17 23:52 / rlh           Beryllium         0.119 mg/L         0.001         E200.8         05/13/17 02:35 / jpv           Boron         2.50 mg/L         0.05         E200.7         05/11/17 23:52 / rlh           Cadmium         0.073 mg/L         0.005         E200.8         05/12/17 05:24 / jpv           Chromium         ND mg/L         0.01         E200.8         05/12/17 05:24 / jpv           Chotal         0.62 mg/L         0.02         E200.8         05/12/17 05:24 / jpv           Chadium         0.62 mg/L         0.02         E200.8         05/12/17 05:24 / jpv           Lithium         0.67 mg/L         0.04         E200.8         05/12/17 05:24 / jpv           Mercury         ND mg/L         0.001         E245.1         05/08/17 11:39 / mas           Molybdenum         N                                                                                                                                                                                                                                                                                                                                             | Sulfate                               | 2510   | mg/L  | D          | 20    |      | E300.0    | 05/10/17 07:53 / cjm    |
| Antimony         ND         mg/L         0.006         E200.8         05/13/17 02:35 / jpv           Arsenic         ND         mg/L         0.01         E200.8         05/12/17 05:24 / jpv           Barium         0.03         mg/L         0.01         E200.7         05/11/17 23:52 / rlh           Beryllium         0.119         mg/L         0.001         E200.8         05/13/17 02:35 / jpv           Boron         2.50         mg/L         0.05         E200.7         05/11/17 02:35 / jpv           Boron         0.073         mg/L         0.005         E200.8         05/12/17 05:24 / jpv           Cadmium         0.073         mg/L         0.005         E200.8         05/12/17 05:24 / jpv           Chromium         ND         mg/L         0.01         E200.8         05/12/17 05:24 / jpv           Chromium         ND         mg/L         0.02         E200.8         05/13/17 02:35 / jpv           Cobalt         0.62         mg/L         0.02         E200.8         05/13/17 02:35 / jpv           Lead         ND         mg/L         0.01         E200.8         05/12/17 05:24 / jpv           Lithium         0.67         mg/L         0.04         E200.7         05/13/17 02:35 / jpv <td>Fluoride</td> <td>0.7</td> <td>mg/L</td> <td></td> <td>0.1</td> <td></td> <td>A4500-F C</td> <td></td>                                                                                                                                                                                                            | Fluoride                              | 0.7    | mg/L  |            | 0.1   |      | A4500-F C |                         |
| Antimony         ND         mg/L         0.006         E200.8         05/13/17 02:35 / jpv           Arsenic         ND         mg/L         0.01         E200.8         05/12/17 05:24 / jpv           Barium         0.03         mg/L         0.01         E200.7         05/11/17 23:52 / rlh           Beryllium         0.119         mg/L         0.001         E200.8         05/13/17 02:35 / jpv           Boron         2.50         mg/L         0.05         E200.7         05/11/17 02:35 / jpv           Boron         0.073         mg/L         0.005         E200.8         05/12/17 05:24 / jpv           Cadmium         0.073         mg/L         0.005         E200.8         05/12/17 05:24 / jpv           Chromium         ND         mg/L         0.01         E200.8         05/12/17 05:24 / jpv           Chromium         ND         mg/L         0.02         E200.8         05/13/17 02:35 / jpv           Cobalt         0.62         mg/L         0.02         E200.8         05/13/17 02:35 / jpv           Lead         ND         mg/L         0.01         E200.8         05/12/17 05:24 / jpv           Lithium         0.67         mg/L         0.04         E200.7         05/13/17 02:35 / jpv <td>METALS. TOTAL RECOVERABLE</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                              | METALS. TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Arsenic         ND         mg/L         0.01         E200.8         05/12/17 05:24 / jpv           Barium         0.03         mg/L         0.01         E200.7         05/11/17 23:52 / rlh           Beryllium         0.119         mg/L         0.001         E200.8         05/13/17 02:35 / jpv           Boron         2.50         mg/L         0.05         E200.7         05/11/17 23:52 / rlh           Cadmium         0.073         mg/L         0.005         E200.8         05/12/17 05:24 / jpv           Chromium         ND         mg/L         0.01         E200.8         05/12/17 05:24 / jpv           Chobalt         0.62         mg/L         0.01         E200.8         05/12/17 05:24 / jpv           Cobalt         0.62         mg/L         0.02         E200.8         05/13/17 02:35 / jpv           Lead         ND         mg/L         0.01         E200.8         05/13/17 02:35 / jpv           Lead         ND         mg/L         0.01         E200.8         05/13/17 02:35 / jpv           Lead         ND         mg/L         0.001         E200.8         05/13/17 02:35 / jpv           Lead         ND         mg/L         0.001         E245.1         05/08/17 10:39 / jpv                                                                                                                                                                                                                                                                                                                                   | •                                     | ND     | ma/L  |            | 0.006 |      | E200.8    | 05/13/17 02:35 / ipv    |
| Barium         0.03         mg/L         0.01         E200.7         05/11/17 23:52 / rlh           Beryllium         0.119         mg/L         0.001         E200.8         05/13/17 02:35 / jpv           Boron         2.50         mg/L         0.05         E200.7         05/11/17 23:52 / rlh           Cadmium         0.073         mg/L         0.005         E200.8         05/12/17 05:24 / jpv           Chromium         ND         mg/L         0.01         E200.8         05/12/17 05:24 / jpv           Cobalt         0.62         mg/L         0.01         E200.8         05/12/17 05:24 / jpv           Cobalt         0.62         mg/L         0.02         E200.8         05/12/17 05:24 / jpv           Cobalt         0.62         mg/L         0.02         E200.8         05/12/17 05:24 / jpv           Lead         ND         mg/L         0.01         E200.8         05/11/17 05:24 / jpv           Lithium         0.67         mg/L         0.04         E200.8         05/13/17 02:35 / jpv           Mercury         ND         mg/L         0.05         E200.8         05/13/17 02:35 / jpv           Selenium         ND         mg/L         0.05         E200.8         05/12/17 05:24 / jpv                                                                                                                                                                                                                                                                                                                         | •                                     |        | •     |            | 0.01  |      | E200.8    |                         |
| Beryllium         0.119 mg/L         0.001         E200.8         05/13/17 02:35 / jpv           Boron         2.50 mg/L         0.05         E200.7         05/11/17 23:52 / rlh           Cadmium         0.073 mg/L         0.005         E200.8         05/12/17 05:24 / jpv           Chromium         ND mg/L         0.01         E200.8         05/12/17 05:24 / jpv           Cobalt         0.62 mg/L         0.02         E200.8         05/13/17 02:35 / jpv           Lead         ND mg/L         0.01         E200.8         05/12/17 05:24 / jpv           Lithium         0.67 mg/L         D         0.04         E200.8         05/12/17 05:24 / jpv           Lithium         0.67 mg/L         D         0.04         E200.8         05/11/17 23:52 / rlh           Mercury         ND mg/L         0.001         E245.1         05/08/17 16:39 / mas           Molybdenum         ND mg/L         0.05         E200.8         05/13/17 02:35 / jpv           Selenium         ND mg/L         0.01         E200.8         05/12/17 05:24 / jpv           Thallium         0.09 mg/L         0.002         E200.8         05/12/17 05:24 / jpv           RADIONUCLIDES - TOTAL           Radium 226 precision (±)         1.2                                                                                                                                                                                                                                                                                                               | Barium                                |        | •     |            | 0.01  |      | E200.7    |                         |
| Cadmium         0.073 mg/L         0.005         E200.8         05/12/17 05:24 / jpv           Chromium         ND mg/L         0.01         E200.8         05/12/17 05:24 / jpv           Cobalt         0.62 mg/L         0.02         E200.8         05/13/17 02:35 / jpv           Lead         ND mg/L         0.01         E200.8         05/12/17 05:24 / jpv           Lithium         0.67 mg/L         D 0.04         E200.7         05/11/17 05:24 / jpv           Lithium         0.67 mg/L         D 0.04         E200.7         05/11/17 05:24 / jpv           Mercury         ND mg/L         0.001         E245.1         05/08/17 16:39 / mas           Molybdenum         ND mg/L         0.05         E200.8         05/13/17 02:35 / jpv           Selenium         ND mg/L         0.01         E200.8         05/12/17 05:24 / jpv           Thallium         0.09         mg/L         0.002         E200.8         05/12/17 05:24 / jpv           RADIONUCLIDES - TOTAL         E         E903.0         05/30/17 11:46 / eli-ca           Radium 226 precision (±)         1.2 pCi/L         E903.0         05/30/17 11:46 / eli-ca           Radium 228 MDC         0.18 pCi/L         E903.0         05/30/17 11:46 / eli-ca           Radiu                                                                                                                                                                                                                                                                                          | Beryllium                             |        | -     |            | 0.001 |      | E200.8    | 05/13/17 02:35 / jpv    |
| Chromium ND mg/L 0.01 E200.8 05/12/17 05:24 / jpv Cobalt 0.62 mg/L 0.02 E200.8 05/13/17 02:35 / jpv Lead ND mg/L 0.01 E200.8 05/13/17 02:35 / jpv Lead ND mg/L 0.01 E200.8 05/13/17 02:35 / jpv Lithium 0.67 mg/L D 0.04 E200.7 05/11/17 23:52 / rlh Mercury ND mg/L 0.001 E245.1 05/08/17 16:39 / mas Molybdenum ND mg/L 0.05 E200.8 05/13/17 02:35 / jpv Selenium ND mg/L 0.05 E200.8 05/13/17 02:35 / jpv Selenium ND mg/L 0.01 E200.8 05/13/17 02:35 / jpv Selenium ND mg/L 0.001 E200.8 05/12/17 05:24 / jpv Thallium 0.009 mg/L 0.002 E200.8 05/12/17 05:24 / jpv RADIONUCLIDES - TOTAL Radium 226 6 6.2 pCi/L E903.0 05/30/17 11:46 / eli-ca Radium 226 precision (±) 1.2 pCi/L E903.0 05/30/17 11:46 / eli-ca Radium 226 MDC 0.18 pCi/L E903.0 05/30/17 11:46 / eli-ca Radium 228 precision (±) 3.8 pCi/L RA-05 05/24/17 12:03 / eli-ca Radium 228 precision (±) 3.8 pCi/L RA-05 05/24/17 12:03 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Boron                                 | 2.50   | mg/L  |            | 0.05  |      | E200.7    | 05/11/17 23:52 / rlh    |
| Cobalt         0.62 mg/L         0.02         E200.8         05/13/17 02:35 / jpv           Lead         ND mg/L         0.01         E200.8         05/12/17 05:24 / jpv           Lithium         0.67 mg/L         D 0.04         E200.7         05/11/17 23:52 / rlh           Mercury         ND mg/L         0.001         E245.1         05/08/17 16:39 / mas           Molybdenum         ND mg/L         0.05         E200.8         05/13/17 02:35 / jpv           Selenium         ND mg/L         0.01         E200.8         05/12/17 05:24 / jpv           Thallium         0.009 mg/L         0.002         E200.8         05/12/17 05:24 / jpv           RADIONUCLIDES - TOTAL           Radium 226 precision (±)         1.2 pCi/L         E903.0         05/30/17 11:46 / eli-ca           Radium 226 precision (±)         1.2 pCi/L         E903.0         05/30/17 11:46 / eli-ca           Radium 226 MDC         0.18 pCi/L         E903.0         05/30/17 11:46 / eli-ca           Radium 228 precision (±)         3.8 pCi/L         RA-05         05/24/17 12:03 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cadmium                               | 0.073  | mg/L  |            | 0.005 |      | E200.8    | 05/12/17 05:24 / jpv    |
| Lead         ND mg/L         0.01         E200.8         05/12/17 05:24 / jpv           Lithium         0.67 mg/L         D 0.04         E200.7         05/11/17 23:52 / rlh           Mercury         ND mg/L         0.001         E245.1         05/08/17 16:39 / mas           Molybdenum         ND mg/L         0.05         E200.8         05/13/17 02:35 / jpv           Selenium         ND mg/L         0.01         E200.8         05/12/17 05:24 / jpv           Thallium         0.009 mg/L         0.002         E200.8         05/12/17 05:24 / jpv           RADIONUCLIDES - TOTAL           Radium 226         6.2 pCi/L         E903.0         05/30/17 11:46 / eli-ca           Radium 226 precision (±)         1.2 pCi/L         E903.0         05/30/17 11:46 / eli-ca           Radium 226 MDC         0.18 pCi/L         E903.0         05/30/17 11:46 / eli-ca           Radium 228 precision (±)         3.8 pCi/L         RA-05         05/24/17 12:03 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chromium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 05/12/17 05:24 / jpv    |
| Lithium 0.67 mg/L D 0.04 E200.7 05/11/17 23:52 / rlh  Mercury ND mg/L 0.001 E245.1 05/08/17 16:39 / mas  Molybdenum ND mg/L 0.05 E200.8 05/13/17 02:35 / jpv  Selenium ND mg/L 0.01 E200.8 05/13/17 05:24 / jpv  Thallium 0.009 mg/L 0.002 E200.8 05/12/17 05:24 / jpv  RADIONUCLIDES - TOTAL  Radium 226 PCi/L E903.0 05/30/17 11:46 / eli-ca  Radium 226 precision (±) 1.2 pCi/L E903.0 05/30/17 11:46 / eli-ca  Radium 226 MDC 0.18 pCi/L E903.0 05/30/17 11:46 / eli-ca  Radium 228 Precision (±) 3.8 pCi/L RA-05 05/24/17 12:03 / eli-ca  Radium 228 precision (±) 3.8 pCi/L RA-05 05/24/17 12:03 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cobalt                                | 0.62   | mg/L  |            | 0.02  |      | E200.8    | 05/13/17 02:35 / jpv    |
| Mercury         ND mg/L         0.001         E245.1         05/08/17 16:39 / mas           Molybdenum         ND mg/L         0.05         E200.8         05/13/17 02:35 / jpv           Selenium         ND mg/L         0.01         E200.8         05/12/17 05:24 / jpv           Thallium         0.009 mg/L         0.002         E200.8         05/12/17 05:24 / jpv           RADIONUCLIDES - TOTAL           Radium 226         6.2 pCi/L         E903.0         05/30/17 11:46 / eli-ca           Radium 226 precision (±)         1.2 pCi/L         E903.0         05/30/17 11:46 / eli-ca           Radium 226 MDC         0.18 pCi/L         E903.0         05/30/17 11:46 / eli-ca           Radium 228         20 pCi/L         E903.0         05/30/17 11:46 / eli-ca           Radium 228 precision (±)         3.8 pCi/L         RA-05         05/24/17 12:03 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lead                                  | ND     | mg/L  |            | 0.01  |      | E200.8    | 05/12/17 05:24 / jpv    |
| Molybdenum         ND mg/L         0.05         E200.8         05/13/17 02:35 / jpv           Selenium         ND mg/L         0.01         E200.8         05/12/17 05:24 / jpv           Thallium         0.009 mg/L         0.002         E200.8         05/12/17 05:24 / jpv           RADIONUCLIDES - TOTAL           Radium 226         6.2 pCi/L         E903.0         05/30/17 11:46 / eli-ca           Radium 226 precision (±)         1.2 pCi/L         E903.0         05/30/17 11:46 / eli-ca           Radium 226 MDC         0.18 pCi/L         E903.0         05/30/17 11:46 / eli-ca           Radium 228         20 pCi/L         E903.0         05/30/17 11:46 / eli-ca           Radium 228 precision (±)         3.8 pCi/L         RA-05         05/24/17 12:03 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lithium                               | 0.67   | mg/L  | D          | 0.04  |      | E200.7    | 05/11/17 23:52 / rlh    |
| Selenium         ND mg/L         0.01         E200.8         05/12/17 05:24 / jpv           Thallium         0.009 mg/L         0.002         E200.8         05/12/17 05:24 / jpv           RADIONUCLIDES - TOTAL           Radium 226         6.2 pCi/L         E903.0         05/30/17 11:46 / eli-ca           Radium 226 precision (±)         1.2 pCi/L         E903.0         05/30/17 11:46 / eli-ca           Radium 226 MDC         0.18 pCi/L         E903.0         05/30/17 11:46 / eli-ca           Radium 228         20 pCi/L         E903.0         05/30/17 11:46 / eli-ca           Radium 228 precision (±)         3.8 pCi/L         RA-05         05/24/17 12:03 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mercury                               | ND     | mg/L  |            | 0.001 |      | E245.1    | 05/08/17 16:39 / mas    |
| Thallium         0.009 mg/L         0.002         E200.8         05/12/17 05:24 / jpv           RADIONUCLIDES - TOTAL           Radium 226         6.2 pCi/L         E903.0         05/30/17 11:46 / eli-ca           Radium 226 precision (±)         1.2 pCi/L         E903.0         05/30/17 11:46 / eli-ca           Radium 226 MDC         0.18 pCi/L         E903.0         05/30/17 11:46 / eli-ca           Radium 228         20 pCi/L         RA-05         05/24/17 12:03 / eli-ca           Radium 228 precision (±)         3.8 pCi/L         RA-05         05/24/17 12:03 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Molybdenum                            | ND     | mg/L  |            | 0.05  |      | E200.8    | 05/13/17 02:35 / jpv    |
| RADIONUCLIDES - TOTAL         Radium 226       6.2 pCi/L       E903.0       05/30/17 11:46 / eli-ca         Radium 226 precision (±)       1.2 pCi/L       E903.0       05/30/17 11:46 / eli-ca         Radium 226 MDC       0.18 pCi/L       E903.0       05/30/17 11:46 / eli-ca         Radium 228       20 pCi/L       RA-05       05/24/17 12:03 / eli-ca         Radium 228 precision (±)       3.8 pCi/L       RA-05       05/24/17 12:03 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Selenium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 05/12/17 05:24 / jpv    |
| Radium 226       6.2 pCi/L       E903.0       05/30/17 11:46 / eli-ca         Radium 226 precision (±)       1.2 pCi/L       E903.0       05/30/17 11:46 / eli-ca         Radium 226 MDC       0.18 pCi/L       E903.0       05/30/17 11:46 / eli-ca         Radium 228       20 pCi/L       RA-05       05/24/17 12:03 / eli-ca         Radium 228 precision (±)       3.8 pCi/L       RA-05       05/24/17 12:03 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Thallium                              | 0.009  | mg/L  |            | 0.002 |      | E200.8    | 05/12/17 05:24 / jpv    |
| Radium 226 precision (±)       1.2 pCi/L       E903.0       05/30/17 11:46 / eli-ca         Radium 226 MDC       0.18 pCi/L       E903.0       05/30/17 11:46 / eli-ca         Radium 228       20 pCi/L       RA-05       05/24/17 12:03 / eli-ca         Radium 228 precision (±)       3.8 pCi/L       RA-05       05/24/17 12:03 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 226 MDC       0.18 pCi/L       E903.0       05/30/17 11:46 / eli-ca         Radium 228       20 pCi/L       RA-05       05/24/17 12:03 / eli-ca         Radium 228 precision (±)       3.8 pCi/L       RA-05       05/24/17 12:03 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Radium 226                            | 6.2    | pCi/L |            |       |      | E903.0    | 05/30/17 11:46 / eli-ca |
| Radium 226 MDC       0.18 pCi/L       E903.0       05/30/17 11:46 / eli-ca         Radium 228       20 pCi/L       RA-05       05/24/17 12:03 / eli-ca         Radium 228 precision (±)       3.8 pCi/L       RA-05       05/24/17 12:03 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Radium 226 precision (±)              | 1.2    | pCi/L |            |       |      | E903.0    | 05/30/17 11:46 / eli-ca |
| Radium 228       20 pCi/L       RA-05       05/24/17 12:03 / eli-ca         Radium 228 precision (±)       3.8 pCi/L       RA-05       05/24/17 12:03 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 0.18   | pCi/L |            |       |      | E903.0    | 05/30/17 11:46 / eli-ca |
| Radium 228 precision (±) 3.8 pCi/L RA-05 05/24/17 12:03 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Radium 228                            |        |       |            |       |      | RA-05     | 05/24/17 12:03 / eli-ca |
| Radium 228 MDC 1.3 pCi/L RA-05 05/24/17 12:03 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Radium 228 precision (±)              |        | •     |            |       |      | RA-05     | 05/24/17 12:03 / eli-ca |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,                                     |        | •     |            |       |      | RA-05     | 05/24/17 12:03 / eli-ca |
| Radium 226 + Radium 228 25.9 pCi/L A7500-RA 05/31/17 11:00 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Radium 226 + Radium 228               | 25.9   | pCi/L |            |       |      | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 precision (±) 4.0 pCi/L A7500-RA 05/31/17 11:00 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Radium 226 + Radium 228 precision (±) | 4.0    | pCi/L |            |       |      | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 MDC 1.4 pCi/L A7500-RA 05/31/17 11:00 / eli-ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Radium 226 + Radium 228 MDC           | 1.4    | pCi/L |            |       |      | A7500-RA  | 05/31/17 11:00 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Revised Date: 12/21/17

Collection Date: 05/04/17

**Report Date:** 05/31/17

### LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA 6706150060 Lab ID: B17050604-012

DateReceived: 05/05/17 Client Sample ID: DUP-3 Matrix: Ground Water

| Analyses                              | Result | Unito | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| Allalyses                             | Nesuit | Units | Qualifiers | - INL | - QUL       | Wethou    | Allalysis Date / By     |
| MAJOR IONS                            |        |       |            |       |             |           |                         |
| Calcium                               | 536    | mg/L  |            | 1     |             | E200.7    | 05/11/17 23:55 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |             | E200.7    | 05/11/17 23:55 / rlh    |
| Potassium                             |        | mg/L  |            | 1     |             | E200.7    | 05/11/17 23:55 / rlh    |
| Sodium                                | 682    | mg/L  | D          | 4     |             | E200.7    | 05/11/17 23:55 / rlh    |
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| рН                                    | 3.6    | s.u.  | Н          | 0.1   |             | A4500-H B | 05/05/17 20:09 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 4720   | mg/L  | D          | 40    |             | A2540 C   | 05/08/17 15:22 / rik    |
| INORGANICS                            |        |       |            |       |             |           |                         |
| Chloride                              | 464    | mg/L  | D          | 6     |             | E300.0    | 05/10/17 08:13 / cjm    |
| Sulfate                               |        | mg/L  | D          | 20    |             | E300.0    | 05/10/17 08:13 / cjm    |
| Fluoride                              |        | mg/L  | Б          | 0.1   |             | A4500-F C | 05/09/17 11:37 / bas    |
|                                       |        | 9/ =  |            | 0     |             | 71.000    | 00,00,11 11101 , 240    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Antimony                              |        | mg/L  |            | 0.006 |             | E200.8    | 05/13/17 02:38 / jpv    |
| Arsenic                               |        | mg/L  |            | 0.01  |             | E200.8    | 05/12/17 05:28 / jpv    |
| Barium                                |        | mg/L  |            | 0.01  |             | E200.7    | 05/11/17 23:55 / rlh    |
| Beryllium                             |        | mg/L  |            | 0.001 |             | E200.8    | 05/13/17 02:38 / jpv    |
| Boron                                 |        | mg/L  |            | 0.05  |             | E200.7    | 05/11/17 23:55 / rlh    |
| Cadmium                               |        | mg/L  |            | 0.005 |             | E200.8    | 05/12/17 05:28 / jpv    |
| Chromium                              |        | mg/L  |            | 0.01  |             | E200.8    | 05/12/17 05:28 / jpv    |
| Cobalt                                |        | mg/L  |            | 0.02  |             | E200.8    | 05/13/17 02:38 / jpv    |
| Lead                                  |        | mg/L  |            | 0.01  |             | E200.8    | 05/12/17 05:28 / jpv    |
| Lithium                               |        | mg/L  | D          | 0.04  |             | E200.7    | 05/11/17 23:55 / rlh    |
| Mercury                               |        | mg/L  |            | 0.001 |             | E245.1    | 05/08/17 16:41 / mas    |
| Molybdenum                            |        | mg/L  |            | 0.05  |             | E200.8    | 05/13/17 02:38 / jpv    |
| Selenium                              |        | mg/L  |            | 0.01  |             | E200.8    | 05/12/17 05:28 / jpv    |
| Thallium                              | 0.002  | mg/L  |            | 0.002 |             | E200.8    | 05/12/17 05:28 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 226                            | 1.1    | pCi/L |            |       |             | E903.0    | 05/30/17 13:27 / eli-ca |
| Radium 226 precision (±)              | 0.29   | pCi/L |            |       |             | E903.0    | 05/30/17 13:27 / eli-ca |
| Radium 226 MDC                        | 0.18   | pCi/L |            |       |             | E903.0    | 05/30/17 13:27 / eli-ca |
| Radium 228                            | 2.4    | pCi/L |            |       |             | RA-05     | 05/24/17 12:03 / eli-ca |
| Radium 228 precision (±)              | 0.91   | pCi/L |            |       |             | RA-05     | 05/24/17 12:03 / eli-ca |
| Radium 228 MDC                        |        | pCi/L |            |       |             | RA-05     | 05/24/17 12:03 / eli-ca |
| Radium 226 + Radium 228               | 3.5    | pCi/L |            |       |             | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1      | pCi/L |            |       |             | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.4    | pCi/L |            |       |             | A7500-RA  | 05/31/17 11:00 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

 Project:
 TMPA 6706150060

 Lab ID:
 B17050604-013

 Client Sample ID:
 EQBK-BJG-50417

Revised Date: 12/21/17
Report Date: 05/31/17
Collection Date: 05/04/17 13:54
DateReceived: 05/05/17

Matrix: Ground Water

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| MAJOR IONS                            |        |       |            |       |             |           |                         |
| Calcium                               | ND     | mg/L  |            | 1     |             | E200.7    | 05/11/17 23:59 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |             | E200.7    | 05/11/17 23:59 / rlh    |
| Potassium                             |        | mg/L  |            | 1     |             | E200.7    | 05/11/17 23:59 / rlh    |
| Sodium                                |        | mg/L  |            | 1     |             | E200.7    | 05/11/17 23:59 / rlh    |
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| рН                                    | 5.6    | s.u.  | Н          | 0.1   |             | A4500-H B | 05/05/17 20:12 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | ND     | mg/L  |            | 10    |             | A2540 C   | 05/08/17 15:22 / rik    |
| INORGANICS                            |        |       |            |       |             |           |                         |
| Chloride                              | ND     | mg/L  |            | 1     |             | E300.0    | 05/10/17 08:32 / cjm    |
| Sulfate                               | ND     | mg/L  |            | 1     |             | E300.0    | 05/10/17 08:32 / cjm    |
| Fluoride                              | ND     | mg/L  |            | 0.1   |             | A4500-F C | 05/09/17 11:46 / bas    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Antimony                              | ND     | mg/L  | L          | 0.02  |             | E200.7    | 05/11/17 23:59 / rlh    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 05/12/17 05:41 / jpv    |
| Barium                                | ND     | mg/L  |            | 0.01  |             | E200.7    | 05/11/17 23:59 / rlh    |
| Beryllium                             | ND     | mg/L  |            | 0.001 |             | E200.7    | 05/11/17 23:59 / rlh    |
| Boron                                 | ND     | mg/L  |            | 0.05  |             | E200.7    | 05/11/17 23:59 / rlh    |
| Cadmium                               | ND     | mg/L  |            | 0.005 |             | E200.8    | 05/12/17 05:41 / jpv    |
| Chromium                              |        | mg/L  |            | 0.01  |             | E200.7    | 05/11/17 23:59 / rlh    |
| Cobalt                                | ND     | mg/L  |            | 0.02  |             | E200.7    | 05/11/17 23:59 / rlh    |
| Lead                                  | ND     | mg/L  |            | 0.01  |             | E200.8    | 05/12/17 05:41 / jpv    |
| Lithium                               | ND     | mg/L  |            | 0.01  |             | E200.7    | 05/11/17 23:59 / rlh    |
| Mercury                               | ND     | mg/L  |            | 0.001 |             | E245.1    | 05/08/17 16:47 / mas    |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.7    | 05/11/17 23:59 / rlh    |
| Selenium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 05/12/17 05:41 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.002 |             | E200.8    | 05/12/17 05:41 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 226                            | 0.09   | pCi/L | U          |       |             | E903.0    | 05/30/17 13:27 / eli-ca |
| Radium 226 precision (±)              | 0.11   | pCi/L |            |       |             | E903.0    | 05/30/17 13:27 / eli-ca |
| Radium 226 MDC                        | 0.18   | pCi/L |            |       |             | E903.0    | 05/30/17 13:27 / eli-ca |
| Radium 228                            |        | pCi/L |            |       |             | RA-05     | 05/24/17 10:30 / eli-ca |
| Radium 228 precision (±)              |        | pCi/L |            |       |             | RA-05     | 05/24/17 10:30 / eli-ca |
| Radium 228 MDC                        | 1.2    | pCi/L |            |       |             | RA-05     | 05/24/17 10:30 / eli-ca |
| Radium 226 + Radium 228               |        | pCi/L |            |       |             | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1      | pCi/L |            |       |             | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.2    | pCi/L |            |       |             | A7500-RA  | 05/31/17 11:00 / eli-ca |

Report Definitions:

RL - Analyte reporting limit.

QCL - Quality control limit.

MDC - Minimum detectable concentration

L - Lowest available reporting limit for the analytical method used.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

U - Not detected at minimum detectable concentration



Prepared by Casper, WY Branch

Client:Texas Municipal Power AgencyReport Date:05/31/17Project:TMPA 6706150060Work Order:B17050604

| Analyte                                                                  | Result Units F                                | RL %REC Low Limit High Limit RPD RPDLimit Qual        |
|--------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------|
| Method: E903.0                                                           |                                               | Batch: RA226-850                                      |
| <b>Lab ID: LCS-RA226-8500</b> Radium 226                                 | Laboratory Control Sample<br>8.3 pCi/L        | Run: G5000W_170516B 05/30/17 11:4<br>82 80 120        |
| Lab ID: MB-RA226-8500 Radium 226 Radium 226 precision (±) Radium 226 MDC | Method Blank  0.1 pCi/L  0.1 pCi/L  0.2 pCi/L | Run: G5000W_170516B 05/30/17 11:4<br>U                |
| <b>Lab ID: B17050604-001CMS</b> Radium 226                               | Sample Matrix Spike<br>19 pCi/L               | Run: G5000W_170516B 05/30/17 11:4<br>82 70 130        |
| <b>Lab ID: B17050604-001CMSD</b> Radium 226                              | Sample Matrix Spike Duplicate<br>17 pCi/L     | Run: G5000W_170516B 05/30/17 11:4<br>76 70 130 6.7 20 |





Prepared by Casper, WY Branch

Client: Texas Municipal Power Agency **Report Date:** 05/31/17 Project: TMPA 6706150060 Work Order: B17050604

| Analyte                    | Result Units               | RL %REC Low Limit High Limit RPD RPDLimit Qual |
|----------------------------|----------------------------|------------------------------------------------|
| Method: RA-05              |                            | Batch: RA228-5500                              |
| Lab ID: LCS-228-RA226-8500 | Laboratory Control Sample  | Run: TENNELEC-3_170516B 05/24/17 10:30         |
| Radium 228                 | 9.8 pCi/L                  | 91 80 120                                      |
| Lab ID: MB-RA226-8500      | Method Blank               | Run: TENNELEC-3_170516B 05/24/17 10:30         |
| Radium 228                 | 0.5 pCi/L                  | U                                              |
| Radium 228 precision (±)   | 0.8 pCi/L                  |                                                |
| Radium 228 MDC             | 1 pCi/L                    |                                                |
| Lab ID: B17050604-013CMS   | Sample Matrix Spike        | Run: TENNELEC-3_170516B 05/24/17 10:30         |
| Radium 228                 | 20 pCi/L                   | 82 70 130                                      |
| Lab ID: B17050604-013CMSD  | Sample Matrix Spike Duplic | ate Run: TENNELEC-3_170516B 05/24/17 10:30     |
| Radium 228                 | 20 pCi/L                   | 80 70 130 2.0 20                               |



Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date: 05/24/17Project:TMPA 6706150060Work Order: B17050604

| Analyte                         | Count           | Result      | Units       | RL | %REC | Low Limit  | High Limit    | RPD | RPDLimit | Qual      |
|---------------------------------|-----------------|-------------|-------------|----|------|------------|---------------|-----|----------|-----------|
| Method: A2540 C                 |                 |             |             |    |      |            |               |     | Batch    | n: 109290 |
| Lab ID: MB-109290               | Metho           | od Blank    |             |    |      | Run: BAL#  | SD-15_170508D |     | 05/08/   | 17 11:05  |
| Solids, Total Dissolved TDS @ 1 | 80 C            | ND          | mg/L        | 4  |      |            |               |     |          |           |
| Lab ID: LCS-109290              | Labor           | ratory Con  | trol Sample | е  |      | Run: BAL # | SD-15_170508D |     | 05/08/   | 17 11:05  |
| Solids, Total Dissolved TDS @ 1 | 80 C            | 976         | mg/L        | 10 | 99   | 90         | 110           |     |          |           |
| Lab ID: B17050573-001A DU       | J <b>P</b> Samp | ole Duplica | ite         |    |      | Run: BAL # | SD-15_170508D |     | 05/08/   | 17 11:05  |
| Solids, Total Dissolved TDS @ 1 | 80 C            | 213         | mg/L        | 10 |      |            |               | 3.0 | 5        |           |
| Lab ID: B17050604-001A DU       | J <b>P</b> Samp | ole Duplica | ite         |    |      | Run: BAL # | SD-15_170508D |     | 05/08/   | 17 11:07  |
| Solids, Total Dissolved TDS @ 1 | 80 C            | 6720        | mg/L        | 85 |      |            |               | 0.0 | 5        |           |
| Method: A2540 C                 |                 |             |             |    |      |            |               |     | Batch    | n: 109303 |
| Lab ID: MB-109303               | Metho           | od Blank    |             |    |      | Run: BAL#  | SD-15_170508E |     | 05/08/   | 17 15:21  |
| Solids, Total Dissolved TDS @ 1 | 80 C            | ND          | mg/L        | 4  |      |            |               |     |          |           |
| Lab ID: LCS-109303              | Labor           | ratory Con  | trol Sample | е  |      | Run: BAL # | SD-15_170508E |     | 05/08/   | 17 15:22  |
| Solids, Total Dissolved TDS @ 1 | 80 C            | 988         | mg/L        | 10 | 99   | 90         | 110           |     |          |           |
| Lab ID: B17050604-011A DU       | J <b>P</b> Samp | ole Duplica | ite         |    |      | Run: BAL # | SD-15_170508E |     | 05/08/   | 17 15:22  |
| Solids, Total Dissolved TDS @ 1 | 80 C            | 6380        | mg/L        | 87 |      |            |               | 1.7 | 5        |           |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:05/24/17Project:TMPA 6706150060Work Order:B17050604

| Analyte  |                   | Count  | Result        | Units              | RL     | %REC | Low Limit | High Limit   | RPD     | RPDLimit  | Qual     |
|----------|-------------------|--------|---------------|--------------------|--------|------|-----------|--------------|---------|-----------|----------|
| Method:  | A4500-F C         |        |               |                    |        |      |           | Analytica    | al Run: | MAN-TECH_ | _170508B |
| Lab ID:  | ICV               | Initia | al Calibratio | on Verification St | andard |      |           |              |         | 05/08/    | 17 16:59 |
| Fluoride |                   |        | 1.01          | mg/L               | 0.10   | 101  | 90        | 110          |         |           |          |
| Method:  | A4500-F C         |        |               |                    |        |      |           |              |         | Batch:    | R279515  |
| Lab ID:  | MBLK              | Met    | hod Blank     |                    |        |      | Run: MAN- | TECH_170508B |         | 05/08/    | 17 16:54 |
| Fluoride |                   |        | ND            | mg/L               | 0.02   |      |           |              |         |           |          |
| Lab ID:  | LFB               | Lab    | oratory For   | tified Blank       |        |      | Run: MAN- | TECH_170508B |         | 05/08/    | 17 16:56 |
| Fluoride |                   |        | 0.980         | mg/L               | 0.10   | 98   | 90        | 110          |         |           |          |
| Lab ID:  | B17050599-001AMS  | San    | nple Matrix   | Spike              |        |      | Run: MAN- | TECH 170508B |         | 05/08/    | 17 20:21 |
| Fluoride |                   |        | 1.10          | mg/L               | 0.10   | 102  | 80        | 120          |         |           |          |
| Lab ID:  | B17050599-001AMSI | D Sam  | nple Matrix   | Spike Duplicate    |        |      | Run: MAN- | TECH_170508B |         | 05/08/    | 17 20:24 |
| Fluoride |                   |        | 1.10          | mg/L               | 0.10   | 102  | 80        | 120          | 0.0     | 10        |          |
| Method:  | A4500-F C         |        |               |                    |        |      |           | Analytica    | al Run: | MAN-TECH_ | _170509A |
| Lab ID:  | ICV               | Initia | al Calibratio | on Verification St | andard |      |           |              |         | 05/09/    | 17 10:18 |
| Fluoride |                   |        | 1.03          | mg/L               | 0.10   | 103  | 90        | 110          |         |           |          |
| Method:  | A4500-F C         |        |               |                    |        |      |           |              |         | Batch:    | R279548  |
| Lab ID:  | MBLK              | Met    | hod Blank     |                    |        |      | Run: MAN- | TECH_170509A |         | 05/09/    | 17 10:13 |
| Fluoride |                   |        | ND            | mg/L               | 0.02   |      |           |              |         |           |          |
| Lab ID:  | LFB               | Lab    | oratory For   | tified Blank       |        |      | Run: MAN- | TECH_170509A |         | 05/09/    | 17 10:16 |
| Fluoride |                   |        | 1.01          | mg/L               | 0.10   | 101  | 90        | 110          |         |           |          |
| Lab ID:  | B17050604-009AMS  | San    | nple Matrix   | Spike              |        |      | Run: MAN- | TECH_170509A |         | 05/09/    | 17 10:44 |
| Fluoride |                   |        | 1.61          | mg/L               | 0.10   | 42   | 80        | 120          |         |           | S        |
| Lab ID:  | B17050604-009AMSI | D Sam  | nple Matrix   | Spike Duplicate    |        |      | Run: MAN- | TECH_170509A |         | 05/09/    | 17 10:54 |
| Fluoride |                   |        | 1.59          | mg/L               | 0.10   | 40   | 80        | 120          | 1.2     | 10        | S        |

### Qualifiers:



Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date: 05/24/17Project:TMPA 6706150060Work Order: B17050604

| Analyte |                   | Count        | Result         | Units        | RL               | %REC      | Low Limit | High Limit   | RPD       | RPDLimit    | Qual      |
|---------|-------------------|--------------|----------------|--------------|------------------|-----------|-----------|--------------|-----------|-------------|-----------|
| Method: | A4500-H B         |              |                |              |                  |           |           | Analytica    | l Run: Pl | HSC _101-B_ | _170505A  |
| Lab ID: | pH 8              | Init         | ial Calibratio | n Verificati | on Standard      |           |           |              |           | 05/05/      | /17 09:02 |
| рН      |                   |              | 7.98           | s.u.         | 0.10             | 100       | 98        | 102          |           |             |           |
| Lab ID: | CCV - pH 7        | Coi          |                |              | 05/05/           | /17 18:51 |           |              |           |             |           |
| рН      |                   |              | 7.04           | s.u.         | 0.10             | 101       | 98        | 102          |           |             |           |
| Lab ID: | CCV - pH 7        | Coi          | ntinuing Cali  | bration Ver  | ification Standa | rd        |           |              |           | 05/05/      | /17 19:56 |
| рН      |                   |              | 7.03           | s.u.         | 0.10             | 100       | 98        | 102          |           |             |           |
| Method: | A4500-H B         |              |                |              |                  |           |           |              |           | Batch:      | R279325   |
| Lab ID: | B17050604-001ADUF | <b>S</b> ar  | mple Duplica   | ate          |                  |           | Run: PHSC | _101-B_17050 | 5A        | 05/05/      | /17 19:30 |
| рН      |                   |              | 6.62           | s.u.         | 0.10             |           |           |              | 0.2       | 3           |           |
| Lab ID: | B17050604-011ADU  | <b>S</b> Sar | mple Duplica   | ate          |                  |           | Run: PHSC | _101-B_17050 | 5A        | 05/05/      | /17 20:07 |
| рН      |                   |              | 4.52           | s.u.         | 0.10             |           |           |              | 0.0       | 3           |           |

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**Revised Date:** 12/21/17 **Report Date:** 05/31/17

**Project**: TMPA 6706150060 **Work Order**: B17050604

| Analyte   |                   | Count    | Result      | Units       | RL                 | %REC | Low Limit  | High Limit  | RPD RPDLimit        | Qual      |
|-----------|-------------------|----------|-------------|-------------|--------------------|------|------------|-------------|---------------------|-----------|
| Method:   | E200.7            |          |             |             |                    |      |            | Analy       | tical Run: ICP203-B | _170510A  |
| Lab ID:   | ICV               | 7 Con    | tinuing Cal | ibration Ve | erification Standa | rd   |            |             | 05/10               | /17 11:38 |
| Barium    |                   |          | 2.50        | mg/L        | 0.10               | 100  | 95         | 105         |                     |           |
| Boron     |                   |          | 2.51        | mg/L        | 0.10               | 100  | 95         | 105         |                     |           |
| Calcium   |                   |          | 24.7        | mg/L        | 1.0                | 99   | 95         | 105         |                     |           |
| Lithium   |                   |          | 1.23        | mg/L        | 0.10               | 99   | 95         | 105         |                     |           |
| Magnesium | n                 |          | 24.3        | mg/L        | 1.0                | 97   | 95         | 105         |                     |           |
| Potassium |                   |          | 24.8        | mg/L        | 1.0                | 99   | 95         | 105         |                     |           |
| Sodium    |                   |          | 24.8        | mg/L        | 1.0                | 99   | 95         | 105         |                     |           |
| Method:   | E200.7            |          |             |             |                    |      |            |             | Batc                | h: 109251 |
| Lab ID:   | MB-109251         | 12 Meth  | nod Blank   |             |                    |      | Run: ICP20 | 3-B_170510A | 05/10               | /17 23:22 |
| Antimony  |                   |          | ND          | mg/L        | 0.02               |      |            | _           |                     |           |
| Barium    |                   |          | ND          | mg/L        | 0.0005             |      |            |             |                     |           |
| Beryllium |                   |          | ND          | mg/L        | 0.0001             |      |            |             |                     |           |
| Boron     |                   |          | ND          | mg/L        | 0.003              |      |            |             |                     |           |
| Calcium   |                   |          | ND          | mg/L        | 0.08               |      |            |             |                     |           |
| Chromium  |                   |          | ND          | mg/L        | 0.002              |      |            |             |                     |           |
| Cobalt    |                   |          | ND          | mg/L        | 0.005              |      |            |             |                     |           |
| Lithium   |                   |          | ND          | mg/L        | 0.004              |      |            |             |                     |           |
| Magnesium | n                 |          | ND          | mg/L        | 0.01               |      |            |             |                     |           |
| Molybdenu | m                 |          | ND          | mg/L        | 0.007              |      |            |             |                     |           |
| Potassium |                   |          | ND          | mg/L        | 0.07               |      |            |             |                     |           |
| Sodium    |                   |          | ND          | mg/L        | 0.03               |      |            |             |                     |           |
| Lab ID:   | LCS-109251        | 12 Labo  | oratory Co  | ntrol Samp  | ole                |      | Run: ICP20 | 3-B_170510A | 05/10               | /17 23:25 |
| Antimony  |                   |          | 0.463       | mg/L        | 0.10               | 93   | 85         | 115         |                     |           |
| Barium    |                   |          | 0.471       | mg/L        | 0.10               | 94   | 85         | 115         |                     |           |
| Beryllium |                   |          | 0.244       | mg/L        | 0.010              | 98   | 85         | 115         |                     |           |
| Boron     |                   |          | 0.446       | mg/L        | 0.10               | 89   | 85         | 115         |                     |           |
| Calcium   |                   |          | 24.5        | mg/L        | 1.0                | 98   | 85         | 115         |                     |           |
| Chromium  |                   |          | 0.483       | mg/L        | 0.050              | 97   | 85         | 115         |                     |           |
| Cobalt    |                   |          | 0.470       | mg/L        | 0.050              | 94   | 85         | 115         |                     |           |
| Lithium   |                   |          | 0.484       | mg/L        | 0.10               | 97   | 85         | 115         |                     |           |
| Magnesium | n                 |          | 24.6        | mg/L        | 1.0                | 99   | 85         | 115         |                     |           |
| Molybdenu | ım                |          | 0.475       | mg/L        | 0.10               | 95   | 85         | 115         |                     |           |
| Potassium |                   |          | 24.2        | mg/L        | 1.0                | 97   | 85         | 115         |                     |           |
| Sodium    |                   |          | 24.7        | mg/L        | 1.0                | 99   | 85         | 115         |                     |           |
| Lab ID:   | B17050604-001BMS3 | 3 12 Sam | ple Matrix  | Spike       |                    |      | Run: ICP20 | 3-B_170510A | 05/11               | /17 00:22 |
| Antimony  |                   |          | 0.471       | mg/L        | 0.41               | 94   | 70         | 130         |                     |           |
| Barium    |                   |          | 0.525       | mg/L        | 0.050              | 101  | 70         | 130         |                     |           |
| Beryllium |                   |          | 0.268       | mg/L        | 0.0029             | 106  | 70         | 130         |                     |           |
| Boron     |                   |          | 1.04        | mg/L        | 0.068              | 98   | 70         | 130         |                     |           |
| Calcium   |                   |          | 810         | mg/L        | 1.6                |      | 70         | 130         |                     | Α         |
| Chromium  |                   |          | 0.494       | mg/L        | 0.041              | 99   | 70         | 130         |                     |           |
| Cobalt    |                   |          | 0.562       | mg/L        | 0.10               | 112  | 70         | 130         |                     |           |

### Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

MDC - Minimum detectable concentration

Result

Units



Count

# **QA/QC Summary Report**

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency Revised Date: 12/21/17 **Report Date:** 05/31/17 Work Order: B17050604

Project: TMPA 6706150060

**Analyte** 

RL %REC Low Limit High Limit **RPD RPDLimit** Qual Batch: 109251

| Method:   | E200.7            |                  |                 |        |     |               |          |     | Batch  | : 109251 |
|-----------|-------------------|------------------|-----------------|--------|-----|---------------|----------|-----|--------|----------|
| Lab ID:   | B17050604-001BMS3 | 12 Sample Matrix | Spike           |        |     | Run: ICP203-B | _170510A |     | 05/11/ | 17 00:22 |
| Lithium   |                   | 1.00             | mg/L            | 0.10   | 94  | 70            | 130      |     |        |          |
| Magnesiur | n                 | 145              | mg/L            | 1.5    |     | 70            | 130      |     |        | Α        |
| Molybdenu | ım                | 0.579            | mg/L            | 0.14   | 116 | 70            | 130      |     |        |          |
| Potassium | ı                 | 76.1             | mg/L            | 1.4    | 116 | 70            | 130      |     |        |          |
| Sodium    |                   | 1590             | mg/L            | 8.4    |     | 70            | 130      |     |        | Α        |
| Lab ID:   | B17050604-001BMSD | 12 Sample Matrix | Spike Duplicate |        |     | Run: ICP203-B | _170510A |     | 05/11/ | 17 00:25 |
| Antimony  |                   | ND               | mg/L            | 0.41   | 0   | 70            | 130      |     | 20     | 0        |
| Barium    |                   | 0.516            | mg/L            | 0.050  | 99  | 70            | 130      | 1.9 | 20     |          |
| Beryllium |                   | 0.270            | mg/L            | 0.0029 | 107 | 70            | 130      | 8.0 | 20     |          |
| Boron     |                   | 1.10             | mg/L            | 0.068  | 110 | 70            | 130      | 5.7 | 20     |          |
| Calcium   |                   | 809              | mg/L            | 1.6    |     | 70            | 130      | 0.1 | 20     | Α        |
| Chromium  |                   | 0.498            | mg/L            | 0.041  | 100 | 70            | 130      | 1.0 | 20     |          |
| Cobalt    |                   | 0.605            | mg/L            | 0.10   | 121 | 70            | 130      | 7.3 | 20     |          |
| Lithium   |                   | 1.01             | mg/L            | 0.10   | 96  | 70            | 130      | 0.6 | 20     |          |
| Magnesiur | n                 | 146              | mg/L            | 1.5    |     | 70            | 130      | 0.9 | 20     | Α        |
| Molybdenu | ım                | 0.560            | mg/L            | 0.14   | 112 | 70            | 130      | 3.2 | 20     |          |
| Potassium | 1                 | 70.1             | mg/L            | 1.4    | 92  | 70            | 130      | 8.2 | 20     |          |
| Sodium    |                   | 1550             | mg/L            | 8.4    |     | 70            | 130      | 2.6 | 20     | Α        |

### Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

O - Diluted out.

MDC - Minimum detectable concentration

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**Project:** TMPA 6706150060

**Revised Date:** 12/21/17 **Report Date:** 05/31/17

Work Order: B17050604

| Analyte   |           | Count   | Result       | Units         | RL              | %REC | Low Limit     | High Limit    | RPD RPDI       | Limit | Qual             |
|-----------|-----------|---------|--------------|---------------|-----------------|------|---------------|---------------|----------------|-------|------------------|
| Method:   | E200.7    |         |              |               |                 |      |               | Analy         | tical Run: ICP | 203-B | _170511 <i>A</i> |
| Lab ID:   | ICV       | 13 Co   | ntinuing Cal | ibration Veri | fication Standa | rd   |               |               |                | 05/11 | /17 13:24        |
| Antimony  |           |         | 2.50         | mg/L          | 0.050           | 100  | 95            | 105           |                |       |                  |
| Barium    |           |         | 2.45         | mg/L          | 0.10            | 98   | 95            | 105           |                |       |                  |
| Beryllium |           |         | 1.24         | mg/L          | 0.010           | 99   | 95            | 105           |                |       |                  |
| Boron     |           |         | 2.46         | mg/L          | 0.10            | 99   | 95            | 105           |                |       |                  |
| Cadmium   |           |         | 2.47         | mg/L          | 0.010           | 99   | 95            | 105           |                |       |                  |
| Calcium   |           |         | 25.8         | mg/L          | 1.0             | 103  | 95            | 105           |                |       |                  |
| Chromium  |           |         | 2.43         | mg/L          | 0.050           | 97   | 95            | 105           |                |       |                  |
| Cobalt    |           |         | 2.46         | mg/L          | 0.020           | 98   | 95            | 105           |                |       |                  |
| Lithium   |           |         | 1.30         | mg/L          | 0.10            | 104  | 95            | 105           |                |       |                  |
| Magnesiur | m         |         | 25.6         | mg/L          | 1.0             | 102  | 95            | 105           |                |       |                  |
| Molybdenu |           |         | 2.50         | mg/L          | 0.10            | 100  | 95            | 105           |                |       |                  |
| Potassium |           |         | 25.8         | mg/L          | 1.0             | 103  | 95            | 105           |                |       |                  |
| Sodium    |           |         | 25.8         | mg/L          | 1.0             | 103  | 95            | 105           |                |       |                  |
| Method:   | E200.7    |         |              |               |                 |      |               |               |                | Bato  | h: 109251        |
| Lab ID:   | MB-109251 | 12 Me   | thod Blank   |               |                 |      | Run: ICP20    | 3-B 170511A   |                |       | /17 22:59        |
| Antimony  |           | 1010    | ND           | mg/L          | 0.02            |      | 11011.101 20  | .o B_11001111 |                | 00/11 | 717 22.00        |
| Barium    |           |         | 0.0006       | mg/L          | 0.0005          |      |               |               |                |       |                  |
| Beryllium |           |         | ND           | mg/L          | 0.0001          |      |               |               |                |       |                  |
| Boron     |           |         | ND           | mg/L          | 0.003           |      |               |               |                |       |                  |
| Calcium   |           |         | ND           | mg/L          | 0.08            |      |               |               |                |       |                  |
| Chromium  |           |         | ND           | mg/L          | 0.002           |      |               |               |                |       |                  |
| Cobalt    |           |         | ND           | mg/L          | 0.005           |      |               |               |                |       |                  |
| Lithium   |           |         | ND           | mg/L          | 0.004           |      |               |               |                |       |                  |
| Magnesiur | m         |         | ND           | mg/L          | 0.01            |      |               |               |                |       |                  |
| Molybdenu |           |         | ND           | mg/L          | 0.007           |      |               |               |                |       |                  |
| Potassium |           |         | ND           | mg/L          | 0.07            |      |               |               |                |       |                  |
| Sodium    | •         |         | ND           | mg/L          | 0.03            |      |               |               |                |       |                  |
| Method:   | E200.7    |         |              |               |                 |      |               |               |                | Bato  | h: 109252        |
| Lab ID:   | MB-109252 | 13 Ma   | thod Blank   |               |                 |      | Pun: ICD20    | 3-B_170511A   |                |       | /17 23:17        |
| Antimony  | 100202    | 10 IVIE | ND           | mg/L          | 0.02            |      | IXUII. IOI 20 | 13-B_170311A  |                | 03/11 | /11 25.11        |
| Barium    |           |         | ND           | mg/L          | 0.0005          |      |               |               |                |       |                  |
| Beryllium |           |         | ND           | mg/L          | 0.0003          |      |               |               |                |       |                  |
| Boron     |           |         | ND           | mg/L          | 0.0001          |      |               |               |                |       |                  |
| Cadmium   |           |         | ND           | mg/L          | 0.003           |      |               |               |                |       |                  |
| Calcium   |           |         | ND           |               | 0.0010          |      |               |               |                |       |                  |
|           |           |         |              | mg/L          |                 |      |               |               |                |       |                  |
| Chromium  |           |         | ND           | mg/L          | 0.002           |      |               |               |                |       |                  |
| Cobalt    |           |         | ND           | mg/L          | 0.005           |      |               |               |                |       |                  |
| Lithium   |           |         | ND           | mg/L          | 0.004           |      |               |               |                |       |                  |
| Magnesiur |           |         | ND           | mg/L          | 0.01            |      |               |               |                |       |                  |
| Molybdenu |           |         | ND           | mg/L          | 0.007           |      |               |               |                |       |                  |
| Potassium | 1         |         | ND           | mg/L          | 0.07            |      |               |               |                |       |                  |
| Sodium    |           |         | 0.03         | mg/L          | 0.03            |      |               |               |                |       |                  |

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**Revised Date:** 12/21/17 **Report Date:** 05/31/17

**Project:** TMPA 6706150060

Work Order: B17050604

| Analyte   |                  | Count F    | Result    | Units           | RL     | %REC | Low Limit  | High Limit  | RPD | RPDLimit | Qual      |
|-----------|------------------|------------|-----------|-----------------|--------|------|------------|-------------|-----|----------|-----------|
| Method:   | E200.7           |            |           |                 |        |      |            |             |     | Batcl    | h: 109252 |
| Lab ID:   | LCS-109252       | 13 Labora  | atory Cor | ntrol Sample    |        |      | Run: ICP20 | 3-B_170511A |     | 05/11/   | 17 23:27  |
| Antimony  |                  |            | 0.513     | mg/L            | 0.10   | 103  | 85         | 115         |     |          |           |
| Barium    |                  |            | 0.513     | mg/L            | 0.10   | 103  | 85         | 115         |     |          |           |
| Beryllium |                  |            | 0.263     | mg/L            | 0.010  | 105  | 85         | 115         |     |          |           |
| Boron     |                  |            | 0.479     | mg/L            | 0.10   | 96   | 85         | 115         |     |          |           |
| Cadmium   |                  |            | 0.262     | mg/L            | 0.010  | 105  | 85         | 115         |     |          |           |
| Calcium   |                  |            | 26.4      | mg/L            | 1.0    | 105  | 85         | 115         |     |          |           |
| Chromium  |                  |            | 0.507     | mg/L            | 0.050  | 101  | 85         | 115         |     |          |           |
| Cobalt    |                  |            | 0.520     | mg/L            | 0.050  | 104  | 85         | 115         |     |          |           |
| Lithium   |                  |            | 0.522     | mg/L            | 0.10   | 104  | 85         | 115         |     |          |           |
| Magnesiun | n                |            | 26.2      | mg/L            | 1.0    | 105  | 85         | 115         |     |          |           |
| Molybdenu | ım               |            | 0.527     | mg/L            | 0.10   | 105  | 85         | 115         |     |          |           |
| Potassium |                  |            | 26.0      | mg/L            | 1.0    | 104  | 85         | 115         |     |          |           |
| Sodium    |                  |            | 26.6      | mg/L            | 1.0    | 106  | 85         | 115         |     |          |           |
| Lab ID:   | B17050604-009BMS | 3 13 Sampl | le Matrix | Spike           |        |      | Run: ICP20 | 3-B_170511A |     | 05/11/   | 17 23:41  |
| Antimony  |                  |            | 0.666     | mg/L            | 0.21   | 133  | 70         | 130         |     |          | S         |
| Barium    |                  |            | 0.527     | mg/L            | 0.050  | 102  | 70         | 130         |     |          |           |
| Beryllium |                  |            | 0.359     | mg/L            | 0.0014 | 106  | 70         | 130         |     |          |           |
| Boron     |                  |            | 4.04      | mg/L            | 0.050  |      | 70         | 130         |     |          | Α         |
| Cadmium   |                  |            | 0.266     | mg/L            | 0.0099 | 102  | 70         | 130         |     |          |           |
| Calcium   |                  |            | 562       | mg/L            | 1.0    |      | 70         | 130         |     |          | Α         |
| Chromium  |                  |            | 0.484     | mg/L            | 0.020  | 97   | 70         | 130         |     |          |           |
| Cobalt    |                  |            | 0.722     | mg/L            | 0.052  | 99   | 70         | 130         |     |          |           |
| Lithium   |                  |            | 1.08      | mg/L            | 0.10   | 115  | 70         | 130         |     |          |           |
| Magnesiun | n                |            | 144       | mg/L            | 1.0    |      | 70         | 130         |     |          | Α         |
| Molybdenu | ım               |            | 0.552     | mg/L            | 0.071  | 110  | 70         | 130         |     |          |           |
| Potassium |                  |            | 70.4      | mg/L            | 1.0    | 109  | 70         | 130         |     |          |           |
| Sodium    |                  |            | 718       | mg/L            | 4.2    |      | 70         | 130         |     |          | Α         |
| Lab ID:   | B17050604-009BMS | D 13 Sampl | le Matrix | Spike Duplicate |        |      | Run: ICP20 | 3-B_170511A |     | 05/11/   | 17 23:45  |
| Antimony  |                  |            | 0.779     | mg/L            | 0.21   | 156  | 70         | 130         | 16  | 20       | S         |
| Barium    |                  |            | 0.530     | mg/L            | 0.050  | 103  | 70         | 130         | 0.6 | 20       |           |
| Beryllium |                  |            | 0.363     | mg/L            | 0.0014 | 107  | 70         | 130         | 1.2 | 20       |           |
| Boron     |                  |            | 4.02      | mg/L            | 0.050  |      | 70         | 130         | 0.3 | 20       | Α         |
| Cadmium   |                  |            | 0.278     | mg/L            | 0.0099 | 107  | 70         | 130         | 4.3 | 20       |           |
| Calcium   |                  |            | 571       | mg/L            | 1.0    |      | 70         | 130         | 1.6 | 20       | Α         |
| Chromium  |                  |            | 0.525     | mg/L            | 0.020  | 105  | 70         | 130         | 8.0 | 20       |           |
| Cobalt    |                  |            | 0.727     | mg/L            | 0.052  | 100  | 70         | 130         | 0.7 | 20       |           |
| Lithium   |                  |            | 1.07      | mg/L            | 0.10   | 114  | 70         | 130         | 0.5 | 20       |           |
| Magnesiun | n                |            | 147       | mg/L            | 1.0    |      | 70         | 130         | 2.1 | 20       | Α         |
| Molybdenu | ım               |            | 0.511     | mg/L            | 0.071  | 102  | 70         | 130         | 7.8 | 20       |           |
| Potassium |                  |            | 70.2      | mg/L            | 1.0    | 109  | 70         | 130         | 0.2 | 20       |           |
| Sodium    |                  |            | 726       | mg/L            | 4.2    |      | 70         | 130         | 1.1 | 20       | Α         |
|           |                  |            |           |                 |        |      |            |             |     |          |           |

### Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

S - Spike recovery outside of advisory limits.

MDC - Minimum detectable concentration

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**Revised Date:** 12/21/17 **Report Date:** 05/31/17

**Project**: TMPA 6706150060 **Work Order**: B17050604

| Analyte   |                   | Count      | Result     | Units         | RL          | %REC | Low Limit | High Limit     | RPD RPDLimit    | Qual       |
|-----------|-------------------|------------|------------|---------------|-------------|------|-----------|----------------|-----------------|------------|
| Method:   | E200.8            |            |            |               |             |      |           | Analytical     | Run: ICPMS206-B | _170511A   |
| Lab ID:   | QCS               | 11 Initial | Calibratio | on Verificati | on Standard |      |           |                | 05/11           | /17 22:04  |
| Antimony  |                   |            | 0.0457     | mg/L          | 0.050       | 91   | 90        | 110            |                 |            |
| Arsenic   |                   |            | 0.0520     | mg/L          | 0.0050      | 104  | 90        | 110            |                 |            |
| Barium    |                   |            | 0.0468     | mg/L          | 0.10        | 94   | 90        | 110            |                 |            |
| Beryllium |                   |            | 0.0234     | mg/L          | 0.0010      | 94   | 90        | 110            |                 |            |
| Cadmium   |                   |            | 0.0255     | mg/L          | 0.0010      | 102  | 90        | 110            |                 |            |
| Chromium  |                   |            | 0.0515     | mg/L          | 0.010       | 103  | 90        | 110            |                 |            |
| Cobalt    |                   |            | 0.0485     | mg/L          | 0.010       | 97   | 90        | 110            |                 |            |
| Lead      |                   |            | 0.0475     | mg/L          | 0.010       | 95   | 90        | 110            |                 |            |
| Molybdenu | ım                |            | 0.0454     | mg/L          | 0.0050      | 91   | 90        | 110            |                 |            |
| Selenium  |                   |            | 0.0511     | mg/L          | 0.0050      | 102  | 90        | 110            |                 |            |
| Thallium  |                   |            | 0.0484     | mg/L          | 0.10        | 97   | 90        | 110            |                 |            |
| Method:   | E200.8            |            |            |               |             |      |           |                | Bato            | h: 109251  |
| Lab ID:   | MB-109251         | 11 Metho   | d Blank    |               |             |      | Run: ICPM | S206-B_170511A | 05/12           | 2/17 02:53 |
| Antimony  |                   |            | ND         | mg/L          | 0.00004     |      |           | _              |                 |            |
| Arsenic   |                   |            | ND         | mg/L          | 0.0002      |      |           |                |                 |            |
| Barium    |                   | 0          | .00009     | mg/L          | 0.00005     |      |           |                |                 |            |
| Beryllium |                   |            | ND         | mg/L          | 0.00008     |      |           |                |                 |            |
| Cadmium   |                   |            | ND         | mg/L          | 0.00003     |      |           |                |                 |            |
| Chromium  |                   |            | ND         | mg/L          | 0.0001      |      |           |                |                 |            |
| Cobalt    |                   | 0          | .00002     | mg/L          | 0.00002     |      |           |                |                 |            |
| Lead      |                   |            | ND         | mg/L          | 0.00003     |      |           |                |                 |            |
| Molybdenu | ım                |            | ND         | mg/L          | 0.00003     |      |           |                |                 |            |
| Selenium  |                   |            | ND         | mg/L          | 0.0004      |      |           |                |                 |            |
| Thallium  |                   | 0          | .00004     | mg/L          | 7E-06       |      |           |                |                 |            |
| Lab ID:   | LCS-109251        | 11 Labor   | atory Cor  | ntrol Sample  | Э           |      | Run: ICPM | S206-B_170511A | . 05/12         | 2/17 03:00 |
| Antimony  |                   |            | 0.452      | mg/L          | 0.0010      | 90   | 85        | _<br>115       |                 |            |
| Arsenic   |                   |            | 0.477      | mg/L          | 0.0010      | 95   | 85        | 115            |                 |            |
| Barium    |                   |            | 0.443      | mg/L          | 0.050       | 89   | 85        | 115            |                 |            |
| Beryllium |                   |            | 0.216      | mg/L          | 0.0010      | 86   | 85        | 115            |                 |            |
| Cadmium   |                   |            | 0.239      | mg/L          | 0.0010      | 95   | 85        | 115            |                 |            |
| Chromium  |                   |            | 0.452      | mg/L          | 0.0050      | 91   | 85        | 115            |                 |            |
| Cobalt    |                   |            | 0.429      | mg/L          | 0.0050      | 86   | 85        | 115            |                 |            |
| Lead      |                   |            | 0.438      | mg/L          | 0.0010      | 88   | 85        | 115            |                 |            |
| Molybdenu | ım                |            | 0.435      | mg/L          | 0.0010      | 87   | 85        | 115            |                 |            |
| Selenium  |                   |            | 0.461      | mg/L          | 0.0010      | 92   | 85        | 115            |                 |            |
| Thallium  |                   |            | 0.448      | mg/L          | 0.00050     | 90   | 85        | 115            |                 |            |
| Lab ID:   | B17050604-001BMS3 | 11 Samp    | le Matrix  | Spike         |             |      | Run: ICPM | S206-B_170511A | . 05/12         | 2/17 03:54 |
| Antimony  |                   | ·          | 0.476      | mg/L          | 0.0010      | 95   | 70        | 130            |                 |            |
| Arsenic   |                   |            | 0.493      | mg/L          | 0.0016      | 99   | 70        | 130            |                 |            |
| Barium    |                   |            | 0.496      | mg/L          | 0.050       | 95   | 70        | 130            |                 |            |
| Beryllium |                   |            | 0.236      | mg/L          | 0.0010      | 94   | 70        | 130            |                 |            |
| Cadmium   |                   |            | 0.246      | mg/L          | 0.0010      | 97   | 70        | 130            |                 |            |

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Revised Date: 12/21/17

# **QA/QC Summary Report**

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:05/31/17Project:TMPA 6706150060Work Order:B17050604

|                   | Count F                                    | Result                                                                                 | Units                                     | RL                | %REC | Low Limit | High Limit           | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RPDLimit          | Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------|--------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------|-------------------|------|-----------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E200.8            |                                            |                                                                                        |                                           |                   |      |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Batc              | h: 109251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| B17050604-001BMS3 | 11 Sampl                                   | e Matrix                                                                               | Spike                                     |                   |      | Run: ICPM | S206-B_170511        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 05/12             | /17 03:54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |                                            | 0.497                                                                                  | mg/L                                      | 0.0050            | 99   | 70        | 130                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                            | 0.486                                                                                  | mg/L                                      | 0.0050            | 94   | 70        | 130                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                            | 0.469                                                                                  | mg/L                                      | 0.0010            | 94   | 70        | 130                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| m                 |                                            | 0.473                                                                                  | mg/L                                      | 0.0010            | 94   | 70        | 130                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                            | 0.454                                                                                  | mg/L                                      | 0.0036            | 91   | 70        | 130                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                            | 0.467                                                                                  | mg/L                                      | 0.00050           | 93   | 70        | 130                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| B17050604-001BMSE | 11 Sampl                                   | e Matrix                                                                               | Spike Dup                                 | licate            |      | Run: ICPM | S206-B_170511/       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 05/12             | /17 03:57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |                                            | 0.459                                                                                  | mg/L                                      | 0.0010            | 92   | 70        | 130                  | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                            | 0.529                                                                                  | mg/L                                      | 0.0016            | 106  | 70        | 130                  | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                            | 0.473                                                                                  | mg/L                                      | 0.050             | 90   | 70        | 130                  | 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                            | 0.220                                                                                  | mg/L                                      | 0.0010            | 87   | 70        | 130                  | 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                            | 0.241                                                                                  | mg/L                                      | 0.0010            | 96   | 70        | 130                  | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                            | 0.462                                                                                  | mg/L                                      | 0.0050            | 92   | 70        | 130                  | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                            | 0.465                                                                                  |                                           | 0.0050            | 90   | 70        | 130                  | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                            | 0.443                                                                                  |                                           | 0.0010            | 89   | 70        | 130                  | 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| m                 |                                            | 0.452                                                                                  |                                           | 0.0010            | 90   | 70        | 130                  | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                            | 0.467                                                                                  |                                           | 0.0036            | 93   | 70        | 130                  | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                            | 0.444                                                                                  | mg/L                                      | 0.00050           | 89   | 70        | 130                  | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| E200.8            |                                            |                                                                                        |                                           |                   |      |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Batc              | h: 109252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MB-109252         | 10 Metho                                   | d Blank                                                                                |                                           |                   |      | Run: ICPM | S206-B_170511        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 05/12             | /17 04:57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |                                            | ND                                                                                     | mg/L                                      | 0.00004           |      |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                            | ND                                                                                     | mg/L                                      | 0.0002            |      |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                            | ND                                                                                     | mg/L                                      | 0.00008           |      |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                            | ND                                                                                     | mg/L                                      | 0.00003           |      |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                            | ND                                                                                     | mg/L                                      | 0.0001            |      |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                            | ND                                                                                     | mg/L                                      | 0.00002           |      |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                            | ND                                                                                     | mg/L                                      | 0.00003           |      |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| m                 |                                            | ND                                                                                     |                                           | 0.00003           |      |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                            | ND                                                                                     | mg/L                                      | 0.0004            |      |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | 0.                                         | 00002                                                                                  | mg/L                                      | 7E-06             |      |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| LCS-109252        | 10 Labora                                  | atory Cor                                                                              | ntrol Samp                                | le                |      | Run: ICPM | S206-B_170511/       | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 05/12             | /17 05:04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |                                            | 0.458                                                                                  | mg/L                                      | 0.0010            | 92   | 85        | 115                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                            | 0.494                                                                                  | mg/L                                      | 0.0010            | 99   | 85        | 115                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                            | 0.216                                                                                  | mg/L                                      | 0.0010            | 87   | 85        | 115                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                            | 0.244                                                                                  | mg/L                                      | 0.0010            | 97   | 85        | 115                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                            | 0.473                                                                                  | mg/L                                      | 0.0050            | 95   | 85        | 115                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                            | 0.443                                                                                  | mg/L                                      | 0.0050            | 89   | 85        | 115                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                            | 0.454                                                                                  | mg/L                                      | 0.0010            | 91   | 85        | 115                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| m                 |                                            | 0.449                                                                                  |                                           | 0.0010            | 90   | 85        | 115                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                            | 0.475                                                                                  | mg/L                                      | 0.0010            | 95   | 85        | 115                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                            |                                                                                        |                                           |                   |      |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | m  B17050604-001BMS0  m  E200.8  MB-109252 | E200.8 B17050604-001BMSD 11 Sample m  E200.8 MB-109252 10 Method  LCS-109252 10 Labora | E200.8 B17050604-001BMS3 11 Sample Matrix | B17050604-001BMS3 |      |           | Mathematical Parison | Page   Page | Mathematical Note | Page   Page |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration



Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency Revised Date: 12/21/17 **Report Date:** 05/31/17

Project: TMPA 6706150060

Work Order: B17050604 RL %REC Low Limit High Limit RPD RPDI imit Qual

| Analyte   |                   | Count Re  | esult  | Units          | RL      | %REC | Low Limit | High Limit             | RPD      | RPDLimit | Qual      |
|-----------|-------------------|-----------|--------|----------------|---------|------|-----------|------------------------|----------|----------|-----------|
| Method:   | E200.8            |           |        |                |         |      |           |                        |          | Batcl    | h: 109252 |
| Lab ID:   | B17050604-009BMS3 | 10 Sample | Matrix | x Spike        |         |      | Run: ICPM | S206-B_170511 <i>A</i> | ١        | 05/12/   | 17 05:08  |
| Antimony  |                   | C         | .454   | mg/L           | 0.0010  | 91   | 70        | 130                    |          |          |           |
| Arsenic   |                   | C         | .477   | mg/L           | 0.0010  | 90   | 70        | 130                    |          |          |           |
| Beryllium |                   | C         | .292   | mg/L           | 0.0010  | 86   | 70        | 130                    |          |          |           |
| Cadmium   |                   | C         | ).241  | mg/L           | 0.0010  | 93   | 70        | 130                    |          |          |           |
| Chromium  |                   | C         | ).451  | mg/L           | 0.0050  | 90   | 70        | 130                    |          |          |           |
| Cobalt    |                   | C         | 0.610  | mg/L           | 0.0050  | 89   | 70        | 130                    |          |          |           |
| Lead      |                   | C         | .449   | mg/L           | 0.0010  | 89   | 70        | 130                    |          |          |           |
| Molybdenu | um                | C         | ).447  | mg/L           | 0.0010  | 89   | 70        | 130                    |          |          |           |
| Selenium  |                   | C         | .485   | mg/L           | 0.0018  | 95   | 70        | 130                    |          |          |           |
| Thallium  |                   | C         | ).449  | mg/L           | 0.00050 | 89   | 70        | 130                    |          |          |           |
| Lab ID:   | B17050604-009BMSE | 10 Sample | Matrix | x Spike Duplic | cate    |      | Run: ICPM | S206-B_170511 <i>F</i> | <b>\</b> | 05/12/   | 17 05:11  |
| Antimony  |                   | C         | ).482  | mg/L           | 0.0010  | 96   | 70        | 130                    | 6.0      | 20       |           |
| Arsenic   |                   | C         | ).516  | mg/L           | 0.0010  | 98   | 70        | 130                    | 8.0      | 20       |           |
| Beryllium |                   | C         | 0.308  | mg/L           | 0.0010  | 93   | 70        | 130                    | 5.6      | 20       |           |
| Cadmium   |                   | C         | ).240  | mg/L           | 0.0010  | 92   | 70        | 130                    | 0.1      | 20       |           |
| Chromium  |                   | C         | ).478  | mg/L           | 0.0050  | 95   | 70        | 130                    | 5.9      | 20       |           |
| Cobalt    |                   | C         | ).646  | mg/L           | 0.0050  | 97   | 70        | 130                    | 5.9      | 20       |           |
| Lead      |                   |           | ).465  | mg/L           | 0.0010  | 93   | 70        | 130                    | 3.5      | 20       |           |
| Molybdenu | ım                |           | ).474  | mg/L           | 0.0010  | 95   | 70        | 130                    | 5.8      | 20       |           |
| Selenium  |                   | C         | ).498  | mg/L           | 0.0018  | 97   | 70        | 130                    | 2.5      | 20       |           |
| Thallium  |                   | C         | ).465  | mg/L           | 0.00050 | 93   | 70        | 130                    | 3.6      | 20       |           |
| Lab ID:   | B17050631-001AMS3 | 10 Sample | Matrix | x Spike        |         |      | Run: ICPM | S206-B_170511 <i>A</i> | ١.       | 05/12/   | 17 05:48  |
| Antimony  |                   |           | ).459  | mg/L           | 0.0010  | 92   | 70        | 130                    |          |          |           |
| Arsenic   |                   |           | ).497  | mg/L           | 0.0010  | 99   | 70        | 130                    |          |          |           |
| Beryllium |                   |           | ).211  | mg/L           | 0.0010  | 85   | 70        | 130                    |          |          |           |
| Cadmium   |                   |           | ).243  | mg/L           | 0.0010  | 97   | 70        | 130                    |          |          |           |
| Chromium  |                   |           | ).462  | mg/L           | 0.0050  | 92   | 70        | 130                    |          |          |           |
| Cobalt    |                   |           | ).435  | mg/L           | 0.0050  | 87   | 70        | 130                    |          |          |           |
| Lead      |                   |           | ).454  | mg/L           | 0.0010  | 91   | 70        | 130                    |          |          |           |
| Molybdenu | um                |           | ).446  | mg/L           | 0.0010  | 89   | 70        | 130                    |          |          |           |
| Selenium  |                   |           | ).475  | mg/L           | 0.0010  | 95   | 70        | 130                    |          |          |           |
| Thallium  |                   | C         | ).459  | mg/L           | 0.00050 | 92   | 70        | 130                    |          |          |           |
| Lab ID:   | B17050631-001AMSE |           |        |                |         |      |           | S206-B_170511 <i>A</i> |          |          | 17 05:51  |
| Antimony  |                   |           | ).457  | mg/L           | 0.0010  | 91   | 70        | 130                    | 0.3      | 20       |           |
| Arsenic   |                   |           | ).506  | mg/L           | 0.0010  | 101  | 70        | 130                    | 1.7      | 20       |           |
| Beryllium |                   |           | ).212  | mg/L           | 0.0010  | 85   | 70        | 130                    | 0.0      | 20       |           |
| Cadmium   |                   |           | ).239  | mg/L           | 0.0010  | 96   | 70        | 130                    | 1.8      | 20       |           |
| Chromium  |                   |           | ).467  | mg/L           | 0.0050  | 93   | 70        | 130                    | 1.1      | 20       |           |
| Cobalt    |                   |           | ).437  | mg/L           | 0.0050  | 87   | 70        | 130                    | 0.4      | 20       |           |
| Lead      |                   |           | ).450  | mg/L           | 0.0010  | 90   | 70        | 130                    | 0.7      | 20       |           |
| Molybdenu | um                |           | ).444  | mg/L           | 0.0010  | 89   | 70        | 130                    | 0.6      | 20       |           |
| Selenium  |                   | C         | ).483  | mg/L           | 0.0010  | 97   | 70        | 130                    | 1.6      | 20       |           |

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration



Client:

**Project:** TMPA 6706150060

# **QA/QC Summary Report**

Prepared by Billings, MT Branch

Revised Date: 12/21/17 Texas Municipal Power Agency **Report Date:** 05/31/17 Work Order: B17050604

| Analyte   |                   | Count | Result            | Units          | RL          | %REC | Low Limit  | High Limit    | RPD       | RPDLimit  | Qual      |
|-----------|-------------------|-------|-------------------|----------------|-------------|------|------------|---------------|-----------|-----------|-----------|
| Method:   | E200.8            |       |                   |                |             |      |            |               |           | Batcl     | h: 10925  |
| Lab ID:   | B17050631-001AMSE | 10 S  | ample Matrix      | Spike Dupli    | cate        |      | Run: ICPMS | S206-B_170511 | Α         | 05/12/    | 17 05:51  |
| Thallium  |                   |       | 0.464             | mg/L           | 0.00050     | 93   | 70         | 130           | 1.0       | 20        |           |
| Method:   | E200.8            |       |                   |                |             |      |            | Analytica     | al Run: I | CPMS206-B | _170512/  |
| Lab ID:   | QCS               | 4 In  | nitial Calibratio | n Verification | on Standard |      |            |               |           | 05/13/    | 17 00:39  |
| Antimony  |                   |       | 0.0494            | mg/L           | 0.050       | 99   | 90         | 110           |           |           |           |
| Beryllium |                   |       | 0.0248            | mg/L           | 0.0010      | 99   | 90         | 110           |           |           |           |
| Cobalt    |                   |       | 0.0513            | mg/L           | 0.010       | 103  | 90         | 110           |           |           |           |
| Molybdenu | m                 |       | 0.0473            | mg/L           | 0.0050      | 95   | 90         | 110           |           |           |           |
| Lab ID:   | QCS               | 4 In  | nitial Calibratio | n Verificatio  | on Standard |      |            |               |           | 05/13/    | 17 06:00  |
| Antimony  |                   |       | 0.0492            | mg/L           | 0.050       | 98   | 90         | 110           |           |           |           |
| Beryllium |                   |       | 0.0255            | mg/L           | 0.0010      | 102  | 90         | 110           |           |           |           |
| Cobalt    |                   |       | 0.0522            | mg/L           | 0.010       | 104  | 90         | 110           |           |           |           |
| Molybdenu | m                 |       | 0.0481            | mg/L           | 0.0050      | 96   | 90         | 110           |           |           |           |
| Method:   | E200.8            |       |                   |                |             |      |            |               |           | Batcl     | h: 10925  |
| Lab ID:   | MB-109251         | 4 M   | lethod Blank      |                |             |      | Run: ICPM  | S206-B_170512 | Α         | 05/13/    | /17 11:41 |
| Antimony  |                   |       | ND                | mg/L           | 0.00004     |      |            |               |           |           |           |
| Beryllium |                   |       | ND                | mg/L           | 0.00008     |      |            |               |           |           |           |
| Cobalt    |                   |       | ND                | mg/L           | 0.00002     |      |            |               |           |           |           |
| Molybdenu | m                 |       | ND                | mg/L           | 0.00003     |      |            |               |           |           |           |
| Method:   | E200.8            |       |                   |                |             |      |            |               |           | Batcl     | h: 10925  |
| Lab ID:   | MB-109252         | 4 M   | lethod Blank      |                |             |      | Run: ICPMS | S206-B 170512 | Α         | 05/13/    | 17 02:21  |
| Antimony  |                   |       | ND                | mg/L           | 0.00004     |      |            | _             |           |           |           |
| Beryllium |                   |       | ND                | mg/L           | 0.00008     |      |            |               |           |           |           |
| Cobalt    |                   |       | ND                | mg/L           | 0.00002     |      |            |               |           |           |           |
| Molybdenu | m                 |       | ND                | mg/L           | 0.00003     |      |            |               |           |           |           |

Revised Date: 12/21/17



# **QA/QC Summary Report**

Prepared by Billings, MT Branch

| Analyte |                  | Count        | Result        | Units      | RL             | %REC | Low Limit | High Limit     | RPD    | RPDLimit   | Qual      |
|---------|------------------|--------------|---------------|------------|----------------|------|-----------|----------------|--------|------------|-----------|
| Method: | E245.1           |              |               |            |                |      |           | Analytica      | l Run: | HGCV202-B_ | 170508A   |
| Lab ID: | ICV              | Initia       | al Calibratio | n Verifica | ition Standard |      |           |                |        | 05/08/     | 17 14:18  |
| Mercury |                  |              | 0.00216       | mg/L       | 0.00010        | 108  | 90        | 110            |        |            |           |
| Method: | E245.1           |              |               |            |                |      |           |                |        | Batch      | n: 109273 |
| Lab ID: | MB-109273        | Meth         | hod Blank     |            |                |      | Run: HGC\ | /202-B_170508A |        | 05/08/     | 17 15:43  |
| Mercury |                  |              | ND            | mg/L       | 6E-06          |      |           |                |        |            |           |
| Lab ID: | LCS-109273       | Labo         | oratory Cor   | ntrol Samp | ole            |      | Run: HGC\ | /202-B_170508A |        | 05/08/     | 17 15:45  |
| Mercury |                  |              | 0.00224       | mg/L       | 0.00010        | 112  | 85        | 115            |        |            |           |
| Lab ID: | B17050467-001BMS | Sam          | nple Matrix   | Spike      |                |      | Run: HGC\ | /202-B_170508A |        | 05/08/     | 17 15:48  |
| Mercury |                  |              | 0.00377       | mg/L       | 0.00010        | 89   | 70        | 130            |        |            |           |
| Lab ID: | B17050467-001BMS | <b>D</b> Sam | nple Matrix   | Spike Du   | plicate        |      | Run: HGC\ | /202-B_170508A |        | 05/08/     | 17 15:50  |
| Mercury |                  |              | 0.00375       | mg/L       | 0.00010        | 89   | 70        | 130            | 0.3    | 30         |           |
| Lab ID: | B17050604-013BMS | Sam          | nple Matrix   | Spike      |                |      | Run: HGC\ | /202-B_170508A |        | 05/08/     | 17 16:49  |
| Mercury |                  |              | 0.00208       | mg/L       | 0.00010        | 104  | 70        | 130            |        |            |           |
| Lab ID: | B17050604-013BMS | <b>D</b> Sam | nple Matrix   | Spike Du   | plicate        |      | Run: HGC\ | /202-B_170508A |        | 05/08/     | 17 16:51  |
| Mercury |                  |              | 0.00209       | mg/L       | 0.00010        | 104  | 70        | 130            | 0.3    | 30         |           |

# Work Order Receipt Checklist

## **Texas Municipal Power Agency**

Login completed by: Tabitha Edwards

### B17050604

Date Received: 5/5/2017

| 9                                                                                   |                                  |           |      |                            |  |
|-------------------------------------------------------------------------------------|----------------------------------|-----------|------|----------------------------|--|
| Reviewed by:                                                                        | BL2000\lcadreau                  |           | Re   | eceived by: qej            |  |
| Reviewed Date:                                                                      | 5/9/2017                         |           | Ca   | rrier name: Return-UPS NDA |  |
| Shipping container/cooler in                                                        | good condition?                  | Yes ✓     | No 🗌 | Not Present                |  |
| Custody seals intact on all s                                                       | hipping container(s)/cooler(s)?  | Yes ✓     | No 🗌 | Not Present                |  |
| Custody seals intact on all s                                                       | ample bottles?                   | Yes       | No 🗌 | Not Present ✓              |  |
| Chain of custody present?                                                           |                                  | Yes ✓     | No 🗌 |                            |  |
| Chain of custody signed wh                                                          | en relinquished and received?    | Yes ✓     | No 🗌 |                            |  |
| Chain of custody agrees wit                                                         | h sample labels?                 | Yes ✓     | No 🗌 |                            |  |
| Samples in proper container                                                         | /bottle?                         | Yes ✓     | No 🗌 |                            |  |
| Sample containers intact?                                                           |                                  | Yes ✓     | No 🗌 |                            |  |
| Sufficient sample volume fo                                                         | r indicated test?                | Yes ✓     | No 🗌 |                            |  |
| All samples received within (Exclude analyses that are c such as pH, DO, Res Cl, Sc | considered field parameters      | Yes ✓     | No 🗌 |                            |  |
| Temp Blank received in all s                                                        | shipping container(s)/cooler(s)? | Yes ✓     | No 🗌 | Not Applicable             |  |
| Container/Temp Blank temp                                                           | erature:                         | °C On Ice |      |                            |  |
| Water - VOA vials have zero                                                         | headspace?                       | Yes       | No 🗌 | No VOA vials submitted ✓   |  |
| Water - pH acceptable upon                                                          | receipt?                         | Yes 🗹     | No 🗌 | Not Applicable             |  |
|                                                                                     |                                  |           |      |                            |  |

## **Standard Reporting Procedures:**

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

### **Contact and Corrective Action Comments:**

The Temperature Blank temperature for shipping container 1 was 0.8°C, shipping container 2 was 0.8°C, shipping container 3 was 0.5°C and shipping container 4 was 1.8°C.

All containers for samples SSP-MW-4, SSP-MW-3, EQBK-SCM-050417 and only the 2-2 Liter Plastic Nitric preserved containers for SSP-MW-2 were not received with this shipment. One cooler was lost in transit. Greg Seifert was notified. Proceeded with analysis on all other samples received per Shari Endy, Energy Laboratories Project Manager.



# Chain of Custody & Analytical Request Record

Page of A

| Account Information (Billing information)                                                                                                                                                                                                      | Report Information #                             | Report Information (if different then Account Information) | Comments                                | ents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CompanyiName Line Foster Liberier                                                                                                                                                                                                              | Company/Name                                     |                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 0                                                                                                                                                                                                                                            | Contact                                          |                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Phone 512-795-0360                                                                                                                                                                                                                             | Phone                                            |                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mailing Address 3755 S. (2012 of TX Hwy, #375                                                                                                                                                                                                  | Mailing Address                                  |                                                            | _                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| City, State, Zip Austin, TX 18704                                                                                                                                                                                                              | City, State, Zip                                 |                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 2                                                                                                                                                                                                                                            | Email                                            |                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Receive Invoice □Hard Copy XEmail Receive Report □Hard Copy XEmail                                                                                                                                                                             | Receive Report                                   | □Email                                                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Purchase Order Quote Bottle Order                                                                                                                                                                                                              | Special Report/Formats: ☐ LEVEL IV ☐ NELAC ☐ E   | □ EDD/EDT (contact laboratory) □ Other                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project Information                                                                                                                                                                                                                            | Matrix Codes                                     | Analysis Requested                                         |                                         | All turnaround times are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Project Name, PWSID, Permit, etc. TMPA 6706/150060                                                                                                                                                                                             | W. Water                                         |                                                            |                                         | standard unless marked as RUSH.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sampler Name Brian Gieselman Sampler Phone 512-241-2321                                                                                                                                                                                        | S Solids<br>V - Vegetation                       |                                                            |                                         | Energy Laboratories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                | B · Bioassay                                     | 3                                                          | pau                                     | RUSH sample submittal for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MINING CLIENTS, please indicate sample type. "If ore has been processed or refined, call before sending. "If ne has been processed or refined, call before sending.  In Burnachurt 11 (a)2 material   Unprocessed ore (NOT ground or refined)* | DW - Drinking DW - Water                         | npal                                                       | lostfA                                  | Charges and scheduling<br>See Instructions Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                |                                                  |                                                            | 99                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample Identification (Name, Location, Interval, etc.) Date                                                                                                                                                                                    | Number of See Codes Containers (See Codes Above) | 5                                                          | S                                       | δ <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 SFL MW-2 5/3/17 1006                                                                                                                                                                                                                         | <u>т</u><br>Х                                    | ×                                                          |                                         | 100 - RODUCA 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2 SFL MW-5                                                                                                                                                                                                                                     |                                                  |                                                            |                                         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3 SSP/APMW-1 1420                                                                                                                                                                                                                              |                                                  |                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                |                                                  |                                                            |                                         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5 SSP MW-2                                                                                                                                                                                                                                     |                                                  |                                                            | <u>-</u>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                |                                                  |                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7 EQBK-5CM-160317 V 1650                                                                                                                                                                                                                       |                                                  |                                                            | +                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8 APMW-1D 5/4/17 0857                                                                                                                                                                                                                          |                                                  |                                                            |                                         | Comment Poly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| •                                                                                                                                                                                                                                              |                                                  |                                                            |                                         | I'M WILLIAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| >                                                                                                                                                                                                                                              | ><br>>                                           | ->                                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Reinquished by (print) Date Time Sign                                                                                                                                                                                                          | Signature                                        | Received by (print)                                        | STSTIT OGS                              | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Dis.                                                                                                                                                                                                                                           | Signature                                        | Received by Laboratory (print)                             | Data/Time                               | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                | A MORATORY LISE ONLY                             |                                                            | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | A STATE OF THE STA |
| Shipped By Cooler ID(s) Custody Seals Intact Receipt Temp                                                                                                                                                                                      | Ĭ <sub>E</sub> ≻                                 | Payment Type<br>CC Cash Check                              | Amount Rec                              | Receipt Number (cash/check only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This canas as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

ELI-COC-12/16 v.1



# Chain of Custody & Analytical Request Record

Page 2 of 2

| Account Information (Billing information)                                                                                                                                         |                            | Report Information                     | Keport Intormation (if different than Account Information) | Comments     | 51115                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------|------------------------------------------------------------|--------------|------------------------------------------------------|
| Company/Name Amec Foster Wheeler                                                                                                                                                  |                            | Company/Name                           |                                                            |              |                                                      |
| Contact Grea Seitert                                                                                                                                                              |                            | Contact                                |                                                            |              |                                                      |
| Phone 512-745-0360                                                                                                                                                                |                            | Phone                                  |                                                            |              |                                                      |
| Mailing Address 3755 S. Capital of TX Hoy, #375                                                                                                                                   | wx, #375                   | Mailing Address                        |                                                            |              |                                                      |
| City, State, Zip Austin, TX 78704                                                                                                                                                 |                            | City, State, Zip                       |                                                            |              |                                                      |
| Email greg. Sefert Damecto, com                                                                                                                                                   |                            | Email                                  |                                                            |              |                                                      |
| Receive Invoice                                                                                                                                                                   | ort □Hard Copy 🕅 mail      | Receive Report                         | y Clemail                                                  |              |                                                      |
| Purchase Order Quote                                                                                                                                                              | Bottle Order               | Special Report/Formats:                | □ EDD/EDT (contact laboratory) □ Other                     |              |                                                      |
| Project Information                                                                                                                                                               |                            | Matrix Codes                           | Analysis Requested                                         |              |                                                      |
| I, etc. TMPA                                                                                                                                                                      | 6706/150060                | A - Air<br>W - Water                   |                                                            |              | All turnaround times are standard unless marked as   |
| Sampler Name BG/SM Sampler Phone                                                                                                                                                  | Sampler Phone 512-241-232( | S - Solis/<br>Solids                   | }                                                          |              | RUSH.<br>Energy Laboratories                         |
| X                                                                                                                                                                                 | mpliance Yes 🗆 No          | B - Bioassay                           | , 9                                                        | pe           | MUST be contacted prior to RUSH sample submittal for |
| MINING CLIENTS, please indicate sample type. "If ore has been processed or refined, call before sending.  □ Byproduct 11 (e)2 material □ Unprocessed ore (NOT ground or refined)* | OT ground or refined)*     | Dw Drinking Dw Water                   | vedu                                                       | hostiA       | charges and scheduling –<br>See instructions Page    |
| entifi                                                                                                                                                                            | Collection<br>Date Time    | Number of Matrix Containers (See Codes | 125                                                        |              | RUSH EN CABID                                        |
| 1 SSP MW-3                                                                                                                                                                        | 1                          | 7<br>X                                 | X                                                          | Kereinaa     | BNSWedt.                                             |
| 2 EARK-SCM-050417                                                                                                                                                                 | -                          | -                                      | 104                                                        | Redelived    |                                                      |
| 3 AP MW-H                                                                                                                                                                         | 1256                       |                                        |                                                            | #E 5917      | BITASSIACH - CHO                                     |
| 4 DWP-2                                                                                                                                                                           |                            |                                        |                                                            |              |                                                      |
| 5 DWP-3                                                                                                                                                                           | 1                          |                                        |                                                            |              | 210                                                  |
| · EQBK-BJG-50417                                                                                                                                                                  | V 1354                     | <b>→</b>                               | ->                                                         |              | 7 0/3                                                |
|                                                                                                                                                                                   |                            |                                        |                                                            |              |                                                      |
| o o                                                                                                                                                                               |                            |                                        |                                                            |              |                                                      |
| 10                                                                                                                                                                                |                            |                                        |                                                            |              |                                                      |
| Custody Reinquished by (print)                                                                                                                                                    | Date/Time Signs            | Signature Bin 12.46                    | Received by (print)                                        | 7 09:50      | Signature                                            |
| Relinquished by (print)                                                                                                                                                           |                            | ature                                  | (print)                                                    |              | Signature                                            |
|                                                                                                                                                                                   |                            | LABORATORY USE ONLY                    | **************************************                     |              |                                                      |
| Shipped By Cooler ID(s) Custody Seals                                                                                                                                             | Intact Receipt Temp        | np Temp Blank On loa                   | Payment Type<br>CC Cash Check                              | Amount Recei | Kecelpt Number <i>(cash/cneck dility)</i>            |

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.
This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

### **ANALYTICAL SUMMARY REPORT**

December 21, 2017

Texas Municipal Power Agency PO Box 7000 Bryan, TX 77805-7000

Work Order: B17050949 Quote ID: B3997 - CCRR

Project Name: TMPA 6706150060

Energy Laboratories Inc Billings MT received the following 4 samples for Texas Municipal Power Agency on 5/10/2017 for analysis.

| Lab ID        | Client Sample ID | Collect Date Receive Date | Matrix       | Test                                                                                                                                                                                                                                                                  |
|---------------|------------------|---------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B17050949-001 | SSP-MW-4         | 05/04/17 9:55 05/10/17    | Ground Water | Metals by ICP/ICPMS, Tot. Rec. Mercury, Total Recoverable Fluoride Anions by Ion Chromatography pH Metals Preparation by EPA 200.2 Digestion, Mercury by CVAA Preparation for TDS Radium 226 + Radium 228 Radium 226, Total Radium 228, Total Solids, Total Dissolved |
| B17050949-002 | SSP-MW-3         | 05/04/17 11:25 05/10/17   | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17050949-003 | EQBK-SCM-050417  | 05/04/17 12:55 05/10/17   | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17050949-004 | SSP-MW-2         | 05/03/17 15:45 05/10/17   | Ground Water | Radium 226 + Radium 228<br>Radium 226, Total<br>Radium 228, Total                                                                                                                                                                                                     |

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

Texas Municipal Power Agency

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

**Revised Date:** 12/21/17 **Report Date:** 05/31/17

 Project:
 TMPA 6706150060
 Report Date: 05/31/17

 Work Order:
 B17050949
 CASE NARRATIVE

Tests associated with analyst identified as ELI-CA were subcontracted to Energy Laboratories, PO Box 247, Casper, WY, EPA Number WY00002 and WY00937.

### Revised 7/26/2017:

**CLIENT:** 

Per Brian Gieselman on 7/24/17, change Sample ID on B17050949-003 to EQBK-SCM-050417.

The report has been revised and replaces any previously issued report in its entirety.

### Revised Report 12/21/2017

The reporting limits for the following analytes were lowered per request from Greg Seifert.

| Analyte  | Original Reporting Limit (mg/L) | Revised Reporting limit (mg/L) |
|----------|---------------------------------|--------------------------------|
| Antimony | 0.05                            | 0.006                          |
| Cadmium  | 0.01                            | 0.005                          |
| Thallium | 0.01                            | 0.002                          |

The report has been revised and replaces any previously issued report in its entirety.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

 Project:
 TMPA 6706150060

 Lab ID:
 B17050949-001

 Client Sample ID:
 SSP-MW-4

Revised Date: 12/21/17
Report Date: 05/31/17
Collection Date: 05/04/17 09:55
DateReceived: 05/10/17

Matrix: Ground Water

|                                       |        |       |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |      |           |                         |
| Calcium                               | 455    | mg/L  |            | 1     |      | E200.7    | 05/15/17 18:07 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |      | E200.7    | 05/15/17 18:07 / rlh    |
| Potassium                             |        | mg/L  |            | 1     |      | E200.7    | 05/16/17 19:19 / rlh    |
| Sodium                                |        | mg/L  | D          | 4     |      | E200.7    | 05/16/17 19:19 / rlh    |
| PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| рН                                    | 6.5    | s.u.  | Н          | 0.1   |      | A4500-H B | 05/10/17 14:12 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 3990   | mg/L  |            | 10    |      | A2540 C   | 05/10/17 15:16 / mnh    |
| INORGANICS                            |        |       |            |       |      |           |                         |
| Chloride                              | 1120   | mg/L  | D          | 6     |      | E300.0    | 05/12/17 03:28 / cjm    |
| Sulfate                               | 1180   | mg/L  | D          | 20    |      | E300.0    | 05/12/17 03:28 / cjm    |
| Fluoride                              | ND     | mg/L  |            | 0.1   |      | A4500-F C | 05/16/17 10:13 / bas    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 |      | E200.8    | 05/13/17 09:33 / jpv    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |      | E200.8    | 05/13/17 09:33 / jpv    |
| Barium                                | 0.03   | mg/L  |            | 0.01  |      | E200.8    | 05/13/17 09:33 / jpv    |
| Beryllium                             | ND     | mg/L  |            | 0.001 |      | E200.8    | 05/13/17 09:33 / jpv    |
| Boron                                 | 1.47   | mg/L  |            | 0.05  |      | E200.7    | 05/15/17 18:07 / rlh    |
| Cadmium                               | ND     | mg/L  |            | 0.005 |      | E200.8    | 05/13/17 09:33 / jpv    |
| Chromium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 05/13/17 09:33 / jpv    |
| Cobalt                                | ND     | mg/L  |            | 0.02  |      | E200.8    | 05/13/17 09:33 / jpv    |
| Lead                                  | ND     | mg/L  |            | 0.01  |      | E200.8    | 05/13/17 09:33 / jpv    |
| Lithium                               | 0.87   | mg/L  | D          | 0.04  |      | E200.7    | 05/16/17 19:19 / rlh    |
| Mercury                               | ND     | mg/L  |            | 0.001 |      | E245.1    | 05/12/17 12:37 / mas    |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |      | E200.8    | 05/13/17 09:33 / jpv    |
| Selenium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 05/13/17 09:33 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.002 |      | E200.8    | 05/13/17 09:33 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 226                            | 1.2    | pCi/L |            |       |      | E903.0    | 05/30/17 13:27 / eli-ca |
| Radium 226 precision (±)              | 0.30   | pCi/L |            |       |      | E903.0    | 05/30/17 13:27 / eli-ca |
| Radium 226 MDC                        | 0.18   | pCi/L |            |       |      | E903.0    | 05/30/17 13:27 / eli-ca |
| Radium 228                            | 3.3    | pCi/L |            |       |      | RA-05     | 05/24/17 12:03 / eli-ca |
| Radium 228 precision (±)              | 1.1    | pCi/L |            |       |      | RA-05     | 05/24/17 12:03 / eli-ca |
| Radium 228 MDC                        | 1.3    | pCi/L |            |       |      | RA-05     | 05/24/17 12:03 / eli-ca |
| Radium 226 + Radium 228               | 4.4    | pCi/L |            |       |      | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.1    | pCi/L |            |       |      | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.3    | pCi/L |            |       |      | A7500-RA  | 05/31/17 11:00 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC Minimum data at all a server

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

 Project:
 TMPA 6706150060

 Lab ID:
 B17050949-002

 Client Sample ID:
 SSP-MW-3

Revised Date: 12/21/17
Report Date: 05/31/17
Collection Date: 05/04/17 11:25
DateReceived: 05/10/17

Matrix: Ground Water

| Analyses                              | Result | Unite | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| Allalyses                             | Nesuit | Units | Qualifiers | INE.  | QUL         | Wiethou   | Allalysis Date / Dy     |
| MAJOR IONS                            |        |       |            |       |             |           |                         |
| Calcium                               | 694    | mg/L  |            | 1     |             | E200.7    | 05/16/17 19:23 / rlh    |
| Magnesium                             | 176    | mg/L  |            | 1     |             | E200.7    | 05/16/17 19:23 / rlh    |
| Potassium                             | 47     | mg/L  |            | 1     |             | E200.7    | 05/16/17 19:23 / rlh    |
| Sodium                                | 1050   | mg/L  | D          | 4     |             | E200.7    | 05/16/17 19:23 / rlh    |
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| pH                                    | 4.5    | s.u.  | Н          | 0.1   |             | A4500-H B | 05/10/17 14:17 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 6670   | mg/L  | D          | 100   |             | A2540 C   | 05/10/17 13:46 / mnh    |
| INORGANICS                            |        |       |            |       |             |           |                         |
| Chloride                              | 1860   | mg/L  | D          | 6     |             | E300.0    | 05/12/17 04:27 / cjm    |
| Sulfate                               | 2380   | mg/L  | D          | 20    |             | E300.0    | 05/12/17 04:27 / cjm    |
| Fluoride                              | 0.7    | mg/L  |            | 0.1   |             | A4500-F C | 05/16/17 10:20 / bas    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 |             | E200.8    | 05/13/17 09:36 / jpv    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 05/13/17 09:36 / jpv    |
| Barium                                | 0.03   | mg/L  |            | 0.01  |             | E200.8    | 05/13/17 09:36 / jpv    |
| Beryllium                             | 0.120  | mg/L  |            | 0.001 |             | E200.8    | 05/13/17 09:36 / jpv    |
| Boron                                 | 2.24   | mg/L  |            | 0.05  |             | E200.7    | 05/16/17 19:23 / rlh    |
| Cadmium                               | 0.081  | mg/L  |            | 0.005 |             | E200.8    | 05/13/17 09:36 / jpv    |
| Chromium                              |        | mg/L  |            | 0.01  |             | E200.8    | 05/13/17 09:36 / jpv    |
| Cobalt                                | 0.62   | mg/L  |            | 0.02  |             | E200.8    | 05/13/17 09:36 / jpv    |
| Lead                                  | ND     | mg/L  |            | 0.01  |             | E200.8    | 05/13/17 09:36 / jpv    |
| Lithium                               | 0.61   | mg/L  | D          | 0.04  |             | E200.7    | 05/16/17 19:23 / rlh    |
| Mercury                               | ND     | mg/L  |            | 0.001 |             | E245.1    | 05/12/17 12:39 / mas    |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.8    | 05/13/17 09:36 / jpv    |
| Selenium                              |        | mg/L  |            | 0.01  |             | E200.8    | 05/13/17 09:36 / jpv    |
| Thallium                              | 0.010  | mg/L  |            | 0.002 |             | E200.8    | 05/13/17 09:36 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 226                            |        | pCi/L |            |       |             | E903.0    | 05/30/17 13:27 / eli-ca |
| Radium 226 precision (±)              | 1.2    | pCi/L |            |       |             | E903.0    | 05/30/17 13:27 / eli-ca |
| Radium 226 MDC                        | 0.17   | pCi/L |            |       |             | E903.0    | 05/30/17 13:27 / eli-ca |
| Radium 228                            | 17     | pCi/L |            |       |             | RA-05     | 05/24/17 12:03 / eli-ca |
| Radium 228 precision (±)              |        | pCi/L |            |       |             | RA-05     | 05/24/17 12:03 / eli-ca |
| Radium 228 MDC                        |        | pCi/L |            |       |             | RA-05     | 05/24/17 12:03 / eli-ca |
| Radium 226 + Radium 228               |        | pCi/L |            |       |             | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 precision (±) |        | pCi/L |            |       |             | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.3    | pCi/L |            |       |             | A7500-RA  | 05/31/17 11:00 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

 Project:
 TMPA 6706150060

 Lab ID:
 B17050949-003

 Client Sample ID:
 EQBK-SCM-050417

Revised Date: 12/21/17
Report Date: 05/31/17
Collection Date: 05/04/17 12:55
DateReceived: 05/10/17

Matrix: Ground Water

|                                       |          |       |            |       | MCL/ |           |                         |
|---------------------------------------|----------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result U | Inits | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| MAJOR IONS                            |          |       |            |       |      |           |                         |
| Calcium                               | ND m     | ng/L  |            | 1     |      | E200.7    | 05/16/17 19:26 / rlh    |
| Magnesium                             | ND m     | -     |            | 1     |      | E200.7    | 05/16/17 19:26 / rlh    |
| Potassium                             | ND m     | ng/L  |            | 1     |      | E200.7    | 05/16/17 19:26 / rlh    |
| Sodium                                | ND m     | ng/L  |            | 1     |      | E200.7    | 05/16/17 19:26 / rlh    |
| PHYSICAL PROPERTIES                   |          |       |            |       |      |           |                         |
| pH                                    | 5.4 s    | .u.   | Н          | 0.1   |      | A4500-H B | 05/10/17 14:20 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | ND m     | ng/L  |            | 10    |      | A2540 C   | 05/10/17 13:46 / mnh    |
| INORGANICS                            |          |       |            |       |      |           |                         |
| Chloride                              | ND m     | ng/L  |            | 1     |      | E300.0    | 05/12/17 04:46 / cjm    |
| Sulfate                               | ND m     | ng/L  |            | 1     |      | E300.0    | 05/12/17 04:46 / cjm    |
| Fluoride                              | ND m     | ng/L  |            | 0.1   |      | A4500-F C | 05/16/17 10:27 / bas    |
| METALS, TOTAL RECOVERABLE             |          |       |            |       |      |           |                         |
| Antimony                              | ND m     | ng/L  |            | 0.006 |      | E200.8    | 05/13/17 09:40 / jpv    |
| Arsenic                               | ND m     | ng/L  |            | 0.01  |      | E200.8    | 05/13/17 09:40 / jpv    |
| Barium                                | ND m     | ng/L  |            | 0.01  |      | E200.8    | 05/13/17 09:40 / jpv    |
| Beryllium                             | ND m     | ng/L  |            | 0.001 |      | E200.8    | 05/13/17 09:40 / jpv    |
| Boron                                 | ND m     | ng/L  |            | 0.05  |      | E200.7    | 05/16/17 19:26 / rlh    |
| Cadmium                               | ND m     | ng/L  |            | 0.005 |      | E200.8    | 05/13/17 09:40 / jpv    |
| Chromium                              | ND m     | ng/L  |            | 0.01  |      | E200.8    | 05/13/17 09:40 / jpv    |
| Cobalt                                | ND m     | ng/L  |            | 0.02  |      | E200.8    | 05/13/17 09:40 / jpv    |
| Lead                                  | ND m     | ng/L  |            | 0.01  |      | E200.8    | 05/13/17 09:40 / jpv    |
| Lithium                               | ND m     | ng/L  |            | 0.01  |      | E200.7    | 05/16/17 19:26 / rlh    |
| Mercury                               | ND m     | ng/L  |            | 0.001 |      | E245.1    | 05/12/17 12:41 / mas    |
| Molybdenum                            | ND m     | ng/L  |            | 0.05  |      | E200.8    | 05/13/17 09:40 / jpv    |
| Selenium                              | ND m     | ng/L  |            | 0.01  |      | E200.8    | 05/13/17 09:40 / jpv    |
| Thallium                              | ND m     | ng/L  |            | 0.002 |      | E200.8    | 05/13/17 09:40 / jpv    |
| RADIONUCLIDES - TOTAL                 |          |       |            |       |      |           |                         |
| Radium 226                            | 0.12 p   | Ci/L  | U          |       |      | E903.0    | 05/30/17 13:27 / eli-ca |
| Radium 226 precision (±)              | 0.11 p   | Ci/L  |            |       |      | E903.0    | 05/30/17 13:27 / eli-ca |
| Radium 226 MDC                        | 0.19 p   | Ci/L  |            |       |      | E903.0    | 05/30/17 13:27 / eli-ca |
| Radium 228                            | 1.9 p    | Ci/L  |            |       |      | RA-05     | 05/24/17 12:03 / eli-ca |
| Radium 228 precision (±)              | 0.88 p   | Ci/L  |            |       |      | RA-05     | 05/24/17 12:03 / eli-ca |
| Radium 228 MDC                        | 1.4 p    | Ci/L  |            |       |      | RA-05     | 05/24/17 12:03 / eli-ca |
| Radium 226 + Radium 228               | 2.0 p    | Ci/L  |            |       |      | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 0.9 p    | Ci/L  |            |       |      | A7500-RA  | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.4 p    | Ci/L  |            |       |      | A7500-RA  | 05/31/17 11:00 / eli-ca |

Report Definitions:

RL - Analyte reporting limit.

QCL - Quality control limit.

MDC - Minimum detectable concentration

U - Not detected at minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.



Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA 6706150060 Lab ID: B17050949-004 Client Sample ID: SSP-MW-2

Revised Date: 12/21/17 **Report Date:** 05/31/17 Collection Date: 05/03/17 15:45 DateReceived: 05/10/17

Matrix: Ground Water

| Analyses                              | Result | Units | Qualifiers | RL | MCL/<br>QCL | Method   | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|----|-------------|----------|-------------------------|
| RADIONUCLIDES - TOTAL                 |        |       |            |    |             |          |                         |
| Radium 226                            | 0.72   | pCi/L |            |    |             | E903.0   | 05/30/17 13:27 / eli-ca |
| Radium 226 precision (±)              | 0.22   | pCi/L |            |    |             | E903.0   | 05/30/17 13:27 / eli-ca |
| Radium 226 MDC                        | 0.24   | pCi/L |            |    |             | E903.0   | 05/30/17 13:27 / eli-ca |
| Radium 228                            | 1.4    | pCi/L | U          |    |             | RA-05    | 05/24/17 12:03 / eli-ca |
| Radium 228 precision (±)              | 0.82   | pCi/L |            |    |             | RA-05    | 05/24/17 12:03 / eli-ca |
| Radium 228 MDC                        | 1.8    | pCi/L |            |    |             | RA-05    | 05/24/17 12:03 / eli-ca |
| Radium 226 + Radium 228               | 2.1    | pCi/L |            |    |             | A7500-RA | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 0.8    | pCi/L |            |    |             | A7500-RA | 05/31/17 11:00 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.9    | pCi/L |            |    |             | A7500-RA | 05/31/17 11:00 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration



Prepared by Billings, MT Branch

| Analyte                          | Count | Result       | Units        | RL | %REC | Low Limit  | High Limit    | RPD | RPDLimit | Qual      |
|----------------------------------|-------|--------------|--------------|----|------|------------|---------------|-----|----------|-----------|
| Method: A2540 C                  |       |              |              |    |      |            |               |     | Batch    | h: 109384 |
| Lab ID: MB-109384                | Me    | thod Blank   |              |    |      | Run: BAL#  | SD-15_170510C |     | 05/10/   | 17 13:43  |
| Solids, Total Dissolved TDS @ 18 | 80 C  | ND           | mg/L         | 4  |      |            |               |     |          |           |
| Lab ID: LCS-109384               | Lat   | boratory Cor | ntrol Sample |    |      | Run: BAL # | SD-15_170510C |     | 05/10/   | 17 13:43  |
| Solids, Total Dissolved TDS @ 18 | 80 C  | 986          | mg/L         | 10 | 98   | 90         | 110           |     |          |           |
| Lab ID: B17050949-001A DU        | P Sa  | mple Duplica | ate          |    |      | Run: BAL#  | SD-15_170510C |     | 05/10/   | 17 13:45  |
| Solids, Total Dissolved TDS @ 18 | 80 C  | 4000         | mg/L         | 10 |      |            |               |     |          |           |

Prepared by Billings, MT Branch

| Analyte  |                   | Count        | Result         | Units             | RL       | %REC | Low Limit | High Limit   | RPD     | RPDLimit  | Qual     |
|----------|-------------------|--------------|----------------|-------------------|----------|------|-----------|--------------|---------|-----------|----------|
| Method:  | A4500-F C         |              |                |                   |          |      |           | Analytic     | al Run: | MAN-TECH_ | _170516A |
| Lab ID:  | ICV               | Initia       | al Calibration | on Verification S | Standard |      |           |              |         | 05/16/    | 17 09:56 |
| Fluoride |                   |              | 1.00           | mg/L              | 0.10     | 100  | 90        | 110          |         |           |          |
| Method:  | A4500-F C         |              |                |                   |          |      |           |              |         | Batch:    | R279985  |
| Lab ID:  | MBLK              | Met          | hod Blank      |                   |          |      | Run: MAN- | TECH_170516A |         | 05/16/    | 17 09:51 |
| Fluoride |                   |              | ND             | mg/L              | 0.02     |      |           |              |         |           |          |
| Lab ID:  | LFB               | Lab          | oratory For    | tified Blank      |          |      | Run: MAN- | TECH_170516A |         | 05/16/    | 17 09:53 |
| Fluoride |                   |              | 1.02           | mg/L              | 0.10     | 102  | 90        | 110          |         |           |          |
| Lab ID:  | B17050867-001AMS  | San          | nple Matrix    | Spike             |          |      | Run: MAN- | TECH_170516A |         | 05/16/    | 17 10:01 |
| Fluoride |                   |              | 4.65           | mg/L              | 0.10     | 98   | 80        | 120          |         |           |          |
| Lab ID:  | B17050867-001AMSI | <b>D</b> San | nple Matrix    | Spike Duplicate   | е        |      | Run: MAN- | TECH_170516A |         | 05/16/    | 17 10:04 |
| Fluoride |                   |              | 4.70           | mg/L              | 0.10     | 103  | 80        | 120          | 1.1     | 10        |          |

Prepared by Billings, MT Branch

| Analyte |                   | Count       | Result        | Units       | RL                 | %REC | Low Limit | High Limit   | RPD        | RPDLimit    | Qual      |
|---------|-------------------|-------------|---------------|-------------|--------------------|------|-----------|--------------|------------|-------------|-----------|
| Method: | A4500-H B         |             |               |             |                    |      |           | Analytica    | al Run: PF | HSC _101-B_ | _170510A  |
| Lab ID: | pH 8              | Initi       | al Calibratio | n Verificat | tion Standard      |      |           |              |            | 05/10/      | /17 10:00 |
| рН      |                   |             | 7.98          | s.u.        | 0.10               | 100  | 98        | 102          |            |             |           |
| Lab ID: | CCV - pH 7        | Cor         | ntinuing Cal  | bration Ve  | erification Standa | rd   |           |              |            | 05/10/      | /17 13:31 |
| рН      |                   |             | 7.03          | s.u.        | 0.10               | 100  | 98        | 102          |            |             |           |
| Method: | A4500-H B         |             |               |             |                    |      |           |              |            | Batch:      | R279606   |
| Lab ID: | B17050949-001ADUF | <b>S</b> an | nple Duplica  | ate         |                    |      | Run: PHSC | _101-B_17051 | I0A        | 05/10/      | /17 14:15 |
| рН      |                   |             | 6.50          | s.u.        | 0.10               |      |           |              | 0.0        | 3           |           |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:05/24/17Project:TMPA 6706150060Work Order:B17050949

| Qual       | RPDLimit     | RPD        | High Limit | Low Limit  | %REC | RL         | Units            | Result        | Count |                   | Analyte   |
|------------|--------------|------------|------------|------------|------|------------|------------------|---------------|-------|-------------------|-----------|
|            | n: ICP203-B_ | ytical Rur | Analy      |            |      |            |                  |               |       | E200.7            | Method:   |
| 5/17 12:13 | 05/15/       |            |            |            | d    | on Standar | bration Verifica | ntinuing Cali | 3 Cor | ICV               | Lab ID:   |
|            |              |            | 105        | 95         | 102  | 0.10       | mg/L             | 2.55          |       |                   | Boron     |
|            |              |            | 105        | 95         | 104  | 1.0        | mg/L             | 26.0          |       |                   | Calcium   |
|            |              |            | 105        | 95         | 104  | 1.0        | mg/L             | 26.0          |       |                   | Magnesium |
| ch: 109388 | Batcl        |            |            |            |      |            |                  |               |       | E200.7            | Method:   |
| 5/17 17:43 | 05/15/       |            | -B_170515A | Run: ICP20 |      |            |                  | thod Blank    | 6 Me  | MB-109388         | Lab ID:   |
|            |              |            |            |            |      | 0.003      | mg/L             | ND            |       |                   | Boron     |
|            |              |            |            |            |      | 0.08       | mg/L             | ND            |       |                   | Calcium   |
|            |              |            |            |            |      | 0.004      | mg/L             | ND            |       |                   | Lithium   |
|            |              |            |            |            |      | 0.01       | mg/L             | ND            |       |                   | Magnesium |
|            |              |            |            |            |      | 0.07       | mg/L             | ND            |       |                   | Potassium |
|            |              |            |            |            |      | 0.03       | mg/L             | ND            |       |                   | Sodium    |
| 5/17 17:46 | 05/15/       |            | -B_170515A | Run: ICP20 |      |            | itrol Sample     | ooratory Cor  | 6 Lab | LCS-109388        | Lab ID:   |
|            |              |            | 115        | 85         | 103  | 0.10       | mg/L             | 0.517         |       |                   | Boron     |
|            |              |            | 115        | 85         | 114  | 1.0        | mg/L             | 28.5          |       |                   | Calcium   |
|            |              |            | 115        | 85         | 113  | 0.10       | mg/L             | 0.566         |       |                   | Lithium   |
|            |              |            | 115        | 85         | 114  | 1.0        | mg/L             | 28.5          |       |                   | Magnesium |
|            |              |            | 115        | 85         | 113  | 1.0        | mg/L             | 28.2          |       |                   | Potassium |
|            |              |            | 115        | 85         | 111  | 1.0        | mg/L             | 27.8          |       |                   | Sodium    |
| 5/17 18:00 | 05/15/       |            | -B_170515A | Run: ICP20 |      |            | Spike            | mple Matrix   | 6 Sar | B17050928-001BMS3 | Lab ID:   |
|            |              |            | 130        | 70         | 124  | 0.050      | mg/L             | 1.85          |       |                   | Boron     |
| Α          |              |            | 130        | 70         |      | 1.0        | mg/L             | 219           |       |                   | Calcium   |
|            |              |            | 130        | 70         | 123  | 0.10       | mg/L             | 0.816         |       |                   | Lithium   |
| S          |              |            | 130        | 70         | 131  | 1.0        | mg/L             | 90.0          |       |                   | Magnesium |
|            |              |            | 130        | 70         | 120  | 1.0        | mg/L             | 63.8          |       |                   | Potassium |
| Α          |              |            | 130        | 70         |      | 2.1        | mg/L             | 467           |       |                   | Sodium    |
| 5/17 18:04 | 05/15/       |            | -B_170515A | Run: ICP20 |      |            | Spike Duplicate  | mple Matrix   | 6 Sar | B17050928-001BMSD | Lab ID:   |
|            | 20           | 6.5        | 130        | 70         | 100  | 0.050      | mg/L             | 1.73          |       |                   | Boron     |
| Α          | 20           | 6.7        | 130        | 70         |      | 1.0        | mg/L             | 204           |       |                   | Calcium   |
|            | 20           | 7.7        | 130        | 70         | 111  | 0.10       | mg/L             | 0.755         |       |                   | Lithium   |
|            | 20           | 7.4        | 130        | 70         | 105  | 1.0        | mg/L             | 83.6          |       |                   | Magnesium |
|            | 20           | 5.6        | 130        | 70         | 106  | 1.0        | mg/L             | 60.4          |       |                   | Potassium |
| Α          | 20           | 5.4        | 130        | 70         |      | 2.1        | mg/L             | 442           |       |                   | Sodium    |

### Qualifiers:

RL - Analyte reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

S - Spike recovery outside of advisory limits.

Prepared by Billings, MT Branch

| Analyte   |           | Count | Result       | Units           | RL            | %REC | Low Limit  | High Limit  | RPD       | RPDLimit    | Qual      |
|-----------|-----------|-------|--------------|-----------------|---------------|------|------------|-------------|-----------|-------------|-----------|
| Method:   | E200.7    |       |              |                 |               |      |            | Anal        | ytical Ru | n: ICP203-B | _170516E  |
| Lab ID:   | ICV       | 6 Co  | ntinuing Cal | ibration Verifi | cation Standa | rd   |            |             |           | 05/16       | /17 11:01 |
| Boron     |           |       | 2.49         | mg/L            | 0.10          | 100  | 95         | 105         |           |             |           |
| Calcium   |           |       | 24.9         | mg/L            | 1.0           | 100  | 95         | 105         |           |             |           |
| Lithium   |           |       | 1.24         | mg/L            | 0.10          | 100  | 95         | 105         |           |             |           |
| Magnesiur | m         |       | 24.8         | mg/L            | 1.0           | 99   | 95         | 105         |           |             |           |
| Potassium | 1         |       | 24.8         | mg/L            | 1.0           | 99   | 95         | 105         |           |             |           |
| Sodium    |           |       | 24.9         | mg/L            | 1.0           | 100  | 95         | 105         |           |             |           |
| Method:   | E200.7    |       |              |                 |               |      |            |             |           | Batc        | h: 109388 |
| Lab ID:   | MB-109388 | 6 Me  | thod Blank   |                 |               |      | Run: ICP20 | 3-B_170516B |           | 05/16       | /17 19:16 |
| Boron     |           |       | ND           | mg/L            | 0.003         |      |            |             |           |             |           |
| Calcium   |           |       | ND           | mg/L            | 0.08          |      |            |             |           |             |           |
| Lithium   |           |       | ND           | mg/L            | 0.004         |      |            |             |           |             |           |
| Magnesiu  | m         |       | ND           | mg/L            | 0.01          |      |            |             |           |             |           |
| Potassium | 1         |       | ND           | mg/L            | 0.07          |      |            |             |           |             |           |
| Sodium    |           |       | 0.04         | mg/L            | 0.03          |      |            |             |           |             |           |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:05/24/17Project:TMPA 6706150060Work Order:B17050949

| Analyte   |                   | Count           | Result       | Units          | RL         | %REC | Low Limit | High Limit             | RPD      | RPDLimit  | Qual      |
|-----------|-------------------|-----------------|--------------|----------------|------------|------|-----------|------------------------|----------|-----------|-----------|
| Method:   | E200.8            |                 |              |                |            |      |           | Analytica              | l Run: I | CPMS206-B | _170512A  |
| Lab ID:   | QCS               | 11 Initial      | l Calibratio | on Verificatio | n Standard |      |           |                        |          | 05/13     | /17 06:00 |
| Antimony  |                   |                 | 0.0492       | mg/L           | 0.050      | 98   | 90        | 110                    |          |           |           |
| Arsenic   |                   |                 | 0.0551       | mg/L           | 0.0050     | 110  | 90        | 110                    |          |           |           |
| Barium    |                   |                 | 0.0497       | mg/L           | 0.10       | 99   | 90        | 110                    |          |           |           |
| Beryllium |                   |                 | 0.0255       | mg/L           | 0.0010     | 102  | 90        | 110                    |          |           |           |
| Cadmium   |                   |                 | 0.0258       | mg/L           | 0.0010     | 103  | 90        | 110                    |          |           |           |
| Chromium  |                   |                 | 0.0516       | mg/L           | 0.010      | 103  | 90        | 110                    |          |           |           |
| Cobalt    |                   |                 | 0.0522       | mg/L           | 0.010      | 104  | 90        | 110                    |          |           |           |
| Lead      |                   |                 | 0.0496       | mg/L           | 0.010      | 99   | 90        | 110                    |          |           |           |
| Molybdenu | ım                |                 | 0.0481       | mg/L           | 0.0050     | 96   | 90        | 110                    |          |           |           |
| Selenium  |                   |                 | 0.0505       | mg/L           | 0.0050     | 101  | 90        | 110                    |          |           |           |
| Thallium  |                   |                 | 0.0500       | mg/L           | 0.10       | 100  | 90        | 110                    |          |           |           |
| Method:   | E200.8            |                 |              |                |            |      |           |                        |          | Batc      | h: 109388 |
| Lab ID:   | MB-109388         | 11 Meth         | od Blank     |                |            |      | Run: ICPM | S206-B_170512A         | A        | 05/12     | /17 19:08 |
| Antimony  |                   |                 | ND           | mg/L           | 0.00004    |      |           |                        |          |           |           |
| Arsenic   |                   |                 | ND           | mg/L           | 0.0002     |      |           |                        |          |           |           |
| Barium    |                   |                 | ND           | mg/L           | 0.00005    |      |           |                        |          |           |           |
| Beryllium |                   |                 | ND           | mg/L           | 0.00008    |      |           |                        |          |           |           |
| Cadmium   |                   |                 | ND           | mg/L           | 0.00003    |      |           |                        |          |           |           |
| Chromium  |                   |                 | ND           | mg/L           | 0.0001     |      |           |                        |          |           |           |
| Cobalt    |                   |                 | ND           | mg/L           | 0.00002    |      |           |                        |          |           |           |
| Lead      |                   |                 | ND           | mg/L           | 0.00003    |      |           |                        |          |           |           |
| Molybdenu | ım                |                 | ND           | mg/L           | 0.00003    |      |           |                        |          |           |           |
| Selenium  |                   |                 | ND           | mg/L           | 0.0004     |      |           |                        |          |           |           |
| Thallium  |                   | (               | 0.00002      | mg/L           | 7E-06      |      |           |                        |          |           |           |
| Lab ID:   | B17042380-002CMS3 | 11 Sam          | ple Matrix   | Spike          |            |      | Run: ICPM | S206-B_170512 <i>F</i> | Ą        | 05/12     | /17 19:14 |
| Antimony  |                   |                 | 0.470        | mg/L           | 0.0010     | 94   | 70        | 130                    |          |           |           |
| Arsenic   |                   |                 | 0.496        | mg/L           | 0.0010     | 99   | 70        | 130                    |          |           |           |
| Barium    |                   |                 | 0.484        | mg/L           | 0.050      | 95   | 70        | 130                    |          |           |           |
| Beryllium |                   |                 | 0.238        | mg/L           | 0.0010     | 95   | 70        | 130                    |          |           |           |
| Cadmium   |                   |                 | 0.245        | mg/L           | 0.0010     | 95   | 70        | 130                    |          |           |           |
| Chromium  |                   |                 | 0.451        | mg/L           | 0.0050     | 90   | 70        | 130                    |          |           |           |
| Cobalt    |                   |                 | 0.464        | mg/L           | 0.0050     | 93   | 70        | 130                    |          |           |           |
| Lead      |                   |                 | 0.476        | mg/L           | 0.0010     | 94   | 70        | 130                    |          |           |           |
| Molybdenu | m                 |                 | 0.452        | mg/L           | 0.0010     | 90   | 70        | 130                    |          |           |           |
| Selenium  |                   |                 | 0.464        | mg/L           | 0.0010     | 93   | 70        | 130                    |          |           |           |
| Thallium  |                   |                 | 0.495        | mg/L           | 0.00050    | 99   | 70        | 130                    |          |           |           |
| Lab ID:   | B17042380-002CMSE | <b>)</b> 11 Sam | ple Matrix   | Spike Duplic   | cate       |      | Run: ICPM | S206-B_170512 <i>F</i> | A        | 05/12     | /17 19:18 |
| Antimony  |                   |                 | 0.478        | mg/L           | 0.0010     | 96   | 70        | 130                    | 1.6      | 20        |           |
| Arsenic   |                   |                 | 0.496        | mg/L           | 0.0010     | 99   | 70        | 130                    | 0.1      | 20        |           |
| Barium    |                   |                 | 0.482        | mg/L           | 0.050      | 95   | 70        | 130                    | 0.4      | 20        |           |
| Beryllium |                   |                 | 0.232        | mg/L           | 0.0010     | 93   | 70        | 130                    | 2.3      | 20        |           |
| -         |                   |                 | 0.244        | mg/L           | 0.0010     | 94   | 70        | 130                    | 0.5      | 20        |           |

Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:05/24/17Project:TMPA 6706150060Work Order:B17050949

| Analyte   |                   | Count          | Result      | Units     | RL      | %REC | Low Limit | High Limit   | RPD | RPDLimit | Qual      |
|-----------|-------------------|----------------|-------------|-----------|---------|------|-----------|--------------|-----|----------|-----------|
| Method:   | E200.8            |                |             |           |         |      |           |              |     | Batch    | n: 109388 |
| Lab ID:   | B17042380-002CMSI | <b>D</b> 11 Sa | mple Matrix | Spike Dup | licate  |      | Run: ICPM | S206-B_17051 | 2A  | 05/12/   | 17 19:18  |
| Chromium  |                   |                | 0.466       | mg/L      | 0.0050  | 93   | 70        | 130          | 3.4 | 20       |           |
| Cobalt    |                   |                | 0.455       | mg/L      | 0.0050  | 91   | 70        | 130          | 2.1 | 20       |           |
| Lead      |                   |                | 0.471       | mg/L      | 0.0010  | 93   | 70        | 130          | 1.0 | 20       |           |
| Molybdenu | m                 |                | 0.463       | mg/L      | 0.0010  | 93   | 70        | 130          | 2.5 | 20       |           |
| Selenium  |                   |                | 0.460       | mg/L      | 0.0010  | 92   | 70        | 130          | 8.0 | 20       |           |
| Thallium  |                   |                | 0.477       | mg/L      | 0.00050 | 95   | 70        | 130          | 3.7 | 20       |           |
| Lab ID:   | B17050928-001BMS3 | <b>3</b> 11 Sa | mple Matrix | Spike     |         |      | Run: ICPM | S206-B_17051 | 2A  | 05/13/   | 17 08:56  |
| Antimony  |                   |                | 0.503       | mg/L      | 0.0010  | 101  | 70        | 130          |     |          |           |
| Arsenic   |                   |                | 0.552       | mg/L      | 0.0010  | 110  | 70        | 130          |     |          |           |
| Barium    |                   |                | 0.825       | mg/L      | 0.050   | 165  | 70        | 130          |     |          | S         |
| Beryllium |                   |                | 0.243       | mg/L      | 0.0010  | 97   | 70        | 130          |     |          |           |
| Cadmium   |                   |                | 0.247       | mg/L      | 0.0010  | 99   | 70        | 130          |     |          |           |
| Chromium  |                   |                | 0.488       | mg/L      | 0.0050  | 98   | 70        | 130          |     |          |           |
| Cobalt    |                   |                | 0.496       | mg/L      | 0.0050  | 99   | 70        | 130          |     |          |           |
| Lead      |                   |                | 0.514       | mg/L      | 0.0010  | 103  | 70        | 130          |     |          |           |
| Molybdenu | m                 |                | 0.547       | mg/L      | 0.0010  | 109  | 70        | 130          |     |          |           |
| Selenium  |                   |                | 0.500       | mg/L      | 0.0010  | 100  | 70        | 130          |     |          |           |
| Thallium  |                   |                | 0.478       | mg/L      | 0.00050 | 96   | 70        | 130          |     |          |           |
| Lab ID:   | B17050928-001BMSI | <b>D</b> 11 Sa | mple Matrix | Spike Dup | licate  |      | Run: ICPM | S206-B_17051 | 2A  | 05/13/   | 17 09:09  |
| Antimony  |                   |                | 0.509       | mg/L      | 0.0010  | 102  | 70        | 130          | 1.2 | 20       |           |
| Arsenic   |                   |                | 0.539       | mg/L      | 0.0010  | 108  | 70        | 130          | 2.3 | 20       |           |
| Barium    |                   |                | 0.840       | mg/L      | 0.050   | 168  | 70        | 130          | 1.8 | 20       | S         |
| Beryllium |                   |                | 0.247       | mg/L      | 0.0010  | 99   | 70        | 130          | 1.8 | 20       |           |
| Cadmium   |                   |                | 0.252       | mg/L      | 0.0010  | 101  | 70        | 130          | 2.0 | 20       |           |
| Chromium  |                   |                | 0.476       | mg/L      | 0.0050  | 95   | 70        | 130          | 2.6 | 20       |           |
| Cobalt    |                   |                | 0.502       | mg/L      | 0.0050  | 100  | 70        | 130          | 1.2 | 20       |           |
| Lead      |                   |                | 0.518       | mg/L      | 0.0010  | 104  | 70        | 130          | 0.9 | 20       |           |
| Molybdenu | m                 |                | 0.551       | mg/L      | 0.0010  | 110  | 70        | 130          | 8.0 | 20       |           |
| Selenium  |                   |                | 0.503       | mg/L      | 0.0010  | 101  | 70        | 130          | 0.7 | 20       |           |
| Thallium  |                   |                | 0.484       | mg/L      | 0.00050 | 97   | 70        | 130          | 1.2 | 20       |           |

### Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:05/24/17Project:TMPA 6706150060Work Order:B17050949

| <u> </u>  | TWPA 6706150060   |         |             |              |         |      |           |                        |     | . 61705094 |           |
|-----------|-------------------|---------|-------------|--------------|---------|------|-----------|------------------------|-----|------------|-----------|
| Analyte   |                   | Count   | Result      | Units        | RL      | %REC | Low Limit | High Limit             | RPD | RPDLimit   | Qual      |
| Method:   | E200.8            |         |             |              |         |      |           |                        |     | Batch      | n: 109388 |
| Lab ID:   | MB-109388         | 11 Me   | thod Blank  |              |         |      | Run: ICPM | S206-B_170515 <i>i</i> | ١.  | 05/15/     | 17 14:56  |
| Antimony  |                   |         | ND          | mg/L         | 0.00004 |      |           |                        |     |            |           |
| Arsenic   |                   |         | ND          | mg/L         | 0.0002  |      |           |                        |     |            |           |
| Barium    |                   |         | ND          | mg/L         | 0.00005 |      |           |                        |     |            |           |
| Beryllium |                   |         | ND          | mg/L         | 0.00008 |      |           |                        |     |            |           |
| Cadmium   |                   |         | ND          | mg/L         | 0.00003 |      |           |                        |     |            |           |
| Chromium  |                   |         | ND          | mg/L         | 0.0001  |      |           |                        |     |            |           |
| Cobalt    |                   |         | ND          | mg/L         | 0.00002 |      |           |                        |     |            |           |
| Lead      |                   |         | ND          | mg/L         | 0.00003 |      |           |                        |     |            |           |
| Molybdenu | ım                |         | ND          | mg/L         | 0.00003 |      |           |                        |     |            |           |
| Selenium  |                   |         | ND          | mg/L         | 0.0004  |      |           |                        |     |            |           |
| Thallium  |                   |         | 0.00002     | mg/L         | 7E-06   |      |           |                        |     |            |           |
| Lab ID:   | LCS-109388        | 11 Lal  | ooratory Co | ntrol Sample |         |      | Run: ICPM | S206-B_170515A         | 4   | 05/15/     | 17 15:03  |
| Antimony  |                   |         | 0.510       | mg/L         | 0.0010  | 102  | 85        | 115                    |     |            |           |
| Arsenic   |                   |         | 0.532       | mg/L         | 0.0010  | 106  | 85        | 115                    |     |            |           |
| Barium    |                   |         | 0.526       | mg/L         | 0.050   | 105  | 85        | 115                    |     |            |           |
| Beryllium |                   |         | 0.265       | mg/L         | 0.0010  | 106  | 85        | 115                    |     |            |           |
| Cadmium   |                   |         | 0.267       | mg/L         | 0.0010  | 107  | 85        | 115                    |     |            |           |
| Chromium  |                   |         | 0.531       | mg/L         | 0.0050  | 106  | 85        | 115                    |     |            |           |
| Cobalt    |                   |         | 0.509       | mg/L         | 0.0050  | 102  | 85        | 115                    |     |            |           |
| Lead      |                   |         | 0.519       | mg/L         | 0.0010  | 104  | 85        | 115                    |     |            |           |
| Molybdenu | ım                |         | 0.501       | mg/L         | 0.0010  | 100  | 85        | 115                    |     |            |           |
| Selenium  |                   |         | 0.507       | mg/L         | 0.0010  | 101  | 85        | 115                    |     |            |           |
| Thallium  |                   |         | 0.519       | mg/L         | 0.00050 | 104  | 85        | 115                    |     |            |           |
| Lab ID:   | B17042380-002CMS  | 3 11 Sa | mple Matrix | Spike        |         |      | Run: ICPM | S206-B_170515A         | ٨   | 05/15/     | 17 15:06  |
| Antimony  |                   |         | 0.510       | mg/L         | 0.0010  | 102  | 70        | 130                    |     |            |           |
| Arsenic   |                   |         | 0.522       | mg/L         | 0.0010  | 104  | 70        | 130                    |     |            |           |
| Barium    |                   |         | 0.529       | mg/L         | 0.050   | 104  | 70        | 130                    |     |            |           |
| Beryllium |                   |         | 0.255       | mg/L         | 0.0010  | 102  | 70        | 130                    |     |            |           |
| Cadmium   |                   |         | 0.267       | mg/L         | 0.0010  | 103  | 70        | 130                    |     |            |           |
| Chromium  |                   |         | 0.508       | mg/L         | 0.0050  | 101  | 70        | 130                    |     |            |           |
| Cobalt    |                   |         | 0.502       | mg/L         | 0.0050  | 100  | 70        | 130                    |     |            |           |
| Lead      |                   |         | 0.514       | mg/L         | 0.0010  | 102  | 70        | 130                    |     |            |           |
| Molybdenu | ım                |         | 0.497       | mg/L         | 0.0010  | 99   | 70        | 130                    |     |            |           |
| Selenium  |                   |         | 0.506       | mg/L         | 0.0010  | 101  | 70        | 130                    |     |            |           |
| Thallium  |                   |         | 0.507       | mg/L         | 0.00050 | 101  | 70        | 130                    |     |            |           |
| Lab ID:   | B17042380-002CMSI | D 11 Sa | mple Matrix | Spike Dupli  | cate    |      | Run: ICPM | S206-B_170515A         | ٨   | 05/15/     | 17 15:09  |
| Antimony  |                   |         | 0.515       | mg/L         | 0.0010  | 103  | 70        | 130                    | 8.0 | 20         |           |
| Arsenic   |                   |         | 0.500       | mg/L         | 0.0010  | 100  | 70        | 130                    | 4.3 | 20         |           |
| Barium    |                   |         | 0.525       | mg/L         | 0.050   | 103  | 70        | 130                    | 0.9 | 20         |           |
| Beryllium |                   |         | 0.251       | mg/L         | 0.0010  | 100  | 70        | 130                    | 1.5 | 20         |           |
| -         |                   |         | 0.264       | mg/L         | 0.0010  | 102  | 70        | 130                    | 1.1 | 20         |           |
| Cadmium   |                   |         | 0.207       | mg/L         | 0.0010  | 102  |           | 100                    |     | 20         |           |

Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:05/24/17Project:TMPA 6706150060Work Order:B17050949

| Analyte   |                   | Count          | Result      | Units     | RL      | %REC                    | Low Limit | High Limit   | RPD | RPDLimit | Qual      |
|-----------|-------------------|----------------|-------------|-----------|---------|-------------------------|-----------|--------------|-----|----------|-----------|
| Method:   | E200.8            |                |             |           |         |                         |           |              |     | Batch    | h: 109388 |
| Lab ID:   | B17042380-002CMSE | <b>1</b> 1 Sa  | mple Matrix | Spike Dup | licate  |                         | Run: ICPM | S206-B_17051 | 5A  | 05/15/   | 17 15:09  |
| Cobalt    |                   |                | 0.496       | mg/L      | 0.0050  | 99                      | 70        | 130          | 1.1 | 20       |           |
| Lead      |                   |                | 0.510       | mg/L      | 0.0010  | 101                     | 70        | 130          | 8.0 | 20       |           |
| Molybdenu | ım                |                | 0.504       | mg/L      | 0.0010  | 101                     | 70        | 130          | 1.6 | 20       |           |
| Selenium  |                   |                | 0.501       | mg/L      | 0.0010  | 100                     | 70        | 130          | 1.0 | 20       |           |
| Thallium  |                   |                | 0.504       | mg/L      | 0.00050 | 101                     | 70        | 130          | 0.5 | 20       |           |
| Lab ID:   | B17050928-001BMS3 | 11 Sa          | mple Matrix | Spike     |         | Run: ICPMS206-B_170515A |           |              |     | 05/15/   | 17 15:40  |
| Antimony  |                   |                | 0.511       | mg/L      | 0.0010  | 102                     | 70        | 130          |     |          |           |
| Arsenic   |                   |                | 0.513       | mg/L      | 0.0010  | 103                     | 70        | 130          |     |          |           |
| Barium    |                   |                | 0.842       | mg/L      | 0.050   | 168                     | 70        | 130          |     |          | S         |
| Beryllium |                   |                | 0.251       | mg/L      | 0.0010  | 100                     | 70        | 130          |     |          |           |
| Cadmium   |                   |                | 0.240       | mg/L      | 0.0010  | 96                      | 70        | 130          |     |          |           |
| Chromium  |                   |                | 0.489       | mg/L      | 0.0050  | 98                      | 70        | 130          |     |          |           |
| Cobalt    |                   |                | 0.496       | mg/L      | 0.0050  | 99                      | 70        | 130          |     |          |           |
| Lead      |                   |                | 0.519       | mg/L      | 0.0010  | 104                     | 70        | 130          |     |          |           |
| Molybdenu | ım                |                | 0.553       | mg/L      | 0.0010  | 111                     | 70        | 130          |     |          |           |
| Selenium  |                   |                | 0.494       | mg/L      | 0.0010  | 99                      | 70        | 130          |     |          |           |
| Thallium  |                   |                | 0.479       | mg/L      | 0.00050 | 96                      | 70        | 130          |     |          |           |
| Lab ID:   | B17050928-001BMS  | <b>)</b> 11 Sa | mple Matrix | Spike Dup | licate  |                         | Run: ICPM | S206-B_17051 | 5A  | 05/15/   | 17 15:43  |
| Antimony  |                   |                | 0.517       | mg/L      | 0.0010  | 103                     | 70        | 130          | 1.1 | 20       |           |
| Arsenic   |                   |                | 0.504       | mg/L      | 0.0010  | 101                     | 70        | 130          | 1.9 | 20       |           |
| Barium    |                   |                | 0.846       | mg/L      | 0.050   | 169                     | 70        | 130          | 0.5 | 20       | S         |
| Beryllium |                   |                | 0.253       | mg/L      | 0.0010  | 101                     | 70        | 130          | 0.9 | 20       |           |
| Cadmium   |                   |                | 0.244       | mg/L      | 0.0010  | 98                      | 70        | 130          | 1.9 | 20       |           |
| Chromium  |                   |                | 0.497       | mg/L      | 0.0050  | 99                      | 70        | 130          | 1.7 | 20       |           |
| Cobalt    |                   |                | 0.508       | mg/L      | 0.0050  | 102                     | 70        | 130          | 2.3 | 20       |           |
| Lead      |                   |                | 0.521       | mg/L      | 0.0010  | 104                     | 70        | 130          | 0.5 | 20       |           |
| Molybdenu | ım                |                | 0.566       | mg/L      | 0.0010  | 113                     | 70        | 130          | 2.4 | 20       |           |
| Selenium  |                   |                | 0.492       | mg/L      | 0.0010  | 98                      | 70        | 130          | 0.4 | 20       |           |
| Thallium  |                   |                | 0.485       | mg/L      | 0.00050 | 97                      | 70        | 130          | 1.2 | 20       |           |

### Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

Prepared by Billings, MT Branch

| Analyte |                   | Count        | Result        | Units        | RL            | %REC | Low Limit | High Limit     | RPD       | RPDLimit   | Qual      |
|---------|-------------------|--------------|---------------|--------------|---------------|------|-----------|----------------|-----------|------------|-----------|
| Method: | E245.1            |              |               |              |               |      |           | Analytic       | al Run: l | HGCV202-B_ | _170512A  |
| Lab ID: | ICV               | Initi        | ial Calibrati | on Verificat | tion Standard |      |           |                |           | 05/12/     | 17 11:59  |
| Mercury |                   |              | 0.00207       | mg/L         | 0.00010       | 104  | 90        | 110            |           |            |           |
| Method: | E245.1            |              |               |              |               |      |           |                |           | Batcl      | h: 109452 |
| Lab ID: | MB-109452         | Me           | thod Blank    |              |               |      | Run: HGC\ | /202-B_170512A | ١         | 05/12/     | 17 12:24  |
| Mercury |                   |              | ND            | mg/L         | 6E-06         |      |           |                |           |            |           |
| Lab ID: | LCS-109452        | Lab          | oratory Co    | ntrol Samp   | le            |      | Run: HGC\ | /202-B_170512A | ١         | 05/12/     | 17 12:25  |
| Mercury |                   |              | 0.00204       | mg/L         | 0.00010       | 102  | 85        | 115            |           |            |           |
| Lab ID: | B17050929-001BMS  | Sar          | mple Matrix   | Spike        |               |      | Run: HGC\ | /202-B_170512A | ١         | 05/12/     | 17 12:29  |
| Mercury |                   |              | 0.00207       | mg/L         | 0.00010       | 103  | 70        | 130            |           |            |           |
| Lab ID: | B17050929-001BMSI | <b>D</b> Sar | mple Matrix   | Spike Dup    | olicate       |      | Run: HGC\ | /202-B_170512A | ١         | 05/12/     | 17 12:31  |
| Mercury |                   |              | 0.00210       | mg/L         | 0.00010       | 105  | 70        | 130            | 1.5       | 30         |           |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:05/24/17Project:TMPA 6706150060Work Order:B17050949

| Analyte  |                   | Count   | Result        | Units              | RL     | %REC | Low Limit  | High Limit  | RPD       | RPDLimit   | Qual     |
|----------|-------------------|---------|---------------|--------------------|--------|------|------------|-------------|-----------|------------|----------|
| Method:  | E300.0            |         |               |                    |        |      |            | Analytical  | Run: IC M | IETROHM 1_ | _170511A |
| Lab ID:  | ICV               | 2 Init  | al Calibratio | on Verification St | andard |      |            |             |           | 05/11/     | 17 15:47 |
| Chloride |                   |         | 2.04          | mg/L               | 1.0    | 91   | 90         | 110         |           |            |          |
| Sulfate  |                   |         | 8.38          | mg/L               | 1.0    | 93   | 90         | 110         |           |            |          |
| Method:  | E300.0            |         |               |                    |        |      |            |             |           | Batch:     | R279760  |
| Lab ID:  | ICB               | 2 Me    | thod Blank    |                    |        |      | Run: IC ME | TROHM 1_170 | 0511A     | 05/11/     | 17 16:06 |
| Chloride |                   |         | ND            | mg/L               | 0.009  |      |            |             |           |            |          |
| Sulfate  |                   |         | ND            | mg/L               | 0.01   |      |            |             |           |            |          |
| Lab ID:  | LFB               | 2 Lab   | oratory For   | tified Blank       |        |      | Run: IC ME | TROHM 1_170 | 0511A     | 05/11/     | 17 16:25 |
| Chloride |                   |         | 9.99          | mg/L               | 1.0    | 100  | 90         | 110         |           |            |          |
| Sulfate  |                   |         | 29.9          | mg/L               | 1.0    | 100  | 90         | 110         |           |            |          |
| Lab ID:  | B17050949-001AMS  | 2 Sar   | mple Matrix   | Spike              |        |      | Run: IC ME | TROHM 1_170 | 0511A     | 05/12/     | 17 03:48 |
| Chloride |                   |         | 2140          | mg/L               | 6.1    | 101  | 90         | 110         |           |            |          |
| Sulfate  |                   |         | 4280          | mg/L               | 18     | 104  | 90         | 110         |           |            |          |
| Lab ID:  | B17050949-001AMSE | D 2 Sar | mple Matrix   | Spike Duplicate    |        |      | Run: IC ME | TROHM 1_170 | 0511A     | 05/12/     | 17 04:07 |
| Chloride |                   |         | 2120          | mg/L               | 6.1    | 99   | 90         | 110         | 1.0       | 20         |          |
| Sulfate  |                   |         | 4250          | mg/L               | 18     | 102  | 90         | 110         | 8.0       | 20         |          |

### Qualifiers:



Prepared by Casper, WY Branch

| Analyte                   | Result Units                  | RL %REC Low Limit High Limit RPD RPDLimit | it Qual      |
|---------------------------|-------------------------------|-------------------------------------------|--------------|
| Method: E903.0            |                               | Batch:                                    | RA226-8500   |
| Lab ID: LCS-RA226-8500    | Laboratory Control Sample     | Run: G5000W_170516B 05                    | /30/17 11:45 |
| Radium 226                | 8.3 pCi/L                     | 82 80 120                                 |              |
| Lab ID: MB-RA226-8500     | Method Blank                  | Run: G5000W_170516B 05                    | /30/17 11:45 |
| Radium 226                | 0.1 pCi/L                     |                                           | U            |
| Radium 226 precision (±)  | 0.1 pCi/L                     |                                           |              |
| Radium 226 MDC            | 0.2 pCi/L                     |                                           |              |
| Lab ID: C17050286-001CMS  | Sample Matrix Spike           | Run: G5000W_170516B 05                    | /30/17 11:45 |
| Radium 226                | 19 pCi/L                      | 82 70 130                                 |              |
| Lab ID: C17050286-001CMSD | Sample Matrix Spike Duplicate | Run: G5000W_170516B 05                    | /30/17 11:45 |
| Radium 226                | 17 pCi/L                      | 76 70 130 6.7 20                          | )            |



Prepared by Casper, WY Branch

| Analyte                    | Result Units                  | RL %REC Low Limit High Limit RPD RPDLimit Qual |
|----------------------------|-------------------------------|------------------------------------------------|
| Method: RA-05              |                               | Batch: RA228-5500                              |
| Lab ID: LCS-228-RA226-8500 | Laboratory Control Sample     | Run: TENNELEC-3_170516B 05/24/17 10:30         |
| Radium 228                 | 9.8 pCi/L                     | 91 80 120                                      |
| Lab ID: MB-RA226-8500      | Method Blank                  | Run: TENNELEC-3_170516B 05/24/17 10:30         |
| Radium 228                 | 0.5 pCi/L                     | U                                              |
| Radium 228 precision (±)   | 0.8 pCi/L                     |                                                |
| Radium 228 MDC             | 1 pCi/L                       |                                                |
| Lab ID: C17050286-013CMS   | Sample Matrix Spike           | Run: TENNELEC-3_170516B 05/24/17 10:30         |
| Radium 228                 | 20 pCi/L                      | 82 70 130                                      |
| Lab ID: C17050286-013CMSD  | Sample Matrix Spike Duplicate | Run: TENNELEC-3_170516B 05/24/17 10:30         |
| Radium 228                 | 20 pCi/L                      | 80 70 130 2.0 20                               |

# **Work Order Receipt Checklist**

# **Texas Municipal Power Agency**

### B17050949

| Login completed by:                                                                         | Gina McCartney                  |                  | Date | Received: 5/10/2017            |
|---------------------------------------------------------------------------------------------|---------------------------------|------------------|------|--------------------------------|
| Reviewed by:                                                                                | BL2000\tedwards                 |                  | Re   | eceived by: gmm                |
| Reviewed Date:                                                                              | 5/11/2017                       |                  | Ca   | rrier name: Return-UPS NDA N/C |
| Shipping container/cooler in                                                                | good condition?                 | Yes √            | No 🗌 | Not Present                    |
| Custody seals intact on all s                                                               | hipping container(s)/cooler(s)? | Yes ✓            | No 🗌 | Not Present                    |
| Custody seals intact on all sa                                                              | ample bottles?                  | Yes              | No 🗌 | Not Present ✓                  |
| Chain of custody present?                                                                   |                                 | Yes 🔽            | No 🗌 |                                |
| Chain of custody signed whe                                                                 | en relinquished and received?   | Yes 🗸            | No 🗌 |                                |
| Chain of custody agrees with                                                                | n sample labels?                | Yes 🗸            | No 🗌 |                                |
| Samples in proper container                                                                 | /bottle?                        | Yes 🔽            | No 🗌 |                                |
| Sample containers intact?                                                                   |                                 | Yes              | No 🗹 |                                |
| Sufficient sample volume for                                                                | indicated test?                 | Yes 🔽            | No 🗌 |                                |
| All samples received within h<br>(Exclude analyses that are c<br>such as pH, DO, Res Cl, Su | onsidered field parameters      | Yes √            | No 🗌 |                                |
| Temp Blank received in all s                                                                | hipping container(s)/cooler(s)? | Yes              | No 🗹 | Not Applicable                 |
| Container/Temp Blank tempe                                                                  | erature:                        | 9.8°C Melted Ice |      |                                |
| Water - VOA vials have zero                                                                 | headspace?                      | Yes              | No 🗌 | No VOA vials submitted         |
| Water - pH acceptable upon                                                                  | receipt?                        | Yes ✓            | No 🗌 | Not Applicable                 |
|                                                                                             |                                 |                  |      |                                |

### **Standard Reporting Procedures:**

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as -dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

### **Contact and Corrective Action Comments:**

A Chain of Custody was not received with this cooler. This cooler contains the missing samples from work order B17050604 due to the cooler being lost in transit. Continue with analysis per email from Shari Endy, Energy Laboratory Project Manager. The Chain of Custody was originated in laboratory using information from the Chain of Custody associated with work order B17050604.

One of the two containers for sample SSP MW-4 for Radiochemistry was received with the lid off and completely empty. There is sufficient volume to continue with analysis using remaining container.

| Company Name:                                          |                                 | 0.00                                                        |                              |                                     |                                                 |
|--------------------------------------------------------|---------------------------------|-------------------------------------------------------------|------------------------------|-------------------------------------|-------------------------------------------------|
| 7,0                                                    | 0 0 11 10                       | Froject Name, PWS, Permit, Etc.                             | Effc. ,                      | Sample Origin                       | EPA/State Compliance:                           |
|                                                        | 6                               | 11111 675                                                   | 0706150060                   | State:                              | Yes ☐ No ☐                                      |
|                                                        |                                 | Gred Servert                                                | hone/Fax: Emai $512-795-036$ | Email:                              | Sampler: (Please Print)                         |
| Invoice Address:                                       |                                 | Invoice Contact & Phone:                                    |                              | Purchase Order:                     | Quote/Bottle Order                              |
| Special Report/Formats:                                |                                 | J                                                           | ANALYSIS REQUESTED           | Contact ELI prior to                | Shipped by:                                     |
|                                                        | EDD/EDT(Electronic Data)        | ontainers<br>V S V B O I<br>Is/Solids<br>issay <u>O</u> the | <del>,</del>                 | R scheduling – See Instruction Page | Cooler ID(s):                                   |
| POTW/WWTP State:                                       | Format:<br>LEVEL IV             | Water Solution Blos - Drinking - Orinking                   | N.                           | U Comments:                         | Receipt Temp                                    |
|                                                        |                                 | viA<br>Stegeta<br>VMG                                       | SEE V                        | S COC ORIGINATED IN LABORATORY      | Custody Seal  On Ice: Y On Bottle Y On Cooler V |
| SAMPLE IDENTIFICATION (Name, Location, Interval, etc.) | Collection Collection Date Time | MATRIX SOL                                                  | eiS                          | <u> </u>                            | _ ⊑ ಚೆ.                                         |
| 155P-MW-4                                              | 5-417 09:55                     | ×                                                           |                              |                                     | Match Match                                     |
| 55K-MM-3 8                                             | 5-4-7 11:25                     | ×<br>×                                                      |                              |                                     |                                                 |
| -052317                                                | 25:21 LH-S1                     | X                                                           |                              |                                     | 3 S                                             |
| SSP-MW-2                                               | 57:31 12:42                     | X                                                           |                              |                                     |                                                 |
| 9                                                      |                                 |                                                             |                              |                                     |                                                 |
| 7                                                      |                                 |                                                             |                              |                                     |                                                 |
| 8                                                      |                                 |                                                             |                              |                                     | .VE                                             |
| <b>5</b>                                               |                                 |                                                             |                              |                                     | 108                                             |
| 10                                                     |                                 |                                                             |                              |                                     |                                                 |
| Custody Relinquished by (print):                       | Date/Time:                      | Signature:                                                  | Received by (print): Da      | Date/Time:                          | Signature.                                      |
| Record Relinquished by (print): MUST be                | IN LABORATORY                   | Signature:                                                  | Received by (print): Dar     | Date/Time:                          | Signatur                                        |
| Sample Disposal:                                       | Return to Client:               | Lab Disposal:                                               | Month of Laboratory          | Terripe 7 69:30                     | NI VI VIII                                      |

### **ANALYTICAL SUMMARY REPORT**

December 21, 2017

Texas Municipal Power Agency PO Box 7000 Bryan, TX 77805-7000

Work Order: B17051284 Quote ID: B3997 - CCRR

Project Name: TMPA 6706150060

Energy Laboratories Inc Billings MT received the following 2 samples for Texas Municipal Power Agency on 5/12/2017 for analysis.

| Lab ID        | Client Sample ID | Collect Date | Receive Date | Matrix       | Test                                                                                                                                                                                                                                                                  |
|---------------|------------------|--------------|--------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B17051284-001 | SFL MW-7         | 05/11/17 12  | :02 05/12/17 | Ground Water | Metals by ICP/ICPMS, Tot. Rec. Mercury, Total Recoverable Fluoride Anions by Ion Chromatography pH Metals Preparation by EPA 200.2 Digestion, Mercury by CVAA Preparation for TDS Radium 226 + Radium 228 Radium 226, Total Radium 228, Total Solids, Total Dissolved |

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

TMPA 6706150060

Texas Municipal Power Agency

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

**Revised Date:** 12/21/17 **Report Date:** 06/13/17

Work Order: B17051284 CASE NARRATIVE

Tests associated with analyst identified as ELI-CA were subcontracted to Energy Laboratories, PO Box 247, Casper, WY, EPA Number WY00002 and WY00937.

Revised Report 12/21/2017

**CLIENT:** 

Project:

The reporting limits for the following analytes were lowered per request from Greg Seifert.

Analyte Original Reporting Limit (mg/L)

Antimony 0.05 0.006
Cadmium 0.01 0.005
Thallium 0.01 0.002

The report has been revised and replaces any previously issued report in its entirety.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA 6706150060 Lab ID: B17051284-001 Client Sample ID: SFL MW-7

Revised Date: 12/21/17 **Report Date:** 06/13/17 Collection Date: 05/11/17 12:02 DateReceived: 05/12/17

Matrix: Ground Water

|                                       |        |       |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |      |           |                         |
| Calcium                               | 678    | mg/L  |            | 1     |      | E200.7    | 05/17/17 02:54 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |      | E200.7    | 05/17/17 02:54 / rlh    |
| Potassium                             |        | mg/L  |            | 1     |      | E200.7    | 05/17/17 02:54 / rlh    |
| Sodium                                | 1230   | mg/L  | D          | 4     |      | E200.7    | 05/17/17 02:54 / rlh    |
| PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| pH                                    | 6.8    | s.u.  | Н          | 0.1   |      | A4500-H B | 05/12/17 19:59 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 7260   | mg/L  | D          | 100   |      | A2540 C   | 05/15/17 08:35 / mnh    |
| INORGANICS                            |        |       |            |       |      |           |                         |
| Chloride                              | 2870   | mg/L  | D          | 6     |      | E300.0    | 05/17/17 22:56 / cjm    |
| Sulfate                               | 811    | mg/L  | D          | 20    |      | E300.0    | 05/17/17 22:56 / cjm    |
| Fluoride                              | 0.1    | mg/L  |            | 0.1   |      | A4500-F C | 05/16/17 12:33 / bas    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 |      | E200.8    | 05/17/17 00:38 / jpv    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |      | E200.8    | 05/17/17 00:38 / jpv    |
| Barium                                | 0.04   | mg/L  |            | 0.01  |      | E200.7    | 05/17/17 02:54 / rlh    |
| Beryllium                             | ND     | mg/L  |            | 0.001 |      | E200.8    | 05/17/17 00:38 / jpv    |
| Boron                                 | 0.75   | mg/L  |            | 0.05  |      | E200.7    | 05/17/17 02:54 / rlh    |
| Cadmium                               | ND     | mg/L  |            | 0.005 |      | E200.8    | 05/17/17 00:38 / jpv    |
| Chromium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 05/17/17 00:38 / jpv    |
| Cobalt                                | ND     | mg/L  |            | 0.02  |      | E200.8    | 05/17/17 23:08 / jpv    |
| Lead                                  | ND     | mg/L  |            | 0.01  |      | E200.8    | 05/17/17 00:38 / jpv    |
| Lithium                               | 0.46   | mg/L  | D          | 0.04  |      | E200.7    | 05/17/17 02:54 / rlh    |
| Mercury                               | ND     | mg/L  |            | 0.001 |      | E245.1    | 05/15/17 15:17 / jh     |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |      | E200.8    | 05/17/17 00:38 / jpv    |
| Selenium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 05/17/17 00:38 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.002 |      | E200.8    | 05/17/17 00:38 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 226                            | 0.61   | pCi/L |            |       |      | E903.0    | 06/12/17 09:33 / eli-ca |
| Radium 226 precision (±)              | 0.21   | pCi/L |            |       |      | E903.0    | 06/12/17 09:33 / eli-ca |
| Radium 226 MDC                        | 0.23   | pCi/L |            |       |      | E903.0    | 06/12/17 09:33 / eli-ca |
| Radium 228                            | 1.3    | pCi/L |            |       |      | RA-05     | 06/07/17 10:44 / eli-ca |
| Radium 228 precision (±)              | 0.59   | pCi/L |            |       |      | RA-05     | 06/07/17 10:44 / eli-ca |
| Radium 228 MDC                        | 1.1    | pCi/L |            |       |      | RA-05     | 06/07/17 10:44 / eli-ca |
| Radium 226 + Radium 228               | 1.9    | pCi/L |            |       |      | A7500-RA  | 06/13/17 13:14 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 0.6    | pCi/L |            |       |      | A7500-RA  | 06/13/17 13:14 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.1    | pCi/L |            |       |      | A7500-RA  | 06/13/17 13:14 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.





Prepared by Casper, WY Branch

| Analyte                   | Result Units                  | RL %REC Low Limit High Limit | RPD RPDLimit Qual |
|---------------------------|-------------------------------|------------------------------|-------------------|
| Method: E903.0            |                               |                              | Batch: RA226-8514 |
| Lab ID: LCS-RA226-8514    | Laboratory Control Sample     | Run: G5000W_170601A          | 06/12/17 09:33    |
| Radium 226                | 9.4 pCi/L                     | 92 80 120                    |                   |
| Lab ID: MB-RA226-8514     | Method Blank                  | Run: G5000W_170601A          | 06/12/17 09:33    |
| Radium 226                | 0.2 pCi/L                     |                              | U                 |
| Radium 226 precision (±)  | 0.1 pCi/L                     |                              |                   |
| Radium 226 MDC            | 0.2 pCi/L                     |                              |                   |
| Lab ID: C17050807-003DMS  | Sample Matrix Spike           | Run: G5000W_170601A          | 06/12/17 09:34    |
| Radium 226                | 25 pCi/L                      | 111 70 130                   |                   |
| Lab ID: C17050807-003DMSD | Sample Matrix Spike Duplicate | Run: G5000W_170601A          | 06/12/17 09:34    |
| Radium 226                | 20 pCi/L                      | 91 70 130                    | 20 20             |





Prepared by Casper, WY Branch

Client: Texas Municipal Power Agency **Report Date:** 06/13/17 **Project:** TMPA 6706150060 Work Order: B17051284

| Analyte                    | Result Units                  | RL %REC Low Limit High Limit RPD RPDLimit Qual |
|----------------------------|-------------------------------|------------------------------------------------|
| Method: RA-05              |                               | Batch: RA228-5510                              |
| Lab ID: LCS-228-RA226-8514 | Laboratory Control Sample     | Run: TENNELEC-3_170601A 06/07/17 10:44         |
| Radium 228                 | 9.0 pCi/L                     | 83 80 120                                      |
| Lab ID: MB-RA226-8514      | Method Blank                  | Run: TENNELEC-3_170601A 06/07/17 10:44         |
| Radium 228                 | 0.5 pCi/L                     | U                                              |
| Radium 228 precision (±)   | 0.6 pCi/L                     |                                                |
| Radium 228 MDC             | 1 pCi/L                       |                                                |
| Lab ID: C17050807-009DMS   | Sample Matrix Spike           | Run: TENNELEC-3_170601A 06/07/17 10:44         |
| Radium 228                 | 21 pCi/L                      | 82 70 130                                      |
| Lab ID: C17050807-009DMSD  | Sample Matrix Spike Duplicate | Run: TENNELEC-3_170601A 06/07/17 10:44         |
| Radium 228                 | 21 pCi/L                      | 80 70 130 2.4 20                               |

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**Revised Date:** 12/21/17 **Report Date:** 06/13/17

**Project:** TMPA 6706150060

Work Order: B17051284

| Method:   |                   |              | Result        | Units        | NL.             | /orec | LOW LIIIII | High Limit  | KFD       | RPDLimit     | Qual      |
|-----------|-------------------|--------------|---------------|--------------|-----------------|-------|------------|-------------|-----------|--------------|-----------|
| wictiioa. | E200.7            |              |               |              |                 |       |            | Anal        | ∕tical Ru | n: ICP203-B_ | _170516B  |
| Lab ID:   | ICV               | 7 Cor        | ntinuing Cali | bration Veri | fication Standa | rd    |            |             |           | 05/16/       | 17 11:01  |
| Barium    |                   |              | 2.43          | mg/L         | 0.10            | 97    | 95         | 105         |           |              |           |
| Boron     |                   |              | 2.49          | mg/L         | 0.10            | 100   | 95         | 105         |           |              |           |
| Calcium   |                   |              | 24.9          | mg/L         | 1.0             | 100   | 95         | 105         |           |              |           |
| Lithium   |                   |              | 1.24          | mg/L         | 0.10            | 100   | 95         | 105         |           |              |           |
| Magnesium |                   |              | 24.8          | mg/L         | 1.0             | 99    | 95         | 105         |           |              |           |
| Potassium |                   |              | 24.8          | mg/L         | 1.0             | 99    | 95         | 105         |           |              |           |
| Sodium    |                   |              | 24.9          | mg/L         | 1.0             | 100   | 95         | 105         |           |              |           |
| Method:   | E200.7            |              |               |              |                 |       |            |             |           | Batcl        | h: 109493 |
| Lab ID:   | MB-109493         | 7 Met        | thod Blank    |              |                 |       | Run: ICP20 | 3-B_170516B |           | 05/17/       | 17 01:30  |
| Barium    |                   |              | ND            | mg/L         | 0.0005          |       |            |             |           |              |           |
| Boron     |                   |              | ND            | mg/L         | 0.003           |       |            |             |           |              |           |
| Calcium   |                   |              | ND            | mg/L         | 0.08            |       |            |             |           |              |           |
| Lithium   |                   |              | ND            | mg/L         | 0.004           |       |            |             |           |              |           |
| Magnesium |                   |              | ND            | mg/L         | 0.07            |       |            |             |           |              |           |
| Potassium |                   |              | ND            | mg/L         | 0.07            |       |            |             |           |              |           |
| Sodium    |                   |              | ND            | mg/L         | 0.4             |       |            |             |           |              |           |
| Lab ID:   | LCS-109493        | 7 Lab        | oratory Cor   | trol Sample  | <b>:</b>        |       | Run: ICP20 | 3-B_170516B |           | 05/17/       | 17 01:34  |
| Barium    |                   |              | 0.460         | mg/L         | 0.10            | 92    | 85         | 115         |           |              |           |
| Boron     |                   |              | 0.455         | mg/L         | 0.10            | 91    | 85         | 115         |           |              |           |
| Calcium   |                   |              | 24.3          | mg/L         | 1.0             | 97    | 85         | 115         |           |              |           |
| Lithium   |                   |              | 0.484         | mg/L         | 0.10            | 97    | 85         | 115         |           |              |           |
| Magnesium |                   |              | 24.5          | mg/L         | 1.0             | 98    | 85         | 115         |           |              |           |
| Potassium |                   |              | 24.3          | mg/L         | 1.0             | 97    | 85         | 115         |           |              |           |
| Sodium    |                   |              | 23.5          | mg/L         | 1.0             | 94    | 85         | 115         |           |              |           |
| Lab ID:   | B17051268-001BMS3 | 7 Sar        | mple Matrix   | Spike        |                 |       | Run: ICP20 | 3-B_170516B |           | 05/17/       | 17 02:26  |
| Barium    |                   |              | 0.598         | mg/L         | 0.050           | 105   | 70         | 130         |           |              |           |
| Boron     |                   |              | 0.880         | mg/L         | 0.050           | 107   | 70         | 130         |           |              |           |
| Calcium   |                   |              | 68.5          | mg/L         | 1.0             | 107   | 70         | 130         |           |              |           |
| Lithium   |                   |              | 0.606         | mg/L         | 0.10            | 110   | 70         | 130         |           |              |           |
| Magnesium |                   |              | 49.0          | mg/L         | 1.0             | 109   | 70         | 130         |           |              |           |
| Potassium |                   |              | 85.0          | mg/L         | 1.0             | 101   | 70         | 130         |           |              |           |
| Sodium    |                   |              | 252           | mg/L         | 1.0             |       | 70         | 130         |           |              | Α         |
| Lab ID:   | B17051268-001BMS  | <b>7</b> Sar | mple Matrix   | Spike Dupli  | cate            |       | Run: ICP20 | 3-B_170516B |           | 05/17/       | 17 02:30  |
| Barium    |                   |              | 0.576         | mg/L         | 0.050           | 101   | 70         | 130         | 3.8       | 20           |           |
| Boron     |                   |              | 0.852         | mg/L         | 0.050           | 102   | 70         | 130         | 3.2       | 20           |           |
| Calcium   |                   |              | 67.0          | mg/L         | 1.0             | 101   | 70         | 130         | 2.3       | 20           |           |
| Lithium   |                   |              | 0.595         | mg/L         | 0.10            | 108   | 70         | 130         | 1.8       | 20           |           |
| Magnesium |                   |              | 47.8          | mg/L         | 1.0             | 104   | 70         | 130         | 2.6       | 20           |           |
| Potassium |                   |              | 84.4          | mg/L         | 1.0             | 99    | 70         | 130         | 0.7       | 20           |           |
| Sodium    |                   |              | 247           | mg/L         | 1.0             |       | 70         | 130         | 2.0       | 20           | Α         |

# Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

MDC - Minimum detectable concentration

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**Revised Date:** 12/21/17 **Report Date:** 06/13/17

**Project:** TMPA 6706150060

Work Order: B17051284

| Analyte   |                   | Count     | Result     | Units      | RL             | %REC | Low Limit | High Limit     | RPD RPDLimit    | Qual      |
|-----------|-------------------|-----------|------------|------------|----------------|------|-----------|----------------|-----------------|-----------|
| Method:   | E200.8            |           |            |            |                |      |           | Analytical     | Run: ICPMS206-B | _170515A  |
| Lab ID:   | QCS               | 9 Initial | Calibratio | n Verifica | ition Standard |      |           |                | 05/16/          | 17 19:32  |
| Antimony  |                   |           | 0.0472     | mg/L       | 0.050          | 94   | 90        | 110            |                 |           |
| Arsenic   |                   |           | 0.0518     | mg/L       | 0.0050         | 104  | 90        | 110            |                 |           |
| Beryllium |                   |           | 0.0245     | mg/L       | 0.0010         | 98   | 90        | 110            |                 |           |
| Cadmium   |                   |           | 0.0231     | mg/L       | 0.0010         | 92   | 90        | 110            |                 |           |
| Chromium  |                   |           | 0.0482     | mg/L       | 0.010          | 96   | 90        | 110            |                 |           |
| Lead      |                   |           | 0.0484     | mg/L       | 0.010          | 97   | 90        | 110            |                 |           |
| Molybdenu | m                 |           | 0.0461     | mg/L       | 0.0050         | 92   | 90        | 110            |                 |           |
| Selenium  |                   |           | 0.0525     | mg/L       | 0.0050         | 105  | 90        | 110            |                 |           |
| Thallium  |                   |           | 0.0498     | mg/L       | 0.10           | 100  | 90        | 110            |                 |           |
| Method:   | E200.8            |           |            |            |                |      |           |                | Batcl           | h: 109493 |
| Lab ID:   | MB-109493         | 10 Metho  | od Blank   |            |                |      | Run: ICPM | S206-B_170515A | 05/16/          | 17 22:52  |
| Antimony  |                   |           | ND         | mg/L       | 0.00004        |      |           | _              |                 |           |
| Arsenic   |                   |           | ND         | mg/L       | 0.0002         |      |           |                |                 |           |
| Beryllium |                   |           | ND         | mg/L       | 0.00008        |      |           |                |                 |           |
| Cadmium   |                   |           | ND         | mg/L       | 0.00003        |      |           |                |                 |           |
| Chromium  |                   |           | 0.0001     | mg/L       | 0.0001         |      |           |                |                 |           |
| Cobalt    |                   |           | ND         | mg/L       | 0.00002        |      |           |                |                 |           |
| Lead      |                   |           | ND         | mg/L       | 0.00003        |      |           |                |                 |           |
| Molybdenu | m                 |           | ND         | mg/L       | 0.00003        |      |           |                |                 |           |
| Selenium  |                   |           | ND         | mg/L       | 0.0004         |      |           |                |                 |           |
| Thallium  |                   | C         | 0.00003    | mg/L       | 7E-06          |      |           |                |                 |           |
| Lab ID:   | LCS-109493        | 10 Labor  | ratory Con | ntrol Samp | ole            |      | Run: ICPM | S206-B_170515A | 05/16/          | 17 22:59  |
| Antimony  |                   |           | 0.480      | mg/L       | 0.0010         | 96   | 85        | 115            |                 |           |
| Arsenic   |                   |           | 0.455      | mg/L       | 0.0010         | 91   | 85        | 115            |                 |           |
| Beryllium |                   |           | 0.240      | mg/L       | 0.0010         | 96   | 85        | 115            |                 |           |
| Cadmium   |                   |           | 0.237      | mg/L       | 0.0010         | 95   | 85        | 115            |                 |           |
| Chromium  |                   |           | 0.460      | mg/L       | 0.0050         | 92   | 85        | 115            |                 |           |
| Cobalt    |                   |           | 0.472      | mg/L       | 0.0050         | 94   | 85        | 115            |                 |           |
| Lead      |                   |           | 0.467      | mg/L       | 0.0010         | 93   | 85        | 115            |                 |           |
| Molybdenu | m                 |           | 0.452      | mg/L       | 0.0010         | 90   | 85        | 115            |                 |           |
| Selenium  |                   |           | 0.482      | mg/L       | 0.0010         | 96   | 85        | 115            |                 |           |
| Thallium  |                   |           | 0.500      | mg/L       | 0.00050        | 100  | 85        | 115            |                 |           |
| Lab ID:   | B17051268-001BMS3 | 10 Samp   | ole Matrix | Spike      |                |      | Run: ICPM | S206-B_170515A | 05/17/          | /17 00:11 |
| Antimony  |                   |           | 0.529      | mg/L       | 0.0010         | 106  | 70        | _<br>130       |                 |           |
| Arsenic   |                   |           | 0.508      | mg/L       | 0.0010         | 101  | 70        | 130            |                 |           |
| Beryllium |                   |           | 0.261      | mg/L       | 0.0010         | 105  | 70        | 130            |                 |           |
| Cadmium   |                   |           | 0.240      | mg/L       | 0.0010         | 96   | 70        | 130            |                 |           |
| Chromium  |                   |           | 0.460      | mg/L       | 0.0050         | 92   | 70        | 130            |                 |           |
| Cobalt    |                   |           | 0.519      | mg/L       | 0.0050         | 104  | 70        | 130            |                 |           |
| Lead      |                   |           | 0.500      | mg/L       | 0.0010         | 100  | 70        | 130            |                 |           |
| Molybdenu | m                 |           | 0.543      | mg/L       | 0.0010         | 102  | 70        | 130            |                 |           |
| Selenium  |                   |           | 0.502      | mg/L       | 0.0010         | 97   | 70        | 130            |                 |           |

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.



Prepared by Billings, MT Branch

Revised Date: 12/21/17

Client: Texas Municipal Power Agency

Project: TMPA 6706150060

Revised Date: 12/21/17

Report Date: 06/13/17

Work Order: B17051284

| Analyte   |                   | Count           | Result         | Units       | RL             | %REC | Low Limit | High Limit     | RPD    | RPDLimit   | Qual      |
|-----------|-------------------|-----------------|----------------|-------------|----------------|------|-----------|----------------|--------|------------|-----------|
| Method:   | E200.8            |                 |                |             |                |      |           |                |        | Batcl      | n: 109493 |
| Lab ID:   | B17051268-001BMS3 | <b>3</b> 10 Sar | nple Matrix    | Spike       |                |      | Run: ICPM | S206-B_170515A |        | 05/17/     | 17 00:11  |
| Thallium  |                   |                 | 0.536          | mg/L        | 0.00050        | 107  | 70        | 130            |        |            |           |
| Lab ID:   | B17051268-001BMSI | <b>D</b> 10 Sar | nple Matrix    | Spike Du    | plicate        |      | Run: ICPM | S206-B_170515A |        | 05/17/     | 17 00:14  |
| Antimony  |                   |                 | 0.491          | mg/L        | 0.0010         | 98   | 70        | 130            | 7.3    | 20         |           |
| Arsenic   |                   |                 | 0.500          | mg/L        | 0.0010         | 99   | 70        | 130            | 1.7    | 20         |           |
| Beryllium |                   |                 | 0.240          | mg/L        | 0.0010         | 96   | 70        | 130            | 8.6    | 20         |           |
| Cadmium   |                   |                 | 0.224          | mg/L        | 0.0010         | 90   | 70        | 130            | 7.0    | 20         |           |
| Chromium  |                   |                 | 0.463          | mg/L        | 0.0050         | 92   | 70        | 130            | 0.7    | 20         |           |
| Cobalt    |                   |                 | 0.477          | mg/L        | 0.0050         | 95   | 70        | 130            | 8.4    | 20         |           |
| Lead      |                   |                 | 0.460          | mg/L        | 0.0010         | 92   | 70        | 130            | 8.3    | 20         |           |
| Molybdenu | m                 |                 | 0.508          | mg/L        | 0.0010         | 95   | 70        | 130            | 6.6    | 20         |           |
| Selenium  |                   |                 | 0.487          | mg/L        | 0.0010         | 94   | 70        | 130            | 3.0    | 20         |           |
| Thallium  |                   |                 | 0.469          | mg/L        | 0.00050        | 94   | 70        | 130            | 13     | 20         |           |
| Method:   | E200.8            |                 |                |             |                |      |           | Analytical     | Run: I | CPMS206-B_ | 170517A   |
| Lab ID:   | QCS               | Initi           | al Calibration | on Verifica | ation Standard |      |           |                |        | 05/17/     | 17 22:51  |
| Cobalt    |                   |                 | 0.0502         | mg/L        | 0.010          | 100  | 90        | 110            |        |            |           |
| Method:   | E200.8            |                 |                |             |                |      |           |                |        | Batch      | n: 109493 |
| Lab ID:   | MB-109493         | Met             | hod Blank      |             |                |      | Run: ICPM | S206-B_170517A |        | 05/17/     | 17 23:05  |
| Cobalt    |                   |                 | ND             | mg/L        | 0.00002        |      |           |                |        |            |           |

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

# **QA/QC Summary Report**

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Report Date: 06/13/17

Revised Date: 12/21/17

**Project:** TMPA 6706150060

Work Order: B17051284

| Analyte |                  | Count       | Result          | Units       | RL            | %REC | Low Limit | High Limit     | RPD     | RPDLimit  | Qual      |
|---------|------------------|-------------|-----------------|-------------|---------------|------|-----------|----------------|---------|-----------|-----------|
| Method: | E245.1           |             |                 |             |               |      |           | Analytic       | al Run: | HGCV202-B | _170515A  |
| Lab ID: | ICV              | Init        | tial Calibratio | on Verifica | tion Standard |      |           |                |         | 05/15/    | 17 14:48  |
| Mercury |                  |             | 0.00200         | mg/L        | 0.00010       | 100  | 90        | 110            |         |           |           |
| Method: | E245.1           |             |                 |             |               |      |           |                |         | Batcl     | h: 109521 |
| Lab ID: | MB-109521        | Me          | thod Blank      |             |               |      | Run: HGCV | /202-B_170515A |         | 05/15/    | 17 14:54  |
| Mercury |                  |             | ND              | mg/L        | 6E-06         |      |           |                |         |           |           |
| Lab ID: | LCS-109521       | La          | boratory Co     | ntrol Samp  | le            |      | Run: HGCV | /202-B_170515A |         | 05/15/    | 17 14:56  |
| Mercury |                  |             | 0.00202         | mg/L        | 0.00010       | 101  | 85        | 115            |         |           |           |
| Lab ID: | B17051284-002BMS | Sa          | mple Matrix     | Spike       |               |      | Run: HGCV | /202-B_170515A |         | 05/15/    | 17 15:21  |
| Mercury |                  |             | 0.00186         | mg/L        | 0.00010       | 93   | 70        | 130            |         |           |           |
| Lab ID: | B17051284-002BMS | <b>D</b> Sa | mple Matrix     | Spike Dup   | olicate       |      | Run: HGCV | /202-B_170515A |         | 05/15/    | 17 15:22  |
| Mercury |                  |             | 0.00186         | mg/L        | 0.00010       | 93   | 70        | 130            | 0.2     | 30        |           |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:05/30/17Project:TMPA 6706150060Work Order:B17051284

| Analyte                           | Count Result  | Units        | RL | %REC Low Li | nit High Limit   | RPD | RPDLimit | Qual      |
|-----------------------------------|---------------|--------------|----|-------------|------------------|-----|----------|-----------|
| Method: A2540 C                   |               |              |    |             |                  |     | Batch    | n: 109527 |
| Lab ID: MB-109527                 | Method Blank  |              |    | Run: B      | L #SD-15_170515C | ;   | 05/15/   | 17 08:27  |
| Solids, Total Dissolved TDS @ 180 | O C ND        | mg/L         | 4  |             |                  |     |          |           |
| Lab ID: LCS-109527                | Laboratory Co | ntrol Sample |    | Run: B      | L #SD-15_170515C | ;   | 05/15/   | 17 08:27  |
| Solids, Total Dissolved TDS @ 180 | O C 997       | mg/L         | 10 | 99          | 90 110           |     |          |           |
| Lab ID: B17051243-001A DUP        | Sample Duplic | ate          |    | Run: B      | L #SD-15_170515C | ;   | 05/15/   | 17 08:28  |
| Solids, Total Dissolved TDS @ 180 | 0 C 12600     | mg/L         | 99 |             |                  | 0.5 | 5        |           |
| Lab ID: B17051243-011A DUP        | Sample Duplic | ate          |    | Run: B      | L #SD-15_170515C | ;   | 05/15/   | 17 08:32  |
| Solids, Total Dissolved TDS @ 180 | C 7630        | mg/L         | 99 |             |                  | 0.4 | 5        |           |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:05/30/17Project:TMPA 6706150060Work Order:B17051284

| Analyte  |                   | Count        | Result       | Units             | RL       | %REC | Low Limit | High Limit   | RPD     | RPDLimit  | Qual     |
|----------|-------------------|--------------|--------------|-------------------|----------|------|-----------|--------------|---------|-----------|----------|
| Method:  | A4500-F C         |              |              |                   |          |      |           | Analytic     | al Run: | MAN-TECH_ | _170516A |
| Lab ID:  | ICV               | Initia       | al Calibrati | on Verification S | Standard |      |           |              |         | 05/16/    | 17 09:56 |
| Fluoride |                   |              | 1.00         | mg/L              | 0.10     | 100  | 90        | 110          |         |           |          |
| Method:  | A4500-F C         |              |              |                   |          |      |           |              |         | Batch:    | R279985  |
| Lab ID:  | MBLK              | Met          | hod Blank    |                   |          |      | Run: MAN- | TECH_170516A |         | 05/16/    | 17 09:51 |
| Fluoride |                   |              | ND           | mg/L              | 0.02     |      |           |              |         |           |          |
| Lab ID:  | LFB               | Lab          | oratory Fo   | tified Blank      |          |      | Run: MAN- | TECH_170516A |         | 05/16/    | 17 09:53 |
| Fluoride |                   |              | 1.02         | mg/L              | 0.10     | 102  | 90        | 110          |         |           |          |
| Lab ID:  | B17051268-001AMS  | San          | nple Matrix  | Spike             |          |      | Run: MAN- | TECH_170516A |         | 05/16/    | 17 13:25 |
| Fluoride |                   |              | 12.4         | mg/L              | 0.50     | 96   | 80        | 120          |         |           |          |
| Lab ID:  | B17051268-001AMSI | <b>D</b> San | nple Matrix  | Spike Duplicate   | Э        |      | Run: MAN- | TECH_170516A |         | 05/16/    | 17 13:27 |
| Fluoride |                   |              | 12.4         | mg/L              | 0.50     | 97   | 80        | 120          | 0.4     | 10        |          |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:05/30/17Project:TMPA 6706150060Work Order:B17051284

| Analyte |                  | Count        | Result        | Units      | RL            | %REC | Low Limit | High Limit  | RPD        | RPDLimit    | Qual     |
|---------|------------------|--------------|---------------|------------|---------------|------|-----------|-------------|------------|-------------|----------|
| Method: | A4500-H B        |              |               |            |               |      |           | Analytic    | al Run: Ph | ISC _101-B_ | _170512A |
| Lab ID: | pH 8             | Initia       | al Calibratio | n Verifica | tion Standard |      |           |             |            | 05/12/      | 17 08:31 |
| рН      |                  |              | 7.97          | s.u.       | 0.10          | 100  | 98        | 102         |            |             |          |
| Method: | A4500-H B        |              |               |            |               |      |           |             |            | Batch:      | R279755  |
| Lab ID: | B17051279-003ADU | <b>P</b> Sam | nple Duplica  | ate        |               |      | Run: PHSC | _101-B_1705 | 12A        | 05/12/      | 17 19:46 |
| рН      |                  |              | 5.55          | s.u.       | 0.10          |      |           |             | 0.9        | 3           |          |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:05/30/17Project:TMPA 6706150060Work Order:B17051284

| Analyte  |                   | Count   | Result         | Units           | RL       | %REC | Low Limit  | High Limit | RPD       | RPDLimit   | Qual      |
|----------|-------------------|---------|----------------|-----------------|----------|------|------------|------------|-----------|------------|-----------|
| Method:  | E300.0            |         |                |                 |          |      |            | Analytical | Run: IC M | METROHM 2_ | _170517A  |
| Lab ID:  | ICV               | 2 Init  | ial Calibratio | on Verification | Standard |      |            |            |           | 05/17/     | /17 11:53 |
| Chloride |                   |         | 2.19           | mg/L            | 1.0      | 97   | 90         | 110        |           |            |           |
| Sulfate  |                   |         | 8.74           | mg/L            | 1.0      | 97   | 90         | 110        |           |            |           |
| Method:  | E300.0            |         |                |                 |          |      |            |            |           | Batch:     | R280093   |
| Lab ID:  | ICB               | 2 Me    | thod Blank     |                 |          |      | Run: IC ME | TROHM 2_17 | 0517A     | 05/17/     | /17 12:12 |
| Chloride |                   |         | ND             | mg/L            | 0.002    |      |            |            |           |            |           |
| Sulfate  |                   |         | ND             | mg/L            | 0.03     |      |            |            |           |            |           |
| Lab ID:  | LFB               | 2 Lab   | oratory For    | tified Blank    |          |      | Run: IC ME | TROHM 2_17 | 0517A     | 05/17/     | /17 12:32 |
| Chloride |                   |         | 10.5           | mg/L            | 1.0      | 105  | 90         | 110        |           |            |           |
| Sulfate  |                   |         | 31.3           | mg/L            | 1.0      | 104  | 90         | 110        |           |            |           |
| Lab ID:  | B17051278-003AMS  | 2 Sai   | mple Matrix    | Spike           |          |      | Run: IC ME | TROHM 2_17 | 0517A     | 05/17/     | /17 22:17 |
| Chloride |                   |         | 21.4           | mg/L            | 1.0      | 106  | 90         | 110        |           |            |           |
| Sulfate  |                   |         | 95.8           | mg/L            | 1.0      | 105  | 90         | 110        |           |            |           |
| Lab ID:  | B17051278-003AMSI | D 2 Saı | mple Matrix    | Spike Duplicat  | e        |      | Run: IC ME | TROHM 2_17 | 0517A     | 05/17/     | /17 22:36 |
| Chloride |                   |         | 21.7           | mg/L            | 1.0      | 107  | 90         | 110        | 1.2       | 20         |           |
| Sulfate  |                   |         | 96.2           | mg/L            | 1.0      | 106  | 90         | 110        | 0.4       | 20         |           |
|          |                   |         |                |                 |          |      |            |            |           |            |           |

# Qualifiers:

# **Work Order Receipt Checklist**

# **Texas Municipal Power Agency**

Login completed by: Tabitha Edwards

# B17051284

Date Received: 5/12/2017

| Reviewed by:                                                                                 | BL2000\cindy                    |              | Re   | eceived by: mme              |  |
|----------------------------------------------------------------------------------------------|---------------------------------|--------------|------|------------------------------|--|
| Reviewed Date:                                                                               | 5/15/2017                       |              | Ca   | rrier name: Return-FedEx NDA |  |
| Shipping container/cooler in                                                                 | good condition?                 | Yes 🔽        | No 🗌 | Not Present                  |  |
| Custody seals intact on all st                                                               | nipping container(s)/cooler(s)? | Yes 🗸        | No 🗌 | Not Present                  |  |
| Custody seals intact on all sa                                                               | ample bottles?                  | Yes          | No 🗌 | Not Present ✓                |  |
| Chain of custody present?                                                                    |                                 | Yes ✓        | No 🗌 |                              |  |
| Chain of custody signed whe                                                                  | en relinquished and received?   | Yes ✓        | No 🗌 |                              |  |
| Chain of custody agrees with                                                                 | sample labels?                  | Yes ✓        | No 🗌 |                              |  |
| Samples in proper container                                                                  | bottle?                         | Yes √        | No 🗌 |                              |  |
| Sample containers intact?                                                                    |                                 | Yes          | No 🔽 |                              |  |
| Sufficient sample volume for                                                                 | indicated test?                 | Yes ✓        | No 🗌 |                              |  |
| All samples received within h<br>(Exclude analyses that are or<br>such as pH, DO, Res CI, Su | onsidered field parameters      | Yes √        | No 🗌 |                              |  |
| Temp Blank received in all sl                                                                | nipping container(s)/cooler(s)? | Yes √        | No 🗌 | Not Applicable               |  |
| Container/Temp Blank tempe                                                                   | erature:                        | 2.4°C On Ice |      |                              |  |
| Water - VOA vials have zero                                                                  | headspace?                      | Yes          | No 🗌 | No VOA vials submitted       |  |
| Water - pH acceptable upon                                                                   | receipt?                        | Yes ✓        | No 🗌 | Not Applicable               |  |
|                                                                                              |                                 |              |      |                              |  |

# **Standard Reporting Procedures:**

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

### **Contact and Corrective Action Comments:**

One of the two containers for sample SFL MW-7 for Radiochemistry was received with the lid off and completely empty. There is sufficient volume to continue with analysis using remaining container.



# Chain of Custody & Analytical Request Record

www.energylab.com

All turnaround times are standard unless marked as MUST be contacted prior to RUSH sample submittal for charges and scheduling -See Instructions Page Energy Laboratories Receipt Number (cash/check only) Comments Signature See Attached Date/Time **Analysis Requested** ☐ LEVEL IV ☐ NELAC ☐ EDD/EDT (contact laboratory) ☐ Other Report Information (if different than Account Information) Check Cash Received by (print) ပ္ပ LABORATORY II გ ი ∨ Special Report/Formats Company/Name Matrix Mailing Address City, State, Zip Matrix Codes 3 V - Vegetation B - Bioassay 3 DW - Drinking Water Soils/ Solids Temp Blank W- Water 0 - Other A - Air Z Contact Phone Number of Containers Email ŝ > Signature Signature Receipt Temp 1202 336 Mailing Address 3755 S. Capital of TX Hwy. #375 Sampler Phone 512-241-232 E E EPA/State Compliance 5/11/17 @ 15:50 Date/Time Collection ☐ Unprocessed ore (NOT ground or refined)\* Receive Report Hard Copy Project Name, PWSID, Permit, otc. TMPA 6706/50060 Bottle Order Amec Foster Wheeker Email greg. Settert Danectu, com Custody Seals MINING CLIENTS, please indicate sample type. 
If ore has been processed or refined, call before sending. ပ Account Information (Billing information) z Brien Gless/man Greg Seifert 512-795-0360 Sample Identification (Name, Location, Interval, etc.) Receive Involce AHard Copy Mail Sampler Name Brian Gicochman Austin, TX Quote Relinquished by (print) Cooler ID(s) SFL MW-7 AP MW-6 Project Information ☐ Byproduct 11 (e)2 material Sample Origin State Company/Name City, State, Zip Purchase Order Record MUST Shipped By be signed Contact Phone

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.
This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

ELI-COC-12/16 v.1

# **ANALYTICAL SUMMARY REPORT**

December 21, 2017

Texas Municipal Power Agency PO Box 7000 Bryan, TX 77805-7000

Work Order: B17060205 Quote ID: B3997 - CCRR

Project Name: TMPA 6706150060

Energy Laboratories Inc Billings MT received the following 10 samples for Texas Municipal Power Agency on 6/2/2017 for analysis.

| Lab ID        | Client Sample ID | Collect Date | Receive Date | Matrix       | Test                                                                                                                                                                                                                                                                  |
|---------------|------------------|--------------|--------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                  |              |              |              | Metals by ICP/ICPMS, Tot. Rec. Mercury, Total Recoverable Fluoride Anions by Ion Chromatography pH Metals Preparation by EPA 200.2 Digestion, Mercury by CVAA Preparation for TDS Radium 226 + Radium 228 Radium 226, Total Radium 228, Total Solids, Total Dissolved |
| B17060205-002 | MNW-18           | 05/30/17 16: | :27 06/02/17 | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
|               |                  |              |              |              |                                                                                                                                                                                                                                                                       |
| B17060205-004 | EQBK-BJG-053017  | 05/30/17 18: | :55 06/02/17 | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
|               |                  |              |              |              |                                                                                                                                                                                                                                                                       |
| B17060205-006 | SFLMW-7          | 05/31/17 11: | :25 06/02/17 | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17060205-007 | MNW-15           | 05/31/17 12: | :51 06/02/17 | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
|               |                  |              |              |              |                                                                                                                                                                                                                                                                       |
| B17060205-009 | EQBK-BJG-053117  | 05/31/17 15: | :15 06/02/17 | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17060205-010 | DUP-1            | 05/31/17 0:0 | 00 06/02/17  | Ground Water | Same As Above                                                                                                                                                                                                                                                         |

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

Texas Municipal Power Agency

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

**Revised Date:** 12/21/17 **Report Date:** 07/06/17

**Project:** TMPA 6706150060

Work Order: B17060205

**CLIENT:** 

CASE NARRATIVE

Tests associated with analyst identified as ELI-CA were subcontracted to Energy Laboratories, PO Box 247, Casper, WY, EPA Number WY00002 and WY00937.

Revised Report 12/21/2017

The reporting limits for the following analytes were lowered per request from Greg Seifert.

Analyte Original Reporting Limit (mg/L) Revised Reporting limit (mg/L)

 Antimony
 0.05
 0.006

 Cadmium
 0.01
 0.005

 Thallium
 0.01
 0.002

The report has been revised and replaces any previously issued report in its entirety.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

 Project:
 TMPA 6706150060

 Lab ID:
 B17060205-002

 Client Sample ID:
 MNW-18

Revised Date: 12/21/17
Report Date: 07/06/17
Collection Date: 05/30/17 16:27
DateReceived: 06/02/17

Matrix: Ground Water

|                                       |        |       |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |      |           |                         |
| Calcium                               | 330    | mg/L  |            | 1     |      | E200.7    | 06/06/17 21:49 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |      | E200.7    | 06/06/17 21:49 / rlh    |
| Potassium                             |        | mg/L  |            | 1     |      | E200.7    | 06/06/17 21:49 / rlh    |
| Sodium                                | 712    | mg/L  | D          | 2     |      | E200.7    | 06/06/17 21:49 / rlh    |
| PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| pH                                    | 7.4    | s.u.  | Н          | 0.1   |      | A4500-H B | 06/02/17 15:59 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 3460   | mg/L  | D          | 40    |      | A2540 C   | 06/03/17 08:38 / rik    |
| INORGANICS                            |        |       |            |       |      |           |                         |
| Chloride                              | 590    | mg/L  | D          | 3     |      | E300.0    | 06/05/17 23:50 / cjm    |
| Sulfate                               | 1790   | mg/L  | D          | 9     |      | E300.0    | 06/05/17 23:50 / cjm    |
| Fluoride                              | 0.2    | mg/L  |            | 0.1   |      | A4500-F C | 06/06/17 13:36 / bas    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 |      | E200.8    | 06/07/17 19:57 / jpv    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/07/17 19:57 / jpv    |
| Barium                                | 0.05   | mg/L  |            | 0.01  |      | E200.7    | 06/06/17 21:49 / rlh    |
| Beryllium                             | ND     | mg/L  |            | 0.001 |      | E200.7    | 06/06/17 21:49 / rlh    |
| Boron                                 | 0.44   | mg/L  |            | 0.05  |      | E200.7    | 06/06/17 21:49 / rlh    |
| Cadmium                               | ND     | mg/L  |            | 0.005 |      | E200.7    | 06/06/17 21:49 / rlh    |
| Chromium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/07/17 19:57 / jpv    |
| Cobalt                                | ND     | mg/L  |            | 0.02  |      | E200.8    | 06/07/17 19:57 / jpv    |
| Lead                                  | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/07/17 19:57 / jpv    |
| Lithium                               | 0.41   | mg/L  | D          | 0.02  |      | E200.7    | 06/06/17 21:49 / rlh    |
| Mercury                               | ND     | mg/L  |            | 0.001 |      | E245.1    | 06/05/17 14:46 / jh     |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |      | E200.7    | 06/06/17 21:49 / rlh    |
| Selenium                              |        | mg/L  |            | 0.01  |      | E200.8    | 06/07/17 19:57 / jpv    |
| Thallium                              | 0.002  | mg/L  |            | 0.002 |      | E200.8    | 06/07/17 19:57 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 226                            | 1.7    | pCi/L |            |       |      | E903.0    | 07/03/17 11:10 / eli-ca |
| Radium 226 precision (±)              | 0.42   | pCi/L |            |       |      | E903.0    | 07/03/17 11:10 / eli-ca |
| Radium 226 MDC                        | 0.20   | pCi/L |            |       |      | E903.0    | 07/03/17 11:10 / eli-ca |
| Radium 228                            | 1.6    | pCi/L | U          |       |      | RA-05     | 06/28/17 14:35 / eli-ca |
| Radium 228 precision (±)              | 1.1    | pCi/L |            |       |      | RA-05     | 06/28/17 14:35 / eli-ca |
| Radium 228 MDC                        | 2.0    | pCi/L |            |       |      | RA-05     | 06/28/17 14:35 / eli-ca |
| Radium 226 + Radium 228               | 3.3    | pCi/L |            |       |      | A7500-RA  | 07/03/17 13:46 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.2    | pCi/L |            |       |      | A7500-RA  | 07/03/17 13:46 / eli-ca |
| Radium 226 + Radium 228 MDC           | 2.0    | pCi/L |            |       |      | A7500-RA  | 07/03/17 13:46 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

U - Not detected at minimum detectable concentration

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

 Project:
 TMPA 6706150060

 Lab ID:
 B17060205-004

 Client Sample ID:
 EQBK-BJG-053017

Revised Date: 12/21/17
Report Date: 07/06/17
Collection Date: 05/30/17 18:55
DateReceived: 06/02/17

Matrix: Ground Water

| Analyses                              | Result | Unito  | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|--------|------------|-------|-------------|-----------|-------------------------|
| Allalyses                             | Result | Ullits | Qualifiers | NL .  | QUL.        | Wethou    | Allalysis Date / By     |
| MAJOR IONS                            |        |        |            |       |             |           |                         |
| Calcium                               | ND     | mg/L   |            | 1     |             | E200.7    | 06/06/17 21:56 / rlh    |
| Magnesium                             |        | mg/L   |            | 1     |             | E200.7    | 06/06/17 21:56 / rlh    |
| Potassium                             | ND     | mg/L   |            | 1     |             | E200.7    | 06/06/17 21:56 / rlh    |
| Sodium                                | ND     | mg/L   |            | 1     |             | E200.7    | 06/06/17 21:56 / rlh    |
| PHYSICAL PROPERTIES                   |        |        |            |       |             |           |                         |
| pH                                    | 6.4    | s.u.   | Н          | 0.1   |             | A4500-H B | 06/02/17 16:07 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 10     | mg/L   |            | 10    |             | A2540 C   | 06/03/17 08:38 / rik    |
| INORGANICS                            |        |        |            |       |             |           |                         |
| Chloride                              | ND     | mg/L   |            | 1     |             | E300.0    | 06/06/17 00:29 / cjm    |
| Sulfate                               |        | mg/L   |            | 1     |             | E300.0    | 06/06/17 00:29 / cjm    |
| Fluoride                              | ND     | mg/L   |            | 0.1   |             | A4500-F C | 06/06/17 13:49 / bas    |
| METALS, TOTAL RECOVERABLE             |        |        |            |       |             |           |                         |
| Antimony                              | ND     | mg/L   |            | 0.006 |             | E200.8    | 06/07/17 20:10 / jpv    |
| Arsenic                               | ND     | mg/L   |            | 0.01  |             | E200.8    | 06/07/17 20:10 / jpv    |
| Barium                                | ND     | mg/L   |            | 0.01  |             | E200.7    | 06/06/17 21:56 / rlh    |
| Beryllium                             | ND     | mg/L   |            | 0.001 |             | E200.7    | 06/06/17 21:56 / rlh    |
| Boron                                 | ND     | mg/L   |            | 0.05  |             | E200.7    | 06/06/17 21:56 / rlh    |
| Cadmium                               | ND     | mg/L   |            | 0.005 |             | E200.7    | 06/06/17 21:56 / rlh    |
| Chromium                              | ND     | mg/L   |            | 0.01  |             | E200.7    | 06/06/17 21:56 / rlh    |
| Cobalt                                | ND     | mg/L   |            | 0.02  |             | E200.7    | 06/06/17 21:56 / rlh    |
| Lead                                  | ND     | mg/L   |            | 0.01  |             | E200.8    | 06/07/17 20:10 / jpv    |
| Lithium                               | ND     | mg/L   |            | 0.01  |             | E200.7    | 06/06/17 21:56 / rlh    |
| Mercury                               |        | mg/L   |            | 0.001 |             | E245.1    | 06/05/17 14:53 / jh     |
| Molybdenum                            | ND     | mg/L   |            | 0.05  |             | E200.7    | 06/06/17 21:56 / rlh    |
| Selenium                              | ND     | mg/L   |            | 0.01  |             | E200.8    | 06/07/17 20:10 / jpv    |
| Thallium                              | ND     | mg/L   |            | 0.002 |             | E200.8    | 06/07/17 20:10 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |        |            |       |             |           |                         |
| Radium 226                            | 0.13   | pCi/L  | U          |       |             | E903.0    | 07/03/17 11:10 / eli-ca |
| Radium 226 precision (±)              | 0.14   | pCi/L  |            |       |             | E903.0    | 07/03/17 11:10 / eli-ca |
| Radium 226 MDC                        | 0.22   | pCi/L  |            |       |             | E903.0    | 07/03/17 11:10 / eli-ca |
| Radium 228                            | -0.6   | pCi/L  | U          |       |             | RA-05     | 06/28/17 14:35 / eli-ca |
| Radium 228 precision (±)              |        | pCi/L  |            |       |             | RA-05     | 06/28/17 14:35 / eli-ca |
| Radium 228 MDC                        | 2.2    | pCi/L  |            |       |             | RA-05     | 06/28/17 14:35 / eli-ca |
| Radium 226 + Radium 228               |        | pCi/L  | U          |       |             | A7500-RA  | 07/03/17 13:46 / eli-ca |
| Radium 226 + Radium 228 precision (±) |        | pCi/L  |            |       |             | A7500-RA  | 07/03/17 13:46 / eli-ca |
| Radium 226 + Radium 228 MDC           | 2.2    | pCi/L  |            |       |             | A7500-RA  | 07/03/17 13:46 / eli-ca |

Report RL - Analy Definitions: QCL - Qui

RL - Analyte reporting limit. QCL - Quality control limit.

MDC - Minimum detectable concentration

U - Not detected at minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

 Project:
 TMPA 6706150060

 Lab ID:
 B17060205-006

 Client Sample ID:
 SFLMW-7

Revised Date: 12/21/17
Report Date: 07/06/17
Collection Date: 05/31/17 11:25
DateReceived: 06/02/17

Matrix: Ground Water

|                                       |        |       |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |      |           |                         |
| Calcium                               | 654    | mg/L  |            | 1     |      | E200.7    | 06/06/17 22:03 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |      | E200.7    | 06/06/17 22:03 / rlh    |
| Potassium                             |        | mg/L  |            | 1     |      | E200.7    | 06/06/17 22:03 / rlh    |
| Sodium                                | 1230   | mg/L  | D          | 4     |      | E200.7    | 06/06/17 22:03 / rlh    |
| PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| рН                                    | 6.8    | s.u.  | Н          | 0.1   |      | A4500-H B | 06/02/17 16:12 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 6810   | mg/L  | D          | 90    |      | A2540 C   | 06/03/17 08:38 / rik    |
| INORGANICS                            |        |       |            |       |      |           |                         |
| Chloride                              | 2740   | mg/L  | D          | 6     |      | E300.0    | 06/06/17 02:26 / cjm    |
| Sulfate                               | 778    | mg/L  | D          | 20    |      | E300.0    | 06/06/17 02:26 / cjm    |
| Fluoride                              | ND     | mg/L  |            | 0.1   |      | A4500-F C | 06/06/17 13:54 / bas    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 |      | E200.8    | 06/07/17 20:15 / jpv    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/07/17 20:15 / jpv    |
| Barium                                | 0.04   | mg/L  |            | 0.01  |      | E200.7    | 06/06/17 22:03 / rlh    |
| Beryllium                             | ND     | mg/L  |            | 0.001 |      | E200.8    | 06/07/17 20:15 / jpv    |
| Boron                                 | 0.78   | mg/L  |            | 0.05  |      | E200.7    | 06/06/17 22:03 / rlh    |
| Cadmium                               | ND     | mg/L  |            | 0.005 |      | E200.8    | 06/07/17 20:15 / jpv    |
| Chromium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/07/17 20:15 / jpv    |
| Cobalt                                | ND     | mg/L  |            | 0.02  |      | E200.8    | 06/07/17 20:15 / jpv    |
| Lead                                  | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/07/17 20:15 / jpv    |
| Lithium                               |        | mg/L  | D          | 0.04  |      | E200.7    | 06/06/17 22:03 / rlh    |
| Mercury                               | ND     | mg/L  |            | 0.001 |      | E245.1    | 06/05/17 14:57 / jh     |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |      | E200.8    | 06/07/17 20:15 / jpv    |
| Selenium                              |        | mg/L  |            | 0.01  |      | E200.8    | 06/07/17 20:15 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.002 |      | E200.8    | 06/07/17 20:15 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 226                            | 0.65   | pCi/L |            |       |      | E903.0    | 07/03/17 11:10 / eli-ca |
| Radium 226 precision (±)              | 0.20   | pCi/L |            |       |      | E903.0    | 07/03/17 11:10 / eli-ca |
| Radium 226 MDC                        | 0.20   | pCi/L |            |       |      | E903.0    | 07/03/17 11:10 / eli-ca |
| Radium 228                            | 3.7    | pCi/L |            |       |      | RA-05     | 06/28/17 13:00 / eli-ca |
| Radium 228 precision (±)              | 1.4    | pCi/L |            |       |      | RA-05     | 06/28/17 13:00 / eli-ca |
| Radium 228 MDC                        | 1.6    | pCi/L |            |       |      | RA-05     | 06/28/17 13:00 / eli-ca |
| Radium 226 + Radium 228               |        | pCi/L |            |       |      | A7500-RA  | 07/03/17 13:46 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.4    | pCi/L |            |       |      | A7500-RA  | 07/03/17 13:46 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.7    | pCi/L |            |       |      | A7500-RA  | 07/03/17 13:46 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

4DO Mili

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA 6706150060 Lab ID: B17060205-007 Client Sample ID: MNW-15

Revised Date: 12/21/17 **Report Date:** 07/06/17 Collection Date: 05/31/17 12:51 DateReceived: 06/02/17

Matrix: Ground Water

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| MAJOR IONS                            |        |       |            |       |             |           |                         |
| Calcium                               | 269    | mg/L  |            | 1     |             | E200.7    | 06/06/17 22:07 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |             | E200.7    | 06/06/17 22:07 / rlh    |
| Potassium                             | 25     | mg/L  |            | 1     |             | E200.7    | 06/06/17 22:07 / rlh    |
| Sodium                                | 421    | mg/L  | D          | 2     |             | E200.7    | 06/06/17 22:07 / rlh    |
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| pH                                    | 3.7    | s.u.  | Н          | 0.1   |             | A4500-H B | 06/02/17 16:15 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 2720   | mg/L  | D          | 40    |             | A2540 C   | 06/03/17 08:38 / rik    |
| INORGANICS                            |        |       |            |       |             |           |                         |
| Chloride                              | 704    | mg/L  | D          | 3     |             | E300.0    | 06/06/17 02:46 / cjm    |
| Sulfate                               | 1230   | mg/L  | D          | 9     |             | E300.0    | 06/06/17 02:46 / cjm    |
| Fluoride                              | 0.5    | mg/L  |            | 0.1   |             | A4500-F C | 06/06/17 14:00 / bas    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 |             | E200.8    | 06/07/17 20:18 / jpv    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 06/07/17 20:18 / jpv    |
| Barium                                | 0.02   | mg/L  |            | 0.01  |             | E200.7    | 06/06/17 22:07 / rlh    |
| Beryllium                             | 0.071  | mg/L  |            | 0.001 |             | E200.7    | 06/06/17 22:07 / rlh    |
| Boron                                 | 8.75   | mg/L  |            | 0.05  |             | E200.7    | 06/06/17 22:07 / rlh    |
| Cadmium                               | 0.106  | mg/L  |            | 0.005 |             | E200.7    | 06/06/17 22:07 / rlh    |
| Chromium                              |        | mg/L  |            | 0.01  |             | E200.8    | 06/07/17 20:18 / jpv    |
| Cobalt                                | 0.28   | mg/L  |            | 0.02  |             | E200.8    | 06/07/17 20:18 / jpv    |
| Lead                                  | ND     | mg/L  |            | 0.01  |             | E200.8    | 06/07/17 20:18 / jpv    |
| Lithium                               |        | mg/L  | D          | 0.02  |             | E200.7    | 06/06/17 22:07 / rlh    |
| Mercury                               | ND     | mg/L  |            | 0.001 |             | E245.1    | 06/05/17 14:59 / jh     |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.7    | 06/06/17 22:07 / rlh    |
| Selenium                              |        | mg/L  |            | 0.01  |             | E200.8    | 06/07/17 20:18 / jpv    |
| Thallium                              | 0.002  | mg/L  |            | 0.002 |             | E200.8    | 06/07/17 20:18 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 226                            | 0.35   | pCi/L |            |       |             | E903.0    | 07/03/17 11:10 / eli-ca |
| Radium 226 precision (±)              |        | pCi/L |            |       |             | E903.0    | 07/03/17 11:10 / eli-ca |
| Radium 226 MDC                        | 0.20   | pCi/L |            |       |             | E903.0    | 07/03/17 11:10 / eli-ca |
| Radium 228                            | -0.04  | pCi/L | U          |       |             | RA-05     | 06/28/17 14:35 / eli-ca |
| Radium 228 precision (±)              |        | pCi/L |            |       |             | RA-05     | 06/28/17 14:35 / eli-ca |
| Radium 228 MDC                        | 2.0    | pCi/L |            |       |             | RA-05     | 06/28/17 14:35 / eli-ca |
| Radium 226 + Radium 228               | 0.3    | pCi/L | U          |       |             | A7500-RA  | 07/03/17 13:46 / eli-ca |
| Radium 226 + Radium 228 precision (±) |        | pCi/L |            |       |             | A7500-RA  | 07/03/17 13:46 / eli-ca |
| Radium 226 + Radium 228 MDC           | 2.0    | pCi/L |            |       |             | A7500-RA  | 07/03/17 13:46 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit. D - RL increased due to sample matrix.

U - Not detected at minimum detectable concentration

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

 Project:
 TMPA 6706150060

 Lab ID:
 B17060205-009

 Client Sample ID:
 EQBK-BJG-053117

Revised Date: 12/21/17
Report Date: 07/06/17

Collection Date: 05/31/17 15:15

DateReceived: 06/02/17

Matrix: Ground Water

|                                       |        |       |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |      |           |                         |
| Calcium                               | ND     | mg/L  |            | 1     |      | E200.7    | 06/06/17 22:14 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |      | E200.7    | 06/06/17 22:14 / rlh    |
| Potassium                             |        | mg/L  |            | 1     |      | E200.7    | 06/06/17 22:14 / rlh    |
| Sodium                                |        | mg/L  |            | 1     |      | E200.7    | 06/06/17 22:14 / rlh    |
| PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| pH                                    | 6.1    | s.u.  | Н          | 0.1   |      | A4500-H B | 06/02/17 16:20 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | ND     | mg/L  |            | 10    |      | A2540 C   | 06/03/17 08:38 / rik    |
| INORGANICS                            |        |       |            |       |      |           |                         |
| Chloride                              | ND     | mg/L  |            | 1     |      | E300.0    | 06/06/17 03:25 / cjm    |
| Sulfate                               | ND     | mg/L  |            | 1     |      | E300.0    | 06/06/17 03:25 / cjm    |
| Fluoride                              | ND     | mg/L  |            | 0.1   |      | A4500-F C | 06/06/17 14:11 / bas    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 |      | E200.8    | 06/07/17 20:23 / jpv    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/07/17 20:23 / jpv    |
| Barium                                | ND     | mg/L  |            | 0.01  |      | E200.7    | 06/06/17 22:14 / rlh    |
| Beryllium                             | ND     | mg/L  |            | 0.001 |      | E200.7    | 06/06/17 22:14 / rlh    |
| Boron                                 | ND     | mg/L  |            | 0.05  |      | E200.7    | 06/06/17 22:14 / rlh    |
| Cadmium                               | ND     | mg/L  |            | 0.005 |      | E200.7    | 06/06/17 22:14 / rlh    |
| Chromium                              | ND     | mg/L  |            | 0.01  |      | E200.7    | 06/06/17 22:14 / rlh    |
| Cobalt                                | ND     | mg/L  |            | 0.02  |      | E200.7    | 06/06/17 22:14 / rlh    |
| Lead                                  | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/07/17 20:23 / jpv    |
| Lithium                               | ND     | mg/L  |            | 0.01  |      | E200.7    | 06/06/17 22:14 / rlh    |
| Mercury                               | ND     | mg/L  |            | 0.001 |      | E245.1    | 06/05/17 15:02 / jh     |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |      | E200.7    | 06/06/17 22:14 / rlh    |
| Selenium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/07/17 20:23 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.002 |      | E200.8    | 06/07/17 20:23 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 226                            | 0.09   | pCi/L | U          |       |      | E903.0    | 07/03/17 11:10 / eli-ca |
| Radium 226 precision (±)              | 0.15   | pCi/L |            |       |      | E903.0    | 07/03/17 11:10 / eli-ca |
| Radium 226 MDC                        | 0.22   | pCi/L |            |       |      | E903.0    | 07/03/17 11:10 / eli-ca |
| Radium 228                            | 2.2    | pCi/L |            |       |      | RA-05     | 06/28/17 14:35 / eli-ca |
| Radium 228 precision (±)              |        | pCi/L |            |       |      | RA-05     | 06/28/17 14:35 / eli-ca |
| Radium 228 MDC                        | 2.2    | pCi/L |            |       |      | RA-05     | 06/28/17 14:35 / eli-ca |
| Radium 226 + Radium 228               | 2.3    | pCi/L |            |       |      | A7500-RA  | 07/03/17 13:46 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.3    | pCi/L |            |       |      | A7500-RA  | 07/03/17 13:46 / eli-ca |
| Radium 226 + Radium 228 MDC           | 2.2    | pCi/L |            |       |      | A7500-RA  | 07/03/17 13:46 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDO Military Control IIIIII

MDC - Minimum detectable concentration

U - Not detected at minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA 6706150060 Lab ID: B17060205-010

Client Sample ID: DUP-1

Revised Date: 12/21/17 **Report Date:** 07/06/17 Collection Date: 05/31/17 DateReceived: 06/02/17 Matrix: Ground Water

| Analyses                              | Decel  | 11-16- | 0          | D.    | MCL/ | Mathad    | Analysis Data / Dy       |
|---------------------------------------|--------|--------|------------|-------|------|-----------|--------------------------|
| Analyses                              | Result | Units  | Qualifiers | RL    | QCL  | Method    | Analysis Date / By       |
| MAJOR IONS                            |        |        |            |       |      |           |                          |
| Calcium                               | 699    | mg/L   |            | 1     |      | E200.7    | 06/06/17 22:24 / rlh     |
| Magnesium                             |        | mg/L   |            | 1     |      | E200.7    | 06/06/17 22:24 / rlh     |
| Potassium                             |        | mg/L   |            | 1     |      | E200.7    | 06/06/17 22:24 / rlh     |
| Sodium                                |        | mg/L   | D          | 4     |      | E200.7    | 06/06/17 22:24 / rlh     |
| PHYSICAL PROPERTIES                   |        | -      |            |       |      |           |                          |
| pH                                    | 6.8    | s.u.   | Н          | 0.1   |      | A4500-H B | 06/02/17 16:23 / pjw     |
| Solids, Total Dissolved TDS @ 180 C   |        | mg/L   | D          | 100   |      | A2540 C   | 06/05/17 14:09 / mnh     |
| Collas, Total Dissolved TDO @ 100 O   | 7 100  | mg/L   | Б          | 100   |      | A2040 O   | 00/00/17 14:03 / 1111111 |
| INORGANICS                            |        |        |            |       |      |           |                          |
| Chloride                              | 2780   | mg/L   | D          | 6     |      | E300.0    | 06/06/17 03:44 / cjm     |
| Sulfate                               | 794    | mg/L   | D          | 20    |      | E300.0    | 06/06/17 03:44 / cjm     |
| Fluoride                              | 0.1    | mg/L   |            | 0.1   |      | A4500-F C | 06/06/17 14:15 / bas     |
| METALS, TOTAL RECOVERABLE             |        |        |            |       |      |           |                          |
| Antimony                              | ND     | mg/L   |            | 0.006 |      | E200.8    | 06/07/17 20:26 / jpv     |
| Arsenic                               |        | mg/L   |            | 0.01  |      | E200.8    | 06/07/17 20:26 / jpv     |
| Barium                                |        | mg/L   |            | 0.01  |      | E200.7    | 06/06/17 22:24 / rlh     |
| Beryllium                             | ND     | mg/L   |            | 0.001 |      | E200.8    | 06/07/17 20:26 / jpv     |
| Boron                                 | 0.81   | mg/L   |            | 0.05  |      | E200.7    | 06/06/17 22:24 / rlh     |
| Cadmium                               | ND     | mg/L   |            | 0.005 |      | E200.8    | 06/07/17 20:26 / jpv     |
| Chromium                              | ND     | mg/L   |            | 0.01  |      | E200.8    | 06/07/17 20:26 / jpv     |
| Cobalt                                | ND     | mg/L   |            | 0.02  |      | E200.8    | 06/07/17 20:26 / jpv     |
| Lead                                  | ND     | mg/L   |            | 0.01  |      | E200.8    | 06/07/17 20:26 / jpv     |
| Lithium                               | 0.48   | mg/L   | D          | 0.04  |      | E200.7    | 06/06/17 22:24 / rlh     |
| Mercury                               | ND     | mg/L   |            | 0.001 |      | E245.1    | 06/05/17 15:04 / jh      |
| Molybdenum                            | ND     | mg/L   |            | 0.05  |      | E200.8    | 06/07/17 20:26 / jpv     |
| Selenium                              | 0.02   | mg/L   |            | 0.01  |      | E200.8    | 06/07/17 20:26 / jpv     |
| Thallium                              | ND     | mg/L   |            | 0.002 |      | E200.8    | 06/07/17 20:26 / jpv     |
| RADIONUCLIDES - TOTAL                 |        |        |            |       |      |           |                          |
| Radium 226                            | 0.55   | pCi/L  |            |       |      | E903.0    | 07/03/17 08:57 / eli-ca  |
| Radium 226 precision (±)              |        | pCi/L  |            |       |      | E903.0    | 07/03/17 08:57 / eli-ca  |
| Radium 226 MDC                        |        | pCi/L  |            |       |      | E903.0    | 07/03/17 08:57 / eli-ca  |
| Radium 228                            | 2.9    | pCi/L  |            |       |      | RA-05     | 06/28/17 16:11 / eli-ca  |
| Radium 228 precision (±)              |        | pCi/L  |            |       |      | RA-05     | 06/28/17 16:11 / eli-ca  |
| Radium 228 MDC                        |        | pCi/L  |            |       |      | RA-05     | 06/28/17 16:11 / eli-ca  |
| Radium 226 + Radium 228               |        | pCi/L  |            |       |      | A7500-RA  | 07/03/17 13:46 / eli-ca  |
| Radium 226 + Radium 228 precision (±) | 1      |        |            |       |      | A7500-RA  | 07/03/17 13:46 / eli-ca  |
| Radium 226 + Radium 228 MDC           | 1.3    | pCi/L  |            |       |      | A7500-RA  | 07/03/17 13:46 / eli-ca  |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

Prepared by Casper, WY Branch

Client:Texas Municipal Power AgencyReport Date:07/03/17Project:TMPA 6706150060Work Order:B17060205

| Analyte                   | Result Units          | RL %REC   | Low Limit High Limit | RPD RPDLimit Qual |
|---------------------------|-----------------------|-----------|----------------------|-------------------|
| Method: E903.0            |                       |           |                      | Batch: RA226-8535 |
| Lab ID: LCS-RA226-8535    | Laboratory Control Sa | mple      | Run: G5000W_170621D  | 07/03/17 08:57    |
| Radium 226                | 8.5 pCi/L             | 83        | 80 120               |                   |
| Lab ID: MB-RA226-8535     | Method Blank          |           | Run: G5000W_170621D  | 07/03/17 08:57    |
| Radium 226                | 0.1 pCi/L             |           |                      | U                 |
| Radium 226 precision (±)  | 0.1 pCi/L             |           |                      |                   |
| Radium 226 MDC            | 0.2 pCi/L             |           |                      |                   |
| Lab ID: C17060335-001CMS  | Sample Matrix Spike   |           | Run: G5000W_170621D  | 07/03/17 08:57    |
| Radium 226                | 22 pCi/L              | 99        | 70 130               |                   |
| Lab ID: C17060335-001CMSD | Sample Matrix Spike   | Duplicate | Run: G5000W_170621D  | 07/03/17 08:57    |
| Radium 226                | 19 pCi/L              | 85        | 70 130               | 15 20             |
| Method: E903.0            |                       |           |                      | Batch: RA226-8534 |
| Lab ID: LCS-RA226-8534    | Laboratory Control Sa | imple     | Run: G542M_170621C   | 07/03/17 09:36    |
| Radium 226                | 9.5 pCi/L             | 93        | 80 120               |                   |
| Lab ID: MB-RA226-8534     | Method Blank          |           | Run: G542M_170621C   | 07/03/17 09:36    |
| Radium 226                | 0.2 pCi/L             |           |                      | U                 |
| Radium 226 precision (±)  | 0.1 pCi/L             |           |                      |                   |
| Radium 226 MDC            | 0.2 pCi/L             |           |                      |                   |
| Lab ID: B17060205-001CMS  | Sample Matrix Spike   |           | Run: G542M_170621C   | 07/03/17 09:36    |
| Radium 226                | 19 pCi/L              | 87        | 70 130               |                   |
| Lab ID: B17060205-001CMSD | Sample Matrix Spike   | Duplicate | Run: G542M_170621C   | 07/03/17 09:36    |
| Radium 226                | 20 pCi/L              | 93        |                      | 6.0 20            |

# Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

Prepared by Casper, WY Branch

Client:Texas Municipal Power AgencyReport Date:07/03/17Project:TMPA 6706150060Work Order:B17060205

| Analyte                    | Result        | Units           | RL %REC | Low Limit | High Limit      | RPD | RPDLimit  | Qual       |
|----------------------------|---------------|-----------------|---------|-----------|-----------------|-----|-----------|------------|
| Method: RA-05              |               |                 |         |           |                 |     | Batch: RA | 228-5523   |
| Lab ID: LCS-228-RA226-8534 | Laboratory Co | ntrol Sample    |         | Run: TENI | NELEC-3_170621  | 4   | 06/28     | 3/17 13:00 |
| Radium 228                 | 10            | pCi/L           | 105     | 80        | 120             |     |           |            |
| Lab ID: MB-RA226-8534      | Method Blank  |                 |         | Run: TEN  | NELEC-3_170621  | Α.  | 06/28     | 3/17 13:00 |
| Radium 228                 | 0.6           | pCi/L           |         |           |                 |     |           | U          |
| Radium 228 precision (±)   | 1             | pCi/L           |         |           |                 |     |           |            |
| Radium 228 MDC             | 2             | pCi/L           |         |           |                 |     |           |            |
| Lab ID: B17060205-006CMS   | Sample Matrix | Spike           |         | Run: TENI | NELEC-3_170621  | 4   | 06/28     | 3/17 13:00 |
| Radium 228                 | 23            | pCi/L           | 102     | 70        | 130             |     |           |            |
| Lab ID: B17060205-006CMSD  | Sample Matrix | Spike Duplicate |         | Run: TEN  | NELEC-3_170621  | 4   | 06/28     | 3/17 13:00 |
| Radium 228                 | 34            | pCi/L           | 97      | 70        | 130             | 39  | 20        | R          |
| Method: RA-05              |               |                 |         |           |                 |     | Batch: RA | 228-5524   |
| Lab ID: LCS-228-RA226-8535 | Laboratory Co | ntrol Sample    |         | Run: TENI | NELEC-3_170621E | 3   | 06/28     | 3/17 16:11 |
| Radium 228                 | 9.6           | pCi/L           | 102     | 80        | 120             |     |           |            |
| Lab ID: MB-RA226-8535      | Method Blank  |                 |         | Run: TENI | NELEC-3_170621E | 3   | 06/28     | 3/17 16:11 |
| Radium 228                 | 0.1           | pCi/L           |         |           |                 |     |           | U          |
| Radium 228 precision (±)   | 0.8           | pCi/L           |         |           |                 |     |           |            |
| Radium 228 MDC             | 1             | pCi/L           |         |           |                 |     |           |            |
| Lab ID: C17060350-010DMS   | Sample Matrix | Spike           |         | Run: TENI | NELEC-3_170621E | 3   | 06/28     | 3/17 16:11 |
| Radium 228                 | 18            | pCi/L           | 85      | 70        | 130             |     |           |            |
| Lab ID: C17060350-010DMSD  | Sample Matrix | Spike Duplicate |         | Run: TENI | NELEC-3_170621E | 3   | 06/28     | 3/17 16:11 |
| Radium 228                 | 18            | pCi/L           | 82      | 70        | 130             | 2.1 | 20        |            |

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**Revised Date:** 12/21/17 **Report Date:** 07/06/17

Project: TMPA 6706150060 Work Order: B17060205

| Analyte   |                   | Count Result     | Units           | RL             | %REC | Low Limit  | High Limit  | RPD RPDLimit         | Qual             |
|-----------|-------------------|------------------|-----------------|----------------|------|------------|-------------|----------------------|------------------|
| Method:   | E200.7            |                  |                 |                |      |            | Anal        | ytical Run: ICP203-B | _170606 <i>A</i> |
| Lab ID:   | ICV               | 12 Continuing Ca | libration Verif | ication Standa | rd   |            |             | 06/06/               | /17 09:49        |
| Barium    |                   | 2.41             | mg/L            | 0.10           | 96   | 95         | 105         |                      |                  |
| Beryllium |                   | 1.26             | mg/L            | 0.010          | 101  | 95         | 105         |                      |                  |
| Boron     |                   | 2.51             | mg/L            | 0.10           | 100  | 95         | 105         |                      |                  |
| Cadmium   |                   | 2.46             | mg/L            | 0.010          | 98   | 95         | 105         |                      |                  |
| Calcium   |                   | 24.7             | mg/L            | 1.0            | 99   | 95         | 105         |                      |                  |
| Chromium  |                   | 2.41             | mg/L            | 0.050          | 97   | 95         | 105         |                      |                  |
| Cobalt    |                   | 2.45             | mg/L            | 0.020          | 98   | 95         | 105         |                      |                  |
| Lithium   |                   | 1.21             | mg/L            | 0.10           | 96   | 95         | 105         |                      |                  |
| Magnesiun | n                 | 24.5             | mg/L            | 1.0            | 98   | 95         | 105         |                      |                  |
| Molybdenu | ım                | 2.47             | mg/L            | 0.10           | 99   | 95         | 105         |                      |                  |
| Potassium | l                 | 24.1             | mg/L            | 1.0            | 96   | 95         | 105         |                      |                  |
| Sodium    |                   | 24.0             | mg/L            | 1.0            | 96   | 95         | 105         |                      |                  |
| Method:   | E200.7            |                  |                 |                |      |            |             | Batc                 | h: 110160        |
| Lab ID:   | MB-110160         | 12 Method Blank  |                 |                |      | Run: ICP20 | 3-B_170606A | 06/06/               | /17 20:22        |
| Barium    |                   | ND               | mg/L            | 0.0005         |      |            |             |                      |                  |
| Beryllium |                   | ND               | mg/L            | 0.0001         |      |            |             |                      |                  |
| Boron     |                   | ND               | mg/L            | 0.003          |      |            |             |                      |                  |
| Cadmium   |                   | ND               | mg/L            | 0.0010         |      |            |             |                      |                  |
| Calcium   |                   | ND               | mg/L            | 0.08           |      |            |             |                      |                  |
| Chromium  |                   | 0.003            | mg/L            | 0.002          |      |            |             |                      |                  |
| Cobalt    |                   | ND               | mg/L            | 0.005          |      |            |             |                      |                  |
| Lithium   |                   | ND               | mg/L            | 0.004          |      |            |             |                      |                  |
| Magnesiun | n                 | ND               | mg/L            | 0.01           |      |            |             |                      |                  |
| Molybdenu | ım                | ND               | mg/L            | 0.007          |      |            |             |                      |                  |
| Potassium | 1                 | ND               | mg/L            | 0.07           |      |            |             |                      |                  |
| Sodium    |                   | ND               | mg/L            | 0.03           |      |            |             |                      |                  |
| Lab ID:   | LCS-110160        | 12 Laboratory Co | ntrol Sample    |                |      | Run: ICP20 | 3-B_170606A | 06/06/               | /17 20:25        |
| Barium    |                   | 0.506            | mg/L            | 0.10           | 101  | 85         | _<br>115    |                      |                  |
| Beryllium |                   | 0.266            | mg/L            | 0.010          | 106  | 85         | 115         |                      |                  |
| Boron     |                   | 0.493            | mg/L            | 0.10           | 99   | 85         | 115         |                      |                  |
| Cadmium   |                   | 0.255            | mg/L            | 0.010          | 102  | 85         | 115         |                      |                  |
| Calcium   |                   | 28.1             | mg/L            | 1.0            | 113  | 85         | 115         |                      |                  |
| Chromium  |                   | 0.502            | mg/L            | 0.050          | 100  | 85         | 115         |                      |                  |
| Cobalt    |                   | 0.514            | mg/L            | 0.050          | 103  | 85         | 115         |                      |                  |
| Lithium   |                   | 0.565            | mg/L            | 0.10           | 113  | 85         | 115         |                      |                  |
| Magnesiun | n                 | 27.9             | mg/L            | 1.0            | 112  | 85         | 115         |                      |                  |
| Molybdenu |                   | 0.505            | mg/L            | 0.10           | 101  | 85         | 115         |                      |                  |
| Potassium |                   | 28.2             | mg/L            | 1.0            | 113  | 85         | 115         |                      |                  |
| Sodium    |                   | 27.6             | mg/L            | 1.0            | 110  | 85         | 115         |                      |                  |
| Lab ID:   | B17060205-001BMS3 | 12 Sample Matrix | Snike           |                |      | Run ICP20  | 3-B 170606A | 06/06                | /17 21:42        |
| Barium    |                   | 0.566            | mg/L            | 0.050          | 104  | 70         | 130         | 00/00/               | 2 1.42           |
| Janain    |                   | 0.260            | mg/L            | 0.0014         | 104  | 70         | 130         |                      |                  |

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**Revised Date:** 12/21/17 **Report Date:** 07/06/17

**Project:** TMPA 6706150060

Work Order: B17060205

| Analyte   |                   | Count          | Result      | Units           | RL     | %REC | Low Limit  | High Limit  | RPD | RPDLimit | Qual      |
|-----------|-------------------|----------------|-------------|-----------------|--------|------|------------|-------------|-----|----------|-----------|
| Method:   | E200.7            |                |             |                 |        |      |            |             |     | Batc     | h: 110160 |
| Lab ID:   | B17060205-001BMS3 | 12 Sa          | mple Matrix | Spike           |        |      | Run: ICP20 | 3-B_170606A |     | 06/06/   | /17 21:42 |
| Boron     |                   |                | 1.21        | mg/L            | 0.050  | 125  | 70         | 130         |     |          |           |
| Cadmium   |                   |                | 0.255       | mg/L            | 0.0099 | 102  | 70         | 130         |     |          |           |
| Calcium   |                   |                | 664         | mg/L            | 1.0    |      | 70         | 130         |     |          | Α         |
| Chromium  |                   |                | 0.544       | mg/L            | 0.020  | 109  | 70         | 130         |     |          |           |
| Cobalt    |                   |                | 0.508       | mg/L            | 0.052  | 102  | 70         | 130         |     |          |           |
| Lithium   |                   |                | 1.21        | mg/L            | 0.10   | 90   | 70         | 130         |     |          |           |
| Magnesium | 1                 |                | 131         | mg/L            | 1.0    |      | 70         | 130         |     |          | Α         |
| Molybdenu | m                 |                | 0.488       | mg/L            | 0.071  | 98   | 70         | 130         |     |          |           |
| Potassium |                   |                | 77.2        | mg/L            | 1.0    | 98   | 70         | 130         |     |          |           |
| Sodium    |                   |                | 1330        | mg/L            | 4.2    |      | 70         | 130         |     |          | Α         |
| Lab ID:   | B17060205-001BMSE | <b>)</b> 12 Sa | mple Matrix | Spike Duplicate |        |      | Run: ICP20 | 3-B_170606A |     | 06/06/   | /17 21:46 |
| Barium    |                   |                | 0.568       | mg/L            | 0.050  | 104  | 70         | 130         | 0.3 | 20       |           |
| Beryllium |                   |                | 0.252       | mg/L            | 0.0014 | 101  | 70         | 130         | 3.2 | 20       |           |
| Boron     |                   |                | 1.17        | mg/L            | 0.050  | 118  | 70         | 130         | 3.1 | 20       |           |
| Cadmium   |                   |                | 0.250       | mg/L            | 0.0099 | 100  | 70         | 130         | 2.3 | 20       |           |
| Calcium   |                   |                | 658         | mg/L            | 1.0    |      | 70         | 130         | 1.0 | 20       | Α         |
| Chromium  |                   |                | 0.525       | mg/L            | 0.020  | 105  | 70         | 130         | 3.5 | 20       |           |
| Cobalt    |                   |                | 0.509       | mg/L            | 0.052  | 102  | 70         | 130         | 0.3 | 20       |           |
| Lithium   |                   |                | 1.25        | mg/L            | 0.10   | 98   | 70         | 130         | 3.4 | 20       |           |
| Magnesium | 1                 |                | 130         | mg/L            | 1.0    |      | 70         | 130         | 1.1 | 20       | Α         |
| Molybdenu | m                 |                | 0.427       | mg/L            | 0.071  | 85   | 70         | 130         | 13  | 20       |           |
| Potassium |                   |                | 76.8        | mg/L            | 1.0    | 97   | 70         | 130         | 0.6 | 20       |           |
| Sodium    |                   |                | 1370        | mg/L            | 4.2    |      | 70         | 130         | 2.6 | 20       | Α         |
| Lab ID:   | B17060234-001CMS  | 12 Sa          | mple Matrix | Spike           |        |      | Run: ICP20 | 3-B_170606A |     | 06/06/   | /17 22:39 |
| Barium    |                   |                | 0.612       | mg/L            | 0.050  | 111  | 70         | 130         |     |          |           |
| Beryllium |                   |                | 0.271       | mg/L            | 0.0010 | 108  | 70         | 130         |     |          |           |
| Boron     |                   |                | 1.21        | mg/L            | 0.050  | 109  | 70         | 130         |     |          |           |
| Cadmium   |                   |                | 0.267       | mg/L            | 0.0050 | 107  | 70         | 130         |     |          |           |
| Calcium   |                   |                | 29.8        | mg/L            | 1.0    | 111  | 70         | 130         |     |          |           |
| Chromium  |                   |                | 0.543       | mg/L            | 0.010  | 109  | 70         | 130         |     |          |           |
| Cobalt    |                   |                | 0.538       | mg/L            | 0.026  | 108  | 70         | 130         |     |          |           |
| Lithium   |                   |                | 0.701       | mg/L            | 0.10   | 108  | 70         | 130         |     |          |           |
| Magnesium | 1                 |                | 27.8        | mg/L            | 1.0    | 110  | 70         | 130         |     |          |           |
| Molybdenu | m                 |                | 0.496       | mg/L            | 0.036  | 99   | 70         | 130         |     |          |           |
| Potassium |                   |                | 29.8        | mg/L            | 1.0    | 107  | 70         | 130         |     |          |           |
| Sodium    |                   |                | 628         | mg/L            | 2.1    |      | 70         | 130         |     |          | Α         |
| Lab ID:   | B17060234-001CMSE | <b>)</b> 12 Sa | mple Matrix | Spike Duplicate |        |      | Run: ICP20 | 3-B_170606A |     | 06/06/   | /17 22:42 |
| Barium    |                   |                | 0.568       | mg/L            | 0.050  | 102  | 70         | 130         | 7.4 | 20       |           |
| Beryllium |                   |                | 0.256       | mg/L            | 0.0010 | 103  | 70         | 130         | 5.6 | 20       |           |
| Boron     |                   |                | 1.15        | mg/L            | 0.050  | 97   | 70         | 130         | 5.1 | 20       |           |
| Cadmium   |                   |                | 0.257       | mg/L            | 0.0050 | 103  | 70         | 130         | 3.8 | 20       |           |
| Calcium   |                   |                | 28.8        | mg/L            | 1.0    | 107  | 70         | 130         | 3.6 | 20       |           |

# Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

MDC - Minimum detectable concentration

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency Revised Date: 12/21/17 **Report Date:** 07/06/17

Project: TMPA 6706150060

Work Order: B17060205

| Analyte   |                   | Count         | Result       | Units             | RL           | %REC | Low Limit  | High Limit  | RPD       | RPDLimit     | Qual      |
|-----------|-------------------|---------------|--------------|-------------------|--------------|------|------------|-------------|-----------|--------------|-----------|
| Method:   | E200.7            |               |              |                   |              |      |            |             |           | Batch        | n: 110160 |
| Lab ID:   | B17060234-001CMSI | <b>1</b> 2 Sa | mple Matrix  | Spike Duplicate   | :            |      | Run: ICP20 | 3-B_170606A |           | 06/06/       | 17 22:42  |
| Chromium  |                   |               | 0.526        | mg/L              | 0.010        | 105  | 70         | 130         | 3.1       | 20           |           |
| Cobalt    |                   |               | 0.523        | mg/L              | 0.026        | 105  | 70         | 130         | 3.0       | 20           |           |
| Lithium   |                   |               | 0.649        | mg/L              | 0.10         | 97   | 70         | 130         | 7.8       | 20           |           |
| Magnesium | า                 |               | 26.9         | mg/L              | 1.0          | 107  | 70         | 130         | 3.3       | 20           |           |
| Molybdenu | m                 |               | 0.510        | mg/L              | 0.036        | 102  | 70         | 130         | 2.7       | 20           |           |
| Potassium |                   |               | 27.6         | mg/L              | 1.0          | 98   | 70         | 130         | 7.8       | 20           |           |
| Sodium    |                   |               | 584          | mg/L              | 2.1          |      | 70         | 130         | 7.3       | 20           | Α         |
| Method:   | E200.7            |               |              |                   |              |      |            | Analy       | rtical Ru | n: ICP203-B_ | 170607A   |
| Lab ID:   | ICV               | Co            | ntinuing Cal | ibration Verifica | tion Standar | ·d   |            |             |           | 06/07/       | 17 10:35  |
| Lithium   |                   |               | 1.21         | mg/L              | 0.10         | 97   | 95         | 105         |           |              |           |
| Method:   | E200.7            |               |              |                   |              |      |            |             |           | Batch        | n: 110160 |
| Lab ID:   | MB-110160         | Me            | thod Blank   |                   |              |      | Run: ICP20 | 3-B 170607A |           | 06/07/       | 17 22:46  |
| Lithium   |                   |               | ND           | mg/L              | 0.004        |      |            | _           |           |              |           |
| Lab ID:   | LCS-110160        | Lal           | boratory Co  | ntrol Sample      |              |      | Run: ICP20 | 3-B 170607A |           | 06/07/       | 17 22:49  |
| Lithium   |                   |               | 0.501        | mg/L              | 0.10         | 100  | 85         | 115         |           |              |           |
| Lab ID:   | B17060205-001BMS3 | 3 Sa          | mple Matrix  | Spike             |              |      | Run: ICP20 | 3-B_170607A |           | 06/07/       | 17 23:10  |
| Lithium   |                   |               | 1.22         | mg/L              | 0.10         | 103  | 70         | 130         |           |              |           |
| Lab ID:   | B17060205-001BMSI | <b>)</b> Sa   | mple Matrix  | Spike Duplicate   | <b>:</b>     |      | Run: ICP20 | 3-B_170607A |           | 06/07/       | 17 23:14  |
| Lithium   |                   |               | 1.24         | mg/L              | 0.10         | 107  | 70         | 130         | 1.5       | 20           |           |
|           |                   |               |              |                   |              |      |            |             |           |              |           |

# Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

MDC - Minimum detectable concentration

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Revised Date: 12/21/17 Report Date: 07/06/17

**Project:** TMPA 6706150060

Work Order: B17060205

| Analyte   |                   | Count      | Result      | Units        | RL           | %REC | Low Limit | High Limit    | RPD       | RPDLimit  | Qual      |
|-----------|-------------------|------------|-------------|--------------|--------------|------|-----------|---------------|-----------|-----------|-----------|
| Method:   | E200.8            |            |             |              |              |      |           | Analytic      | al Run: I | CPMS202-B | _170606A  |
| Lab ID:   | QCS               | 10 Initial | Calibration | on Verificat | ion Standard |      |           |               |           | 06/07     | /17 18:09 |
| Antimony  |                   |            | 0.0486      | mg/L         | 0.050        | 97   | 90        | 110           |           |           |           |
| Arsenic   |                   |            | 0.0499      | mg/L         | 0.0050       | 100  | 90        | 110           |           |           |           |
| Beryllium |                   |            | 0.0240      | mg/L         | 0.0010       | 96   | 90        | 110           |           |           |           |
| Cadmium   |                   |            | 0.0254      | mg/L         | 0.0010       | 102  | 90        | 110           |           |           |           |
| Chromium  |                   |            | 0.0505      | mg/L         | 0.010        | 101  | 90        | 110           |           |           |           |
| Cobalt    |                   |            | 0.0507      | mg/L         | 0.010        | 101  | 90        | 110           |           |           |           |
| Lead      |                   |            | 0.0490      | mg/L         | 0.010        | 98   | 90        | 110           |           |           |           |
| Molybdenu | ım                |            | 0.0460      | mg/L         | 0.0050       | 92   | 90        | 110           |           |           |           |
| Selenium  |                   |            | 0.0507      | mg/L         | 0.0050       | 101  | 90        | 110           |           |           |           |
| Thallium  |                   |            | 0.0491      | mg/L         | 0.10         | 98   | 90        | 110           |           |           |           |
| Method:   | E200.8            |            |             |              |              |      |           |               |           | Batc      | h: 110160 |
| Lab ID:   | MB-110160         | 10 Metho   | od Blank    |              |              |      | Run: ICPM | S202-B 170606 | Α         | 06/07     | /17 19:07 |
| Antimony  |                   |            | 0.0002      | mg/L         | 0.00004      |      |           | _             |           |           |           |
| Arsenic   |                   |            | ND          | mg/L         | 0.00006      |      |           |               |           |           |           |
| Beryllium |                   | C          | .00002      | mg/L         | 0.00002      |      |           |               |           |           |           |
| Cadmium   |                   |            | ND          | mg/L         | 0.00002      |      |           |               |           |           |           |
| Chromium  |                   |            | 0.0006      | mg/L         | 0.00009      |      |           |               |           |           |           |
| Cobalt    |                   | C          | .00004      | mg/L         | 0.00003      |      |           |               |           |           |           |
| Lead      |                   | C          | 80000.      | mg/L         | 0.00005      |      |           |               |           |           |           |
| Molybdenu | ım                |            | ND          | mg/L         | 0.00007      |      |           |               |           |           |           |
| Selenium  |                   |            | 0.0007      | mg/L         | 0.0002       |      |           |               |           |           |           |
| Thallium  |                   |            | 0.0005      | mg/L         | 0.0001       |      |           |               |           |           |           |
| Lab ID:   | LCS-110160        | 10 Labor   | atory Co    | ntrol Sampl  | e            |      | Run: ICPM | S202-B_170606 | Α         | 06/07     | /17 19:44 |
| Antimony  |                   |            | 0.500       | mg/L         | 0.0010       | 100  | 85        | 115           |           |           |           |
| Arsenic   |                   |            | 0.513       | mg/L         | 0.0010       | 103  | 85        | 115           |           |           |           |
| Beryllium |                   |            | 0.235       | mg/L         | 0.0010       | 94   | 85        | 115           |           |           |           |
| Cadmium   |                   |            | 0.256       | mg/L         | 0.0010       | 103  | 85        | 115           |           |           |           |
| Chromium  |                   |            | 0.487       | mg/L         | 0.0050       | 97   | 85        | 115           |           |           |           |
| Cobalt    |                   |            | 0.485       | mg/L         | 0.0050       | 97   | 85        | 115           |           |           |           |
| Lead      |                   |            | 0.509       | mg/L         | 0.0010       | 102  | 85        | 115           |           |           |           |
| Molybdenu | ım                |            | 0.495       | mg/L         | 0.0010       | 99   | 85        | 115           |           |           |           |
| Selenium  |                   |            | 0.502       | mg/L         | 0.0010       | 100  | 85        | 115           |           |           |           |
| Thallium  |                   |            | 0.491       | mg/L         | 0.00050      | 98   | 85        | 115           |           |           |           |
| Lab ID:   | B17060205-001BMS3 | 3 10 Samp  | ole Matrix  | Spike        |              |      | Run: ICPM | S202-B_170606 | Α         | 06/07     | /17 19:46 |
| Antimony  |                   | •          | 0.506       | mg/L         | 0.0010       | 101  | 70        | _<br>130      |           |           |           |
| Arsenic   |                   |            | 0.517       | mg/L         | 0.0010       | 103  | 70        | 130           |           |           |           |
| Beryllium |                   |            | 0.224       | mg/L         | 0.0010       | 90   | 70        | 130           |           |           |           |
| Cadmium   |                   |            | 0.251       | mg/L         | 0.0010       | 101  | 70        | 130           |           |           |           |
| Chromium  |                   |            | 0.514       | mg/L         | 0.0050       | 103  | 70        | 130           |           |           |           |
| Cobalt    |                   |            | 0.504       | mg/L         | 0.0050       | 101  | 70        | 130           |           |           |           |
| Lead      |                   |            | 0.516       | mg/L         | 0.0010       | 103  | 70        | 130           |           |           |           |
| Molybdenu | ım.               |            | 0.512       | mg/L         | 0.0010       | 102  | 70        | 130           |           |           |           |

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Revised Date: 12/21/17
Report Date: 07/06/17

**Project:** TMPA 6706150060

Work Order: B17060205

| Analyte   |                   | Count          | Result      | Units    | RL      | %REC | Low Limit | High Limit    | RPD      | RPDLimit | Qual      |
|-----------|-------------------|----------------|-------------|----------|---------|------|-----------|---------------|----------|----------|-----------|
| Method:   | E200.8            |                |             |          |         |      |           |               |          | Batcl    | n: 110160 |
| Lab ID:   | B17060205-001BMS3 | <b>3</b> 10 Sa | mple Matrix | Spike    |         |      | Run: ICPM | 06/07/        | 17 19:46 |          |           |
| Selenium  |                   |                | 0.495       | mg/L     | 0.0011  | 99   | 70        | 130           |          |          |           |
| Thallium  |                   |                | 0.470       | mg/L     | 0.00071 | 94   | 70        | 130           |          |          |           |
| Lab ID:   | B17060205-001BMS  | <b>D</b> 10 Sa | mple Matrix | Spike Du | plicate |      | Run: ICPM | S202-B_170606 | 4        | 06/07/   | 17 19:49  |
| Antimony  |                   |                | 0.514       | mg/L     | 0.0010  | 103  | 70        | 130           | 1.6      | 20       |           |
| Arsenic   |                   |                | 0.520       | mg/L     | 0.0010  | 104  | 70        | 130           | 0.6      | 20       |           |
| Beryllium |                   |                | 0.231       | mg/L     | 0.0010  | 92   | 70        | 130           | 2.9      | 20       |           |
| Cadmium   |                   |                | 0.254       | mg/L     | 0.0010  | 101  | 70        | 130           | 0.9      | 20       |           |
| Chromium  |                   |                | 0.517       | mg/L     | 0.0050  | 103  | 70        | 130           | 0.6      | 20       |           |
| Cobalt    |                   |                | 0.505       | mg/L     | 0.0050  | 101  | 70        | 130           | 0.2      | 20       |           |
| Lead      |                   |                | 0.533       | mg/L     | 0.0010  | 107  | 70        | 130           | 3.2      | 20       |           |
| Molybdenu | m                 |                | 0.518       | mg/L     | 0.0010  | 104  | 70        | 130           | 1.3      | 20       |           |
| Selenium  |                   |                | 0.498       | mg/L     | 0.0011  | 100  | 70        | 130           | 0.6      | 20       |           |
| Thallium  |                   |                | 0.487       | mg/L     | 0.00071 | 97   | 70        | 130           | 3.4      | 20       |           |
| Lab ID:   | B17060234-001CMS  | <b>3</b> 10 Sa | mple Matrix | (Spike   |         |      | Run: ICPM | S202-B_170606 | 4        | 06/07/   | 17 20:31  |
| Antimony  |                   |                | 0.498       | mg/L     | 0.0010  | 100  | 70        | 130           |          |          |           |
| Arsenic   |                   |                | 0.492       | mg/L     | 0.0010  | 98   | 70        | 130           |          |          |           |
| Beryllium |                   |                | 0.232       | mg/L     | 0.0010  | 93   | 70        | 130           |          |          |           |
| Cadmium   |                   |                | 0.249       | mg/L     | 0.0010  | 99   | 70        | 130           |          |          |           |
| Chromium  |                   |                | 0.489       | mg/L     | 0.0050  | 98   | 70        | 130           |          |          |           |
| Cobalt    |                   |                | 0.489       | mg/L     | 0.0050  | 98   | 70        | 130           |          |          |           |
| Lead      |                   |                | 0.521       | mg/L     | 0.0010  | 104  | 70        | 130           |          |          |           |
| Molybdenu | m                 |                | 0.490       | mg/L     | 0.0010  | 98   | 70        | 130           |          |          |           |
| Selenium  |                   |                | 0.462       | mg/L     | 0.0010  | 92   | 70        | 130           |          |          |           |
| Thallium  |                   |                | 0.489       | mg/L     | 0.00050 | 98   | 70        | 130           |          |          |           |
| Lab ID:   | B17060234-001CMSI | <b>D</b> 10 Sa | mple Matrix | Spike Du | plicate |      | Run: ICPM | S202-B_170606 | 4        | 06/07/   | 17 20:41  |
| Antimony  |                   |                | 0.517       | mg/L     | 0.0010  | 103  | 70        | 130           | 3.7      | 20       |           |
| Arsenic   |                   |                | 0.503       | mg/L     | 0.0010  | 101  | 70        | 130           | 2.1      | 20       |           |
| Beryllium |                   |                | 0.239       | mg/L     | 0.0010  | 96   | 70        | 130           | 3.1      | 20       |           |
| Cadmium   |                   |                | 0.256       | mg/L     | 0.0010  | 103  | 70        | 130           | 3.1      | 20       |           |
| Chromium  |                   |                | 0.508       | mg/L     | 0.0050  | 102  | 70        | 130           | 3.9      | 20       |           |
| Cobalt    |                   |                | 0.502       | mg/L     | 0.0050  | 100  | 70        | 130           | 2.5      | 20       |           |
| Lead      |                   |                | 0.533       | mg/L     | 0.0010  | 107  | 70        | 130           | 2.3      | 20       |           |
| Molybdenu | m                 |                | 0.512       | mg/L     | 0.0010  | 102  | 70        | 130           | 4.5      | 20       |           |
| Selenium  |                   |                | 0.471       | mg/L     | 0.0010  | 94   | 70        | 130           | 2.1      | 20       |           |
| Thallium  |                   |                | 0.497       | mg/L     | 0.00050 | 99   | 70        | 130           | 1.6      | 20       |           |

# Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration



Client:

# **QA/QC Summary Report**

Prepared by Billings, MT Branch

Texas Municipal Power Agency

Revised Date: 12/21/17

Revised Date: 07/06/17

**Project:** TMPA 6706150060 **Work Order:** B17060205

| Analyte |                  | Count        | Result       | Units        | RL            | %REC | Low Limit | High Limit     | RPD    | RPDLimit   | Qual      |
|---------|------------------|--------------|--------------|--------------|---------------|------|-----------|----------------|--------|------------|-----------|
| Method: | E245.1           |              |              |              |               |      |           | Analytica      | l Run: | HGCV202-B_ | _170605A  |
| Lab ID: | ICV              | Initia       | l Calibratio | on Verificat | tion Standard |      |           |                |        | 06/05/     | 17 13:25  |
| Mercury |                  |              | 0.00207      | mg/L         | 0.00010       | 103  | 90        | 110            |        |            |           |
| Method: | E245.1           |              |              |              |               |      |           |                |        | Batcl      | h: 110170 |
| Lab ID: | MB-110170        | Meth         | od Blank     |              |               |      | Run: HGC\ | /202-B_170605A |        | 06/05/     | 17 14:21  |
| Mercury |                  |              | ND           | mg/L         | 6E-06         |      |           |                |        |            |           |
| Lab ID: | LCS-110170       | Labo         | ratory Cor   | ntrol Samp   | le            |      | Run: HGC\ | /202-B_170605A |        | 06/05/     | 17 14:23  |
| Mercury |                  |              | 0.00204      | mg/L         | 0.00010       | 102  | 85        | 115            |        |            |           |
| Lab ID: | B17060151-006BMS | Sam          | ple Matrix   | Spike        |               |      | Run: HGC\ | /202-B_170605A |        | 06/05/     | 17 14:30  |
| Mercury |                  | 1            | 0.00192      | mg/L         | 0.00010       | 96   | 70        | 130            |        |            |           |
| Lab ID: | B17060151-006BMS | <b>D</b> Sam | ple Matrix   | Spike Dup    | licate        |      | Run: HGC\ | /202-B_170605A |        | 06/05/     | 17 14:32  |
| Mercury |                  |              | 0.00188      | mg/L         | 0.00010       | 94   | 70        | 130            | 2.1    | 30         |           |
| Lab ID: | B17060226-007CMS | Sam          | ple Matrix   | Spike        |               |      | Run: HGC\ | /202-B_170605A |        | 06/05/     | 17 15:11  |
| Mercury |                  |              | 0.00205      | mg/L         | 0.00010       | 102  | 70        | 130            |        |            |           |
| Lab ID: | B17060226-007CMS | <b>D</b> Sam | ple Matrix   | Spike Dup    | licate        |      | Run: HGC\ | /202-B_170605A |        | 06/05/     | 17 15:13  |
| Mercury |                  | 1            | 0.00204      | mg/L         | 0.00010       | 102  | 70        | 130            | 0.2    | 30         |           |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:06/16/17Project:TMPA 6706150060Work Order:B17060205

| Analyte                     | Count     | Result       | Units       | RL | %REC | Low Limit  | High Limit    | RPD | RPDLimit | Qual      |
|-----------------------------|-----------|--------------|-------------|----|------|------------|---------------|-----|----------|-----------|
| Method: A2540 C             |           |              |             |    |      |            |               |     | Batch    | n: 110148 |
| Lab ID: B17060204-004       | A DUP San | nple Duplica | ite         |    |      | Run: BAL # | SD-15_170602F |     | 06/03/   | 17 08:38  |
| Solids, Total Dissolved TDS | @ 180 C   | 225          | mg/L        | 10 |      |            |               | 2.3 | 5        |           |
| Lab ID: B17060219-001       | A DUP San | nple Duplica | ite         |    |      | Run: BAL # | SD-15_170602F |     | 06/03/   | 17 08:38  |
| Solids, Total Dissolved TDS | @ 180 C   | 442          | mg/L        | 10 |      |            |               | 1.9 | 5        |           |
| Lab ID: LCS-110148          | Lab       | oratory Con  | trol Sample | e  |      | Run: BAL # | SD-15_170602F |     | 06/03/   | 17 08:38  |
| Solids, Total Dissolved TDS | @ 180 C   | 994          | mg/L        | 10 | 99   | 90         | 110           |     |          |           |
| Lab ID: MB-110148           | Met       | hod Blank    |             |    |      | Run: BAL # | SD-15_170602F |     | 06/03/   | 17 08:38  |
| Solids, Total Dissolved TDS | @ 180 C   | ND           | mg/L        | 4  |      |            |               |     |          |           |
| Method: A2540 C             |           |              |             |    |      |            |               |     | Batch    | n: 110201 |
| Lab ID: MB-110201           | Met       | hod Blank    |             |    |      | Run: BAL # | SD-15_170605C |     | 06/05/   | 17 14:09  |
| Solids, Total Dissolved TDS | @ 180 C   | ND           | mg/L        | 4  |      |            |               |     |          |           |
| Lab ID: LCS-110201          | Lab       | oratory Con  | trol Sample | e  |      | Run: BAL # | SD-15_170605C |     | 06/05/   | 17 14:09  |
| Solids, Total Dissolved TDS | @ 180 C   | 982          | mg/L        | 10 | 97   | 90         | 110           |     |          |           |
| Lab ID: B17060205-010       | A DUP San | nple Duplica | ite         |    |      | Run: BAL # | SD-15_170605C |     | 06/05/   | 17 14:10  |
| Solids, Total Dissolved TDS | @ 180 C   | 7100         | mg/L        | 97 |      |            |               | 0.6 | 5        |           |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:06/16/17Project:TMPA 6706150060Work Order:B17060205

| Analyte  |                  | Count        | Result        | Units               | RL     | %REC | Low Limit | High Limit   | RPD     | RPDLimit  | Qual     |
|----------|------------------|--------------|---------------|---------------------|--------|------|-----------|--------------|---------|-----------|----------|
| Method:  | A4500-F C        |              |               |                     |        |      |           | Analytic     | al Run: | MAN-TECH_ | _170606A |
| Lab ID:  | ICV              | Initia       | al Calibratio | on Verification Sta | andard |      |           |              |         | 06/06/    | 17 10:55 |
| Fluoride |                  |              | 1.00          | mg/L                | 0.10   | 100  | 90        | 110          |         |           |          |
| Method:  | A4500-F C        |              |               |                     |        |      |           |              |         | Batch:    | R281014  |
| Lab ID:  | MBLK             | Met          | hod Blank     |                     |        |      | Run: MAN- | TECH_170606A |         | 06/06/    | 17 10:50 |
| Fluoride |                  |              | ND            | mg/L                | 0.02   |      |           |              |         |           |          |
| Lab ID:  | LFB              | Lab          | oratory For   | tified Blank        |        |      | Run: MAN- | TECH_170606A |         | 06/06/    | 17 10:52 |
| Fluoride |                  |              | 0.980         | mg/L                | 0.10   | 98   | 90        | 110          |         |           |          |
| Lab ID:  | B17060205-001AMS | San          | nple Matrix   | Spike               |        |      | Run: MAN- | TECH_170606A |         | 06/06/    | 17 13:31 |
| Fluoride |                  |              | 1.07          | mg/L                | 0.10   | 99   | 80        | 120          |         |           |          |
| Lab ID:  | B17060205-001AMS | <b>D</b> Sam | nple Matrix   | Spike Duplicate     |        |      | Run: MAN- | TECH_170606A |         | 06/06/    | 17 13:34 |
| Fluoride |                  |              | 1.08          | mg/L                | 0.10   | 100  | 80        | 120          | 0.9     | 10        |          |
| Lab ID:  | B17060226-001AMS | San          | nple Matrix   | Spike               |        |      | Run: MAN- | TECH_170606A |         | 06/06/    | 17 14:31 |
| Fluoride |                  |              | 1.73          | mg/L                | 0.10   | 107  | 80        | 120          |         |           |          |
| Lab ID:  | B17060226-001AMS | <b>D</b> Sam | nple Matrix   | Spike Duplicate     |        |      | Run: MAN- | TECH_170606A |         | 06/06/    | 17 14:34 |
| Fluoride |                  |              | 1.73          | mg/L                | 0.10   | 107  | 80        | 120          | 0.0     | 10        |          |



Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:06/16/17Project:TMPA 6706150060Work Order:B17060205

| Analyte |                   | Count       | Result        | Units       | RL                | %REC | Low Limit | High Limit   | RPD        | RPDLimit    | Qual      |
|---------|-------------------|-------------|---------------|-------------|-------------------|------|-----------|--------------|------------|-------------|-----------|
| Method: | A4500-H B         |             |               |             |                   |      |           | Analytica    | al Run: Ph | HSC _101-B_ | _170602A  |
| Lab ID: | pH 8              | Initi       | al Calibratio | n Verificat | tion Standard     |      |           |              |            | 06/02/      | /17 08:39 |
| рН      |                   |             | 7.95          | s.u.        | 0.10              | 99   | 98        | 102          |            |             |           |
| Lab ID: | CCV - pH 7        | Cor         | ntinuing Cali | bration Ve  | rification Standa | rd   |           |              |            | 06/02/      | /17 15:23 |
| рН      |                   |             | 7.01          | s.u.        | 0.10              | 100  | 98        | 102          |            |             |           |
| Method: | A4500-H B         |             |               |             |                   |      |           |              |            | Batch:      | R280836   |
| Lab ID: | B17060205-002ADUF | <b>S</b> an | nple Duplica  | ate         |                   |      | Run: PHSC | _101-B_17060 | )2A        | 06/02/      | /17 16:01 |
| рН      |                   |             | 7.39          | s.u.        | 0.10              |      |           |              | 0.0        | 3           |           |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:06/16/17Project:TMPA 6706150060Work Order:B17060205

| Analyte  |                   | Count   | Result         | Units               | RL     | %REC                      | Low Limit  | High Limit | RPD       | RPDLimit  | Qual      |
|----------|-------------------|---------|----------------|---------------------|--------|---------------------------|------------|------------|-----------|-----------|-----------|
| Method:  | E300.0            |         |                |                     |        |                           |            | Analytical | Run: IC M | METROHM 1 | _170605A  |
| Lab ID:  | ICV               | 2 Init  | ial Calibratio | on Verification Sta | andard |                           |            |            |           | 06/05/    | /17 15:04 |
| Chloride |                   |         | 2.21           | mg/L                | 1.0    | 98                        | 90         | 110        |           |           |           |
| Sulfate  |                   |         | 8.95           | mg/L                | 1.0    | 99                        | 90         | 110        |           |           |           |
| Method:  | E300.0            |         |                |                     |        |                           |            |            |           | Batch:    | R280991   |
| Lab ID:  | ICB               | 2 Me    | thod Blank     |                     |        |                           | Run: IC ME | TROHM 1_17 | 0605A     | 06/05/    | /17 15:23 |
| Chloride |                   |         | ND             | mg/L                | 0.009  |                           |            |            |           |           |           |
| Sulfate  |                   |         | 0.1            | mg/L                | 0.01   |                           |            |            |           |           |           |
| Lab ID:  | LFB               | 2 Lat   | oratory For    | tified Blank        |        |                           | Run: IC ME | TROHM 1_17 | 0605A     | 06/05/    | /17 15:43 |
| Chloride |                   |         | 10.4           | mg/L                | 1.0    | 104                       | 90         | 110        |           |           |           |
| Sulfate  |                   |         | 31.5           | mg/L                | 1.0    | 105                       | 90         | 110        |           |           |           |
| Lab ID:  | B17060194-015AMS  | 2 Sai   | mple Matrix    | Spike               |        |                           | Run: IC ME | TROHM 1_17 | 0605A     | 06/05/    | /17 21:14 |
| Chloride |                   |         | 232            | mg/L                | 1.2    | 108                       | 90         | 110        |           |           |           |
| Sulfate  |                   |         | 1300           | mg/L                | 3.7    | 101                       | 90         | 110        |           |           |           |
| Lab ID:  | B17060194-015AMSI | D 2 Sai | mple Matrix    | Spike Duplicate     |        | Run: IC METROHM 1_170605A |            |            |           | 06/05/    | /17 21:33 |
| Chloride |                   |         | 233            | mg/L                | 1.2    | 108                       | 90         | 110        | 0.3       | 20        |           |
| Sulfate  |                   |         | 1310           | mg/L                | 3.7    | 101                       | 90         | 110        | 0.1       | 20        |           |
| Lab ID:  | B17060205-005AMS  | 2 Sai   | mple Matrix    | Spike               |        |                           | Run: IC ME | TROHM 1_17 | 0605A     | 06/06/    | /17 01:47 |
| Chloride |                   |         | 3040           | mg/L                | 6.1    | 95                        | 90         | 110        |           |           |           |
| Sulfate  |                   |         | 4060           | mg/L                | 18     | 107                       | 90         | 110        |           |           |           |
| Lab ID:  | B17060205-005AMSI | D 2 Saı | mple Matrix    | Spike Duplicate     |        |                           | Run: IC ME | TROHM 1_17 | 0605A     | 06/06/    | /17 02:07 |
| Chloride |                   |         | 3040           | mg/L                | 6.1    | 95                        | 90         | 110        | 0.1       | 20        |           |
| Sulfate  |                   |         | 4080           | mg/L                | 18     | 108                       | 90         | 110        | 0.5       | 20        |           |

# Qualifiers:

# **Work Order Receipt Checklist**

# Texas Municipal Power Agency B17060205

| Login completed by:                                                                     | Kathi Renier                    |           | Date                    | Received: 6/2/2017     |  |  |  |  |  |
|-----------------------------------------------------------------------------------------|---------------------------------|-----------|-------------------------|------------------------|--|--|--|--|--|
| Reviewed by:                                                                            | BL2000\cindy                    |           | Red                     | ceived by: rs4         |  |  |  |  |  |
| Reviewed Date:                                                                          | Reviewed Date: 6/4/2017         |           | Carrier name: FedEx NDA |                        |  |  |  |  |  |
| Shipping container/cooler in                                                            | good condition?                 | Yes 🗹     | No 🗌                    | Not Present            |  |  |  |  |  |
| Custody seals intact on all sl                                                          | nipping container(s)/cooler(s)? | Yes ✓     | No 🗌                    | Not Present            |  |  |  |  |  |
| Custody seals intact on all sa                                                          | ample bottles?                  | Yes       | No 🗌                    | Not Present ✓          |  |  |  |  |  |
| Chain of custody present?                                                               |                                 | Yes ✓     | No 🗌                    |                        |  |  |  |  |  |
| Chain of custody signed whe                                                             | en relinquished and received?   | Yes √     | No 🗌                    |                        |  |  |  |  |  |
| Chain of custody agrees with                                                            | Yes √                           | No 🗌      |                         |                        |  |  |  |  |  |
| Samples in proper container                                                             | /bottle?                        | Yes √     | No 🗌                    |                        |  |  |  |  |  |
| Sample containers intact?                                                               |                                 | Yes √     | No 🗌                    |                        |  |  |  |  |  |
| Sufficient sample volume for                                                            | indicated test?                 | Yes ✓     | No 🗌                    |                        |  |  |  |  |  |
| All samples received within h<br>(Exclude analyses that are couch as pH, DO, Res CI, Su | onsidered field parameters      | Yes 🗹     | No 🗌                    |                        |  |  |  |  |  |
| Temp Blank received in all si                                                           | hipping container(s)/cooler(s)? | Yes ✓     | No 🗌                    | Not Applicable         |  |  |  |  |  |
| Container/Temp Blank tempe                                                              | erature:                        | °C On Ice |                         |                        |  |  |  |  |  |
| Water - VOA vials have zero                                                             | headspace?                      | Yes       | No 🗌                    | No VOA vials submitted |  |  |  |  |  |
| Water - pH acceptable upon                                                              | receipt?                        | Yes ✓     | No 🗌                    | Not Applicable         |  |  |  |  |  |

# **Standard Reporting Procedures:**

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

### **Contact and Corrective Action Comments:**

The Temperature Blank temperature for shipping container 1 was 4.6°C, shipping container 2 was 3.6°C, and shipping container 3 was 1.5°C.



# Chain of Custody & Analytical Request Record

| Account Information (Billing information)                                                                                                                                         | Report Information (if different than Account Information)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Comments                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Company Name Foster Wheeler                                                                                                                                                       | CompanyName                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |
| Contact Gred Sefert                                                                                                                                                               | Contact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    |
| Phone 512-795-0360                                                                                                                                                                | Phone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |
| Mailing Address 3755 S, Captal of TX Hux #375                                                                                                                                     | Mailing Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |
| City, State, Zip Austin, TX 7870-                                                                                                                                                 | City, State, Zip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |
| Email area, seitertDamectus, com                                                                                                                                                  | Email                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |
| Receive Invoice Altard Copy Annail Receive Report                                                                                                                                 | Receive Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |
| Purchase Order Quote Bottle Order                                                                                                                                                 | Special ReportFormats:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                  |
| Project Information                                                                                                                                                               | Matrix Codes Analysis Requested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |
| Project Name, PWSID, Permit, etc. 7MPA 6706/50060                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | All turnaround times are standard unless marked as |
| Sampler Name Brian Lieselman Sampler Phone 512-241-3321                                                                                                                           | S. Solids<br>S. Solids<br>V - Vogetation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Energy Laboratories                                |
| Sample Origin State TX EPA/State Compliance Yes 🗆 No                                                                                                                              | , a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |
| MINING CLIENTS, please indicate sample type. "If one has been processed or refined, call before sending.  □ Byproduct 11 (e)2 material □ Unprocessed ore (NOT ground or refined)" | DW - Dimking LA Water Call M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | charges and scheduling —                           |
| entif                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RUSH TAT                                           |
| 1                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B1106005-1                                         |
|                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |
|                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | r                                                  |
| 6-053017                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 91                                                 |
| 5 MNW-11 0952                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>&gt;</b>                                        |
| 7                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                  |
|                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                  |
| 8 AP MW-6                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |
| 9 EQBK-BJG-053117 1515                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 7                                                |
| 10 DUP-1                                                                                                                                                                          | <b>&gt;</b> > >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0) ,                                               |
| Record MIST Brian Bicchman Line Line By                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date/Time Adapature                                |
| Date/Time                                                                                                                                                                         | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | They 438 Signatury -                               |
|                                                                                                                                                                                   | (1) NEW STATE OF ICE   PROPERTY   PROPERTY | Amount Receipt Number (cash/chack only)            |
| COOIEI ID(s) Custody Scens Timeson                                                                                                                                                | Y N Y N CC Cash Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$                                                 |

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

ELI-COC-12/16 v.1

# **ANALYTICAL SUMMARY REPORT**

December 21, 2017

Texas Municipal Power Agency PO Box 7000 Bryan, TX 77805-7000

Work Order: B17061389

Project Name: CCRR

Energy Laboratories Inc Billings MT received the following 10 samples for Texas Municipal Power Agency on 6/14/2017 for

Quote ID: B3997

| Lab ID        | Client Sample ID | Collect Date | Receive Date | Matrix       | Test                                                                                                                                                                                                                                                                  |
|---------------|------------------|--------------|--------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B17061389-001 | SSP/AP MW-1      | 06/12/17 14  | 50 06/14/17  | Ground Water | Metals by ICP/ICPMS, Tot. Rec. Mercury, Total Recoverable Fluoride Anions by Ion Chromatography pH Metals Preparation by EPA 200.2 Digestion, Mercury by CVAA Preparation for TDS Radium 226 + Radium 228 Radium 226, Total Radium 228, Total Solids. Total Dissolved |

| B17061389-003 | AP MW-4         | 06/12/17 17:10 06/14/17 | Ground Water Same As Above |
|---------------|-----------------|-------------------------|----------------------------|
| B17061389-004 | AP MW-3         | 06/12/17 18:08 06/14/17 | Ground Water Same As Above |
| B17061389-005 | AP MW-5         | 06/12/17 18:15 06/14/17 | Ground Water Same As Above |
| B17061389-006 | EQBK/SCM/061217 | 06/12/17 18:58 06/14/17 | Ground Water Same As Above |
| B17061389-007 | SFL MW-6        | 06/13/17 10:03 06/14/17 | Ground Water Same As Above |
| B17061389-008 | MNW-18          | 06/13/17 10:05 06/14/17 | Ground Water Same As Above |

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

**CCRR** 

Texas Municipal Power Agency

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

**Revised Date:** 12/21/17 **Report Date:** 07/06/17

Work Order: B17061389 CASE NARRATIVE

Tests associated with analyst identified as ELI-CA were subcontracted to Energy Laboratories, PO Box 247, Casper, WY, EPA Number WY00002 and WY00937.

Revised Report 12/21/2017

**CLIENT:** 

Project:

The reporting limits for the following analytes were lowered per request from Greg Seifert.

Analyte Original Reporting Limit (mg/L) Revised Reporting limit (mg/L)

 Antimony
 0.05
 0.006

 Cadmium
 0.01
 0.005

 Thallium
 0.01
 0.002

The report has been revised and replaces any previously issued report in its entirety.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17061389-001 Client Sample ID: SSP/AP MW-1

Revised Date: 12/21/17 **Report Date:** 07/06/17 Collection Date: 06/12/17 14:50 DateReceived: 06/14/17

Matrix: Ground Water

|                                           |        |        |            |       | MCL/ |                      |                                              |
|-------------------------------------------|--------|--------|------------|-------|------|----------------------|----------------------------------------------|
| Analyses                                  | Result | Units  | Qualifiers | RL    | QCL  | Method               | Analysis Date / By                           |
| MAJOR IONS                                |        |        |            |       |      |                      |                                              |
| Calcium                                   | 666    | mg/L   |            | 1     |      | E200.7               | 06/20/17 00:27 / rlh                         |
| Magnesium                                 |        | mg/L   |            | 1     |      | E200.7               | 06/17/17 04:27 / slf                         |
| Potassium                                 |        | mg/L   |            | 1     |      | E200.7               | 06/17/17 04:27 / slf                         |
| Sodium                                    |        | mg/L   | D          | 4     |      | E200.7               | 06/17/17 04:27 / slf                         |
| PHYSICAL PROPERTIES                       |        | J      |            |       |      |                      |                                              |
|                                           | 6.1    | s.u.   | Н          | 0.1   |      | A4500-H B            | 06/15/17 11:07 / piv                         |
| pH<br>Solids, Total Dissolved TDS @ 180 C |        | mg/L   | П<br>D     | 100   |      | A4500-H B<br>A2540 C | 06/15/17 11:07 / pjw<br>06/15/17 08:17 / mnh |
| Collas, Total Dissolved TDC @ 100 C       | 0720   | IIIg/L | Б          | 100   |      | A2340 C              | 00/13/17 00.17 / 1111111                     |
| INORGANICS                                |        |        |            |       |      |                      |                                              |
| Chloride                                  | 1600   | mg/L   | D          | 6     |      | E300.0               | 06/21/17 02:48 / mej                         |
| Sulfate                                   | 3060   | mg/L   | D          | 20    |      | E300.0               | 06/21/17 02:48 / mej                         |
| Fluoride                                  | 0.1    | mg/L   |            | 0.1   |      | A4500-F C            | 06/16/17 09:49 / bas                         |
| METALS, TOTAL RECOVERABLE                 |        |        |            |       |      |                      |                                              |
| Antimony                                  | ND     | mg/L   |            | 0.006 |      | E200.8               | 06/20/17 13:36 / jpv                         |
| Arsenic                                   | ND     | mg/L   |            | 0.01  |      | E200.8               | 06/20/17 13:36 / jpv                         |
| Barium                                    | 0.06   | mg/L   |            | 0.01  |      | E200.7               | 06/17/17 04:27 / slf                         |
| Beryllium                                 | ND     | mg/L   |            | 0.001 |      | E200.8               | 06/23/17 00:35 / jpv                         |
| Boron                                     | 0.74   | mg/L   |            | 0.05  |      | E200.7               | 06/17/17 04:27 / slf                         |
| Cadmium                                   | ND     | mg/L   |            | 0.005 |      | E200.8               | 06/20/17 13:36 / jpv                         |
| Chromium                                  | ND     | mg/L   |            | 0.01  |      | E200.8               | 06/20/17 13:36 / jpv                         |
| Cobalt                                    |        | mg/L   |            | 0.02  |      | E200.8               | 06/20/17 13:36 / jpv                         |
| Lead                                      |        | mg/L   |            | 0.01  |      | E200.8               | 06/23/17 00:35 / jpv                         |
| Lithium                                   |        | mg/L   | D          | 0.04  |      | E200.7               | 06/17/17 04:27 / slf                         |
| Mercury                                   |        | mg/L   |            | 0.001 |      | E245.1               | 06/19/17 14:35 / jh                          |
| Molybdenum                                |        | mg/L   |            | 0.05  |      | E200.8               | 06/20/17 13:36 / jpv                         |
| Selenium                                  |        | mg/L   |            | 0.01  |      | E200.8               | 06/20/17 13:36 / jpv                         |
| Thallium                                  | ND     | mg/L   |            | 0.002 |      | E200.8               | 06/23/17 00:35 / jpv                         |
| RADIONUCLIDES - TOTAL                     |        |        |            |       |      |                      |                                              |
| Radium 226                                | 0.66   | pCi/L  |            |       |      | E903.0               | 07/04/17 09:35 / eli-ca                      |
| Radium 226 precision (±)                  | 0.18   | pCi/L  |            |       |      | E903.0               | 07/04/17 09:35 / eli-ca                      |
| Radium 226 MDC                            | 0.20   | pCi/L  |            |       |      | E903.0               | 07/04/17 09:35 / eli-ca                      |
| Radium 228                                | 1.0    | pCi/L  | U          |       |      | RA-05                | 06/29/17 11:52 / eli-ca                      |
| Radium 228 precision (±)                  | 0.92   | pCi/L  |            |       |      | RA-05                | 06/29/17 11:52 / eli-ca                      |
| Radium 228 MDC                            | 1.4    | pCi/L  |            |       |      | RA-05                | 06/29/17 11:52 / eli-ca                      |
| Radium 226 + Radium 228                   |        | pCi/L  |            |       |      | A7500-RA             | 07/05/17 09:40 / eli-ca                      |
| Radium 226 + Radium 228 precision (±)     |        | pCi/L  |            |       |      | A7500-RA             | 07/05/17 09:40 / eli-ca                      |
| Radium 226 + Radium 228 MDC               | 1.4    | pCi/L  |            |       |      | A7500-RA             | 07/05/17 09:40 / eli-ca                      |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

U - Not detected at minimum detectable concentration

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17061389-003 Client Sample ID: AP MW-4

Revised Date: 12/21/17 **Report Date:** 07/06/17 Collection Date: 06/12/17 17:10 DateReceived: 06/14/17

Matrix: Ground Water

|                                       | _      |       |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |      |           |                         |
| Calcium                               | 519    | mg/L  |            | 1     |      | E200.7    | 06/20/17 00:55 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |      | E200.7    | 06/17/17 04:55 / slf    |
| Potassium                             |        | mg/L  |            | 1     |      | E200.7    | 06/17/17 04:55 / slf    |
| Sodium                                |        | mg/L  | D          | 2     |      | E200.7    | 06/17/17 04:55 / slf    |
| PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| pH                                    | 5.9    | s.u.  | Н          | 0.1   |      | A4500-H B | 06/15/17 11:27 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 4130   | mg/L  | D          | 40    |      | A2540 C   | 06/15/17 08:18 / mnh    |
| INORGANICS                            |        |       |            |       |      |           |                         |
| Chloride                              | 526    | mg/L  | D          | 3     |      | E300.0    | 06/21/17 03:27 / mej    |
| Sulfate                               |        | mg/L  | D          | 9     |      | E300.0    | 06/21/17 03:27 / mej    |
| Fluoride                              |        | mg/L  | 5          | 0.1   |      | A4500-F C | 06/16/17 09:54 / bas    |
| METALS, TOTAL RECOVERABLE             |        | -     |            |       |      |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 |      | E200.8    | 06/20/17 14:00 / jpv    |
| Arsenic                               |        | mg/L  |            | 0.000 |      | E200.8    | 06/20/17 14:00 / jpv    |
| Barium                                |        | mg/L  |            | 0.01  |      | E200.7    | 06/17/17 04:55 / slf    |
| Beryllium                             |        | mg/L  |            | 0.001 |      | E200.7    | 06/17/17 04:55 / slf    |
| Boron                                 |        | mg/L  |            | 0.05  |      | E200.7    | 06/17/17 04:55 / slf    |
| Cadmium                               |        | mg/L  |            | 0.005 |      | E200.7    | 06/20/17 14:00 / jpv    |
| Chromium                              |        | mg/L  |            | 0.01  |      | E200.8    | 06/20/17 14:00 / jpv    |
| Cobalt                                |        | mg/L  |            | 0.02  |      | E200.8    | 06/20/17 14:00 / jpv    |
| Lead                                  |        | mg/L  |            | 0.01  |      | E200.8    | 06/23/17 01:02 / jpv    |
| Lithium                               |        | mg/L  | D          | 0.02  |      | E200.7    | 06/17/17 04:55 / slf    |
| Mercury                               |        | mg/L  |            | 0.001 |      | E245.1    | 06/19/17 14:39 / jh     |
| Molybdenum                            |        | mg/L  |            | 0.05  |      | E200.7    | 06/17/17 04:55 / slf    |
| Selenium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/20/17 14:00 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.002 |      | E200.8    | 06/23/17 01:02 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 226                            | 0.80   | pCi/L |            |       |      | E903.0    | 07/04/17 09:35 / eli-ca |
| Radium 226 precision (±)              |        | pCi/L |            |       |      | E903.0    | 07/04/17 09:35 / eli-ca |
| Radium 226 MDC                        | 0.20   | pCi/L |            |       |      | E903.0    | 07/04/17 09:35 / eli-ca |
| Radium 228                            | 1.4    | pCi/L | U          |       |      | RA-05     | 06/29/17 12:24 / eli-ca |
| Radium 228 precision (±)              |        | pCi/L |            |       |      | RA-05     | 06/29/17 12:24 / eli-ca |
| Radium 228 MDC                        | 1.5    | pCi/L |            |       |      | RA-05     | 06/29/17 12:24 / eli-ca |
| Radium 226 + Radium 228               | 2.2    | pCi/L |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.0    | pCi/L |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.5    | pCi/L |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |
|                                       |        |       |            |       |      |           |                         |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

U - Not detected at minimum detectable concentration

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

Lab ID: B17061389-004 Client Sample ID: AP MW-3

Revised Date: 12/21/17
Report Date: 07/06/17
Collection Date: 06/12/17 18:08
DateReceived: 06/14/17

Matrix: Ground Water

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| MAJOR IONS                            |        |       |            |       |             |           |                         |
| Calcium                               | 129    | mg/L  |            | 1     |             | E200.7    | 06/20/17 00:59 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |             | E200.7    | 06/17/17 04:58 / slf    |
| Potassium                             |        | mg/L  |            | 1     |             | E200.7    | 06/17/17 04:58 / slf    |
| Sodium                                | 238    | mg/L  |            | 1     |             | E200.7    | 06/17/17 04:58 / slf    |
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| рН                                    | 5.4    | s.u.  | Н          | 0.1   |             | A4500-H B | 06/15/17 11:33 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 1400   | mg/L  | D          | 20    |             | A2540 C   | 06/15/17 08:18 / mnh    |
| INORGANICS                            |        |       |            |       |             |           |                         |
| Chloride                              | 152    | mg/L  |            | 1     |             | E300.0    | 06/21/17 03:46 / mej    |
| Sulfate                               | 740    | mg/L  | D          | 4     |             | E300.0    | 06/21/17 03:46 / mej    |
| Fluoride                              | 0.1    | mg/L  |            | 0.1   |             | A4500-F C | 06/16/17 09:57 / bas    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 |             | E200.8    | 06/20/17 14:03 / jpv    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 06/20/17 14:03 / jpv    |
| Barium                                | 0.02   | mg/L  |            | 0.01  |             | E200.7    | 06/17/17 04:58 / slf    |
| Beryllium                             | 0.003  | mg/L  |            | 0.001 |             | E200.7    | 06/17/17 04:58 / slf    |
| Boron                                 | 3.58   | mg/L  |            | 0.05  |             | E200.7    | 06/17/17 04:58 / slf    |
| Cadmium                               | ND     | mg/L  |            | 0.005 |             | E200.8    | 06/20/17 14:03 / jpv    |
| Chromium                              | ND     | mg/L  |            | 0.01  |             | E200.7    | 06/17/17 04:58 / slf    |
| Cobalt                                | 0.04   | mg/L  |            | 0.02  |             | E200.7    | 06/20/17 00:59 / rlh    |
| Lead                                  | ND     | mg/L  |            | 0.01  |             | E200.8    | 06/23/17 01:04 / jpv    |
| Lithium                               |        | mg/L  |            | 0.01  |             | E200.7    | 06/20/17 00:59 / rlh    |
| Mercury                               | ND     | mg/L  |            | 0.001 |             | E245.1    | 06/19/17 14:41 / jh     |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.7    | 06/17/17 04:58 / slf    |
| Selenium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 06/20/17 14:03 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.002 |             | E200.8    | 06/23/17 01:04 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 226                            | 0.86   | pCi/L |            |       |             | E903.0    | 07/04/17 09:35 / eli-ca |
| Radium 226 precision (±)              | 0.20   | pCi/L |            |       |             | E903.0    | 07/04/17 09:35 / eli-ca |
| Radium 226 MDC                        | 0.21   | pCi/L |            |       |             | E903.0    | 07/04/17 09:35 / eli-ca |
| Radium 228                            | 1.6    | pCi/L |            |       |             | RA-05     | 06/29/17 12:24 / eli-ca |
| Radium 228 precision (±)              | 0.90   | pCi/L |            |       |             | RA-05     | 06/29/17 12:24 / eli-ca |
| Radium 228 MDC                        | 1.6    | pCi/L |            |       |             | RA-05     | 06/29/17 12:24 / eli-ca |
| Radium 226 + Radium 228               | 2.5    | pCi/L |            |       |             | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 0.9    | pCi/L |            |       |             | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.6    | pCi/L |            |       |             | A7500-RA  | 07/05/17 09:40 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17061389-005 Client Sample ID: AP MW-5

Revised Date: 12/21/17 **Report Date:** 07/06/17 Collection Date: 06/12/17 18:15 DateReceived: 06/14/17

Matrix: Ground Water

|                                       |        |       |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |      |           |                         |
| Calcium                               | 512    | mg/L  |            | 1     |      | E200.7    | 06/20/17 01:02 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |      | E200.7    | 06/17/17 05:02 / slf    |
| Potassium                             |        | mg/L  |            | 1     |      | E200.7    | 06/17/17 05:02 / slf    |
| Sodium                                | 704    | mg/L  | D          | 4     |      | E200.7    | 06/17/17 05:02 / slf    |
| PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| рН                                    | 3.6    | s.u.  | Н          | 0.1   |      | A4500-H B | 06/15/17 11:35 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 4830   | mg/L  | D          | 40    |      | A2540 C   | 06/15/17 08:18 / mnh    |
| INORGANICS                            |        |       |            |       |      |           |                         |
| Chloride                              | 479    | mg/L  | D          | 6     |      | E300.0    | 06/21/17 04:06 / mej    |
| Sulfate                               | 2900   | mg/L  | D          | 20    |      | E300.0    | 06/21/17 04:06 / mej    |
| Fluoride                              | 1.0    | mg/L  |            | 0.1   |      | A4500-F C | 06/16/17 10:08 / bas    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 |      | E200.8    | 06/20/17 14:16 / jpv    |
| Arsenic                               | 0.01   | mg/L  |            | 0.01  |      | E200.8    | 06/20/17 14:16 / jpv    |
| Barium                                | 0.02   | mg/L  |            | 0.01  |      | E200.7    | 06/17/17 05:02 / slf    |
| Beryllium                             | 0.081  | mg/L  |            | 0.001 |      | E200.8    | 06/23/17 01:07 / jpv    |
| Boron                                 | 3.38   | mg/L  |            | 0.05  |      | E200.7    | 06/17/17 05:02 / slf    |
| Cadmium                               | 0.010  | mg/L  |            | 0.005 |      | E200.8    | 06/20/17 14:16 / jpv    |
| Chromium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/20/17 14:16 / jpv    |
| Cobalt                                |        | mg/L  |            | 0.02  |      | E200.8    | 06/20/17 14:16 / jpv    |
| Lead                                  |        | mg/L  |            | 0.01  |      | E200.8    | 06/20/17 14:16 / jpv    |
| Lithium                               |        | mg/L  | D          | 0.04  |      | E200.7    | 06/17/17 05:02 / slf    |
| Mercury                               |        | mg/L  |            | 0.001 |      | E245.1    | 06/19/17 14:43 / jh     |
| Molybdenum                            |        | mg/L  |            | 0.05  |      | E200.8    | 06/20/17 14:16 / jpv    |
| Selenium                              |        | mg/L  |            | 0.01  |      | E200.8    | 06/20/17 14:16 / jpv    |
| Thallium                              | 0.002  | mg/L  |            | 0.002 |      | E200.8    | 06/20/17 14:16 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 226                            |        | pCi/L |            |       |      | E903.0    | 07/04/17 09:35 / eli-ca |
| Radium 226 precision (±)              |        | pCi/L |            |       |      | E903.0    | 07/04/17 09:35 / eli-ca |
| Radium 226 MDC                        |        | pCi/L |            |       |      | E903.0    | 07/04/17 09:35 / eli-ca |
| Radium 228                            |        | pCi/L | U          |       |      | RA-05     | 06/29/17 12:24 / eli-ca |
| Radium 228 precision (±)              |        | pCi/L |            |       |      | RA-05     | 06/29/17 12:24 / eli-ca |
| Radium 228 MDC                        |        | pCi/L |            |       |      | RA-05     | 06/29/17 12:24 / eli-ca |
| Radium 226 + Radium 228               | 2.1    | •     |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 precision (±) |        | pCi/L |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.5    | pCi/L |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

U - Not detected at minimum detectable concentration

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**CCRR** Project:

Lab ID: B17061389-006 Client Sample ID: EQBK/SCM/061217

Revised Date: 12/21/17 **Report Date:** 07/06/17 Collection Date: 06/12/17 18:58

DateReceived: 06/14/17

Matrix: Ground Water

| Analyses                              | Result | Unito  | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|--------|------------|-------|-------------|-----------|-------------------------|
| Allalyses                             | Result | Ullits | Qualifiers | NL .  | QUL.        | Wethou    | Alialysis Date / By     |
| MAJOR IONS                            |        |        |            |       |             |           |                         |
| Calcium                               | ND     | mg/L   |            | 1     |             | E200.7    | 06/20/17 01:06 / rlh    |
| Magnesium                             |        | mg/L   |            | 1     |             | E200.7    | 06/17/17 05:05 / slf    |
| Potassium                             | ND     | mg/L   |            | 1     |             | E200.7    | 06/17/17 05:05 / slf    |
| Sodium                                | ND     | mg/L   |            | 1     |             | E200.7    | 06/17/17 05:05 / slf    |
| PHYSICAL PROPERTIES                   |        |        |            |       |             |           |                         |
| pH                                    | 5.7    | s.u.   | Н          | 0.1   |             | A4500-H B | 06/15/17 11:38 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | ND     | mg/L   |            | 10    |             | A2540 C   | 06/15/17 08:18 / mnh    |
| INORGANICS                            |        |        |            |       |             |           |                         |
| Chloride                              | ND     | mg/L   |            | 1     |             | E300.0    | 06/21/17 04:25 / mej    |
| Sulfate                               |        | mg/L   |            | 1     |             | E300.0    | 06/21/17 04:25 / mej    |
| Fluoride                              |        | mg/L   |            | 0.1   |             | A4500-F C | 06/16/17 10:16 / bas    |
| METALS, TOTAL RECOVERABLE             |        |        |            |       |             |           |                         |
| Antimony                              | ND     | mg/L   |            | 0.006 |             | E200.8    | 06/20/17 14:20 / jpv    |
| Arsenic                               | ND     | mg/L   |            | 0.01  |             | E200.8    | 06/20/17 14:20 / jpv    |
| Barium                                | ND     | mg/L   |            | 0.01  |             | E200.7    | 06/17/17 05:05 / slf    |
| Beryllium                             | ND     | mg/L   |            | 0.001 |             | E200.7    | 06/17/17 05:05 / slf    |
| Boron                                 | ND     | mg/L   |            | 0.05  |             | E200.7    | 06/17/17 05:05 / slf    |
| Cadmium                               | ND     | mg/L   |            | 0.005 |             | E200.7    | 06/17/17 05:05 / slf    |
| Chromium                              | ND     | mg/L   |            | 0.01  |             | E200.7    | 06/17/17 05:05 / slf    |
| Cobalt                                | ND     | mg/L   |            | 0.02  |             | E200.7    | 06/20/17 01:06 / rlh    |
| Lead                                  | ND     | mg/L   |            | 0.01  |             | E200.8    | 06/20/17 14:20 / jpv    |
| Lithium                               | ND     | mg/L   |            | 0.01  |             | E200.7    | 06/17/17 05:05 / slf    |
| Mercury                               | ND     | mg/L   |            | 0.001 |             | E245.1    | 06/19/17 14:45 / jh     |
| Molybdenum                            | ND     | mg/L   |            | 0.05  |             | E200.7    | 06/17/17 05:05 / slf    |
| Selenium                              | ND     | mg/L   |            | 0.01  |             | E200.8    | 06/20/17 14:20 / jpv    |
| Thallium                              | ND     | mg/L   |            | 0.002 |             | E200.8    | 06/20/17 14:20 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |        |            |       |             |           |                         |
| Radium 226                            | 0.17   | pCi/L  | U          |       |             | E903.0    | 07/04/17 09:35 / eli-ca |
| Radium 226 precision (±)              | 0.14   | pCi/L  |            |       |             | E903.0    | 07/04/17 09:35 / eli-ca |
| Radium 226 MDC                        | 0.22   | pCi/L  |            |       |             | E903.0    | 07/04/17 09:35 / eli-ca |
| Radium 228                            | -0.7   | pCi/L  | U          |       |             | RA-05     | 06/29/17 12:24 / eli-ca |
| Radium 228 precision (±)              |        | pCi/L  |            |       |             | RA-05     | 06/29/17 12:24 / eli-ca |
| Radium 228 MDC                        | 1.6    | pCi/L  |            |       |             | RA-05     | 06/29/17 12:24 / eli-ca |
| Radium 226 + Radium 228               | -0.5   | pCi/L  | U          |       |             | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 0.9    | pCi/L  |            |       |             | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.7    | pCi/L  |            |       |             | A7500-RA  | 07/05/17 09:40 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

U - Not detected at minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

Lab ID: B17061389-007 Client Sample ID: SFL MW-6

Revised Date: 12/21/17
Report Date: 07/06/17
Collection Date: 06/13/17 10:03
DateReceived: 06/14/17

Matrix: Ground Water

|                                       |        |       |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |      |           |                         |
| Calcium                               | 892    | mg/L  | D          | 2     |      | E200.7    | 06/20/17 01:09 / rlh    |
| Magnesium                             |        | mg/L  | _          | 1     |      | E200.7    | 06/20/17 01:09 / rlh    |
| Potassium                             |        | mg/L  |            | 1     |      | E200.7    | 06/20/17 01:09 / rlh    |
| Sodium                                |        | mg/L  | D          | 8     |      | E200.7    | 06/17/17 05:09 / slf    |
| PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| рН                                    | 4.1    | s.u.  | Н          | 0.1   |      | A4500-H B | 06/15/17 11:40 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 9200   | mg/L  | D          | 90    |      | A2540 C   | 06/15/17 08:19 / mnh    |
| INORGANICS                            |        |       |            |       |      |           |                         |
| Chloride                              | 3640   | mg/L  | D          | 10    |      | E300.0    | 06/21/17 04:45 / mej    |
| Sulfate                               |        | mg/L  | D          | 40    |      | E300.0    | 06/21/17 04:45 / mej    |
| Fluoride                              |        | mg/L  |            | 0.1   |      | A4500-F C | 06/16/17 10:27 / bas    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 |      | E200.8    | 06/20/17 14:23 / jpv    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/20/17 14:23 / jpv    |
| Barium                                |        | mg/L  |            | 0.01  |      | E200.7    | 06/20/17 01:09 / rlh    |
| Beryllium                             | 0.047  | mg/L  |            | 0.001 |      | E200.8    | 06/23/17 01:10 / jpv    |
| Boron                                 | 0.16   | mg/L  | D          | 0.07  |      | E200.7    | 06/17/17 05:09 / slf    |
| Cadmium                               | 0.011  | mg/L  |            | 0.005 |      | E200.8    | 06/20/17 14:23 / jpv    |
| Chromium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/20/17 14:23 / jpv    |
| Cobalt                                | 0.11   | mg/L  |            | 0.02  |      | E200.8    | 06/20/17 14:23 / jpv    |
| Lead                                  | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/20/17 14:23 / jpv    |
| Lithium                               | 0.69   | mg/L  | D          | 0.09  |      | E200.7    | 06/17/17 05:09 / slf    |
| Mercury                               | ND     | mg/L  |            | 0.001 |      | E245.1    | 06/19/17 14:47 / jh     |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |      | E200.8    | 06/20/17 14:23 / jpv    |
| Selenium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/20/17 14:23 / jpv    |
| Thallium                              | 0.004  | mg/L  |            | 0.002 |      | E200.8    | 06/20/17 14:23 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 226                            | 3.5    | pCi/L |            |       |      | E903.0    | 07/04/17 09:35 / eli-ca |
| Radium 226 precision (±)              | 0.74   | pCi/L |            |       |      | E903.0    | 07/04/17 09:35 / eli-ca |
| Radium 226 MDC                        | 0.20   | pCi/L |            |       |      | E903.0    | 07/04/17 09:35 / eli-ca |
| Radium 228                            | 5.5    | pCi/L |            |       |      | RA-05     | 06/29/17 12:24 / eli-ca |
| Radium 228 precision (±)              | 1.4    | pCi/L |            |       |      | RA-05     | 06/29/17 12:24 / eli-ca |
| Radium 228 MDC                        |        | pCi/L |            |       |      | RA-05     | 06/29/17 12:24 / eli-ca |
| Radium 226 + Radium 228               | 9.0    | pCi/L |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 precision (±) |        | pCi/L |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.5    | pCi/L |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC Military Solidor IIIIII

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit. D - RL increased due to sample matrix.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17061389-008

Client Sample ID: MNW-18

Revised Date: 12/21/17 **Report Date:** 07/06/17 Collection Date: 06/13/17 10:05 DateReceived: 06/14/17

Matrix: Ground Water

| Analyses Result Units Qualifiers RL QCL Method Analysis Date                             | / By     |
|------------------------------------------------------------------------------------------|----------|
|                                                                                          |          |
| MAJOR IONS                                                                               |          |
| Calcium 350 mg/L 1 E200.7 06/20/17 01:13                                                 | / rlh    |
| Magnesium 61 mg/L 1 E200.7 06/17/17 05:12                                                |          |
| Potassium 36 mg/L 1 E200.7 06/17/17 05:12                                                |          |
| Sodium 771 mg/L D 2 E200.7 06/17/17 05:12                                                |          |
| PHYSICAL PROPERTIES                                                                      |          |
| pH 7.2 s.u. H 0.1 A4500-H B 06/15/17 11:43                                               | / piw    |
| Solids, Total Dissolved TDS @ 180 C 3670 mg/L D 40 A2540 C 06/15/17 08:19                |          |
| INORGANICS                                                                               |          |
| Chloride 543 mg/L D 3 E300.0 06/20/17 14:21                                              | / mei    |
| Sulfate 1790 mg/L D 9 E300.0 06/20/17 14:21                                              | •        |
| Fluoride 0.2 mg/L 0.1 A4500-F C 06/16/17 10:29                                           | •        |
|                                                                                          |          |
| METALS, TOTAL RECOVERABLE                                                                | / inv    |
| Antimony ND mg/L 0.006 E200.8 06/20/17 14:27  Arsenic ND mg/L 0.01 E200.8 06/20/17 14:27 |          |
| Arsenic ND mg/L 0.01 E200.8 06/20/17 14:27 Barium 0.05 mg/L 0.01 E200.7 06/17/17 05:12   |          |
| Beryllium ND mg/L 0.001 E200.7 06/17/17 05:12                                            |          |
| Boron 0.44 mg/L 0.05 E200.7 06/17/17 05:12                                               |          |
| Cadmium ND mg/L 0.005 E200.8 06/20/17 14:27                                              |          |
| Chromium ND mg/L 0.01 E200.8 06/20/17 14:27                                              | ,,       |
| Cobalt ND mg/L 0.02 E200.8 06/20/17 14:27                                                |          |
| Lead ND mg/L 0.01 E200.8 06/20/17 14:27                                                  |          |
| Lithium 0.48 mg/L D 0.02 E200.7 06/17/17 05:12                                           | / slf    |
| Mercury ND mg/L 0.001 E245.1 06/19/17 14:49                                              | / jh     |
| Molybdenum ND mg/L 0.05 E200.7 06/17/17 05:12                                            | / slf    |
| Selenium ND mg/L 0.01 E200.8 06/20/17 14:27                                              | / jpv    |
| Thallium ND mg/L 0.002 E200.8 06/20/17 14:27                                             | / jpv    |
| RADIONUCLIDES - TOTAL                                                                    |          |
| Radium 226 2.3 pCi/L E903.0 07/04/17 11:15                                               | / eli-ca |
| Radium 226 precision (±) 0.52 pCi/L E903.0 07/04/17 11:15                                | / eli-ca |
| Radium 226 MDC 0.22 pCi/L E903.0 07/04/17 11:15                                          | / eli-ca |
| Radium 228 2.6 pCi/L RA-05 06/29/17 12:24                                                | / eli-ca |
| Radium 228 precision (±) 1.0 pCi/L RA-05 06/29/17 12:24                                  | / eli-ca |
| Radium 228 MDC 1.6 pCi/L RA-05 06/29/17 12:24                                            | / eli-ca |
| Radium 226 + Radium 228 4.8 pCi/L A7500-RA 07/05/17 09:40                                | / eli-ca |
| Radium 226 + Radium 228 precision (±) 1.1 pCi/L A7500-RA 07/05/17 09:40                  |          |
| Radium 226 + Radium 228 MDC 1.7 pCi/L A7500-RA 07/05/17 09:40                            | / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.



Prepared by Casper, WY Branch

Client:Texas Municipal Power AgencyReport Date:07/05/17Project:CCRRWork Order:B17061389

| Analyte                   | Result Units                  | RL %REC Low Limit High Limit | RPD RPDLimit Qual |
|---------------------------|-------------------------------|------------------------------|-------------------|
| Method: E903.0            |                               |                              | Batch: RA226-8538 |
| Lab ID: LCS-RA226-8538    | Laboratory Control Sample     | Run: G542M_170622A           | 07/04/17 09:35    |
| Radium 226                | 11 pCi/L                      | 107 80 120                   |                   |
| Lab ID: MB-RA226-8538     | Method Blank                  | Run: G542M_170622A           | 07/04/17 09:35    |
| Radium 226                | 0.2 pCi/L                     |                              | U                 |
| Radium 226 precision (±)  | 0.1 pCi/L                     |                              |                   |
| Radium 226 MDC            | 0.2 pCi/L                     |                              |                   |
| Lab ID: B17061389-002CMS  | Sample Matrix Spike           | Run: G542M_170622A           | 07/04/17 09:35    |
| Radium 226                | 17 pCi/L                      | 77 70 130                    |                   |
| Lab ID: B17061389-002CMSD | Sample Matrix Spike Duplicate | Run: G542M_170622A           | 07/04/17 09:35    |
| Radium 226                | 18 pCi/L                      | 83 70 130                    | 7.0 20            |





Prepared by Casper, WY Branch

Client: Texas Municipal Power Agency **Report Date:** 07/05/17 Project: CCRR Work Order: B17061389

| Analyte                    | Result        | Units           | RL | %REC      | Low Limit     | High Limit    | RPD   | RPDLimit  | Qual      |
|----------------------------|---------------|-----------------|----|-----------|---------------|---------------|-------|-----------|-----------|
| Method: RA-05              |               |                 |    |           |               |               |       | Batch: RA | 228-5525  |
| Lab ID: LCS-228-RA226-8538 | ntrol Sample  |                 |    | Run: TENN | NELEC-3_17062 | 2B            | 06/29 | /17 11:52 |           |
| Radium 228                 | 8.6           | pCi/L           |    | 86        | 80            | 120           |       |           |           |
| Lab ID: MB-RA226-8538      | Method Blank  |                 |    |           | Run: TENN     | NELEC-3_17062 | 2B    | 06/29     | /17 11:52 |
| Radium 228                 | 0.6           | pCi/L           |    |           |               |               |       |           | U         |
| Radium 228 precision (±)   | 0.9           | pCi/L           |    |           |               |               |       |           |           |
| Radium 228 MDC             | 1             | pCi/L           |    |           |               |               |       |           |           |
| Lab ID: B17061389-010CMS   | Sample Matrix | Spike           |    |           | Run: TENN     | NELEC-3_17062 | 2B    | 06/29     | /17 11:52 |
| Radium 228                 | 26            | pCi/L           |    | 123       | 70            | 130           |       |           |           |
| Lab ID: B17061389-010CMSD  | Sample Matrix | Spike Duplicate |    |           | Run: TENN     | NELEC-3_17062 | 2B    | 06/29     | /17 11:52 |
| Radium 228                 | 24            | pCi/L           |    | 111       | 70            | 130           | 9.0   | 20        |           |

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency Revised Date: 12/21/17

**Report Date:** 07/06/17

Project: CCRR Work Order: B17061389

| Analyte   |                   | Count Res     | ult Uni      | ts RL                 | %REC | Low Limit  | High Limit   | RPD RPDLimit         | Qual      |
|-----------|-------------------|---------------|--------------|-----------------------|------|------------|--------------|----------------------|-----------|
| Method:   | E200.7            |               |              |                       |      |            | Anal         | ytical Run: ICP203-B | _170616A  |
| Lab ID:   | ICV               | 10 Continuin  | g Calibratio | n Verification Standa | ard  |            |              | 06/16/               | /17 10:53 |
| Barium    |                   | 2             | .54 mg/      | L 0.10                | 102  | 95         | 105          |                      |           |
| Beryllium |                   | 1             | .18 mg/      | L 0.010               | 95   | 95         | 105          |                      |           |
| Boron     |                   | 2             | .41 mg/      | L 0.10                | 96   | 95         | 105          |                      |           |
| Cadmium   |                   | 2             | .41 mg/      | L 0.010               | 96   | 95         | 105          |                      |           |
| Chromium  |                   | 2             | .44 mg/      | L 0.050               | 97   | 95         | 105          |                      |           |
| Lithium   |                   | 1             | .28 mg/      | L 0.10                | 102  | 95         | 105          |                      |           |
| Magnesium | n                 | 2             | 5.0 mg/      | L 1.0                 | 100  | 95         | 105          |                      |           |
| Molybdenu | ım                | 2             | .40 mg/      | L 0.10                | 96   | 95         | 105          |                      |           |
| Potassium |                   | 2             | 5.6 mg/      | L 1.0                 | 102  | 95         | 105          |                      |           |
| Sodium    |                   | 2             | 5.6 mg/      | L 1.0                 | 103  | 95         | 105          |                      |           |
| Method:   | E200.7            |               |              |                       |      |            |              | Batc                 | h: 110555 |
| Lab ID:   | MB-110555         | 10 Method B   | lank         |                       |      | Run: ICP20 | 03-B_170616A | 06/17/               | /17 04:20 |
| Barium    |                   |               | ND mg/       | L 0.0005              |      |            | _            |                      |           |
| Beryllium |                   |               | ND mg/       | L 0.0001              |      |            |              |                      |           |
| Boron     |                   |               | ND mg/       |                       |      |            |              |                      |           |
| Cadmium   |                   |               | ND mg/       |                       |      |            |              |                      |           |
| Chromium  |                   |               | ND mg/       |                       |      |            |              |                      |           |
| Lithium   |                   | 0.0           | 006 mg/      |                       |      |            |              |                      |           |
| Magnesium | n                 |               | ND mg/       |                       |      |            |              |                      |           |
| Molybdenu | ım                |               | ND mg/       |                       |      |            |              |                      |           |
| Potassium |                   |               | ND mg/       | L 0.07                |      |            |              |                      |           |
| Sodium    |                   |               | ND mg/       |                       |      |            |              |                      |           |
| Lab ID:   | LCS-110555        | 10 Laborator  | y Control S  | ample                 |      | Run: ICP20 | 3-B_170616A  | 06/17/               | /17 04:23 |
| Barium    |                   | 0.4           | 97 mg/       | L 0.10                | 99   | 85         | 115          |                      |           |
| Beryllium |                   | 0.2           | 246 mg/      | L 0.010               | 99   | 85         | 115          |                      |           |
| Boron     |                   | 0.4           | 64 mg/       | L 0.10                | 93   | 85         | 115          |                      |           |
| Cadmium   |                   | 0.2           | 253 mg/      | L 0.010               | 101  | 85         | 115          |                      |           |
| Chromium  |                   | 0.4           | 83 mg/       | L 0.050               | 97   | 85         | 115          |                      |           |
| Lithium   |                   | 0.5           | 31 mg/       | L 0.10                | 105  | 85         | 115          |                      |           |
| Magnesium | n                 | 2             | 6.2 mg/      | L 1.0                 | 105  | 85         | 115          |                      |           |
| Molybdenu | ım                | 0.5           | 504 mg/      | L 0.10                | 101  | 85         | 115          |                      |           |
| Potassium |                   | 2             | 6.3 mg/      | L 1.0                 | 105  | 85         | 115          |                      |           |
| Sodium    |                   | 2             | 6.3 mg/      | L 1.0                 | 105  | 85         | 115          |                      |           |
| Lab ID:   | B17061389-001BMS3 | 3 10 Sample M | latrix Spike |                       |      | Run: ICP20 | )3-B_170616A | 06/17/               | /17 04:37 |
| Barium    |                   | 0.5           | 552 mg/      | L 0.050               | 99   | 70         | 130          |                      |           |
| Beryllium |                   | 0.2           | 252 mg/      | L 0.0014              | 101  | 70         | 130          |                      |           |
| Boron     |                   | 1             | .24 mg/      |                       | 102  | 70         | 130          |                      |           |
| Cadmium   |                   | 0.2           |              |                       | 100  | 70         | 130          |                      |           |
| Chromium  |                   | 0.4           | 78 mg/       |                       | 96   | 70         | 130          |                      |           |
| Lithium   |                   | 1             | .97 mg/      |                       | 93   | 70         | 130          |                      |           |
| Magnesium | n                 | 1             | 91 mg/       |                       |      | 70         | 130          |                      | Α         |
| Molybdenu | m                 | 0.5           | 500 mg/      | L 0.071               | 100  | 70         | 130          |                      |           |

# Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

MDC - Minimum detectable concentration

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Revised Date: 12/21/17

**Report Date:** 07/06/17 Project: CCRR Work Order: B17061389

| Analyte                  | Count R      | esult    | Units           | RL     | %REC | Low Limit  | High Limit  | RPD | RPDLimit | Qual      |
|--------------------------|--------------|----------|-----------------|--------|------|------------|-------------|-----|----------|-----------|
| Method: E200.7           |              |          |                 |        |      |            |             |     | Batch    | n: 110555 |
| Lab ID: B17061389-001BMS | 3 10 Sample  | e Matrix | Spike           |        |      | Run: ICP20 | 3-B_170616A |     | 06/17/   | 17 04:37  |
| Potassium                |              | 82.4     | mg/L            | 1.0    | 98   | 70         | 130         |     |          |           |
| Sodium                   |              | 1410     | mg/L            | 4.2    |      | 70         | 130         |     |          | Α         |
| Lab ID: B17061389-001BMS | SD 10 Sample | e Matrix | Spike Duplicate |        |      | Run: ICP20 | 3-B_170616A |     | 06/17/   | 17 04:41  |
| Barium                   |              | 0.566    | mg/L            | 0.050  | 102  | 70         | 130         | 2.5 | 20       |           |
| Beryllium                |              | 0.259    | mg/L            | 0.0014 | 103  | 70         | 130         | 2.4 | 20       |           |
| Boron                    |              | 1.26     | mg/L            | 0.050  | 105  | 70         | 130         | 1.5 | 20       |           |
| Cadmium                  |              | 0.258    | mg/L            | 0.0099 | 103  | 70         | 130         | 2.7 | 20       |           |
| Chromium                 |              | 0.480    | mg/L            | 0.020  | 96   | 70         | 130         | 0.5 | 20       |           |
| Lithium                  |              | 2.02     | mg/L            | 0.10   | 102  | 70         | 130         | 2.2 | 20       |           |
| Magnesium                |              | 195      | mg/L            | 1.0    |      | 70         | 130         | 2.0 | 20       | Α         |
| Molybdenum               |              | 0.497    | mg/L            | 0.071  | 99   | 70         | 130         | 0.5 | 20       |           |
| Potassium                |              | 84.3     | mg/L            | 1.0    | 105  | 70         | 130         | 2.2 | 20       |           |
| Sodium                   |              | 1440     | mg/L            | 4.2    |      | 70         | 130         | 2.4 | 20       | Α         |
| Lab ID: B17061403-002AMS | 3 10 Sample  | e Matrix | Spike           |        |      | Run: ICP20 | 3-B_170616A |     | 06/17/   | 17 05:55  |
| Barium                   |              | 0.557    | mg/L            | 0.050  | 98   | 70         | 130         |     |          |           |
| Beryllium                |              | 0.252    | mg/L            | 0.0010 | 101  | 70         | 130         |     |          |           |
| Boron                    |              | 0.609    | mg/L            | 0.050  | 99   | 70         | 130         |     |          |           |
| Cadmium                  |              | 0.243    | mg/L            | 0.0020 | 97   | 70         | 130         |     |          |           |
| Chromium                 |              | 0.464    | mg/L            | 0.0050 | 93   | 70         | 130         |     |          |           |
| Lithium                  |              | 0.586    | mg/L            | 0.10   | 105  | 70         | 130         |     |          |           |
| Magnesium                |              | 50.5     | mg/L            | 1.0    | 107  | 70         | 130         |     |          |           |
| Molybdenum               |              | 0.488    | mg/L            | 0.014  | 98   | 70         | 130         |     |          |           |
| Potassium                |              | 96.2     | mg/L            | 1.0    | 102  | 70         | 130         |     |          |           |
| Sodium                   |              | 180      | mg/L            | 1.0    |      | 70         | 130         |     |          | Α         |
| Lab ID: B17061403-002AMS | D 10 Sample  | e Matrix | Spike Duplicate |        |      | Run: ICP20 | 3-B_170616A |     | 06/17/   | 17 05:58  |
| Barium                   |              | 0.553    | mg/L            | 0.050  | 97   | 70         | 130         | 0.7 | 20       |           |
| Beryllium                |              | 0.246    | mg/L            | 0.0010 | 98   | 70         | 130         | 2.4 | 20       |           |
| Boron                    |              | 0.607    | mg/L            | 0.050  | 98   | 70         | 130         | 0.3 | 20       |           |
| Cadmium                  |              | 0.248    | mg/L            | 0.0020 | 99   | 70         | 130         | 1.8 | 20       |           |
| Chromium                 |              | 0.468    | mg/L            | 0.0050 | 94   | 70         | 130         | 0.7 | 20       |           |
| Lithium                  |              | 0.577    | mg/L            | 0.10   | 103  | 70         | 130         | 1.5 | 20       |           |
| Magnesium                |              | 48.9     | mg/L            | 1.0    | 101  | 70         | 130         | 3.2 | 20       |           |
| Molybdenum               |              | 0.498    | mg/L            | 0.014  | 100  | 70         | 130         | 1.9 | 20       |           |
| Potassium                |              | 94.2     | mg/L            | 1.0    | 95   | 70         | 130         | 2.1 | 20       |           |
| Sodium                   |              | 176      | mg/L            | 1.0    |      | 70         | 130         | 2.1 | 20       | Α         |

# Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

MDC - Minimum detectable concentration

Project: CCRR

# **QA/QC Summary Report**

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Report Date: 07/06/17
Work Order: B17061389

Revised Date: 12/21/17

| Analyte |        | Count | Result       | Units      | RL                  | %REC | Low Limit | High Limit | RPD          | RPDLimit    | Qual      |
|---------|--------|-------|--------------|------------|---------------------|------|-----------|------------|--------------|-------------|-----------|
| Method: | E200.7 |       |              |            |                     |      |           | An         | alytical Rui | n: ICP203-B | _170619A  |
| Lab ID: | ICV    | 7 Co  | ntinuing Cal | ibration V | erification Standa/ | rd   |           |            |              | 06/19       | /17 12:09 |
| Barium  |        |       | 2.46         | mg/L       | 0.10                | 98   | 95        | 105        |              |             |           |
| Cadmium |        |       | 2.41         | mg/L       | 0.010               | 96   | 95        | 105        |              |             |           |
| Calcium |        |       | 24.5         | mg/L       | 1.0                 | 98   | 95        | 105        |              |             |           |
| Cobalt  |        |       | 2.36         | mg/L       | 0.020               | 95   | 95        | 105        |              |             |           |
| Lithium |        |       | 1.29         | mg/L       | 0.10                | 103  | 95        | 105        |              |             |           |

| Littiiuiii |                   | 1.23             | IIIg/L       | 0.10   | 103 | 90            | 105       |     |        |          |
|------------|-------------------|------------------|--------------|--------|-----|---------------|-----------|-----|--------|----------|
| Magnesiun  | n                 | 24.7             | mg/L         | 1.0    | 99  | 95            | 105       |     |        |          |
| Potassium  |                   | 25.6             | mg/L         | 1.0    | 102 | 95            | 105       |     |        |          |
| Method:    | E200.7            |                  |              |        |     |               |           |     | Batch  | : 110555 |
| Lab ID:    | MB-110555         | 7 Method Blank   |              |        | R   | Run: ICP203-E | 3_170619A |     | 06/20/ | 17 00:20 |
| Barium     |                   | ND               | mg/L         | 0.0005 |     |               |           |     |        |          |
| Cadmium    |                   | ND               | mg/L         | 0.0010 |     |               |           |     |        |          |
| Calcium    |                   | ND               | mg/L         | 0.08   |     |               |           |     |        |          |
| Cobalt     |                   | ND               | mg/L         | 0.005  |     |               |           |     |        |          |
| Lithium    |                   | 0.006            | mg/L         | 0.004  |     |               |           |     |        |          |
| Magnesiun  | n                 | ND               | mg/L         | 0.01   |     |               |           |     |        |          |
| Potassium  |                   | ND               | mg/L         | 0.07   |     |               |           |     |        |          |
| Lab ID:    | LCS-110555        | 7 Laboratory Cor | ntrol Sample |        | R   | Run: ICP203-E | 3_170619A |     | 06/20/ | 17 00:24 |
| Barium     |                   | 0.502            | mg/L         | 0.10   | 100 | 85            | 115       |     |        |          |
| Cadmium    |                   | 0.273            | mg/L         | 0.010  | 109 | 85            | 115       |     |        |          |
| Calcium    |                   | 26.4             | mg/L         | 1.0    | 106 | 85            | 115       |     |        |          |
| Cobalt     |                   | 0.542            | mg/L         | 0.050  | 108 | 85            | 115       |     |        |          |
| Lithium    |                   | 0.529            | mg/L         | 0.10   | 105 | 85            | 115       |     |        |          |
| Magnesiun  | n                 | 26.5             | mg/L         | 1.0    | 106 | 85            | 115       |     |        |          |
| Potassium  |                   | 26.1             | mg/L         | 1.0    | 104 | 85            | 115       |     |        |          |
| Lab ID:    | B17061389-001BMS3 | 7 Sample Matrix  | Spike        |        | R   | Run: ICP203-E | 3_170619A |     | 06/20/ | 17 00:38 |
| Barium     |                   | 0.541            | mg/L         | 0.050  | 98  | 70            | 130       |     |        |          |
| Cadmium    |                   | 0.257            | mg/L         | 0.0099 | 103 | 70            | 130       |     |        |          |
| Calcium    |                   | 689              | mg/L         | 1.0    |     | 70            | 130       |     |        | Α        |
| Cobalt     |                   | 0.532            | mg/L         | 0.052  | 106 | 70            | 130       |     |        |          |
| Lithium    |                   | 1.89             | mg/L         | 0.10   | 94  | 70            | 130       |     |        |          |
| Magnesiun  | n                 | 186              | mg/L         | 1.0    |     | 70            | 130       |     |        | Α        |
| Potassium  |                   | 78.5             | mg/L         | 1.0    | 101 | 70            | 130       |     |        |          |
| Lab ID:    | B17061389-001BMSD | 7 Sample Matrix  | Spike Duplic | cate   | R   | Run: ICP203-E | 3_170619A |     | 06/20/ | 17 00:41 |
| Barium     |                   | 0.549            | mg/L         | 0.050  | 99  | 70            | 130       | 1.3 | 20     |          |
| Cadmium    |                   | 0.264            | mg/L         | 0.0099 | 106 | 70            | 130       | 2.7 | 20     |          |
| Calcium    |                   | 690              | mg/L         | 1.0    |     | 70            | 130       | 0.1 | 20     | Α        |
| Cobalt     |                   | 0.529            | mg/L         | 0.052  | 106 | 70            | 130       | 0.6 | 20     |          |
| Lithium    |                   | 1.92             | mg/L         | 0.10   | 100 | 70            | 130       | 1.6 | 20     |          |
| Magnesiun  | n                 | 187              | mg/L         | 1.0    |     | 70            | 130       | 0.3 | 20     | Α        |
| Potassium  |                   | 79.5             | mg/L         | 1.0    | 104 | 70            | 130       | 1.2 | 20     |          |

# Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

MDC - Minimum detectable concentration

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

**Revised Date:** 12/21/17 **Report Date:** 07/06/17

Work Order: B17061389

| Analyte   |                   | Count         | Result          | Units       | RL            | %REC | Low Limit | High Limit     | RPD    | RPDLimit  | Qual      |
|-----------|-------------------|---------------|-----------------|-------------|---------------|------|-----------|----------------|--------|-----------|-----------|
| Method:   | E200.8            |               |                 |             |               |      |           | Analytical     | Run: I | CPMS202-B | _170622A  |
| Lab ID:   | QCS               | 3 Init        | tial Calibratio | n Verificat | tion Standard |      |           |                |        | 06/22     | /17 19:30 |
| Beryllium |                   |               | 0.0251          | mg/L        | 0.0010        | 100  | 90        | 110            |        |           |           |
| Lead      |                   |               | 0.0496          | mg/L        | 0.010         | 99   | 90        | 110            |        |           |           |
| Thallium  |                   |               | 0.0495          | mg/L        | 0.10          | 99   | 90        | 110            |        |           |           |
| Method:   | E200.8            |               |                 |             |               |      |           |                |        | Batc      | h: 110555 |
| Lab ID:   | MB-110555         | 3 Ме          | thod Blank      |             |               |      | Run: ICPM | S202-B_170622A |        | 06/23/    | /17 00:33 |
| Beryllium |                   |               | ND              | mg/L        | 0.00002       |      |           |                |        |           |           |
| Lead      |                   |               | ND              | mg/L        | 0.00005       |      |           |                |        |           |           |
| Thallium  |                   |               | ND              | mg/L        | 0.0001        |      |           |                |        |           |           |
| Lab ID:   | LCS-110555        | 3 La          | boratory Cor    | ntrol Samp  | le            |      | Run: ICPM | S202-B_170622A |        | 06/23/    | /17 00:38 |
| Beryllium |                   |               | 0.225           | mg/L        | 0.0010        | 90   | 85        | 115            |        |           |           |
| Lead      |                   |               | 0.512           | mg/L        | 0.0010        | 102  | 85        | 115            |        |           |           |
| Thallium  |                   |               | 0.460           | mg/L        | 0.00050       | 92   | 85        | 115            |        |           |           |
| Lab ID:   | B17061389-001BMS  | <b>3</b> 3 Sa | mple Matrix     | Spike       |               |      | Run: ICPM | S202-B_170622A |        | 06/23/    | /17 00:41 |
| Beryllium |                   |               | 0.221           | mg/L        | 0.0010        | 88   | 70        | 130            |        |           |           |
| Lead      |                   |               | 0.517           | mg/L        | 0.0010        | 103  | 70        | 130            |        |           |           |
| Thallium  |                   |               | 0.470           | mg/L        | 0.00071       | 94   | 70        | 130            |        |           |           |
| Lab ID:   | B17061389-001BMS  | D 3 Sa        | mple Matrix     | Spike Dup   | licate        |      | Run: ICPM | S202-B_170622A |        | 06/23/    | /17 00:43 |
| Beryllium |                   |               | 0.220           | mg/L        | 0.0010        | 88   | 70        | 130            | 0.4    | 20        |           |
| Lead      |                   |               | 0.510           | mg/L        | 0.0010        | 101  | 70        | 130            | 1.5    | 20        |           |
| Thallium  |                   |               | 0.461           | mg/L        | 0.00071       | 92   | 70        | 130            | 2.0    | 20        |           |
| Lab ID:   | B17061403-002AMS  | <b>3</b> 3 Sa | mple Matrix     | Spike       |               |      | Run: ICPM | S202-B_170622A |        | 06/23/    | /17 01:29 |
| Beryllium |                   |               | 0.218           | mg/L        | 0.0010        | 87   | 70        | 130            |        |           |           |
| Lead      |                   |               | 0.525           | mg/L        | 0.0010        | 105  | 70        | 130            |        |           |           |
| Thallium  |                   |               | 0.479           | mg/L        | 0.00050       | 96   | 70        | 130            |        |           |           |
| Lab ID:   | B17061403-002AMSI | <b>D</b> 3 Sa | mple Matrix     | Spike Dup   | licate        |      | Run: ICPM | S202-B_170622A |        | 06/23/    | /17 01:31 |
| Beryllium |                   |               | 0.213           | mg/L        | 0.0010        | 85   | 70        | 130            | 2.0    | 20        |           |
| Lead      |                   |               | 0.522           | mg/L        | 0.0010        | 104  | 70        | 130            | 0.7    | 20        |           |
| Thallium  |                   |               | 0.468           | mg/L        | 0.00050       | 94   | 70        | 130            | 2.3    | 20        |           |

Prepared by Billings, MT Branch

**Client:** Texas Municipal Power Agency

Project: CCRR

**Revised Date:** 12/21/17 **Report Date:** 07/06/17

Work Order: B17061389

| Analyte   |                   | Count          | Result         | Units          | RL          | %REC | Low Limit | High Limit     | RPD     | RPDLimit  | Qual      |
|-----------|-------------------|----------------|----------------|----------------|-------------|------|-----------|----------------|---------|-----------|-----------|
| Method:   | E200.8            |                |                |                |             |      |           | Analytical     | Run: IC | CPMS206-B | _170619A  |
| Lab ID:   | QCS               | 9 Init         | ial Calibratio | on Verificatio | on Standard |      |           |                |         | 06/20/    | 17 06:13  |
| Antimony  |                   |                | 0.0493         | mg/L           | 0.050       | 99   | 90        | 110            |         |           |           |
| Arsenic   |                   |                | 0.0477         | mg/L           | 0.0050      | 95   | 90        | 110            |         |           |           |
| Cadmium   |                   |                | 0.0251         | mg/L           | 0.0010      | 101  | 90        | 110            |         |           |           |
| Chromium  |                   |                | 0.0475         | mg/L           | 0.010       | 95   | 90        | 110            |         |           |           |
| Cobalt    |                   |                | 0.0491         | mg/L           | 0.010       | 98   | 90        | 110            |         |           |           |
| Lead      |                   |                | 0.0482         | mg/L           | 0.010       | 96   | 90        | 110            |         |           |           |
| Molybdenu | m                 |                | 0.0463         | mg/L           | 0.0050      | 93   | 90        | 110            |         |           |           |
| Selenium  |                   |                | 0.0493         | mg/L           | 0.0050      | 99   | 90        | 110            |         |           |           |
| Thallium  |                   |                | 0.0494         | mg/L           | 0.10        | 99   | 90        | 110            |         |           |           |
| Method:   | E200.8            |                |                |                |             |      |           |                |         | Batcl     | h: 110555 |
| Lab ID:   | MB-110555         | 9 Me           | thod Blank     |                |             |      | Run: ICPM | S206-B_170619A |         | 06/20/    | 17 13:33  |
| Antimony  |                   |                | ND             | mg/L           | 0.00004     |      |           |                |         |           |           |
| Arsenic   |                   |                | ND             | mg/L           | 0.0002      |      |           |                |         |           |           |
| Cadmium   |                   |                | ND             | mg/L           | 0.00003     |      |           |                |         |           |           |
| Chromium  |                   |                | ND             | mg/L           | 0.0001      |      |           |                |         |           |           |
| Cobalt    |                   |                | 0.00004        | mg/L           | 0.00002     |      |           |                |         |           |           |
| Lead      |                   |                | ND             | mg/L           | 0.00003     |      |           |                |         |           |           |
| Molybdenu | m                 |                | ND             | mg/L           | 0.00003     |      |           |                |         |           |           |
| Selenium  |                   |                | ND             | mg/L           | 0.0004      |      |           |                |         |           |           |
| Thallium  |                   |                | 0.00002        | mg/L           | 7E-06       |      |           |                |         |           |           |
| Lab ID:   | LCS-110555        | 9 Lab          | oratory Co     | ntrol Sample   | !           |      | Run: ICPM | S206-B_170619A |         | 06/20/    | 17 13:39  |
| Antimony  |                   |                | 0.513          | mg/L           | 0.0010      | 103  | 85        | 115            |         |           |           |
| Arsenic   |                   |                | 0.495          | mg/L           | 0.0010      | 99   | 85        | 115            |         |           |           |
| Cadmium   |                   |                | 0.253          | mg/L           | 0.0010      | 101  | 85        | 115            |         |           |           |
| Chromium  |                   |                | 0.478          | mg/L           | 0.0050      | 96   | 85        | 115            |         |           |           |
| Cobalt    |                   |                | 0.498          | mg/L           | 0.0050      | 100  | 85        | 115            |         |           |           |
| Lead      |                   |                | 0.491          | mg/L           | 0.0010      | 98   | 85        | 115            |         |           |           |
| Molybdenu | m                 |                | 0.481          | mg/L           | 0.0010      | 96   | 85        | 115            |         |           |           |
| Selenium  |                   |                | 0.490          | mg/L           | 0.0010      | 98   | 85        | 115            |         |           |           |
| Thallium  |                   |                | 0.479          | mg/L           | 0.00050     | 96   | 85        | 115            |         |           |           |
| Lab ID:   | B17061389-001BMS3 | <b>3</b> 9 Saı | mple Matrix    | Spike          |             |      | Run: ICPM | S206-B_170619A |         | 06/20/    | 17 13:43  |
| Antimony  |                   |                | 0.474          | mg/L           | 0.0010      | 95   | 70        | 130            |         |           |           |
| Arsenic   |                   |                | 0.489          | mg/L           | 0.0010      | 96   | 70        | 130            |         |           |           |
| Cadmium   |                   |                | 0.238          | mg/L           | 0.0010      | 95   | 70        | 130            |         |           |           |
| Chromium  |                   |                | 0.474          | mg/L           | 0.0050      | 95   | 70        | 130            |         |           |           |
| Cobalt    |                   |                | 0.468          | mg/L           | 0.0050      | 93   | 70        | 130            |         |           |           |
| Lead      |                   |                | 0.464          | mg/L           | 0.0010      | 92   | 70        | 130            |         |           |           |
| Molybdenu | m                 |                | 0.469          | mg/L           | 0.0010      | 94   | 70        | 130            |         |           |           |
| Selenium  |                   |                | 0.504          | mg/L           | 0.0018      | 101  | 70        | 130            |         |           |           |
| Thallium  |                   |                | 0.456          | mg/L           | 0.00050     | 91   | 70        | 130            |         |           |           |

# Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

Revised Date: 12/21/17

# **QA/QC Summary Report**

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:07/06/17Project:CCRRWork Order:B17061389

RL %REC Low Limit High Limit Result Units **Analyte** Count **RPD RPDLimit** Qual Batch: 110555 Method: E200.8 Lab ID: B17061389-001BMSD 9 Sample Matrix Spike Duplicate Run: ICPMS206-B 170619A 06/20/17 13:46 102 Antimony 0.510 mg/L 0.0010 70 130 7.5 20 Arsenic 0.529 mg/L 0.0010 70 130 7.9 20 104 0.252 70 Cadmium mg/L 0.0010 101 130 5.6 20 Chromium 0.506 mg/L 0.0050 101 70 130 6.6 20 Cobalt 0.512 mg/L 0.0050 102 70 130 9.0 20 Lead 0.518 mg/L 0.0010 103 70 130 11 20 Molybdenum 0.512 mg/L 0.0010 102 70 130 8.7 20 0.514 103 70 2.2 20 Selenium 0.0018 130 mg/L Thallium 0.497 mg/L 0.00050 70 130 8.6 20 Lab ID: B17061403-002AMS3 9 Sample Matrix Spike Run: ICPMS206-B 170619A 06/20/17 15:10 Antimony 0.488 0.0010 97 70 130 mq/L 0.475 70 Arsenic mg/L 0.0010 95 130 Cadmium 0.240 mg/L 0.0010 96 70 130 0.469 70 Chromium mg/L 0.0050 94 130 Cobalt 0.483 mg/L 0.0050 96 70 130 Lead 0.460 mg/L 0.0010 92 70 130 0.467 0.0010 93 70 130 Molybdenum mg/L Selenium 0.487 mg/L 0.0010 97 70 130 Thallium 0.455 mg/L 0.00050 91 70 130 Lab ID: B17061403-002AMSD 9 Sample Matrix Spike Duplicate Run: ICPMS206-B 170619A 06/20/17 15:14 Antimony 0.493 0.0010 99 70 1.2 20 mg/L 130 Arsenic 0.470 mg/L 0.0010 94 70 130 1.0 20 0.238 70 0.7 20 Cadmium mg/L 0.0010 95 130 Chromium 70 0.467 mg/L 0.0050 93 130 0.6 20 Cobalt 100 70 3.4 20 0.499 mg/L 0.0050 130 Lead 0.469 mg/L 0.0010 94 70 130 1.9 20 2.2 Molybdenum 0.478 mg/L 0.0010 95 70 130 20 mg/L Selenium 0.486 0.0010 97 70 130 0.1 20 Thallium 0.471 mg/L 0.00050 94 70 130 3.4 20

Revised Date: 12/21/17

# **QA/QC Summary Report**

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**Report Date:** 07/06/17 Project: CCRR Work Order: B17061389

| Analyte |                  | Count Res    | ult Units       | RL             | %REC | Low Limit | High Limit     | RPD     | RPDLimit  | Qual      |
|---------|------------------|--------------|-----------------|----------------|------|-----------|----------------|---------|-----------|-----------|
| Method: | E245.1           |              |                 |                |      |           | Analytica      | al Run: | HGCV202-B | _170619A  |
| Lab ID: | ICV              | Initial Cali | bration Verific | ation Standard |      |           |                |         | 06/19     | /17 14:20 |
| Mercury |                  | 0.001        | 193 mg/L        | 0.00010        | 97   | 90        | 110            |         |           |           |
| Method: | E245.1           |              |                 |                |      |           |                |         | Batc      | h: 110626 |
| Lab ID: | MB-110626        | Method B     | lank            |                |      | Run: HGC\ | /202-B_170619A |         | 06/19     | /17 14:26 |
| Mercury |                  | 0.000        | 001 mg/L        | 6E-06          |      |           |                |         |           |           |
| Lab ID: | LCS-110626       | Laborator    | y Control Sam   | iple           |      | Run: HGC\ | /202-B_170619A |         | 06/19     | /17 14:28 |
| Mercury |                  | 0.001        | 194 mg/L        | 0.00010        | 96   | 85        | 115            |         |           |           |
| Lab ID: | B17061363-001EMS | Sample M     | latrix Spike    |                |      | Run: HGC\ | /202-B_170619A |         | 06/19     | /17 14:32 |
| Mercury |                  | 0.002        | 202 mg/L        | 0.00010        | 100  | 70        | 130            |         |           |           |
| Lab ID: | B17061363-001EMS | D Sample M   | latrix Spike Di | uplicate       |      | Run: HGC\ | /202-B_170619A |         | 06/19     | /17 14:34 |
| Mercury |                  | 0.002        | 202 mg/L        | 0.00010        | 101  | 70        | 130            | 0.2     | 30        |           |
| Lab ID: | B17061476-004BMS | Sample M     | latrix Spike    |                |      | Run: HGC\ | /202-B_170619A |         | 06/19     | /17 15:15 |
| Mercury |                  | 0.01         | 182 mg/L        | 0.00050        | 90   | 70        | 130            |         |           |           |
| Lab ID: | B17061476-004BMS | D Sample M   | latrix Spike Dı | uplicate       |      | Run: HGC\ | /202-B_170619A |         | 06/19     | /17 15:17 |
| Mercury |                  | 0.01         | 184 mg/L        | 0.00050        | 91   | 70        | 130            | 1.2     | 30        |           |
| Method: | E245.1           |              |                 |                |      |           | Analytica      | al Run: | HGCV202-B | _170621A  |
| Lab ID: | ICV              | Initial Cali | bration Verific | ation Standard |      |           |                |         | 06/21     | /17 09:52 |
| Mercury |                  | 0.002        | 200 mg/L        | 0.00010        | 100  | 90        | 110            |         |           |           |
| Method: | E245.1           |              |                 |                |      |           |                |         | Batc      | h: 110731 |
| Lab ID: | MB-110731        | Method B     | lank            |                |      | Run: HGC\ | /202-B_170621A |         | 06/21     | /17 11:20 |
| Mercury |                  | 0.000        | 002 mg/L        | 6E-06          |      |           |                |         |           |           |
| Lab ID: | LCS-110731       | Laborator    | y Control Sam   | iple           |      | Run: HGC\ | /202-B_170621A |         | 06/21     | /17 11:22 |
| Mercury |                  | 0.002        | 207 mg/L        | 0.00010        | 102  | 85        | 115            |         |           |           |
| Lab ID: | B17061648-004BMS | Sample M     | latrix Spike    |                |      | Run: HGC\ | /202-B_170621A |         | 06/21     | /17 11:46 |
| Mercury |                  | 0.002        | 207 mg/L        | 0.00010        | 103  | 70        | 130            |         |           |           |
| Lab ID: | B17061648-004BMS | D Sample M   | latrix Spike Di | ıplicate       |      | Run: HGC\ | /202-B_170621A |         | 06/21     | /17 11:48 |
| Mercury |                  | 0.002        | 213 mg/L        | 0.00010        | 106  | 70        | 130            | 3.0     | 30        |           |

# Qualifiers:

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:06/28/17Project:CCRRWork Order:B17061389

| Analyte   | C                        | Count | Result       | Units       | RL | %REC | Low Limit  | High Limit    | RPD | RPDLimit | Qual      |
|-----------|--------------------------|-------|--------------|-------------|----|------|------------|---------------|-----|----------|-----------|
| Method:   | A2540 C                  |       |              |             |    |      |            |               |     | Batch    | n: 110591 |
| Lab ID:   | MB-110591                | Met   | hod Blank    |             |    |      | Run: BAL#  | SD-15_170615D |     | 06/15/   | 17 08:15  |
| Solids, T | otal Dissolved TDS @ 180 | С     | ND           | mg/L        | 4  |      |            |               |     |          |           |
| Lab ID:   | LCS-110591               | Lab   | oratory Con  | trol Sample |    |      | Run: BAL # | SD-15_170615D |     | 06/15/   | 17 08:16  |
| Solids, T | otal Dissolved TDS @ 180 | С     | 983          | mg/L        | 10 | 99   | 90         | 110           |     |          |           |
| Lab ID:   | B17061344-003B DUP       | San   | nple Duplica | ate         |    |      | Run: BAL # | SD-15_170615D |     | 06/15/   | 17 08:17  |
| Solids, T | otal Dissolved TDS @ 180 | С     | 52.7         | mg/L        | 10 |      |            |               | 0.4 | 5        |           |
| Lab ID:   | B17061389-006A DUP       | San   | nple Duplica | ate         |    |      | Run: BAL # | SD-15_170615D |     | 06/15/   | 17 08:19  |
| Solids, T | otal Dissolved TDS @ 180 | С     | 5.98         | mg/L        | 10 |      |            |               |     | 5        |           |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:06/28/17Project:CCRRWork Order:B17061389

| Analyte  |                  | Count Res  | sult     | Units               | RL   | %REC | Low Limit | High Limit   | RPD     | RPDLimit  | Qual     |
|----------|------------------|------------|----------|---------------------|------|------|-----------|--------------|---------|-----------|----------|
| Method:  | A4500-F C        |            |          |                     |      |      |           | Analytic     | al Run: | MAN-TECH_ | 170616A  |
| Lab ID:  | ICV              | Initial Ca | libratio | n Verification Stan | dard |      |           |              |         | 06/16/    | 17 08:54 |
| Fluoride |                  | 1          | 1.02     | mg/L                | 0.10 | 102  | 90        | 110          |         |           |          |
| Method:  | A4500-F C        |            |          |                     |      |      |           |              |         | Batch:    | R281619  |
| Lab ID:  | MBLK             | Method E   | Blank    |                     |      |      | Run: MAN- | TECH_170616A |         | 06/16/    | 17 08:49 |
| Fluoride |                  |            | ND       | mg/L                | 0.02 |      |           |              |         |           |          |
| Lab ID:  | LFB              | Laborato   | ry Fort  | ified Blank         |      |      | Run: MAN- | TECH_170616A |         | 06/16/    | 17 08:51 |
| Fluoride |                  | 1          | 1.01     | mg/L                | 0.10 | 101  | 90        | 110          |         |           |          |
| Lab ID:  | B17061377-001AMS | Sample I   | Matrix : | Spike               |      |      | Run: MAN- | TECH_170616A |         | 06/16/    | 17 09:43 |
| Fluoride |                  | 3          | 3.40     | mg/L                | 0.10 | 98   | 80        | 120          |         |           |          |
| Lab ID:  | B17061377-001AMS | D Sample I | Matrix : | Spike Duplicate     |      |      | Run: MAN- | TECH_170616A |         | 06/16/    | 17 09:45 |
| Fluoride |                  | 3          | 3.35     | mg/L                | 0.10 | 93   | 80        | 120          | 1.5     | 10        |          |
| Lab ID:  | B17061389-010AMS | Sample I   | Matrix : | Spike               |      |      | Run: MAN- | TECH_170616A |         | 06/16/    | 17 11:25 |
| Fluoride |                  | 1          | 1.45     | mg/L                | 0.10 | 66   | 80        | 120          |         |           | S        |
| Lab ID:  | B17061389-010AMS | D Sample I | Matrix : | Spike Duplicate     |      |      | Run: MAN- | TECH_170616A |         | 06/16/    | 17 11:31 |
| Fluoride |                  | 1          | 1.44     | mg/L                | 0.10 | 65   | 80        | 120          | 0.7     | 10        | S        |

# Qualifiers:



Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:06/28/17Project:CCRRWork Order:B17061389

| Analyte |                   | Count        | Result        | Units      | RL             | %REC | Low Limit | High Limit   | RPD        | RPDLimit    | Qual      |
|---------|-------------------|--------------|---------------|------------|----------------|------|-----------|--------------|------------|-------------|-----------|
| Method: | A4500-H B         |              |               |            |                |      |           | Analytica    | al Run: Pl | HSC _101-B_ | _170615A  |
| Lab ID: | pH 8              | Initi        | al Calibratio | n Verifica | ation Standard |      |           |              |            | 06/15/      | /17 08:40 |
| рН      |                   |              | 7.99          | s.u.       | 0.10           | 100  | 98        | 102          |            |             |           |
| Method: | A4500-H B         |              |               |            |                |      |           |              |            | Batch:      | R281480   |
| Lab ID: | B17061388-001ADUF | <b>P</b> San | nple Duplica  | ate        |                |      | Run: PHSC | _101-B_17061 | 15A        | 06/15/      | /17 11:01 |
| рН      |                   |              | 7.91          | s.u.       | 0.10           |      |           |              | 0.1        | 3           |           |
| Lab ID: | B17061389-003ADUF | <b>S</b> an  | nple Duplica  | ate        |                |      | Run: PHSC | _101-B_17061 | 15A        | 06/15/      | /17 11:30 |
| рН      |                   |              | 5.87          | s.u.       | 0.10           |      |           |              | 0.2        | 3           |           |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:06/28/17Project:CCRRWork Order:B17061389

| Analyte  |                   | Count   | Result         | Units           | RL       | %REC | Low Limit  | High Limit   | RPD       | RPDLimit  | Qual      |
|----------|-------------------|---------|----------------|-----------------|----------|------|------------|--------------|-----------|-----------|-----------|
| Method:  | E300.0            |         |                |                 |          |      |            | Analytical I | Run: IC M | IETROHM 1 | _170620A  |
| Lab ID:  | ICV               | 2 Init  | ial Calibratio | on Verification | Standard |      |            |              |           | 06/20     | /17 10:14 |
| Chloride |                   |         | 2.25           | mg/L            | 1.0      | 100  | 90         | 110          |           |           |           |
| Sulfate  |                   |         | 9.05           | mg/L            | 1.0      | 101  | 90         | 110          |           |           |           |
| Method:  | E300.0            |         |                |                 |          |      |            |              |           | Batch:    | R281841   |
| Lab ID:  | ICB               | 2 Me    | thod Blank     |                 |          |      | Run: IC ME | TROHM 1_170  | 620A      | 06/20     | /17 10:34 |
| Chloride |                   |         | ND             | mg/L            | 0.009    |      |            |              |           |           |           |
| Sulfate  |                   |         | ND             | mg/L            | 0.01     |      |            |              |           |           |           |
| Lab ID:  | LFB               | 2 Lab   | oratory For    | tified Blank    |          |      | Run: IC ME | TROHM 1_170  | 620A      | 06/20     | /17 10:53 |
| Chloride |                   |         | 10.3           | mg/L            | 1.0      | 103  | 90         | 110          |           |           |           |
| Sulfate  |                   |         | 30.6           | mg/L            | 1.0      | 102  | 90         | 110          |           |           |           |
| Lab ID:  | B17061355-003AMS  | 2 Sai   | mple Matrix    | Spike           |          |      | Run: IC ME | TROHM 1_170  | 620A      | 06/21     | /17 01:30 |
| Chloride |                   |         | 52.9           | mg/L            | 1.0      | 105  | 90         | 110          |           |           |           |
| Sulfate  |                   |         | 272            | mg/L            | 1.0      | 104  | 90         | 110          |           |           |           |
| Lab ID:  | B17061355-003AMSI | D 2 Saı | mple Matrix    | Spike Duplica   | te       |      | Run: IC ME | TROHM 1_170  | 620A      | 06/21     | /17 01:50 |
| Chloride |                   |         | 53.1           | mg/L            | 1.0      | 105  | 90         | 110          | 0.3       | 20        |           |
| Sulfate  |                   |         | 272            | mg/L            | 1.0      | 104  | 90         | 110          | 0.0       | 20        |           |
| Method:  | E300.0            |         |                |                 |          |      |            | Analytical I | Run: IC M | IETROHM 2 | _170620A  |
| Lab ID:  | ICV               | 2 Init  | ial Calibratio | on Verification | Standard |      |            |              |           | 06/20     | /17 13:03 |
| Chloride |                   |         | 2.23           | mg/L            | 1.0      | 99   | 90         | 110          |           |           |           |
| Sulfate  |                   |         | 9.00           | mg/L            | 1.0      | 100  | 90         | 110          |           |           |           |
| Method:  | E300.0            |         |                |                 |          |      |            |              |           | Batch:    | R281847   |
| Lab ID:  | ICB               | 2 Me    | thod Blank     |                 |          |      | Run: IC ME | TROHM 2_170  | 620A      | 06/20     | /17 13:23 |
| Chloride |                   |         | ND             | mg/L            | 0.002    |      |            |              |           |           |           |
| Sulfate  |                   |         | ND             | mg/L            | 0.03     |      |            |              |           |           |           |
| Lab ID:  | LFB               | 2 Lat   | oratory For    | tified Blank    |          |      | Run: IC ME | TROHM 2_170  | 0620A     | 06/20     | /17 13:42 |
| Chloride |                   |         | 10.3           | mg/L            | 1.0      | 103  | 90         | 110          |           |           |           |
| Sulfate  |                   |         | 30.6           | mg/L            | 1.0      | 102  | 90         | 110          |           |           |           |
| Lab ID:  | B17061389-008AMS  | 2 Sai   | mple Matrix    | Spike           |          |      | Run: IC ME | TROHM 2_170  | 0620A     | 06/20     | /17 14:41 |
| Chloride |                   |         | 1050           | mg/L            | 3.1      | 101  | 90         | 110          |           |           |           |
| Sulfate  |                   |         | 3270           | mg/L            | 9.2      | 99   | 90         | 110          |           |           |           |
| Lab ID:  | B17061389-008AMSI | D 2 Sai | mple Matrix    | Spike Duplica   | te       |      | Run: IC ME | TROHM 2_170  | )620A     | 06/20     | /17 15:00 |
| Chloride | _                 |         | 1050           | mg/L            | 3.1      | 101  | 90         | 110          | 0.2       | 20        |           |
|          |                   |         |                | -               |          |      |            |              |           |           |           |

# Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

B17061389

# **Work Order Receipt Checklist**

# Texas Municipal Power Agency

Login completed by: Tabitha Edwards Date Received: 6/14/2017 Reviewed by: Received by: rs4 BL2000\gmccartney Carrier name: FedEx Reviewed Date: 6/17/2017 Shipping container/cooler in good condition? Yes √ No □ Not Present □ Custody seals intact on all shipping container(s)/cooler(s)? Yes √ No 🔲 Not Present Custody seals intact on all sample bottles? Not Present ✓ No 🔲 Yes Chain of custody present? Yes √ No □ Chain of custody signed when relinquished and received? Yes √ No 🔲 Chain of custody agrees with sample labels? Yes √ No 🔲 Samples in proper container/bottle? Yes √ No □ Sample containers intact? Yes √ No 🗌 Sufficient sample volume for indicated test? Yes √ No 🗌 All samples received within holding time? Yes √ No 🗌 (Exclude analyses that are considered field parameters such as pH, DO, Res CI, Sulfite, Ferrous Iron, etc.) Temp Blank received in all shipping container(s)/cooler(s)? Not Applicable Yes √ No 🔲 Container/Temp Blank temperature: °C On Ice Water - VOA vials have zero headspace? No VOA vials submitted Yes No □ Water - pH acceptable upon receipt? Yes √ No 🗌 Not Applicable

# **Standard Reporting Procedures:**

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

### **Contact and Corrective Action Comments:**

The Temperature Blank temperature for shipping container 1 was 3.9°C, shipping container 2 was 2.6°C and shipping container 3 was 3.4°C,



Contact Phone

Email

# Chain of Custody & Analytical Request Record

Comments Report Information (if different than Account Information) □ LEYEL IV □ NELAC □ EDD/EDT (contact laboratory) □ Other www.energylab.com Receive Report DHard Copy DEmail Company/Name Mailing Address City, State, Zip Contact Phone Email K mail #375 Bottle Order greg. sellert @ amectus can Mailing Address 3755 S. Capital of TX CompanyName Amec Foster Wheeler Austin, TX 78704 Account Information (Billing information) 512-795-0360 Receive Invoice XIHard Copy (Email Quote Grea Seifert City, State, Zip Purchase Order

MUST be contacted prior to RUSH sample submittal for standard unless marked as GIND61389-00 charges and scheduling -All turnaround times are See Instructions Page Energy Laboratories - TILABID Lebosion (14 Only See Attached **Analysis Requested** Matrix (See Codes Matrix Codes B - Bioassay V - Vegetation  $\mathcal{Z}$ O - Other DW - Drinking Sails/ Salids W- Water A-Air Number of Containers CCRR 1450 Project **%** Time Sampler Phone 512-241-2321 ☐ Unprocessed ore (NOT ground or refined)\* Project Name, PWSID, Permit, etc Client:
Fra Municipal Power Agency EPA/State Compliance 100/198 112/17 Date MINING CLIENTS, please indicate sample type.
\*If ore has been processed or refined, call before sending. Sample Identification (Name, Location, Interval, etc.) AP MW-Sampler Name B. G. icschman Project Information □ Byproduct 11 (e)2 material AP MW-6 Sample Origin State SSP/

| 000/1/6/19                                                       |                                        |
|------------------------------------------------------------------|----------------------------------------|
| 1005 JANN-18                                                     | 3                                      |
| 9 <b>APM</b> ul-2                                                | 300                                    |
| /430                                                             | CW                                     |
| 10                                                               | 3                                      |
| > > > >                                                          | 0/0                                    |
| DateTime                                                         |                                        |
| (MAN 6/18/17 2) 18:15                                            | Date/Time Signature                    |
| Data Time Signature                                              |                                        |
| 5                                                                | Parloffing / C . LI Signature          |
| 1                                                                |                                        |
| Cooler IU(s) Custody Seals Intact Receipt Temp Temp Blank On Ice | 14<br>24<br>25<br>27<br>27<br>27<br>27 |
| V N CC Cas                                                       | Amount Receipt Number (cashcheck only) |

B

B

808

315

605

770

APMW-4

1858

EQBK/SCM/06/217

APMW-5 4PMW-3

SFL MW-6

183

g

 $\alpha$ 

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.
This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

ELI-COC-12/16 v.1

# **ANALYTICAL SUMMARY REPORT**

December 21, 2017

Texas Municipal Power Agency PO Box 7000 Bryan, TX 77805-7000

Work Order: B17061657

Project Name: CCRR

0000

| Energy Laboratories Inc Billings MT received the following 19 samples for Texas Municipal Power Agency on 6/16/2017 for analysis. |                  |              |               |                     |                          |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|---------------|---------------------|--------------------------|--|--|--|--|--|
| Lab ID                                                                                                                            | Client Sample ID | Collect Date | Receive Date  | Matrix              | Test                     |  |  |  |  |  |
|                                                                                                                                   |                  |              |               |                     |                          |  |  |  |  |  |
| D470040E7 004                                                                                                                     |                  | 00404745     | . 40 00/40/47 | O I \ \ \ \ I - \ I | M-4-1- I IOD/IODMO T-4 D |  |  |  |  |  |

Quote ID: B3997

| B17061657-001 | APMW-1D         | 06/13/17 15:40 06/16/17 | Ground Water | Metals by ICP/ICPMS, Tot. Rec. Mercury, Total Recoverable Fluoride Anions by Ion Chromatography pH Metals Preparation by EPA 200.2 Digestion, Mercury by CVAA Preparation for TDS Radium 226 + Radium 228 Radium 226, Total Radium 228, Total Solids, Total Dissolved |
|---------------|-----------------|-------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B17061657-003 | SSP MW-3        | 06/13/17 18:25 06/16/17 | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17061657-004 | EQBK/SCM/061317 | 06/13/17 19:15 06/16/17 | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17061657-005 | DUP-2           | 06/13/17 0:00 06/16/17  | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17061657-006 | SFL MW-5        | 06/14/17 10:30 06/16/17 | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17061657-007 | SSP MW-2        | 06/14/17 10:34 06/16/17 | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17061657-008 | SFL MW-2        | 06/14/17 11:30 06/16/17 | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17061657-009 | SSP MW-4        | 06/14/17 11:49 06/16/17 | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17061657-010 | EQBK-BJG-061417 | 06/14/17 12:55 06/16/17 | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17061657-011 | EQBK/SCM/061417 | 06/14/17 12:55 06/16/17 | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
|               |                 |                         |              |                                                                                                                                                                                                                                                                       |
| B17061657-013 | MNW-15          | 06/14/17 14:20 06/16/17 | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
|               |                 |                         |              |                                                                                                                                                                                                                                                                       |
| B17061657-015 | SFL MW-7        | 06/14/17 15:30 06/16/17 | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
|               |                 |                         |              |                                                                                                                                                                                                                                                                       |
| B17061657-017 | SFL MW-3        | 06/14/17 16:50 06/16/17 | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17061657-018 | SFL MW-4        | 06/14/17 17:45 06/16/17 | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
| B17061657-019 | DUP-3           | 06/14/17 0:00 06/16/17  | Ground Water | Same As Above                                                                                                                                                                                                                                                         |
|               |                 |                         |              |                                                                                                                                                                                                                                                                       |

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

# **ANALYTICAL SUMMARY REPORT**

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

**CCRR** 

Texas Municipal Power Agency

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

**Revised Date:** 12/21/17 **Report Date:** 07/06/17

Work Order: B17061657 CASE NARRATIVE

Tests associated with analyst identified as ELI-CA were subcontracted to Energy Laboratories, PO Box 247, Casper, WY, EPA Number WY00002 and WY00937.

Revised Report 12/21/2017

**CLIENT:** 

Project:

The reporting limits for the following analytes were lowered per request from Greg Seifert.

Analyte Original Reporting Limit (mg/L) Revised Reporting limit (mg/L)

 Antimony
 0.05
 0.006

 Cadmium
 0.01
 0.005

 Thallium
 0.01
 0.002

The report has been revised and replaces any previously issued report in its entirety.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17061657-001 Client Sample ID: APMW-1D

Revised Date: 12/21/17 **Report Date:** 07/06/17 Collection Date: 06/13/17 15:40

> DateReceived: 06/16/17 Matrix: Ground Water

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
| MAJOR IONS                            |        |       |            |       |             |           |                         |
| Calcium                               | 71     | mg/L  |            | 1     |             | E200.7    | 06/21/17 03:17 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |             | E200.7    | 06/21/17 03:17 / rlh    |
| Potassium                             |        | mg/L  |            | 1     |             | E200.7    | 06/21/17 03:17 / rlh    |
| Sodium                                |        | mg/L  |            | 1     |             | E200.7    | 06/21/17 03:17 / rlh    |
| PHYSICAL PROPERTIES                   |        | Ü     |            |       |             |           |                         |
| pH                                    | 6.1    | s.u.  | Н          | 0.1   |             | A4500-H B | 06/16/17 14:29 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   |        | mg/L  | D          | 20    |             | A2540 C   | 06/16/17 13:53 / rik    |
|                                       | 1010   | 9/ =  | ٥          | 20    |             | 7120100   | 00/10/11 10:00 / III    |
| INORGANICS                            |        |       |            |       |             |           |                         |
| Chloride                              |        | mg/L  |            | 1     |             | E300.0    | 06/22/17 20:46 / mej    |
| Sulfate                               |        | mg/L  | D          | 4     |             | E300.0    | 06/22/17 20:46 / mej    |
| Fluoride                              | 0.6    | mg/L  |            | 0.1   |             | A4500-F C | 06/21/17 15:20 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 |             | E200.8    | 06/23/17 01:15 / jpv    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |             | E200.8    | 06/23/17 01:15 / jpv    |
| Barium                                | 0.01   | mg/L  |            | 0.01  |             | E200.7    | 06/21/17 03:17 / rlh    |
| Beryllium                             | ND     | mg/L  |            | 0.001 |             | E200.7    | 06/21/17 03:17 / rlh    |
| Boron                                 | 4.59   | mg/L  |            | 0.05  |             | E200.7    | 06/21/17 03:17 / rlh    |
| Cadmium                               | ND     | mg/L  |            | 0.005 |             | E200.7    | 06/21/17 03:17 / rlh    |
| Chromium                              | ND     | mg/L  |            | 0.01  |             | E200.7    | 06/21/17 03:17 / rlh    |
| Cobalt                                | ND     | mg/L  |            | 0.02  |             | E200.7    | 06/21/17 03:17 / rlh    |
| Lead                                  | ND     | mg/L  |            | 0.01  |             | E200.8    | 06/23/17 01:15 / jpv    |
| Lithium                               | 0.04   | mg/L  |            | 0.01  |             | E200.7    | 06/21/17 03:17 / rlh    |
| Mercury                               | ND     | mg/L  |            | 0.001 |             | E245.1    | 06/21/17 12:09 / jh     |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.7    | 06/21/17 03:17 / rlh    |
| Selenium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 06/23/17 01:15 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.002 |             | E200.8    | 06/27/17 17:16 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 226                            | 0.37   | pCi/L |            |       |             | E903.0    | 07/04/17 11:15 / eli-ca |
| Radium 226 precision (±)              | 0.16   | pCi/L |            |       |             | E903.0    | 07/04/17 11:15 / eli-ca |
| Radium 226 MDC                        | 0.20   | pCi/L |            |       |             | E903.0    | 07/04/17 11:15 / eli-ca |
| Radium 228                            | 0.37   | pCi/L | U          |       |             | RA-05     | 06/29/17 12:24 / eli-ca |
| Radium 228 precision (±)              | 0.94   | pCi/L |            |       |             | RA-05     | 06/29/17 12:24 / eli-ca |
| Radium 228 MDC                        | 1.6    | pCi/L |            |       |             | RA-05     | 06/29/17 12:24 / eli-ca |
| Radium 226 + Radium 228               |        | pCi/L | U          |       |             | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1      | pCi/L |            |       |             | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.6    | pCi/L |            |       |             | A7500-RA  | 07/05/17 09:40 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

U - Not detected at minimum detectable concentration

Matrix: Ground Water

### LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

Lab ID: B17061657-003 Client Sample ID: SSP MW-3 Revised Date: 12/21/17
Report Date: 07/06/17
Collection Date: 06/13/17 18:25
DateReceived: 06/16/17

MCL/ QCL **Analyses** Result Units Qualifiers RL Method Analysis Date / By **MAJOR IONS** Calcium 673 mg/L 1 E200.7 06/21/17 03:46 / rlh 172 mg/L 1 E200.7 06/21/17 03:46 / rlh Magnesium Potassium 47 mg/L 1 E200.7 06/21/17 03:46 / rlh Sodium 1050 mg/L D 4 E200.7 06/21/17 03:46 / rlh **PHYSICAL PROPERTIES** 4.5 s.u. Н 0.1 A4500-H B 06/16/17 14:35 / pjw рΗ Solids, Total Dissolved TDS @ 180 C 06/16/17 13:54 / rik 6370 mg/L D 100 A2540 C **INORGANICS** 1810 mg/L D 6 E300.0 06/22/17 22:43 / mej Chloride Sulfate 2510 mg/L D 20 E300.0 06/22/17 22:43 / mei A4500-F C Fluoride 0.7 mg/L 0.1 06/21/17 15:36 / cjm **METALS, TOTAL RECOVERABLE** Antimony ND mg/L 0.006 E200.8 06/23/17 01:51 / jpv Arsenic ND mg/L 0.01 E200.8 06/23/17 01:51 / jpv Barium 0.02 mg/L 0.01 E200.7 06/21/17 03:46 / rlh Beryllium 0.116 mg/L 0.001 E200.8 06/27/17 17:42 / jpv 2.84 mg/L 0.05 E200.7 06/21/17 03:46 / rlh Boron 0.066 mg/L 0.005 Cadmium F2008 06/23/17 01:51 / jpv Chromium ND mg/L 0.01 F200 8 06/23/17 01:51 / jpv Cobalt 0.56 mg/L 0.02 E200.8 06/23/17 01:51 / jpv 06/27/17 17:42 / jpv Lead ND mg/L 0.01 E200.8 D Lithium 0.67 mg/L 0.04 E200.7 06/21/17 03:46 / rlh Mercury ND mg/L 0.001 E245.1 06/21/17 12:20 / jh Molybdenum ND mg/L 0.05 E200.8 06/23/17 01:51 / jpv Selenium ND mg/L 0.01 E200.8 06/23/17 01:51 / jpv Thallium 0.010 mg/L 0.002 E200.8 06/27/17 17:42 / jpv **RADIONUCLIDES - TOTAL** Radium 226 7.1 pCi/L E903.0 07/04/17 11:15 / eli-ca Radium 226 precision (±) 1.4 pCi/L E903.0 07/04/17 11:15 / eli-ca Radium 226 MDC 0.20 pCi/L E903.0 07/04/17 11:15 / eli-ca Radium 228 21 pCi/L **RA-05** 06/29/17 13:25 / eli-ca Radium 228 precision (±) 4.0 pCi/L **RA-05** 06/29/17 13:25 / eli-ca 1.7 pCi/L Radium 228 MDC **RA-05** 06/29/17 13:25 / eli-ca Radium 226 + Radium 228 28.4 pCi/L A7500-RA 07/05/17 09:40 / eli-ca Radium 226 + Radium 228 precision (±) 4.3 pCi/L A7500-RA 07/05/17 09:40 / eli-ca

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

Radium 226 + Radium 228 MDC

MDO Minimum data table and

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

1.7 pCi/L

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

A7500-RA

07/05/17 09:40 / eli-ca

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

**Lab ID:** B17061657-004 **Client Sample ID:** EQBK/SCM/061317

Revised Date: 12/21/17
Report Date: 07/06/17
Collection Date: 06/13/17 19:15
DateReceived: 06/16/17

Matrix: Ground Water

|                                       |        |       |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |      |           |                         |
| Calcium                               | ND     | mg/L  |            | 1     |      | E200.7    | 06/21/17 03:49 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |      | E200.7    | 06/21/17 03:49 / rlh    |
| Potassium                             |        | mg/L  |            | 1     |      | E200.7    | 06/21/17 03:49 / rlh    |
| Sodium                                |        | mg/L  |            | 1     |      | E200.7    | 06/21/17 03:49 / rlh    |
| PHYSICAL PROPERTIES                   |        | Ţ     |            |       |      |           |                         |
| pH                                    | 5.9    | s.u.  | Н          | 0.1   |      | A4500-H B | 06/16/17 14:37 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   |        | mg/L  | ••         | 10    |      | A2540 C   | 06/16/17 13:54 / rik    |
|                                       |        | 3     |            |       |      |           |                         |
| INORGANICS                            |        |       |            |       |      |           |                         |
| Chloride                              |        | mg/L  |            | 1     |      | E300.0    | 06/22/17 23:02 / mej    |
| Sulfate                               |        | mg/L  |            | 1     |      | E300.0    | 06/22/17 23:02 / mej    |
| Fluoride                              | ND     | mg/L  |            | 0.1   |      | A4500-F C | 06/21/17 15:48 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 |      | E200.8    | 06/23/17 01:54 / jpv    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/23/17 01:54 / jpv    |
| Barium                                | ND     | mg/L  |            | 0.01  |      | E200.7    | 06/21/17 03:49 / rlh    |
| Beryllium                             | ND     | mg/L  |            | 0.001 |      | E200.7    | 06/21/17 03:49 / rlh    |
| Boron                                 | ND     | mg/L  |            | 0.05  |      | E200.7    | 06/21/17 03:49 / rlh    |
| Cadmium                               | ND     | mg/L  |            | 0.005 |      | E200.7    | 06/21/17 03:49 / rlh    |
| Chromium                              | ND     | mg/L  |            | 0.01  |      | E200.7    | 06/21/17 03:49 / rlh    |
| Cobalt                                | ND     | mg/L  |            | 0.02  |      | E200.7    | 06/21/17 03:49 / rlh    |
| Lead                                  | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/27/17 17:44 / jpv    |
| Lithium                               | ND     | mg/L  |            | 0.01  |      | E200.7    | 06/21/17 03:49 / rlh    |
| Mercury                               | ND     | mg/L  |            | 0.001 |      | E245.1    | 06/21/17 12:26 / jh     |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |      | E200.7    | 06/21/17 03:49 / rlh    |
| Selenium                              |        | mg/L  |            | 0.01  |      | E200.8    | 06/23/17 01:54 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.002 |      | E200.8    | 06/27/17 17:44 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 226                            | 0.11   | pCi/L | U          |       |      | E903.0    | 07/04/17 11:15 / eli-ca |
| Radium 226 precision (±)              | 0.13   | pCi/L |            |       |      | E903.0    | 07/04/17 11:15 / eli-ca |
| Radium 226 MDC                        | 0.21   | pCi/L |            |       |      | E903.0    | 07/04/17 11:15 / eli-ca |
| Radium 228                            | 0.33   | pCi/L | U          |       |      | RA-05     | 06/29/17 13:25 / eli-ca |
| Radium 228 precision (±)              | 1.1    | pCi/L |            |       |      | RA-05     | 06/29/17 13:25 / eli-ca |
| Radium 228 MDC                        | 1.8    | pCi/L |            |       |      | RA-05     | 06/29/17 13:25 / eli-ca |
| Radium 226 + Radium 228               | 0.4    | pCi/L | U          |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.1    | pCi/L |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.8    | pCi/L |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |
|                                       |        |       |            |       |      |           |                         |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC - Minimum detectable concentration

U - Not detected at minimum detectable concentration

MCL - Maximum contaminant level.
ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17061657-005

Client Sample ID: DUP-2

Revised Date: 12/21/17 **Report Date:** 07/06/17 Collection Date: 06/13/17 DateReceived: 06/16/17

Matrix: Ground Water

|                                       |        |       |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |      |           |                         |
| Calcium                               | 710    | mg/L  |            | 1     |      | E200.7    | 06/21/17 03:53 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |      | E200.7    | 06/21/17 03:53 / rlh    |
| Potassium                             |        | mg/L  |            | 1     |      | E200.7    | 06/21/17 03:53 / rlh    |
| Sodium                                |        | mg/L  | D          | 4     |      | E200.7    | 06/21/17 03:53 / rlh    |
| PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| pH                                    | 4.5    | s.u.  | Н          | 0.1   |      | A4500-H B | 06/17/17 14:29 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 6430   | mg/L  | D          | 100   |      | A2540 C   | 06/16/17 13:54 / rik    |
| INORGANICS                            |        |       |            |       |      |           |                         |
| Chloride                              | 1810   | mg/L  | D          | 6     |      | E300.0    | 06/22/17 23:22 / mej    |
| Sulfate                               |        | mg/L  | D          | 20    |      | E300.0    | 06/22/17 23:22 / mej    |
| Fluoride                              |        | mg/L  | _          | 0.1   |      | A4500-F C | 06/21/17 15:55 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 |      | E200.8    | 06/23/17 01:58 / jpv    |
| Arsenic                               |        | mg/L  |            | 0.01  |      | E200.8    | 06/23/17 01:58 / jpv    |
| Barium                                |        | mg/L  |            | 0.01  |      | E200.7    | 06/21/17 03:53 / rlh    |
| Beryllium                             |        | mg/L  |            | 0.001 |      | E200.8    | 06/27/17 17:47 / jpv    |
| Boron                                 | 2.93   | mg/L  |            | 0.05  |      | E200.7    | 06/21/17 03:53 / rlh    |
| Cadmium                               | 0.065  | mg/L  |            | 0.005 |      | E200.8    | 06/23/17 01:58 / jpv    |
| Chromium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/23/17 01:58 / jpv    |
| Cobalt                                | 0.56   | mg/L  |            | 0.02  |      | E200.8    | 06/23/17 01:58 / jpv    |
| Lead                                  | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/27/17 17:47 / jpv    |
| Lithium                               | 0.70   | mg/L  | D          | 0.04  |      | E200.7    | 06/21/17 03:53 / rlh    |
| Mercury                               | ND     | mg/L  |            | 0.001 |      | E245.1    | 06/21/17 12:28 / jh     |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |      | E200.8    | 06/23/17 01:58 / jpv    |
| Selenium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/23/17 01:58 / jpv    |
| Thallium                              | 0.010  | mg/L  |            | 0.002 |      | E200.8    | 06/27/17 17:47 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 226                            | 7.0    | pCi/L |            |       |      | E903.0    | 07/04/17 11:15 / eli-ca |
| Radium 226 precision (±)              | 1.4    | pCi/L |            |       |      | E903.0    | 07/04/17 11:15 / eli-ca |
| Radium 226 MDC                        | 0.20   | pCi/L |            |       |      | E903.0    | 07/04/17 11:15 / eli-ca |
| Radium 228                            | 25     | pCi/L |            |       |      | RA-05     | 06/29/17 13:25 / eli-ca |
| Radium 228 precision (±)              | 4.8    | pCi/L |            |       |      | RA-05     | 06/29/17 13:25 / eli-ca |
| Radium 228 MDC                        | 1.7    | pCi/L |            |       |      | RA-05     | 06/29/17 13:25 / eli-ca |
| Radium 226 + Radium 228               |        | pCi/L |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 precision (±) |        | pCi/L |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.7    | pCi/L |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

Lab ID: B17061657-006 Client Sample ID: SFL MW-5

Revised Date: 12/21/17
Report Date: 07/06/17
Collection Date: 06/14/17 10:30
DateReceived: 06/16/17

Matrix: Ground Water

|                                       |        |              |            |               | MCL/ |                  |                                               |
|---------------------------------------|--------|--------------|------------|---------------|------|------------------|-----------------------------------------------|
| Analyses                              | Result | Units        | Qualifiers | RL            | QCL  | Method           | Analysis Date / By                            |
| MAJOR IONS                            |        |              |            |               |      |                  |                                               |
| Calcium                               | 899    | mg/L         | D          | 2             |      | E200.7           | 06/21/17 03:56 / rlh                          |
| Magnesium                             |        | mg/L         | _          | 1             |      | E200.7           | 06/21/17 03:56 / rlh                          |
| Potassium                             |        | mg/L         |            | 1             |      | E200.7           | 06/21/17 03:56 / rlh                          |
| Sodium                                |        | mg/L         | D          | 8             |      | E200.7           | 06/21/17 03:56 / rlh                          |
| PHYSICAL PROPERTIES                   |        |              |            |               |      |                  |                                               |
| pH                                    | 4.8    | s.u.         | Н          | 0.1           |      | A4500-H B        | 06/16/17 17:40 / pjw                          |
| Solids, Total Dissolved TDS @ 180 C   | 7600   | mg/L         | D          | 90            |      | A2540 C          | 06/17/17 07:58 / rik                          |
| INORGANICS                            |        |              |            |               |      |                  |                                               |
| Chloride                              | 3160   | mg/L         | D          | 10            |      | E300.0           | 06/22/17 23:42 / mej                          |
| Sulfate                               |        | mg/L         | D          | 40            |      | E300.0           | 06/22/17 23:42 / mej                          |
| Fluoride                              |        | mg/L         | 5          | 0.1           |      | A4500-F C        | 06/21/17 16:02 / cjm                          |
| METALS TOTAL DECOVEDABLE              |        | Ü            |            |               |      |                  | ,                                             |
| METALS, TOTAL RECOVERABLE             | ND     | ma/l         |            | 0.006         |      | E200 9           | 06/22/17 02:02 / inv                          |
| Antimony<br>Arsenic                   |        | mg/L<br>mg/L |            | 0.006<br>0.01 |      | E200.8<br>E200.8 | 06/23/17 02:02 / jpv                          |
| Barium                                |        | mg/L         |            | 0.01          |      | E200.6<br>E200.7 | 06/23/17 02:02 / jpv<br>06/21/17 03:56 / rlh  |
|                                       |        | mg/L         |            | 0.01          |      | E200.7<br>E200.8 | 06/27/17 17:49 / jpv                          |
| Beryllium<br>Boron                    |        | mg/L         | D          | 0.001         |      | E200.6<br>E200.7 | 06/21/17 17:49 / jpv<br>06/21/17 03:56 / rlh  |
| Cadmium                               |        | mg/L         | Ь          | 0.07          |      | E200.7           | 06/23/17 03:30 / IIII<br>06/23/17 02:02 / jpv |
| Chromium                              |        | mg/L         |            | 0.003         |      | E200.8           | 06/23/17 02:02 / jpv                          |
| Cobalt                                |        | mg/L         |            | 0.01          |      | E200.8           | 06/23/17 02:02 / jpv                          |
| Lead                                  |        | mg/L         |            | 0.01          |      | E200.8           | 06/27/17 17:49 / jpv                          |
| Lithium                               |        | mg/L         | D          | 0.09          |      | E200.7           | 06/21/17 03:56 / rlh                          |
| Mercury                               |        | mg/L         | 5          | 0.001         |      | E245.1           | 06/21/17 12:30 / jh                           |
| Molybdenum                            |        | mg/L         |            | 0.05          |      | E200.8           | 06/23/17 02:02 / jpv                          |
| Selenium                              |        | mg/L         |            | 0.01          |      | E200.8           | 06/23/17 02:02 / jpv                          |
| Thallium                              |        | mg/L         |            | 0.002         |      | E200.8           | 06/27/17 17:49 / jpv                          |
| RADIONUCLIDES - TOTAL                 |        |              |            |               |      |                  |                                               |
| Radium 226                            | 4.3    | pCi/L        |            |               |      | E903.0           | 07/04/17 11:15 / eli-ca                       |
| Radium 226 precision (±)              |        | pCi/L        |            |               |      | E903.0           | 07/04/17 11:15 / eli-ca                       |
| Radium 226 MDC                        |        | pCi/L        |            |               |      | E903.0           | 07/04/17 11:15 / eli-ca                       |
| Radium 228                            |        | pCi/L        |            |               |      | RA-05            | 06/29/17 13:26 / eli-ca                       |
| Radium 228 precision (±)              |        | pCi/L        |            |               |      | RA-05            | 06/29/17 13:26 / eli-ca                       |
| Radium 228 MDC                        |        | pCi/L        |            |               |      | RA-05            | 06/29/17 13:26 / eli-ca                       |
| Radium 226 + Radium 228               |        | pCi/L        |            |               |      | A7500-RA         | 07/05/17 09:40 / eli-ca                       |
| Radium 226 + Radium 228 precision (±) |        | pCi/L        |            |               |      | A7500-RA         | 07/05/17 09:40 / eli-ca                       |
| Radium 226 + Radium 228 MDC           |        | pCi/L        |            |               |      | A7500-RA         | 07/05/17 09:40 / eli-ca                       |
| - <del></del>                         |        |              |            |               |      |                  |                                               |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC Military Control Military

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

Lab ID: B17061657-007 Client Sample ID: SSP MW-2

Revised Date: 12/21/17
Report Date: 07/06/17
Collection Date: 06/14/17 10:34
DateReceived: 06/16/17

Matrix: Ground Water

|                                       |        |       |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |      |           |                         |
| Calcium                               | 872    | mg/L  |            | 1     |      | E200.7    | 06/21/17 04:00 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |      | E200.7    | 06/21/17 04:00 / rlh    |
| Potassium                             |        | mg/L  |            | 1     |      | E200.7    | 06/21/17 04:00 / rlh    |
| Sodium                                | 1160   | mg/L  | D          | 4     |      | E200.7    | 06/21/17 04:00 / rlh    |
| PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| pH                                    | 4.6    | s.u.  | Н          | 0.1   |      | A4500-H B | 06/16/17 17:42 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 6940   | mg/L  | D          | 90    |      | A2540 C   | 06/17/17 07:58 / rik    |
| INORGANICS                            |        |       |            |       |      |           |                         |
| Chloride                              | 2640   | mg/L  | D          | 6     |      | E300.0    | 06/23/17 00:01 / mej    |
| Sulfate                               | 2120   | mg/L  | D          | 20    |      | E300.0    | 06/23/17 00:01 / mej    |
| Fluoride                              | 0.2    | mg/L  |            | 0.1   |      | A4500-F C | 06/21/17 16:09 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 |      | E200.8    | 06/23/17 02:06 / jpv    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/23/17 02:06 / jpv    |
| Barium                                | 0.03   | mg/L  |            | 0.01  |      | E200.7    | 06/21/17 04:00 / rlh    |
| Beryllium                             | 0.030  | mg/L  |            | 0.001 |      | E200.8    | 06/27/17 18:00 / jpv    |
| Boron                                 | 0.46   | mg/L  |            | 0.05  |      | E200.7    | 06/21/17 04:00 / rlh    |
| Cadmium                               | ND     | mg/L  |            | 0.005 |      | E200.8    | 06/23/17 02:06 / jpv    |
| Chromium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/23/17 02:06 / jpv    |
| Cobalt                                | 0.06   | mg/L  |            | 0.02  |      | E200.8    | 06/23/17 02:06 / jpv    |
| Lead                                  | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/27/17 18:00 / jpv    |
| Lithium                               | 0.95   | mg/L  | D          | 0.04  |      | E200.7    | 06/21/17 04:00 / rlh    |
| Mercury                               | ND     | mg/L  |            | 0.001 |      | E245.1    | 06/21/17 12:32 / jh     |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |      | E200.8    | 06/23/17 02:06 / jpv    |
| Selenium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/23/17 02:06 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.002 |      | E200.8    | 06/27/17 18:00 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 226                            | 0.89   | pCi/L |            |       |      | E903.0    | 07/04/17 09:41 / eli-ca |
| Radium 226 precision (±)              | 0.25   | pCi/L |            |       |      | E903.0    | 07/04/17 09:41 / eli-ca |
| Radium 226 MDC                        | 0.25   | pCi/L |            |       |      | E903.0    | 07/04/17 09:41 / eli-ca |
| Radium 228                            | 1.4    | pCi/L |            |       |      | RA-05     | 06/29/17 14:12 / eli-ca |
| Radium 228 precision (±)              | 0.75   | pCi/L |            |       |      | RA-05     | 06/29/17 14:12 / eli-ca |
| Radium 228 MDC                        | 1.3    | pCi/L |            |       |      | RA-05     | 06/29/17 14:12 / eli-ca |
| Radium 226 + Radium 228               | 2.3    | pCi/L |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 8.0    | pCi/L |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.3    | pCi/L |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

ADO Military solution minus

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

Lab ID: B17061657-008 Client Sample ID: SFL MW-2

Revised Date: 12/21/17
Report Date: 07/06/17
Collection Date: 06/14/17 11:30
DateReceived: 06/16/17

Matrix: Ground Water

|                                       |        |             |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units       | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |             |            |       |      |           |                         |
| Calcium                               | 829    | mg/L        | D          | 2     |      | E200.7    | 06/21/17 04:03 / rlh    |
| Magnesium                             |        | mg/L        | D          | 1     |      | E200.7    | 06/21/17 04:03 / rlh    |
| Potassium                             |        | mg/L        |            | 1     |      | E200.7    | 06/21/17 04:03 / rlh    |
| Sodium                                |        | mg/L        | D          | 8     |      | E200.7    | 06/21/17 04:03 / rlh    |
|                                       | 1000   | g/ <u>_</u> | ٥          | Ü     |      | 2200.7    | 00/21/1/ 01:00/1111     |
| PHYSICAL PROPERTIES                   |        |             |            |       |      |           |                         |
| pH                                    |        | s.u.        | H          | 0.1   |      | A4500-H B | 06/16/17 17:45 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 6940   | mg/L        | D          | 90    |      | A2540 C   | 06/17/17 07:58 / rik    |
| INORGANICS                            |        |             |            |       |      |           |                         |
| Chloride                              | 2910   | mg/L        | D          | 10    |      | E300.0    | 06/23/17 00:21 / mej    |
| Sulfate                               | 1890   | mg/L        | D          | 40    |      | E300.0    | 06/23/17 00:21 / mej    |
| Fluoride                              | 0.3    | mg/L        |            | 0.1   |      | A4500-F C | 06/21/17 16:12 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |             |            |       |      |           |                         |
| Antimony                              | ND     | mg/L        |            | 0.006 |      | E200.8    | 06/23/17 02:09 / jpv    |
| Arsenic                               |        | mg/L        |            | 0.01  |      | E200.8    | 06/23/17 02:09 / jpv    |
| Barium                                |        | mg/L        |            | 0.01  |      | E200.7    | 06/21/17 04:03 / rlh    |
| Beryllium                             | 0.002  | _           |            | 0.001 |      | E200.8    | 06/27/17 18:02 / jpv    |
| Boron                                 | 0.51   | mg/L        | D          | 0.07  |      | E200.7    | 06/21/17 04:03 / rlh    |
| Cadmium                               | ND     | mg/L        |            | 0.005 |      | E200.8    | 06/23/17 02:09 / jpv    |
| Chromium                              | ND     | mg/L        |            | 0.01  |      | E200.8    | 06/23/17 02:09 / jpv    |
| Cobalt                                | ND     | mg/L        |            | 0.02  |      | E200.8    | 06/23/17 02:09 / jpv    |
| Lead                                  | ND     | mg/L        |            | 0.01  |      | E200.8    | 06/27/17 18:02 / jpv    |
| Lithium                               | 0.59   | mg/L        | D          | 0.09  |      | E200.7    | 06/21/17 04:03 / rlh    |
| Mercury                               | ND     | mg/L        |            | 0.001 |      | E245.1    | 06/21/17 12:34 / jh     |
| Molybdenum                            | ND     | mg/L        |            | 0.05  |      | E200.8    | 06/23/17 02:09 / jpv    |
| Selenium                              | ND     | mg/L        |            | 0.01  |      | E200.8    | 06/23/17 02:09 / jpv    |
| Thallium                              | ND     | mg/L        |            | 0.002 |      | E200.8    | 06/27/17 18:02 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |             |            |       |      |           |                         |
| Radium 226                            | 3.2    | pCi/L       |            |       |      | E903.0    | 07/04/17 09:41 / eli-ca |
| Radium 226 precision (±)              | 0.68   | pCi/L       |            |       |      | E903.0    | 07/04/17 09:41 / eli-ca |
| Radium 226 MDC                        | 0.21   | pCi/L       |            |       |      | E903.0    | 07/04/17 09:41 / eli-ca |
| Radium 228                            | 5.3    | pCi/L       |            |       |      | RA-05     | 06/29/17 14:12 / eli-ca |
| Radium 228 precision (±)              | 1.3    | pCi/L       |            |       |      | RA-05     | 06/29/17 14:12 / eli-ca |
| Radium 228 MDC                        | 1.3    | pCi/L       |            |       |      | RA-05     | 06/29/17 14:12 / eli-ca |
| Radium 226 + Radium 228               | 8.4    | pCi/L       |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.5    | pCi/L       |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.3    | pCi/L       |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |
|                                       |        |             |            |       |      |           |                         |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC Military Control Military

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

Lab ID: B17061657-009 Client Sample ID: SSP MW-4

Revised Date: 12/21/17
Report Date: 07/06/17
Collection Date: 06/14/17 11:49
DateReceived: 06/16/17

Matrix: Ground Water

|                                       |        |       |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |      |           |                         |
| Calcium                               | 413    | mg/L  |            | 1     |      | E200.7    | 06/21/17 04:07 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |      | E200.7    | 06/21/17 04:07 / rlh    |
| Potassium                             |        | mg/L  |            | 1     |      | E200.7    | 06/21/17 04:07 / rlh    |
| Sodium                                |        | mg/L  | D          | 4     |      | E200.7    | 06/21/17 04:07 / rlh    |
| PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| pH                                    | 6.5    | s.u.  | Н          | 0.1   |      | A4500-H B | 06/16/17 17:48 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 3660   | mg/L  | D          | 40    |      | A2540 C   | 06/17/17 07:58 / rik    |
| INORGANICS                            |        |       |            |       |      |           |                         |
| Chloride                              | 1100   | mg/L  | D          | 6     |      | E300.0    | 06/23/17 00:40 / mej    |
| Sulfate                               |        | mg/L  | D          | 20    |      | E300.0    | 06/23/17 00:40 / mej    |
| Fluoride                              |        | mg/L  | Б          | 0.1   |      | A4500-F C | 06/21/17 16:15 / cjm    |
|                                       | 110    | mg/L  |            | 0.1   |      | 74-0001 0 | 00/21/17 10:10 / Ojiii  |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Antimony                              |        | mg/L  |            | 0.006 |      | E200.8    | 06/23/17 02:13 / jpv    |
| Arsenic                               |        | mg/L  |            | 0.01  |      | E200.8    | 06/23/17 02:13 / jpv    |
| Barium                                |        | mg/L  |            | 0.01  |      | E200.7    | 06/21/17 04:07 / rlh    |
| Beryllium                             | ND     | mg/L  |            | 0.001 |      | E200.8    | 06/27/17 18:05 / jpv    |
| Boron                                 | 1.31   | mg/L  |            | 0.05  |      | E200.7    | 06/21/17 04:07 / rlh    |
| Cadmium                               |        | mg/L  |            | 0.005 |      | E200.8    | 06/23/17 02:13 / jpv    |
| Chromium                              |        | mg/L  |            | 0.01  |      | E200.8    | 06/23/17 02:13 / jpv    |
| Cobalt                                |        | mg/L  |            | 0.02  |      | E200.8    | 06/23/17 02:13 / jpv    |
| Lead                                  | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/27/17 18:05 / jpv    |
| Lithium                               | 0.95   | mg/L  | D          | 0.04  |      | E200.7    | 06/21/17 04:07 / rlh    |
| Mercury                               |        | mg/L  |            | 0.001 |      | E245.1    | 06/21/17 12:35 / jh     |
| Molybdenum                            |        | mg/L  |            | 0.05  |      | E200.8    | 06/23/17 02:13 / jpv    |
| Selenium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/23/17 02:13 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.002 |      | E200.8    | 06/27/17 18:05 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 226                            | 1.1    | pCi/L |            |       |      | E903.0    | 07/04/17 09:41 / eli-ca |
| Radium 226 precision (±)              | 0.30   | pCi/L |            |       |      | E903.0    | 07/04/17 09:41 / eli-ca |
| Radium 226 MDC                        | 0.20   | pCi/L |            |       |      | E903.0    | 07/04/17 09:41 / eli-ca |
| Radium 228                            | 2.0    | pCi/L |            |       |      | RA-05     | 06/29/17 15:19 / eli-ca |
| Radium 228 precision (±)              | 1.0    | pCi/L |            |       |      | RA-05     | 06/29/17 15:19 / eli-ca |
| Radium 228 MDC                        | 1.4    | pCi/L |            |       |      | RA-05     | 06/29/17 15:19 / eli-ca |
| Radium 226 + Radium 228               | 3.2    | pCi/L |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.1    | pCi/L |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.4    | pCi/L |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |
|                                       |        |       |            |       |      |           |                         |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDO M:

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

**Lab ID:** B17061657-010 **Client Sample ID:** EQBK-BJG-061417

Revised Date: 12/21/17
Report Date: 07/06/17
Collection Date: 06/14/17 12:55
DateReceived: 06/16/17

Matrix: Ground Water

|                                       |        |       |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |      |           |                         |
| Calcium                               | ND     | mg/L  |            | 1     |      | E200.7    | 06/21/17 04:10 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |      | E200.7    | 06/21/17 04:10 / rlh    |
| Potassium                             |        | mg/L  |            | 1     |      | E200.7    | 06/21/17 04:10 / rlh    |
| Sodium                                |        | mg/L  |            | 1     |      | E200.7    | 06/21/17 04:10 / rlh    |
| PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| рН                                    | 6.3    | s.u.  | Н          | 0.1   |      | A4500-H B | 06/16/17 17:50 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | ND     | mg/L  |            | 10    |      | A2540 C   | 06/17/17 08:02 / rik    |
| INORGANICS                            |        |       |            |       |      |           |                         |
| Chloride                              | ND     | mg/L  |            | 1     |      | E300.0    | 06/23/17 01:00 / mej    |
| Sulfate                               | ND     | mg/L  |            | 1     |      | E300.0    | 06/23/17 01:00 / mej    |
| Fluoride                              | ND     | mg/L  |            | 0.1   |      | A4500-F C | 06/21/17 16:26 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 |      | E200.8    | 06/23/17 02:27 / jpv    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/23/17 02:27 / jpv    |
| Barium                                | ND     | mg/L  |            | 0.01  |      | E200.7    | 06/21/17 04:10 / rlh    |
| Beryllium                             | ND     | mg/L  |            | 0.001 |      | E200.8    | 06/27/17 18:08 / jpv    |
| Boron                                 | ND     | mg/L  |            | 0.05  |      | E200.7    | 06/21/17 04:10 / rlh    |
| Cadmium                               | ND     | mg/L  |            | 0.005 |      | E200.7    | 06/21/17 04:10 / rlh    |
| Chromium                              | ND     | mg/L  |            | 0.01  |      | E200.7    | 06/21/17 04:10 / rlh    |
| Cobalt                                | ND     | mg/L  |            | 0.02  |      | E200.7    | 06/21/17 04:10 / rlh    |
| Lead                                  | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/27/17 18:08 / jpv    |
| Lithium                               | ND     | mg/L  |            | 0.01  |      | E200.7    | 06/21/17 04:10 / rlh    |
| Mercury                               | ND     | mg/L  |            | 0.001 |      | E245.1    | 06/21/17 12:41 / jh     |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |      | E200.7    | 06/21/17 04:10 / rlh    |
| Selenium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/23/17 02:27 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.002 |      | E200.8    | 06/27/17 18:08 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 226                            | 0.08   | pCi/L | U          |       |      | E903.0    | 07/04/17 09:41 / eli-ca |
| Radium 226 precision (±)              |        | pCi/L |            |       |      | E903.0    | 07/04/17 09:41 / eli-ca |
| Radium 226 MDC                        | 0.24   | pCi/L |            |       |      | E903.0    | 07/04/17 09:41 / eli-ca |
| Radium 228                            | 0.28   | pCi/L | U          |       |      | RA-05     | 06/29/17 15:19 / eli-ca |
| Radium 228 precision (±)              | 0.99   | pCi/L |            |       |      | RA-05     | 06/29/17 15:19 / eli-ca |
| Radium 228 MDC                        | 1.6    | pCi/L |            |       |      | RA-05     | 06/29/17 15:19 / eli-ca |
| Radium 226 + Radium 228               | 0.4    | pCi/L | U          |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1      | pCi/L |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.7    | pCi/L |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC - Minimum detectable concentration

U - Not detected at minimum detectable concentration

MCL - Maximum contaminant level.ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

**Lab ID:** B17061657-011 **Client Sample ID:** EQBK/SCM/061417

Revised Date: 12/21/17 Report Date: 07/06/17 Collection Date: 06/14/17 12:55

**DateReceived:** 06/16/17 **Matrix:** Ground Water

|                                       |        |       |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |      |           |                         |
| Calcium                               | ND     | mg/L  |            | 1     |      | E200.7    | 06/21/17 04:14 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |      | E200.7    | 06/21/17 04:14 / rlh    |
| Potassium                             |        | mg/L  |            | 1     |      | E200.7    | 06/21/17 04:14 / rlh    |
| Sodium                                |        | mg/L  |            | 1     |      | E200.7    | 06/21/17 04:14 / rlh    |
| PHYSICAL PROPERTIES                   |        | ·     |            |       |      |           |                         |
| pH                                    | 5.8    | s.u.  | Н          | 0.1   |      | A4500-H B | 06/16/17 17:53 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   |        | mg/L  | ••         | 10    |      | A2540 C   | 06/17/17 08:02 / rik    |
|                                       |        |       |            |       |      |           |                         |
| INORGANICS                            |        |       |            |       |      |           |                         |
| Chloride                              |        | mg/L  |            | 1     |      | E300.0    | 06/23/17 01:19 / mej    |
| Sulfate                               | ND     | U     |            | 1     |      | E300.0    | 06/23/17 01:19 / mej    |
| Fluoride                              | ND     | mg/L  |            | 0.1   |      | A4500-F C | 06/21/17 16:48 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 |      | E200.8    | 06/23/17 02:31 / jpv    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/23/17 02:31 / jpv    |
| Barium                                | ND     | mg/L  |            | 0.01  |      | E200.7    | 06/21/17 04:14 / rlh    |
| Beryllium                             | ND     | mg/L  |            | 0.001 |      | E200.8    | 06/27/17 18:10 / jpv    |
| Boron                                 | ND     | mg/L  |            | 0.05  |      | E200.7    | 06/21/17 04:14 / rlh    |
| Cadmium                               | ND     | mg/L  |            | 0.005 |      | E200.7    | 06/21/17 04:14 / rlh    |
| Chromium                              | ND     | mg/L  |            | 0.01  |      | E200.7    | 06/21/17 04:14 / rlh    |
| Cobalt                                | ND     | mg/L  |            | 0.02  |      | E200.7    | 06/21/17 04:14 / rlh    |
| Lead                                  |        | mg/L  |            | 0.01  |      | E200.8    | 06/27/17 18:10 / jpv    |
| Lithium                               |        | mg/L  |            | 0.01  |      | E200.7    | 06/21/17 04:14 / rlh    |
| Mercury                               | ND     | J     |            | 0.001 |      | E245.1    | 06/21/17 12:43 / jh     |
| Molybdenum                            |        | mg/L  |            | 0.05  |      | E200.7    | 06/21/17 04:14 / rlh    |
| Selenium                              |        | mg/L  |            | 0.01  |      | E200.8    | 06/23/17 02:31 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.002 |      | E200.8    | 06/27/17 18:10 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 226                            | 0.09   | pCi/L | U          |       |      | E903.0    | 07/04/17 09:41 / eli-ca |
| Radium 226 precision (±)              | 0.14   | pCi/L |            |       |      | E903.0    | 07/04/17 09:41 / eli-ca |
| Radium 226 MDC                        | 0.22   | pCi/L |            |       |      | E903.0    | 07/04/17 09:41 / eli-ca |
| Radium 228                            | 0.59   | pCi/L | U          |       |      | RA-05     | 06/29/17 15:19 / eli-ca |
| Radium 228 precision (±)              | 0.94   | pCi/L |            |       |      | RA-05     | 06/29/17 15:19 / eli-ca |
| Radium 228 MDC                        | 1.5    | pCi/L |            |       |      | RA-05     | 06/29/17 15:19 / eli-ca |
| Radium 226 + Radium 228               | 0.7    | pCi/L | U          |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 0.9    | pCi/L |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.5    | pCi/L |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |
|                                       |        |       |            |       |      |           |                         |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC - Minimum detectable concentration

U - Not detected at minimum detectable concentration

MCL - Maximum contaminant level.
ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17061657-013

Client Sample ID: MNW-15

Revised Date: 12/21/17 **Report Date:** 07/06/17 Collection Date: 06/14/17 14:20

DateReceived: 06/16/17

Matrix: Ground Water

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method     | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|------------|-------------------------|
| MAJOR IONS                            |        |       |            |       |             |            |                         |
| Calcium                               | 256    | mg/L  |            | 1     |             | E200.7     | 06/21/17 04:28 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |             | E200.7     | 06/21/17 04:28 / rlh    |
| Potassium                             |        | mg/L  |            | 1     |             | E200.7     | 06/21/17 04:28 / rlh    |
| Sodium                                |        | mg/L  | D          | 2     |             | E200.7     | 06/21/17 04:28 / rlh    |
|                                       | 420    | mg/L  | 5          | _     |             | 2200.7     | 00/21/17 04.20 / 1111   |
| PHYSICAL PROPERTIES                   |        |       |            | 0.4   |             | A 4500 LLD | 00/40/47 47 50 / :      |
| pH                                    |        | s.u.  | Н          | 0.1   |             | A4500-H B  | 06/16/17 17:58 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 2620   | mg/L  | D          | 40    |             | A2540 C    | 06/17/17 08:02 / rik    |
| INORGANICS                            |        |       |            |       |             |            |                         |
| Chloride                              | 688    | mg/L  | D          | 3     |             | E300.0     | 06/23/17 03:16 / mej    |
| Sulfate                               |        | mg/L  | D          | 9     |             | E300.0     | 06/23/17 03:16 / mej    |
| Fluoride                              | 0.5    | mg/L  |            | 0.1   |             | A4500-F C  | 06/21/17 17:03 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |            |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 |             | E200.8     | 06/23/17 02:38 / jpv    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |             | E200.8     | 06/23/17 02:38 / jpv    |
| Barium                                | 0.03   | mg/L  |            | 0.01  |             | E200.7     | 06/21/17 04:28 / rlh    |
| Beryllium                             | 0.072  | mg/L  |            | 0.001 |             | E200.7     | 06/21/17 04:28 / rlh    |
| Boron                                 | 8.62   | mg/L  |            | 0.05  |             | E200.7     | 06/21/17 04:28 / rlh    |
| Cadmium                               | 0.116  | mg/L  |            | 0.005 |             | E200.7     | 06/21/17 04:28 / rlh    |
| Chromium                              |        | mg/L  |            | 0.01  |             | E200.8     | 06/23/17 02:38 / jpv    |
| Cobalt                                | 0.26   | mg/L  |            | 0.02  |             | E200.8     | 06/23/17 02:38 / jpv    |
| Lead                                  | ND     | mg/L  |            | 0.01  |             | E200.8     | 06/27/17 18:15 / jpv    |
| Lithium                               | 0.11   | mg/L  | D          | 0.02  |             | E200.7     | 06/21/17 04:28 / rlh    |
| Mercury                               | 0.012  | mg/L  |            | 0.001 |             | E245.1     | 06/27/17 10:41 / jh     |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.7     | 06/21/17 04:28 / rlh    |
| Selenium                              |        | mg/L  |            | 0.01  |             | E200.8     | 06/23/17 02:38 / jpv    |
| Thallium                              | 0.002  | mg/L  |            | 0.002 |             | E200.8     | 06/27/17 18:15 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |            |                         |
| Radium 226                            | 0.33   | pCi/L |            |       |             | E903.0     | 07/04/17 09:41 / eli-ca |
| Radium 226 precision (±)              | 0.16   | pCi/L |            |       |             | E903.0     | 07/04/17 09:41 / eli-ca |
| Radium 226 MDC                        | 0.21   | pCi/L |            |       |             | E903.0     | 07/04/17 09:41 / eli-ca |
| Radium 228                            | 0.91   | pCi/L | U          |       |             | RA-05      | 06/29/17 15:19 / eli-ca |
| Radium 228 precision (±)              |        | pCi/L |            |       |             | RA-05      | 06/29/17 15:19 / eli-ca |
| Radium 228 MDC                        | 1.4    | pCi/L |            |       |             | RA-05      | 06/29/17 15:19 / eli-ca |
| Radium 226 + Radium 228               |        | pCi/L | U          |       |             | A7500-RA   | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 0.9    | pCi/L |            |       |             | A7500-RA   | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.5    | pCi/L |            |       |             | A7500-RA   | 07/05/17 09:40 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

U - Not detected at minimum detectable concentration

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17061657-015 Client Sample ID: SFL MW-7

Revised Date: 12/21/17 **Report Date:** 07/06/17 Collection Date: 06/14/17 15:30 DateReceived: 06/16/17

Matrix: Ground Water

|                                       |        |       |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |      |           |                         |
| Calcium                               | 662    | mg/L  |            | 1     |      | E200.7    | 06/21/17 04:35 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |      | E200.7    | 06/21/17 04:35 / rlh    |
| Potassium                             |        | mg/L  |            | 1     |      | E200.7    | 06/21/17 04:35 / rlh    |
| Sodium                                |        | mg/L  | D          | 4     |      | E200.7    | 06/21/17 04:35 / rlh    |
| PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| pH                                    | 6.8    | s.u.  | Н          | 0.1   |      | A4500-H B | 06/16/17 18:14 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   |        | mg/L  | D          | 100   |      | A2540 C   | 06/17/17 08:03 / rik    |
|                                       |        | 3     |            |       |      |           |                         |
| INORGANICS                            |        | _     | _          |       |      |           |                         |
| Chloride                              |        | mg/L  | D          | 6     |      | E300.0    | 06/23/17 03:55 / mej    |
| Sulfate                               |        | mg/L  | D          | 20    |      | E300.0    | 06/23/17 03:55 / mej    |
| Fluoride                              | ND     | mg/L  |            | 0.1   |      | A4500-F C | 06/21/17 17:09 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 |      | E200.8    | 06/23/17 02:45 / jpv    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/23/17 02:45 / jpv    |
| Barium                                | 0.03   | mg/L  |            | 0.01  |      | E200.7    | 06/21/17 04:35 / rlh    |
| Beryllium                             | ND     | mg/L  |            | 0.001 |      | E200.8    | 06/27/17 18:20 / jpv    |
| Boron                                 | 0.76   | mg/L  |            | 0.05  |      | E200.7    | 06/21/17 04:35 / rlh    |
| Cadmium                               | ND     | mg/L  |            | 0.005 |      | E200.8    | 06/23/17 02:45 / jpv    |
| Chromium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/23/17 02:45 / jpv    |
| Cobalt                                |        | mg/L  |            | 0.02  |      | E200.8    | 06/23/17 02:45 / jpv    |
| Lead                                  |        | mg/L  |            | 0.01  |      | E200.8    | 06/27/17 18:20 / jpv    |
| Lithium                               |        | mg/L  | D          | 0.04  |      | E200.7    | 06/21/17 04:35 / rlh    |
| Mercury                               |        | mg/L  |            | 0.001 |      | E245.1    | 06/21/17 12:51 / jh     |
| Molybdenum                            |        | mg/L  |            | 0.05  |      | E200.8    | 06/23/17 02:45 / jpv    |
| Selenium                              |        | mg/L  |            | 0.01  |      | E200.8    | 06/23/17 02:45 / jpv    |
| Thallium                              | ND     | mg/L  |            | 0.002 |      | E200.8    | 06/27/17 18:20 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 226                            | 0.87   | pCi/L |            |       |      | E903.0    | 07/04/17 09:41 / eli-ca |
| Radium 226 precision (±)              | 0.22   | pCi/L |            |       |      | E903.0    | 07/04/17 09:41 / eli-ca |
| Radium 226 MDC                        | 0.21   | pCi/L |            |       |      | E903.0    | 07/04/17 09:41 / eli-ca |
| Radium 228                            | 1.4    | pCi/L | U          |       |      | RA-05     | 06/29/17 15:19 / eli-ca |
| Radium 228 precision (±)              | 0.94   | pCi/L |            |       |      | RA-05     | 06/29/17 15:19 / eli-ca |
| Radium 228 MDC                        | 1.5    | pCi/L |            |       |      | RA-05     | 06/29/17 15:19 / eli-ca |
| Radium 226 + Radium 228               | 2.3    | pCi/L |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1      | pCi/L |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.5    | pCi/L |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |
|                                       |        |       |            |       |      |           |                         |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

U - Not detected at minimum detectable concentration

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

**Lab ID:** B17061657-017 **Client Sample ID:** SFL MW-3

Revised Date: 12/21/17
Report Date: 07/06/17
Collection Date: 06/14/17 16:50
DateReceived: 06/16/17

Matrix: Ground Water

|                                       |        |       |            |       | MCL/ |           |                         |
|---------------------------------------|--------|-------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |       |            |       |      |           |                         |
| Calcium                               | 672    | mg/L  |            | 1     |      | E200.7    | 06/21/17 04:42 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |      | E200.7    | 06/21/17 04:42 / rlh    |
| Potassium                             |        | mg/L  |            | 1     |      | E200.7    | 06/21/17 04:42 / rlh    |
| Sodium                                | 911    | mg/L  | D          | 4     |      | E200.7    | 06/21/17 04:42 / rlh    |
| PHYSICAL PROPERTIES                   |        |       |            |       |      |           |                         |
| pH                                    | 3.9    | s.u.  | Н          | 0.1   |      | A4500-H B | 06/16/17 18:19 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 4710   | mg/L  | D          | 90    |      | A2540 C   | 06/17/17 08:03 / rik    |
| INORGANICS                            |        |       |            |       |      |           |                         |
| Chloride                              | 1440   | mg/L  | D          | 6     |      | E300.0    | 06/23/17 04:34 / mej    |
| Sulfate                               | 2380   | mg/L  | D          | 20    |      | E300.0    | 06/23/17 04:34 / mej    |
| Fluoride                              | 0.6    | mg/L  |            | 0.1   |      | A4500-F C | 06/21/17 17:22 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |      |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 |      | E200.8    | 06/23/17 02:53 / jpv    |
| Arsenic                               | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/23/17 02:53 / jpv    |
| Barium                                | 0.03   | mg/L  |            | 0.01  |      | E200.7    | 06/21/17 04:42 / rlh    |
| Beryllium                             | 0.037  | mg/L  |            | 0.001 |      | E200.8    | 06/27/17 18:33 / jpv    |
| Boron                                 | 2.93   | mg/L  |            | 0.05  |      | E200.7    | 06/21/17 04:42 / rlh    |
| Cadmium                               | 0.007  | mg/L  |            | 0.005 |      | E200.8    | 06/23/17 02:53 / jpv    |
| Chromium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/23/17 02:53 / jpv    |
| Cobalt                                | 0.07   | mg/L  |            | 0.02  |      | E200.8    | 06/23/17 02:53 / jpv    |
| Lead                                  | 0.03   | mg/L  |            | 0.01  |      | E200.8    | 06/27/17 18:33 / jpv    |
| Lithium                               | 0.40   | mg/L  | D          | 0.04  |      | E200.7    | 06/21/17 04:42 / rlh    |
| Mercury                               | 0.001  | mg/L  |            | 0.001 |      | E245.1    | 06/23/17 12:18 / jh     |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |      | E200.8    | 06/23/17 02:53 / jpv    |
| Selenium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 06/23/17 02:53 / jpv    |
| Thallium                              | 0.006  | mg/L  |            | 0.002 |      | E200.8    | 06/27/17 18:33 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |      |           |                         |
| Radium 226                            | 1.9    | pCi/L |            |       |      | E903.0    | 07/04/17 09:41 / eli-ca |
| Radium 226 precision (±)              | 0.44   | pCi/L |            |       |      | E903.0    | 07/04/17 09:41 / eli-ca |
| Radium 226 MDC                        | 0.18   | pCi/L |            |       |      | E903.0    | 07/04/17 09:41 / eli-ca |
| Radium 228                            | 3.1    | pCi/L |            |       |      | RA-05     | 06/29/17 15:47 / eli-ca |
| Radium 228 precision (±)              | 1.2    | pCi/L |            |       |      | RA-05     | 06/29/17 15:47 / eli-ca |
| Radium 228 MDC                        | 1.3    | pCi/L |            |       |      | RA-05     | 06/29/17 15:47 / eli-ca |
| Radium 226 + Radium 228               | 5.0    | pCi/L |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.3    | pCi/L |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.4    | pCi/L |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

ADO MILI

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

Lab ID: B17061657-018 Client Sample ID: SFL MW-4

Revised Date: 12/21/17
Report Date: 07/06/17
Collection Date: 06/14/17 17:45
DateReceived: 06/16/17

Matrix: Ground Water

| Analyses                              | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|-------|-------------|-----------|-------------------------|
|                                       |        |       |            |       |             |           |                         |
| MAJOR IONS                            | 700    |       |            | 4     |             | F000 7    | 00/04/47 04 40 /        |
| Calcium                               |        | mg/L  |            | 1     |             | E200.7    | 06/21/17 04:46 / rlh    |
| Magnesium                             |        | mg/L  |            | 1     |             | E200.7    | 06/21/17 04:46 / rlh    |
| Potassium                             |        | mg/L  | Б          | 1     |             | E200.7    | 06/21/17 04:46 / rlh    |
| Sodium                                | 1040   | mg/L  | D          | 4     |             | E200.7    | 06/21/17 04:46 / rlh    |
| PHYSICAL PROPERTIES                   |        |       |            |       |             |           |                         |
| Н                                     | 6.6    | s.u.  | Н          | 0.1   |             | A4500-H B | 06/16/17 18:22 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   | 5700   | mg/L  | D          | 100   |             | A2540 C   | 06/17/17 08:03 / rik    |
| NORGANICS                             |        |       |            |       |             |           |                         |
| Chloride                              | 1740   | mg/L  | D          | 6     |             | E300.0    | 06/23/17 04:54 / mej    |
| Sulfate                               |        | mg/L  | D          | 20    |             | E300.0    | 06/23/17 04:54 / mej    |
| Fluoride                              | ND     | mg/L  |            | 0.1   |             | A4500-F C | 06/21/17 17:25 / cjm    |
| METALS, TOTAL RECOVERABLE             |        |       |            |       |             |           |                         |
| Antimony                              | ND     | mg/L  |            | 0.006 |             | E200.8    | 06/23/17 02:56 / jpv    |
| Arsenic                               |        | mg/L  |            | 0.01  |             | E200.8    | 06/23/17 02:56 / jpv    |
| Barium                                |        | mg/L  |            | 0.01  |             | E200.7    | 06/21/17 04:46 / rlh    |
| Beryllium                             |        | mg/L  |            | 0.001 |             | E200.8    | 06/27/17 18:36 / jpv    |
| Boron                                 |        | mg/L  |            | 0.05  |             | E200.7    | 06/21/17 04:46 / rlh    |
| Cadmium                               |        | mg/L  |            | 0.005 |             | E200.8    | 06/23/17 02:56 / jpv    |
| Chromium                              |        | mg/L  |            | 0.01  |             | E200.8    | 06/23/17 02:56 / jpv    |
| Cobalt                                |        | mg/L  |            | 0.02  |             | E200.8    | 06/23/17 02:56 / jpv    |
| ead                                   | ND     | mg/L  |            | 0.01  |             | E200.8    | 06/27/17 18:36 / jpv    |
| ithium                                | 0.48   | mg/L  | D          | 0.04  |             | E200.7    | 06/21/17 04:46 / rlh    |
| Mercury                               | ND     | mg/L  |            | 0.001 |             | E245.1    | 06/21/17 12:56 / jh     |
| Molybdenum                            | ND     | mg/L  |            | 0.05  |             | E200.8    | 06/23/17 02:56 / jpv    |
| Selenium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 06/23/17 02:56 / jpv    |
| <sup>-</sup> hallium                  | ND     | mg/L  |            | 0.002 |             | E200.8    | 06/27/17 18:36 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |       |            |       |             |           |                         |
| Radium 226                            | 1.1    | pCi/L |            |       |             | E903.0    | 07/04/17 12:02 / eli-ca |
| Radium 226 precision (±)              |        | pCi/L |            |       |             | E903.0    | 07/04/17 12:02 / eli-ca |
| Radium 226 MDC                        |        | pCi/L |            |       |             | E903.0    | 07/04/17 12:02 / eli-ca |
| Radium 228                            |        | pCi/L |            |       |             | RA-05     | 06/29/17 15:47 / eli-ca |
| Radium 228 precision (±)              |        | pCi/L |            |       |             | RA-05     | 06/29/17 15:47 / eli-ca |
| Radium 228 MDC                        | 1.5    | pCi/L |            |       |             | RA-05     | 06/29/17 15:47 / eli-ca |
| Radium 226 + Radium 228               | 2.6    | pCi/L |            |       |             | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 precision (±) |        | pCi/L |            |       |             | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 MDC           |        | pCi/L |            |       |             | A7500-RA  | 07/05/17 09:40 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC Military control minu.

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

Matrix: Ground Water

### LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

**Lab ID:** B17061657-019

Client Sample ID: DUP-3

 Revised Date:
 12/21/17

 Report Date:
 07/06/17

 Collection Date:
 06/14/17

 DateReceived:
 06/16/17

|                                       |        |        |            | ъ.    | MCL/ |           |                         |
|---------------------------------------|--------|--------|------------|-------|------|-----------|-------------------------|
| Analyses                              | Result | Units  | Qualifiers | RL    | QCL  | Method    | Analysis Date / By      |
| MAJOR IONS                            |        |        |            |       |      |           |                         |
| Calcium                               | 671    | mg/L   |            | 1     |      | E200.7    | 06/21/17 04:49 / rlh    |
| Magnesium                             |        | mg/L   |            | 1     |      | E200.7    | 06/21/17 04:49 / rlh    |
| Potassium                             |        | mg/L   |            | 1     |      | E200.7    | 06/21/17 04:49 / rlh    |
| Sodium                                |        | mg/L   | D          | 4     |      | E200.7    | 06/21/17 04:49 / rlh    |
| PHYSICAL PROPERTIES                   |        |        |            |       |      |           |                         |
| pH                                    | 6.8    | s.u.   | Н          | 0.1   |      | A4500-H B | 06/16/17 18:24 / pjw    |
| Solids, Total Dissolved TDS @ 180 C   |        | mg/L   | D          | 100   |      | A2540 C   | 06/17/17 08:04 / rik    |
| INORGANICS                            |        | -      |            |       |      |           |                         |
| Chloride                              | 2820   | mg/L   | D          | 6     |      | E300.0    | 06/23/17 05:13 / mej    |
| Sulfate                               |        | mg/L   | D          | 20    |      | E300.0    | 06/23/17 05:13 / mej    |
| Fluoride                              |        | mg/L   | D          | 0.1   |      | A4500-F C | 06/21/17 17:28 / cjm    |
| ridonde                               | ND     | IIIg/L |            | 0.1   |      | A4300-F C | 00/21/17 17.20 / CJIII  |
| METALS, TOTAL RECOVERABLE             |        |        |            |       |      |           |                         |
| Antimony                              | ND     | mg/L   |            | 0.006 |      | E200.8    | 06/23/17 03:00 / jpv    |
| Arsenic                               | ND     | mg/L   |            | 0.01  |      | E200.8    | 06/23/17 03:00 / jpv    |
| Barium                                | 0.03   | mg/L   |            | 0.01  |      | E200.7    | 06/21/17 04:49 / rlh    |
| Beryllium                             | ND     | mg/L   |            | 0.001 |      | E200.8    | 06/27/17 18:39 / jpv    |
| Boron                                 | 0.76   | mg/L   |            | 0.05  |      | E200.7    | 06/21/17 04:49 / rlh    |
| Cadmium                               | ND     | mg/L   |            | 0.005 |      | E200.8    | 06/23/17 03:00 / jpv    |
| Chromium                              |        | mg/L   |            | 0.01  |      | E200.8    | 06/23/17 03:00 / jpv    |
| Cobalt                                | ND     | mg/L   |            | 0.02  |      | E200.8    | 06/23/17 03:00 / jpv    |
| Lead                                  | ND     | mg/L   |            | 0.01  |      | E200.8    | 06/27/17 18:39 / jpv    |
| Lithium                               |        | mg/L   | D          | 0.04  |      | E200.7    | 06/21/17 04:49 / rlh    |
| Mercury                               | ND     | mg/L   |            | 0.001 |      | E245.1    | 06/21/17 12:58 / jh     |
| Molybdenum                            | ND     | mg/L   |            | 0.05  |      | E200.8    | 06/23/17 03:00 / jpv    |
| Selenium                              | ND     | mg/L   |            | 0.01  |      | E200.8    | 06/23/17 03:00 / jpv    |
| Thallium                              | ND     | mg/L   |            | 0.002 |      | E200.8    | 06/27/17 18:39 / jpv    |
| RADIONUCLIDES - TOTAL                 |        |        |            |       |      |           |                         |
| Radium 226                            | 0.76   | pCi/L  |            |       |      | E903.0    | 07/04/17 12:02 / eli-ca |
| Radium 226 precision (±)              | 0.22   | pCi/L  |            |       |      | E903.0    | 07/04/17 12:02 / eli-ca |
| Radium 226 MDC                        | 0.22   | pCi/L  |            |       |      | E903.0    | 07/04/17 12:02 / eli-ca |
| Radium 228                            | 1.9    | pCi/L  |            |       |      | RA-05     | 06/29/17 14:12 / eli-ca |
| Radium 228 precision (±)              | 0.82   | pCi/L  |            |       |      | RA-05     | 06/29/17 14:12 / eli-ca |
| Radium 228 MDC                        | 1.4    | pCi/L  |            |       |      | RA-05     | 06/29/17 14:12 / eli-ca |
| Radium 226 + Radium 228               | 2.7    | pCi/L  |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 8.0    | pCi/L  |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.4    | pCi/L  |            |       |      | A7500-RA  | 07/05/17 09:40 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC Military solution military

MDC - Minimum detectable concentration

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.



Prepared by Casper, WY Branch

Client:Texas Municipal Power AgencyReport Date:07/05/17Project:CCRRWork Order:B17061657

| Analyte                   | Result         | Units           | RL %REC | Low Limit | High Limit | RPD | RPDLimit Qual     |
|---------------------------|----------------|-----------------|---------|-----------|------------|-----|-------------------|
| Method: E903.0            |                |                 |         |           |            |     | Batch: RA226-8539 |
| Lab ID: LCS-RA226-8539    | Laboratory Con | trol Sample     |         | Run: G500 | 0W_170622A |     | 07/04/17 09:41    |
| Radium 226                | 9.0            | pCi/L           | 88      | 80        | 120        |     |                   |
| Lab ID: MB-RA226-8539     | Method Blank   |                 |         | Run: G500 | 0W_170622A |     | 07/04/17 09:41    |
| Radium 226                | 0.1            | pCi/L           |         |           |            |     | U                 |
| Radium 226 precision (±)  | 0.1            | pCi/L           |         |           |            |     |                   |
| Radium 226 MDC            | 0.2            | pCi/L           |         |           |            |     |                   |
| Lab ID: B17061657-007CMS  | Sample Matrix  | Spike           |         | Run: G500 | 0W_170622A |     | 07/04/17 09:41    |
| Radium 226                | 18             | pCi/L           | 85      | 70        | 130        |     |                   |
| Lab ID: B17061657-007CMSD | Sample Matrix  | Spike Duplicate |         | Run: G500 | 0W_170622A |     | 07/04/17 09:41    |
| Radium 226                | 18             | pCi/L           | 85      | 70        | 130        | 1.4 | 20                |
| Method: E903.0            |                |                 |         |           |            |     | Batch: RA226-8538 |
| Lab ID: LCS-RA226-8538    | Laboratory Con | trol Sample     |         | Run: G542 | M_170622A  |     | 07/04/17 09:35    |
| Radium 226                | 11             | pCi/L           | 107     | 80        | 120        |     |                   |
| Lab ID: MB-RA226-8538     | Method Blank   |                 |         | Run: G542 | M_170622A  |     | 07/04/17 09:35    |
| Radium 226                | 0.2            | pCi/L           |         |           |            |     | U                 |
| Radium 226 precision (±)  | 0.1            | pCi/L           |         |           |            |     |                   |
| Radium 226 MDC            | 0.2            | pCi/L           |         |           |            |     |                   |
| Lab ID: C17060553-002CMS  | Sample Matrix  | Spike           |         | Run: G542 | M_170622A  |     | 07/04/17 09:35    |
| Radium 226                | 17             | pCi/L           | 77      | 70        | 130        |     |                   |
| Lab ID: C17060553-002CMSD | Sample Matrix  | Spike Duplicate |         | Run: G542 | M_170622A  |     | 07/04/17 09:35    |
| Radium 226                | 18             | pCi/L           | 83      | 70        | 130        | 7.0 | 20                |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration



Prepared by Casper, WY Branch

Client:Texas Municipal Power AgencyReport Date: 07/05/17Project:CCRRWork Order: B17061657

| Analyte                    | Result           | Units          | RL % | REC | Low Limit | High Lim | nit     | RPD | RPDLimit  | Qual       |
|----------------------------|------------------|----------------|------|-----|-----------|----------|---------|-----|-----------|------------|
| Method: RA-05              |                  |                |      |     |           |          |         |     | Batch: RA | 228-5525   |
| Lab ID: LCS-228-RA226-8538 | Laboratory Contr | ol Sample      |      |     | Run: TENN | IELEC-3_ | 170622B |     | 06/29     | 9/17 11:52 |
| Radium 228                 | 8.6 p            | oCi/L          |      | 86  | 80        | 12       | 20      |     |           |            |
| Lab ID: MB-RA226-8538      | Method Blank     |                |      |     | Run: TENN | IELEC-3  | 170622B |     | 06/29     | 9/17 11:52 |
| Radium 228                 | 0.6 p            | oCi/L          |      |     |           | _        |         |     |           | U          |
| Radium 228 precision (±)   | 0.9 p            | oCi/L          |      |     |           |          |         |     |           |            |
| Radium 228 MDC             | 1 p              | oCi/L          |      |     |           |          |         |     |           |            |
| Lab ID: C17060553-010CMS   | Sample Matrix S  | pike           |      |     | Run: TENN | IELEC-3_ | 170622B |     | 06/29     | 9/17 11:52 |
| Radium 228                 | 26 p             | oCi/L          |      | 123 | 70        | 13       | 80      |     |           |            |
| Lab ID: C17060553-010CMSD  | Sample Matrix S  | pike Duplicate |      |     | Run: TENN | IELEC-3_ | 170622B |     | 06/29     | 9/17 11:52 |
| Radium 228                 | 24 p             | oCi/L          |      | 111 | 70        | 13       | 30      | 9.0 | 20        |            |
| Method: RA-05              |                  |                |      |     |           |          |         |     | Batch: RA | 228-5526   |
| Lab ID: LCS-228-RA226-8539 | Laboratory Contr | rol Sample     |      |     | Run: TENN | IELEC-3_ | 170622C |     | 06/29     | 9/17 14:12 |
| Radium 228                 | 9.3 p            | oCi/L          |      | 96  | 80        | 12       | 20      |     |           |            |
| Lab ID: MB-RA226-8539      | Method Blank     |                |      |     | Run: TENN | IELEC-3_ | 170622C |     | 06/29     | 9/17 14:12 |
| Radium 228                 | 0.4 p            | oCi/L          |      |     |           |          |         |     |           | U          |
| Radium 228 precision (±)   | 0.8 p            | oCi/L          |      |     |           |          |         |     |           |            |
| Radium 228 MDC             | 1 p              | oCi/L          |      |     |           |          |         |     |           |            |
| Lab ID: B17061657-019CMS   | Sample Matrix S  | pike           |      |     | Run: TENN | IELEC-3_ | 170622C |     | 06/29     | 9/17 14:12 |
| Radium 228                 | 20 p             | oCi/L          |      | 97  | 70        | 13       | 30      |     |           |            |
| Lab ID: B17061657-019CMSD  | Sample Matrix S  | pike Duplicate |      |     | Run: TENN | IELEC-3_ | 170622C |     | 06/29     | 9/17 14:12 |
| Radium 228                 | 18 p             | oCi/L          |      | 88  | 70        | 13       | 80      | 10  | 20        |            |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date: 07/05/17Project:CCRRWork Order: B17061657

| Analyte         | Co                    | ount Result   | Units        | RL | %REC | Low Limit               | High Limit    | RPD | RPDLimit | Qual      |
|-----------------|-----------------------|---------------|--------------|----|------|-------------------------|---------------|-----|----------|-----------|
| Method: A       | A2540 C               |               |              |    |      |                         |               |     | Batcl    | n: 110643 |
| Lab ID: L       | CS-110643             | Laboratory Co | ntrol Sample |    |      | Run: BAL #SD-15_170616D |               |     | 06/16/   | 17 13:52  |
| Solids, Total I | Dissolved TDS @ 180 C | 1010          | mg/L         | 10 | 100  | 90                      | 110           |     |          |           |
| Lab ID: B       | 17061657-005A DUP     | Sample Duplic | cate         |    |      | Run: BAL #              | SD-15_170616D |     | 06/16/   | 17 13:55  |
| Solids, Total I | Dissolved TDS @ 180 C | 6420          | mg/L         | 94 |      |                         |               | 0.2 | 5        |           |
| Lab ID: M       | IB-110643             | Method Blank  |              |    |      | Run: BAL #              | SD-15_170616D |     | 06/19/   | 17 09:39  |
| Solids, Total I | Dissolved TDS @ 180 C | ND            | mg/L         | 4  |      |                         |               |     |          |           |
| Method: A       | A2540 C               |               |              |    |      |                         |               |     | Batcl    | n: 110647 |
| Lab ID: M       | IB-110647             | Method Blank  |              |    |      | Run: BAL #              | SD-15_170617B |     | 06/17/   | 17 07:55  |
| Solids, Total I | Dissolved TDS @ 180 C | ND ND         | mg/L         | 4  |      |                         |               |     |          |           |
| Lab ID: L       | CS-110647             | Laboratory Co | ntrol Sample |    |      | Run: BAL #              | SD-15_170617B |     | 06/17/   | 17 07:55  |
| Solids, Total I | Dissolved TDS @ 180 C | 962           | mg/L         | 10 | 97   | 90                      | 110           |     |          |           |
| Lab ID: B       | 17061694-001A DUP     | Sample Duplic | cate         |    |      | Run: BAL #              | SD-15_170617B |     | 06/17/   | 17 07:56  |
| Solids, Total I | Dissolved TDS @ 180 C | 7590          | mg/L         | 93 |      |                         |               | 0.7 | 5        |           |
| Method: A       | A2540 C               |               |              |    |      |                         |               |     | Batcl    | n: 110648 |
| Lab ID: M       | IB-110648             | Method Blank  |              |    |      | Run: BAL #              | SD-15_170617C |     | 06/17/   | 17 08:01  |
| Solids, Total I | Dissolved TDS @ 180 C | ND ND         | mg/L         | 4  |      |                         |               |     |          |           |
| Lab ID: L       | CS-110648             | Laboratory Co | ntrol Sample |    |      | Run: BAL #              | SD-15_170617C |     | 06/17/   | 17 08:01  |
| Solids, Total I | Dissolved TDS @ 180 C | 957           | mg/L         | 10 | 96   | 90                      | 110           |     |          |           |
| Lab ID: B       | 17061657-010A DUP     | Sample Duplic | cate         |    |      | Run: BAL #              | SD-15_170617C |     | 06/17/   | 17 08:02  |
| Solids, Total I | Dissolved TDS @ 180 C | , ND          | mg/L         | 10 |      |                         |               |     | 5        |           |

### Qualifiers:

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date: 07/05/17Project:CCRRWork Order: B17061657

| Analyte  |                  | Count        | Result       | Units             | RL      | %REC | Low Limit | High Limit   | RPD     | RPDLimit  | Qual     |
|----------|------------------|--------------|--------------|-------------------|---------|------|-----------|--------------|---------|-----------|----------|
| Method:  | A4500-F C        |              |              |                   |         |      |           | Analytic     | al Run: | MAN-TECH_ | 170621A  |
| Lab ID:  | ICV              | Initia       | l Calibratio | on Verification S | tandard |      |           |              |         | 06/21/    | 17 15:18 |
| Fluoride |                  |              | 0.900        | mg/L              | 0.10    | 90   | 90        | 110          |         |           |          |
| Method:  | A4500-F C        |              |              |                   |         |      |           |              |         | Batch:    | R281950  |
| Lab ID:  | MBLK             | Meth         | od Blank     |                   |         |      | Run: MAN- | ΓΕCH_170621A |         | 06/21/    | 17 15:12 |
| Fluoride |                  |              | ND           | mg/L              | 0.02    |      |           |              |         |           |          |
| Lab ID:  | LFB              | Labo         | ratory For   | tified Blank      |         |      | Run: MAN- | ΓΕCH_170621A |         | 06/21/    | 17 15:15 |
| Fluoride |                  |              | 0.920        | mg/L              | 0.10    | 92   | 90        | 110          |         |           |          |
| Lab ID:  | B17061657-001AMS | Sam          | ple Matrix   | Spike             |         |      | Run: MAN- | ΓΕCH_170621A |         | 06/21/    | 17 15:23 |
| Fluoride |                  |              | 1.57         | mg/L              | 0.10    | 93   | 80        | 120          |         |           |          |
| Lab ID:  | B17061657-001AMS | <b>D</b> Sam | ple Matrix   | Spike Duplicate   |         |      | Run: MAN- | ΓΕCH_170621A |         | 06/21/    | 17 15:25 |
| Fluoride |                  |              | 1.62         | mg/L              | 0.10    | 98   | 80        | 120          | 3.1     | 10        |          |
| Lab ID:  | B17061657-011AMS | Sam          | ple Matrix   | Spike             |         |      | Run: MAN- | ΓΕCH_170621A |         | 06/21/    | 17 16:50 |
| Fluoride |                  |              | 0.910        | mg/L              | 0.10    | 91   | 80        | 120          |         |           |          |
| Lab ID:  | B17061657-011AMS | D Sam        | ple Matrix   | Spike Duplicate   |         |      | Run: MAN- | ΓΕCH_170621A |         | 06/21/    | 17 16:53 |
| Fluoride |                  |              | 0.920        | mg/L              | 0.10    | 92   | 80        | 120          | 1.1     | 10        |          |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date: 07/05/17Project:CCRRWork Order: B17061657

| Analyte |                   | Count        | Result        | Units          | RL                | %REC | Low Limit | High Limit   | RPD        | RPDLimit   | Qual     |
|---------|-------------------|--------------|---------------|----------------|-------------------|------|-----------|--------------|------------|------------|----------|
| Method: | A4500-H B         |              |               |                |                   |      |           | Analytica    | al Run: PH | SC _101-B_ | _170616A |
| Lab ID: | pH 8              | Initi        | al Calibratio | n Verificatio  | on Standard       |      |           |              |            | 06/16/     | 17 08:45 |
| рН      |                   |              | 7.99          | s.u.           | 0.10              | 100  | 98        | 102          |            |            |          |
| Lab ID: | CCV - pH 7        | Cor          | ntinuing Cali | bration Ver    | ification Standar | d    |           |              |            | 06/16/     | 17 13:30 |
| рН      |                   |              | 7.00          | s.u.           | 0.10              | 100  | 98        | 102          |            |            |          |
| Lab ID: | CCV - pH 7        | Cor          | ntinuing Cali | bration Ver    | ification Standar | d    |           |              |            | 06/16/     | 17 16:13 |
| рН      |                   |              | 7.01          | s.u.           | 0.10              | 100  | 98        | 102          |            |            |          |
| Lab ID: | CCV - pH 7        | Cor          | ntinuing Cali | bration Ver    | ification Standar | d    |           |              |            | 06/16/     | 17 18:01 |
| рН      |                   |              | 7.01          | s.u.           | 0.10              | 100  | 98        | 102          |            |            |          |
| Method: | A4500-H B         |              |               |                |                   |      |           |              |            | Batch:     | R281591  |
| Lab ID: | B17061657-005ADUF | <b>P</b> Sar | nple Duplica  | ate            |                   |      | Run: PHSC | _101-B_17061 | 6A         | 06/16/     | 17 14:42 |
| рН      |                   |              | 4.50          | s.u.           | 0.10              |      |           |              | 3.1        | 3          | R        |
| Lab ID: | B17061657-014ADUF | <b>P</b> Sar | nple Duplica  | ate            |                   |      | Run: PHSC | _101-B_17061 | 6A         | 06/16/     | 17 18:11 |
| рН      |                   |              | 7.01          | s.u.           | 0.10              |      |           |              | 0.3        | 3          |          |
| Method: | A4500-H B         |              |               |                |                   |      |           | Analytica    | al Run: PH | SC _101-B_ | _170617A |
| Lab ID: | pH 8              | Initi        | al Calibratio | n Verification | on Standard       |      |           |              |            | 06/17/     | 17 13:16 |
| рН      |                   |              | 7.99          | s.u.           | 0.10              | 100  | 98        | 102          |            |            |          |
| Method: | A4500-H B         |              |               |                |                   |      |           |              |            | Batch:     | R281659  |
| Lab ID: | B17061657-005ADUF | <b>P</b> Sar | nple Duplica  | ate            |                   |      | Run: PHSC | _101-B_17061 | 7A         | 06/17/     | 17 14:31 |
| pН      |                   |              | 4.53          | s.u.           | 0.10              |      |           |              | 0.2        | 3          |          |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date: 07/05/17Project:CCRRWork Order: B17061657

| Analyte  |                   | Count    | Result        | Units               | RL     | %REC | Low Limit  | High Limit | RPD       | RPDLimit  | Qual      |
|----------|-------------------|----------|---------------|---------------------|--------|------|------------|------------|-----------|-----------|-----------|
| Method:  | E300.0            |          |               |                     |        |      |            | Analytical | Run: IC N | METROHM 2 | _170622A  |
| Lab ID:  | ICV               | 2 Initia | al Calibratio | on Verification Sta | andard |      |            |            |           | 06/22     | /17 15:54 |
| Chloride |                   |          | 2.21          | mg/L                | 1.0    | 98   | 90         | 110        |           |           |           |
| Sulfate  |                   |          | 8.97          | mg/L                | 1.0    | 100  | 90         | 110        |           |           |           |
| Method:  | E300.0            |          |               |                     |        |      |            |            |           | Batch:    | R281994   |
| Lab ID:  | ICB               | 2 Met    | hod Blank     |                     |        |      | Run: IC ME | TROHM 2_17 | 0622A     | 06/22     | /17 16:13 |
| Chloride |                   |          | ND            | mg/L                | 0.002  |      |            |            |           |           |           |
| Sulfate  |                   |          | ND            | mg/L                | 0.03   |      |            |            |           |           |           |
| Lab ID:  | LFB               | 2 Lab    | oratory For   | tified Blank        |        |      | Run: IC ME | TROHM 2_17 | 0622A     | 06/22     | /17 16:33 |
| Chloride |                   |          | 10.3          | mg/L                | 1.0    | 103  | 90         | 110        |           |           |           |
| Sulfate  |                   |          | 30.7          | mg/L                | 1.0    | 102  | 90         | 110        |           |           |           |
| Lab ID:  | B17061657-002AMS  | 2 Sam    | nple Matrix   | Spike               |        |      | Run: IC ME | TROHM 2_17 | 0622A     | 06/22     | /17 22:04 |
| Chloride |                   |          | 457           | mg/L                | 1.2    | 104  | 90         | 110        |           |           |           |
| Sulfate  |                   |          | 1140          | mg/L                | 3.7    | 106  | 90         | 110        |           |           |           |
| Lab ID:  | B17061657-002AMSE | O 2 Sam  | nple Matrix   | Spike Duplicate     |        |      | Run: IC ME | TROHM 2_17 | 0622A     | 06/22     | /17 22:23 |
| Chloride |                   |          | 455           | mg/L                | 1.2    | 103  | 90         | 110        | 0.4       | 20        |           |
| Sulfate  |                   |          | 1140          | mg/L                | 3.7    | 106  | 90         | 110        | 0.4       | 20        |           |
| Lab ID:  | B17061657-012AMS  | 2 Sam    | nple Matrix   | Spike               |        |      | Run: IC ME | TROHM 2_17 | 0622A     | 06/23     | /17 02:37 |
| Chloride |                   |          | 3380          | mg/L                | 6.1    | 96   | 90         | 110        |           |           | Е         |
| Sulfate  |                   |          | 4400          | mg/L                | 18     | 108  | 90         | 110        |           |           |           |
| Lab ID:  | B17061657-012AMSE | 2 Sam    | nple Matrix   | Spike Duplicate     |        |      | Run: IC ME | TROHM 2_17 | 0622A     | 06/23     | /17 02:57 |
| Chloride |                   |          | 3410          | mg/L                | 6.1    | 99   | 90         | 110        | 0.8       | 20        | Е         |
| Sulfate  |                   |          | 4440          | mg/L                | 18     | 109  | 90         | 110        | 8.0       | 20        |           |
| Lab ID:  | B17061661-002AMS  | 2 Sam    | nple Matrix   | Spike               |        |      | Run: IC ME | TROHM 2_17 | 0622A     | 06/23     | /17 07:10 |
| Chloride |                   |          | 1200          | mg/L                | 6.1    | 110  | 90         | 110        |           |           |           |
| Sulfate  |                   |          | 7400          | mg/L                | 18     | 105  | 90         | 110        |           |           |           |
| Lab ID:  | B17061661-002AMSE | 2 Sam    | nple Matrix   | Spike Duplicate     |        |      | Run: IC ME | TROHM 2_17 | 0622A     | 06/23     | /17 07:30 |
| Chloride |                   |          | 1190          | mg/L                | 6.1    | 109  | 90         | 110        | 1.2       | 20        |           |
| Sulfate  |                   |          | 7340          | mg/L                | 18     | 103  | 90         | 110        | 0.8       | 20        |           |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

E - Estimated value. Result exceeds the instrument upper quantitation limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

Revised Date: 12/21/17

Report Date: 07/06/17 Work Order: B17061657

| Analyte   |                   | Count    | Result        | Units        | RL              | %REC | Low Limit    | High Limit    | RPD       | RPDLimit    | Qual             |
|-----------|-------------------|----------|---------------|--------------|-----------------|------|--------------|---------------|-----------|-------------|------------------|
| Method:   | E200.7            |          |               |              |                 |      |              | Anal          | ytical Ru | n: ICP203-B | _170620 <i>A</i> |
| Lab ID:   | ICV               | 12 Co    | ntinuing Cali | bration Veri | fication Standa | rd   |              |               |           | 06/20       | /17 11:43        |
| Barium    |                   |          | 2.42          | mg/L         | 0.10            | 97   | 95           | 105           |           |             |                  |
| Beryllium |                   |          | 1.26          | mg/L         | 0.010           | 101  | 95           | 105           |           |             |                  |
| Boron     |                   |          | 2.53          | mg/L         | 0.10            | 101  | 95           | 105           |           |             |                  |
| Cadmium   |                   |          | 2.58          | mg/L         | 0.010           | 103  | 95           | 105           |           |             |                  |
| Calcium   |                   |          | 25.4          | mg/L         | 1.0             | 102  | 95           | 105           |           |             |                  |
| Chromium  |                   |          | 2.46          | mg/L         | 0.050           | 99   | 95           | 105           |           |             |                  |
| Cobalt    |                   |          | 2.57          | mg/L         | 0.020           | 103  | 95           | 105           |           |             |                  |
| Lithium   |                   |          | 1.27          | mg/L         | 0.10            | 101  | 95           | 105           |           |             |                  |
| Magnesiun | n                 |          | 25.1          | mg/L         | 1.0             | 100  | 95           | 105           |           |             |                  |
| Molybdenu |                   |          | 2.59          | mg/L         | 0.10            | 104  | 95           | 105           |           |             |                  |
| Potassium |                   |          | 25.3          | mg/L         | 1.0             | 101  | 95           | 105           |           |             |                  |
| Sodium    |                   |          | 25.3          | mg/L         | 1.0             | 101  | 95           | 105           |           |             |                  |
| Method:   | E200.7            |          |               |              |                 |      |              |               |           | Bato        | h: 110656        |
| Lab ID:   | MB-110656         | 12 Me    | thod Blank    |              |                 |      | Run: ICP20   | 3-B 170620A   |           |             | /17 03:10        |
| Barium    |                   | 1110     | ND            | mg/L         | 0.0005          |      | 11011.101 20 | .o b_11002011 |           | 00/21       | 717 00.10        |
| Beryllium |                   |          | ND            | mg/L         | 0.0001          |      |              |               |           |             |                  |
| Boron     |                   |          | ND            | mg/L         | 0.003           |      |              |               |           |             |                  |
| Cadmium   |                   |          | ND            | mg/L         | 0.003           |      |              |               |           |             |                  |
| Calcium   |                   |          | ND            | •            | 0.0010          |      |              |               |           |             |                  |
| Chromium  |                   |          | ND<br>ND      | mg/L         | 0.002           |      |              |               |           |             |                  |
|           |                   |          | ND<br>ND      | mg/L         |                 |      |              |               |           |             |                  |
| Cobalt    |                   |          |               | mg/L         | 0.005           |      |              |               |           |             |                  |
| Lithium   |                   |          | 0.006         | mg/L         | 0.004           |      |              |               |           |             |                  |
| Magnesiun |                   |          | ND            | mg/L         | 0.01            |      |              |               |           |             |                  |
| Molybdenu |                   |          | ND            | mg/L         | 0.007           |      |              |               |           |             |                  |
| Potassium |                   |          | ND            | mg/L         | 0.07            |      |              |               |           |             |                  |
| Sodium    |                   |          | ND            | mg/L         | 0.03            |      |              |               |           |             |                  |
| Lab ID:   | LCS-110656        | 12 Lab   | oratory Con   | itrol Sample |                 |      | Run: ICP20   | 3-B_170620A   |           | 06/21       | /17 03:14        |
| Barium    |                   |          | 0.511         | mg/L         | 0.10            | 102  | 85           | 115           |           |             |                  |
| Beryllium |                   |          | 0.267         | mg/L         | 0.010           | 107  | 85           | 115           |           |             |                  |
| Boron     |                   |          | 0.488         | mg/L         | 0.10            | 98   | 85           | 115           |           |             |                  |
| Cadmium   |                   |          | 0.254         | mg/L         | 0.010           | 102  | 85           | 115           |           |             |                  |
| Calcium   |                   |          | 25.7          | mg/L         | 1.0             | 103  | 85           | 115           |           |             |                  |
| Chromium  |                   |          | 0.507         | mg/L         | 0.050           | 101  | 85           | 115           |           |             |                  |
| Cobalt    |                   |          | 0.501         | mg/L         | 0.050           | 100  | 85           | 115           |           |             |                  |
| Lithium   |                   |          | 0.515         | mg/L         | 0.10            | 102  | 85           | 115           |           |             |                  |
| Magnesiun | n                 |          | 26.0          | mg/L         | 1.0             | 104  | 85           | 115           |           |             |                  |
| Molybdenu |                   |          | 0.506         | mg/L         | 0.10            | 101  | 85           | 115           |           |             |                  |
| Potassium |                   |          | 25.6          | mg/L         | 1.0             | 102  | 85           | 115           |           |             |                  |
| Sodium    |                   |          | 25.4          | mg/L         | 1.0             | 101  | 85           | 115           |           |             |                  |
| Lab ID:   | B17061657-001BMS3 | 3 12 Sai | mple Matrix   | Spike        |                 |      | Run: ICP20   | 3-B_170620A   |           | 06/21       | /17 03:28        |
| Barium    |                   |          | 0.517         | mg/L         | 0.050           | 101  | 70           | 130           |           | 33.21       |                  |
| Beryllium |                   |          | 0.270         | mg/L         | 0.0010          | 108  | 70           | 130           |           |             |                  |

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**Revised Date:** 12/21/17 **Report Date:** 07/06/17

Project: CCRR Work Order: B17061657

| Analyte   |                   | Count | Result      | Units           | RL     | %REC | Low Limit  | High Limit  | RPD | RPDLimit | Qual      |
|-----------|-------------------|-------|-------------|-----------------|--------|------|------------|-------------|-----|----------|-----------|
| Method:   | E200.7            |       |             |                 |        |      |            |             |     | Batc     | h: 110656 |
| Lab ID:   | B17061657-001BMS3 | 12 Sa | mple Matrix | Spike           |        |      | Run: ICP20 | 3-B_170620A |     | 06/21/   | /17 03:28 |
| Boron     |                   |       | 5.35        | mg/L            | 0.050  |      | 70         | 130         |     |          | Α         |
| Cadmium   |                   |       | 0.250       | mg/L            | 0.0020 | 100  | 70         | 130         |     |          |           |
| Calcium   |                   |       | 101         | mg/L            | 1.0    | 122  | 70         | 130         |     |          |           |
| Chromium  |                   |       | 0.499       | mg/L            | 0.0050 | 99   | 70         | 130         |     |          |           |
| Cobalt    |                   |       | 0.510       | mg/L            | 0.010  | 100  | 70         | 130         |     |          |           |
| Lithium   |                   |       | 0.536       | mg/L            | 0.10   | 99   | 70         | 130         |     |          |           |
| Magnesium | า                 |       | 39.5        | mg/L            | 1.0    | 108  | 70         | 130         |     |          |           |
| Molybdenu | m                 |       | 0.517       | mg/L            | 0.014  | 99   | 70         | 130         |     |          |           |
| Potassium |                   |       | 36.0        | mg/L            | 1.0    | 101  | 70         | 130         |     |          |           |
| Sodium    |                   |       | 337         | mg/L            | 1.0    |      | 70         | 130         |     |          | Α         |
| Lab ID:   | B17061657-001BMSI | 12 Sa | mple Matrix | Spike Duplicate |        |      | Run: ICP20 | 3-B_170620A |     | 06/21/   | /17 03:32 |
| Barium    |                   |       | 0.497       | mg/L            | 0.050  | 97   | 70         | 130         | 4.0 | 20       |           |
| Beryllium |                   |       | 0.252       | mg/L            | 0.0010 | 101  | 70         | 130         | 6.8 | 20       |           |
| Boron     |                   |       | 5.10        | mg/L            | 0.050  |      | 70         | 130         | 4.9 | 20       | Α         |
| Cadmium   |                   |       | 0.241       | mg/L            | 0.0020 | 97   | 70         | 130         | 3.7 | 20       |           |
| Calcium   |                   |       | 94.9        | mg/L            | 1.0    | 96   | 70         | 130         | 6.7 | 20       |           |
| Chromium  |                   |       | 0.486       | mg/L            | 0.0050 | 96   | 70         | 130         | 2.7 | 20       |           |
| Cobalt    |                   |       | 0.493       | mg/L            | 0.010  | 96   | 70         | 130         | 3.5 | 20       |           |
| Lithium   |                   |       | 0.518       | mg/L            | 0.10   | 95   | 70         | 130         | 3.5 | 20       |           |
| Magnesium | ı                 |       | 36.7        | mg/L            | 1.0    | 97   | 70         | 130         | 7.3 | 20       |           |
| Molybdenu | m                 |       | 0.501       | mg/L            | 0.014  | 95   | 70         | 130         | 3.1 | 20       |           |
| Potassium |                   |       | 34.8        | mg/L            | 1.0    | 97   | 70         | 130         | 3.3 | 20       |           |
| Sodium    |                   |       | 322         | mg/L            | 1.0    |      | 70         | 130         | 4.6 | 20       | Α         |
| Lab ID:   | B17061699-001BMS3 | 12 Sa | mple Matrix | Spike           |        |      | Run: ICP20 | 3-B_170620A |     | 06/21/   | /17 05:10 |
| Barium    |                   |       | 0.584       | mg/L            | 0.050  | 98   | 70         | 130         |     |          |           |
| Beryllium |                   |       | 0.260       | mg/L            | 0.0010 | 104  | 70         | 130         |     |          |           |
| Boron     |                   |       | 0.809       | mg/L            | 0.050  | 101  | 70         | 130         |     |          |           |
| Cadmium   |                   |       | 0.248       | mg/L            | 0.0020 | 99   | 70         | 130         |     |          |           |
| Calcium   |                   |       | 71.5        | mg/L            | 1.0    | 104  | 70         | 130         |     |          |           |
| Chromium  |                   |       | 0.497       | mg/L            | 0.0050 | 98   | 70         | 130         |     |          |           |
| Cobalt    |                   |       | 0.482       | mg/L            | 0.010  | 96   | 70         | 130         |     |          |           |
| Lithium   |                   |       | 0.539       | mg/L            | 0.10   | 97   | 70         | 130         |     |          |           |
| Magnesium |                   |       | 46.8        | mg/L            | 1.0    | 104  | 70         | 130         |     |          |           |
| Molybdenu | m                 |       | 8.62        | mg/L            | 0.014  |      | 70         | 130         |     |          | Α         |
| Potassium |                   |       | 56.4        | mg/L            | 1.0    | 101  | 70         | 130         |     |          |           |
| Sodium    |                   |       | 183         | mg/L            | 1.0    |      | 70         | 130         |     |          | Α         |
| Lab ID:   | B17061699-001BMS  | 12 Sa | mple Matrix |                 |        |      | Run: ICP20 | 3-B_170620A |     | 06/21/   | /17 05:14 |
| Barium    |                   |       | 0.577       | mg/L            | 0.050  | 97   | 70         | 130         | 1.2 | 20       |           |
| Beryllium |                   |       | 0.260       | mg/L            | 0.0010 | 104  | 70         | 130         | 0.2 | 20       |           |
| Boron     |                   |       | 0.796       | mg/L            | 0.050  | 99   | 70         | 130         | 1.6 | 20       |           |
| Cadmium   |                   |       | 0.253       | mg/L            | 0.0020 | 101  | 70         | 130         | 2.2 | 20       |           |
| Calcium   |                   |       | 72.5        | mg/L            | 1.0    | 108  | 70         | 130         | 1.4 | 20       |           |

### Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

MDC - Minimum detectable concentration

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.



Prepared by Billings, MT Branch

Revised Date: 12/21/17

Client: Texas Municipal Power Agency

Report Date: 07/06/17

Project: CCRR Work Order: B17061657

| Analyte   |                  | Count           | Result     | Units           | RL     | %REC | Low Limit  | High Limit  | RPD | RPDLimit | Qual      |
|-----------|------------------|-----------------|------------|-----------------|--------|------|------------|-------------|-----|----------|-----------|
| Method:   | E200.7           |                 |            |                 |        |      |            |             |     | Batch    | n: 110656 |
| Lab ID:   | B17061699-001BMS | <b>1</b> 2 Samp | ole Matrix | Spike Duplicate |        |      | Run: ICP20 | 3-B_170620A |     | 06/21/   | 17 05:14  |
| Chromium  |                  |                 | 0.509      | mg/L            | 0.0050 | 101  | 70         | 130         | 2.3 | 20       |           |
| Cobalt    |                  |                 | 0.494      | mg/L            | 0.010  | 99   | 70         | 130         | 2.3 | 20       |           |
| Lithium   |                  |                 | 0.533      | mg/L            | 0.10   | 96   | 70         | 130         | 1.1 | 20       |           |
| Magnesiun | n                |                 | 47.1       | mg/L            | 1.0    | 105  | 70         | 130         | 0.5 | 20       |           |
| Molybdenu | ım               |                 | 8.96       | mg/L            | 0.014  |      | 70         | 130         | 3.8 | 20       | Α         |
| Potassium |                  |                 | 55.8       | mg/L            | 1.0    | 98   | 70         | 130         | 1.0 | 20       |           |
| Sodium    |                  |                 | 182        | mg/L            | 1.0    |      | 70         | 130         | 8.0 | 20       | Α         |

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

**Revised Date:** 12/21/17 **Report Date:** 07/06/17

Work Order: B17061657

| Analyte   |                  | Count         | Result         | Units       | RL           | %REC | Low Limit | High Limit     | RPD    | RPDLimit  | Qual      |
|-----------|------------------|---------------|----------------|-------------|--------------|------|-----------|----------------|--------|-----------|-----------|
| Method:   | E200.8           |               |                |             |              |      |           | Analytical     | Run: I | CPMS202-B | _170627A  |
| Lab ID:   | QCS              | 3 Init        | ial Calibratio | n Verificat | ion Standard |      |           |                |        | 06/27     | /17 13:19 |
| Beryllium |                  |               | 0.0262         | mg/L        | 0.0010       | 105  | 90        | 110            |        |           |           |
| Lead      |                  |               | 0.0481         | mg/L        | 0.010        | 96   | 90        | 110            |        |           |           |
| Thallium  |                  |               | 0.0469         | mg/L        | 0.10         | 94   | 90        | 110            |        |           |           |
| Method:   | E200.8           |               |                |             |              |      |           |                |        | Batc      | h: 110656 |
| Lab ID:   | MB-110656        | 3 Me          | thod Blank     |             |              |      | Run: ICPM | S202-B_170627A |        | 06/27/    | /17 17:08 |
| Beryllium |                  |               | ND             | mg/L        | 0.00002      |      |           |                |        |           |           |
| Lead      |                  |               | ND             | mg/L        | 0.00005      |      |           |                |        |           |           |
| Thallium  |                  |               | ND             | mg/L        | 0.0001       |      |           |                |        |           |           |
| Lab ID:   | LCS-110656       | 3 Lal         | boratory Cor   | trol Samp   | e            |      | Run: ICPM | S202-B_170627A |        | 06/27     | /17 17:27 |
| Beryllium |                  |               | 0.254          | mg/L        | 0.0010       | 102  | 85        | 115            |        |           |           |
| Lead      |                  |               | 0.520          | mg/L        | 0.0010       | 104  | 85        | 115            |        |           |           |
| Thallium  |                  |               | 0.496          | mg/L        | 0.00050      | 99   | 85        | 115            |        |           |           |
| Lab ID:   | B17061657-001BMS | <b>3</b> 3 Sa | mple Matrix    | Spike       |              |      | Run: ICPM | S202-B_170627A |        | 06/27     | /17 17:29 |
| Beryllium |                  |               | 0.221          | mg/L        | 0.0010       | 88   | 70        | 130            |        |           |           |
| Lead      |                  |               | 0.547          | mg/L        | 0.0010       | 109  | 70        | 130            |        |           |           |
| Thallium  |                  |               | 0.497          | mg/L        | 0.00050      | 99   | 70        | 130            |        |           |           |
| Lab ID:   | B17061657-001BMS | <b>D</b> 3 Sa | mple Matrix    | Spike Dup   | licate       |      | Run: ICPM | S202-B_170627A |        | 06/27     | /17 17:32 |
| Beryllium |                  |               | 0.221          | mg/L        | 0.0010       | 88   | 70        | 130            | 0.3    | 20        |           |
| Lead      |                  |               | 0.552          | mg/L        | 0.0010       | 110  | 70        | 130            | 1.0    | 20        |           |
| Thallium  |                  |               | 0.503          | mg/L        | 0.00050      | 101  | 70        | 130            | 1.3    | 20        |           |
| Lab ID:   | B17061699-001BMS | <b>3</b> 3 Sa | mple Matrix    | Spike       |              |      | Run: ICPM | S202-B_170627A |        | 06/27     | /17 18:44 |
| Beryllium |                  |               | 0.258          | mg/L        | 0.0010       | 103  | 70        | 130            |        |           |           |
| Lead      |                  |               | 0.505          | mg/L        | 0.0010       | 101  | 70        | 130            |        |           |           |
| Thallium  |                  |               | 0.494          | mg/L        | 0.00071      | 99   | 70        | 130            |        |           |           |
| Lab ID:   | B17061699-001BMS | D 3 Sa        | mple Matrix    | Spike Dup   | licate       |      | Run: ICPM | S202-B_170627A |        | 06/27     | /17 18:46 |
| Beryllium |                  |               | 0.251          | mg/L        | 0.0010       | 101  | 70        | 130            | 2.5    | 20        |           |
| Lead      |                  |               | 0.505          | mg/L        | 0.0010       | 101  | 70        | 130            | 0.1    | 20        |           |
| Thallium  |                  |               | 0.497          | mg/L        | 0.00071      | 99   | 70        | 130            | 0.6    | 20        |           |

Revised Date: 12/21/17

**Report Date:** 07/06/17

Project: CCRR

# **QA/QC Summary Report**

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Work Order: B17061657

| Analyte   |                   | Count  | Result         | Units           | RL           | %REC | Low Limit | High Limit             | RPD RPDLimit      | Qual       |
|-----------|-------------------|--------|----------------|-----------------|--------------|------|-----------|------------------------|-------------------|------------|
| Method:   | E200.8            |        |                |                 |              |      |           | Analytica              | I Run: ICPMS206-B | 3_170621A  |
| Lab ID:   | QCS               | 8 Init | al Calibration | on Verification | on Standard  |      |           |                        | 06/22             | 2/17 16:13 |
| Antimony  |                   |        | 0.0470         | mg/L            | 0.050        | 94   | 90        | 110                    |                   |            |
| Arsenic   |                   |        | 0.0483         | mg/L            | 0.0050       | 97   | 90        | 110                    |                   |            |
| Cadmium   |                   |        | 0.0254         | mg/L            | 0.0010       | 102  | 90        | 110                    |                   |            |
| Chromium  |                   |        | 0.0492         | mg/L            | 0.010        | 98   | 90        | 110                    |                   |            |
| Cobalt    |                   |        | 0.0499         | mg/L            | 0.010        | 100  | 90        | 110                    |                   |            |
| Lead      |                   |        | 0.0478         | mg/L            | 0.010        | 96   | 90        | 110                    |                   |            |
| Molybdenu | m                 |        | 0.0449         | mg/L            | 0.0050       | 90   | 90        | 110                    |                   |            |
| Selenium  |                   |        | 0.0493         | mg/L            | 0.0050       | 99   | 90        | 110                    |                   |            |
| Method:   | E200.8            |        |                |                 |              |      |           |                        | Bato              | ch: 110656 |
| Lab ID:   | MB-110656         | 8 Me   | thod Blank     |                 |              |      | Run: ICPM | S206-B_170621          | A 06/23           | 3/17 01:11 |
| Antimony  |                   |        | ND             | mg/L            | 0.00004      |      |           |                        |                   |            |
| Arsenic   |                   |        | ND             | mg/L            | 0.0002       |      |           |                        |                   |            |
| Cadmium   |                   |        | ND             | mg/L            | 0.00003      |      |           |                        |                   |            |
| Chromium  |                   |        | ND             | mg/L            | 0.0001       |      |           |                        |                   |            |
| Cobalt    |                   |        | ND             | mg/L            | 0.00002      |      |           |                        |                   |            |
| Lead      |                   |        | ND             | mg/L            | 0.00003      |      |           |                        |                   |            |
| Molybdenu | m                 |        | ND             | mg/L            | 0.00003      |      |           |                        |                   |            |
| Selenium  |                   |        | ND             | mg/L            | 0.0004       |      |           |                        |                   |            |
| Lab ID:   | LCS-110656        | 8 Lab  | oratory Co     | ntrol Sample    | <del>)</del> |      | Run: ICPM | S206-B_170621 <i>/</i> | A 06/23           | 3/17 01:18 |
| Antimony  |                   |        | 0.477          | mg/L            | 0.0010       | 95   | 85        | 115                    |                   |            |
| Arsenic   |                   |        | 0.461          | mg/L            | 0.0010       | 92   | 85        | 115                    |                   |            |
| Cadmium   |                   |        | 0.230          | mg/L            | 0.0010       | 92   | 85        | 115                    |                   |            |
| Chromium  |                   |        | 0.457          | mg/L            | 0.0050       | 91   | 85        | 115                    |                   |            |
| Cobalt    |                   |        | 0.545          | mg/L            | 0.0050       | 109  | 85        | 115                    |                   |            |
| Lead      |                   |        | 0.473          | mg/L            | 0.0010       | 95   | 85        | 115                    |                   |            |
| Molybdenu | m                 |        | 0.454          | mg/L            | 0.0010       | 91   | 85        | 115                    |                   |            |
| Selenium  |                   |        | 0.457          | mg/L            | 0.0010       | 91   | 85        | 115                    |                   |            |
| Lab ID:   | B17061657-001BMS3 | 8 Sar  | mple Matrix    | Spike           |              |      | Run: ICPM | S206-B_170621/         | A 06/23           | 3/17 01:22 |
| Antimony  |                   |        | 0.450          | mg/L            | 0.0010       | 90   | 70        | 130                    |                   |            |
| Arsenic   |                   |        | 0.460          | mg/L            | 0.0010       | 90   | 70        | 130                    |                   |            |
| Cadmium   |                   |        | 0.223          | mg/L            | 0.0010       | 89   | 70        | 130                    |                   |            |
| Chromium  |                   |        | 0.451          | mg/L            | 0.0050       | 90   | 70        | 130                    |                   |            |
| Cobalt    |                   |        | 0.550          | mg/L            | 0.0050       | 108  | 70        | 130                    |                   |            |
| Lead      |                   |        | 0.446          | mg/L            | 0.0010       | 89   | 70        | 130                    |                   |            |
| Molybdenu | m                 |        | 0.464          | mg/L            | 0.0010       | 90   | 70        | 130                    |                   |            |
| Selenium  |                   |        | 0.458          | mg/L            | 0.0010       | 91   | 70        | 130                    |                   |            |
| Lab ID:   | B17061657-001BMSE | 8 Sar  | mple Matrix    | Spike Dupli     | cate         |      | Run: ICPM | S206-B_170621/         | A 06/23           | 3/17 01:25 |
| Antimony  |                   |        | 0.462          | mg/L            | 0.0010       | 92   | 70        | _<br>130               | 2.6 20            |            |
| Arsenic   |                   |        | 0.456          | mg/L            | 0.0010       | 89   | 70        | 130                    | 0.8 20            |            |
| Cadmium   |                   |        | 0.220          | mg/L            | 0.0010       | 88   | 70        | 130                    | 1.2 20            |            |
|           |                   |        | 0.451          | mg/L            | 0.0050       | 90   | 70        | 130                    | 0.0 20            |            |

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration



Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**Revised Date:** 12/21/17 **Report Date:** 07/06/17

Project: CCRR Work Order: B17061657

| Analyte   |                   | Count         | Result      | Units           | RL     | %REC | Low Limit | High Limit     | RPD | RPDLimit | Qual      |
|-----------|-------------------|---------------|-------------|-----------------|--------|------|-----------|----------------|-----|----------|-----------|
| Method:   | E200.8            |               |             |                 |        |      |           |                |     | Batch    | n: 110656 |
| Lab ID:   | B17061657-001BMSI | <b>D</b> 8 Sa | mple Matrix | Spike Duplicate |        |      | Run: ICPM | S206-B_170621A | ١   | 06/23/   | 17 01:25  |
| Cobalt    |                   |               | 0.548       | mg/L            | 0.0050 | 107  | 70        | 130            | 0.4 | 20       |           |
| Lead      |                   |               | 0.463       | mg/L            | 0.0010 | 92   | 70        | 130            | 3.7 | 20       |           |
| Molybdenu | m                 |               | 0.472       | mg/L            | 0.0010 | 91   | 70        | 130            | 1.7 | 20       |           |
| Selenium  |                   |               | 0.458       | mg/L            | 0.0010 | 91   | 70        | 130            | 0.0 | 20       |           |
| Lab ID:   | B17061699-001BMS3 | <b>3</b> 8 Sa | mple Matrix | Spike           |        |      | Run: ICPM | S206-B_170621A | ١   | 06/23/   | 17 03:18  |
| Antimony  |                   |               | 0.468       | mg/L            | 0.0010 | 94   | 70        | 130            |     |          |           |
| Arsenic   |                   |               | 0.460       | mg/L            | 0.0010 | 90   | 70        | 130            |     |          |           |
| Cadmium   |                   |               | 0.225       | mg/L            | 0.0010 | 89   | 70        | 130            |     |          |           |
| Chromium  |                   |               | 0.465       | mg/L            | 0.0050 | 92   | 70        | 130            |     |          |           |
| Cobalt    |                   |               | 0.570       | mg/L            | 0.0050 | 114  | 70        | 130            |     |          |           |
| Lead      |                   |               | 0.467       | mg/L            | 0.0010 | 93   | 70        | 130            |     |          |           |
| Molybdenu | m                 |               | 9.88        | mg/L            | 0.0010 |      | 70        | 130            |     |          | Α         |
| Selenium  |                   |               | 0.469       | mg/L            | 0.0010 | 92   | 70        | 130            |     |          |           |
| Lab ID:   | B17061699-001BMSI | D 8 Sa        | mple Matrix | Spike Duplicate |        |      | Run: ICPM | S206-B_170621A | ١   | 06/23/   | 17 03:22  |
| Antimony  |                   |               | 0.460       | mg/L            | 0.0010 | 92   | 70        | 130            | 1.8 | 20       |           |
| Arsenic   |                   |               | 0.456       | mg/L            | 0.0010 | 89   | 70        | 130            | 0.9 | 20       |           |
| Cadmium   |                   |               | 0.226       | mg/L            | 0.0010 | 89   | 70        | 130            | 0.5 | 20       |           |
| Chromium  |                   |               | 0.470       | mg/L            | 0.0050 | 93   | 70        | 130            | 1.1 | 20       |           |
| Cobalt    |                   |               | 0.551       | mg/L            | 0.0050 | 110  | 70        | 130            | 3.5 | 20       |           |
| Lead      |                   |               | 0.451       | mg/L            | 0.0010 | 90   | 70        | 130            | 3.4 | 20       |           |
| Molybdenu | m                 |               | 9.69        | mg/L            | 0.0010 |      | 70        | 130            | 1.9 | 20       | Α         |
| Selenium  |                   |               | 0.466       | mg/L            | 0.0010 | 91   | 70        | 130            | 0.7 | 20       |           |

### Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

MDC - Minimum detectable concentration

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency **Report Date:** 07/06/17

Revised Date: 12/21/17

Project: CCRR Work Order: B17061657

| Analyte |                  | Count        | Result       | Units        | RL           | %REC | Low Limit | High Limit     | RPD    | RPDLimit  | Qual      |
|---------|------------------|--------------|--------------|--------------|--------------|------|-----------|----------------|--------|-----------|-----------|
| Method: | E245.1           |              |              |              |              |      |           | Analytica      | l Run: | HGCV202-B | _170621A  |
| Lab ID: | ICV              | Initia       | ıl Calibrati | on Verificat | ion Standard |      |           |                |        | 06/21     | /17 09:52 |
| Mercury |                  |              | 0.00200      | mg/L         | 0.00010      | 100  | 90        | 110            |        |           |           |
| Method: | E245.1           |              |              |              |              |      |           |                |        | Batc      | h: 110731 |
| Lab ID: | MB-110731        | Meth         | nod Blank    |              |              |      | Run: HGC\ | /202-B_170621A |        | 06/21     | /17 11:20 |
| Mercury |                  |              | 0.00002      | mg/L         | 6E-06        |      |           |                |        |           |           |
| Lab ID: | LCS-110731       | Labo         | oratory Co   | ntrol Sampl  | е            |      | Run: HGC\ | /202-B_170621A |        | 06/21     | /17 11:22 |
| Mercury |                  |              | 0.00207      | mg/L         | 0.00010      | 102  | 85        | 115            |        |           |           |
| Lab ID: | B17061657-002BMS | Sam          | ple Matrix   | Spike        |              |      | Run: HGC\ | /202-B_170621A |        | 06/21     | /17 12:13 |
| Mercury |                  |              | 0.00158      | mg/L         | 0.00010      | 77   | 70        | 130            |        |           |           |
| Lab ID: | B17061657-002BMS | <b>D</b> Sam | ple Matrix   | Spike Dup    | licate       |      | Run: HGC\ | /202-B_170621A |        | 06/21     | /17 12:15 |
| Mercury |                  |              | 0.00157      | mg/L         | 0.00010      | 76   | 70        | 130            | 1.0    | 30        |           |
| Method: | E245.1           |              |              |              |              |      |           |                |        | Batc      | h: 110732 |
| Lab ID: | MB-110732        | Meth         | nod Blank    |              |              |      | Run: HGC\ | /202-B_170621A |        | 06/21     | /17 12:17 |
| Mercury |                  |              | 9E-06        | mg/L         | 6E-06        |      |           |                |        |           |           |
| Lab ID: | LCS-110732       | Labo         | oratory Co   | ntrol Sampl  | е            |      | Run: HGC\ | /202-B_170621A |        | 06/21     | /17 12:18 |
| Mercury |                  |              | 0.00209      | mg/L         | 0.00010      | 104  | 85        | 115            |        |           |           |
| Lab ID: | B17061661-003BMS | Sam          | ple Matrix   | Spike        |              |      | Run: HGC\ | /202-B_170621A |        | 06/21     | /17 13:10 |
| Mercury |                  |              | 0.00209      | mg/L         | 0.00010      | 103  | 70        | 130            |        |           |           |
| Lab ID: | B17061661-003BMS | <b>D</b> Sam | ple Matrix   | Spike Dup    | licate       |      | Run: HGC\ | /202-B_170621A |        | 06/21     | /17 13:12 |
| Mercury |                  |              | 0.00209      | mg/L         | 0.00010      | 104  | 70        | 130            | 0.1    | 30        |           |
| Lab ID: | B17061657-003BMS | Sam          | ple Matrix   | Spike        |              |      | Run: HGC\ | /202-B_170621A |        | 06/21     | /17 15:11 |
| Mercury |                  |              | 0.00216      | mg/L         | 0.00050      | 97   | 70        | 130            |        |           |           |
| Lab ID: | B17061657-003BMS | <b>D</b> Sam | ple Matrix   | Spike Dupl   | licate       |      | Run: HGC\ | /202-B_170621A |        | 06/21     | /17 15:13 |
| Mercury |                  |              | 0.00211      | mg/L         | 0.00050      | 94   | 70        | 130            | 2.4    | 30        |           |
|         |                  |              |              |              |              |      |           |                |        |           |           |

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**Revised Date:** 12/21/17 **Report Date:** 07/06/17

Project: CCRR Work Order: B17061657

| Analyte |                  | Count  | Result       | Units        | RL            | %REC | Low Limit | High Limit     | RPD    | RPDLimit   | Qual      |
|---------|------------------|--------|--------------|--------------|---------------|------|-----------|----------------|--------|------------|-----------|
| Method: | E245.1           |        |              |              |               |      |           | Analytica      | l Run: | HGCV202-B_ | _170623B  |
| Lab ID: | ICV              | Initia | l Calibratio | on Verificat | tion Standard |      |           |                |        | 06/23/     | 17 12:03  |
| Mercury |                  | (      | 0.00197      | mg/L         | 0.00010       | 99   | 90        | 110            |        |            |           |
| Method: | E245.1           |        |              |              |               |      |           |                |        | Batch      | n: 110835 |
| Lab ID: | MB-110835        | Meth   | od Blank     |              |               |      | Run: HGC\ | /202-B_170623B |        | 06/23/     | 17 12:08  |
| Mercury |                  | (      | 0.00001      | mg/L         | 6E-06         |      |           |                |        |            |           |
| Lab ID: | LCS-110835       | Labo   | ratory Co    | ntrol Samp   | le            |      | Run: HGC\ | /202-B_170623B |        | 06/23/     | 17 12:10  |
| Mercury |                  | (      | 0.00198      | mg/L         | 0.00010       | 98   | 85        | 115            |        |            |           |
| Lab ID: | B17061657-013BMS | Sam    | ple Matrix   | Spike        |               |      | Run: HGC\ | /202-B_170623B |        | 06/23/     | 17 14:51  |
| Mercury |                  |        | 0.0159       | mg/L         | 0.0010        | 103  | 70        | 130            |        |            |           |
| Lab ID: | B17061657-013BMS | D Sam  | ple Matrix   | Spike Dup    | licate        |      | Run: HGC\ | /202-B_170623B |        | 06/23/     | 17 14:53  |
| Mercury |                  |        | 0.0159       | mg/L         | 0.0010        | 103  | 70        | 130            | 0.0    | 30         |           |
| Method: | E245.1           |        |              |              |               |      |           | Analytica      | l Run: | HGCV202-B_ | _170627A  |
| Lab ID: | ICV              | Initia | l Calibratio | on Verificat | tion Standard |      |           |                |        | 06/27/     | 17 10:31  |
| Mercury |                  | (      | 0.00195      | mg/L         | 0.00010       | 98   | 90        | 110            |        |            |           |
| Method: | E245.1           |        |              |              |               |      |           |                |        | Batch      | n: 110934 |
| Lab ID: | MB-110934        | Meth   | od Blank     |              |               |      | Run: HGC\ | /202-B_170627A |        | 06/27/     | 17 10:37  |
| Mercury |                  | (      | 0.00002      | mg/L         | 6E-06         |      |           |                |        |            |           |
| Lab ID: | LCS-110934       | Labo   | ratory Co    | ntrol Samp   | le            |      | Run: HGC\ | /202-B_170627A |        | 06/27/     | 17 10:39  |
| Mercury |                  | (      | 0.00198      | mg/L         | 0.00010       | 98   | 85        | 115            |        |            |           |
| Lab ID: | B17061657-013BMS | Sam    | ple Matrix   | Spike        |               |      | Run: HGC\ | /202-B_170627A |        | 06/27/     | 17 10:43  |
| Mercury |                  |        | 0.0466       | mg/L         | 0.0010        | 88   | 70        | 130            |        |            |           |
| Lab ID: | B17061657-013BMS | D Sam  | ple Matrix   | Spike Dup    | licate        |      | Run: HGC\ | /202-B_170627A |        | 06/27/     | 17 10:44  |
| Mercury |                  |        | 0.0474       | mg/L         | 0.0010        | 90   | 70        | 130            | 1.6    | 30         |           |

# **Work Order Receipt Checklist**

## Texas Municipal Power Agency

Login completed by: Kathi Renier

### B17061657

Date Received: 6/16/2017

| Reviewed by: Reviewed Date:                                                                  | BL2000\tedwards<br>6/21/2017    |           |      | ceived by: qej<br>rier name: FedEx |
|----------------------------------------------------------------------------------------------|---------------------------------|-----------|------|------------------------------------|
| Shipping container/cooler in                                                                 |                                 | Yes [✓]   | No □ | Not Present □                      |
| •                                                                                            | nipping container(s)/cooler(s)? | Yes ✓     | No 🗌 | Not Present                        |
| Custody seals intact on all sa                                                               | ample bottles?                  | Yes       | No 🗌 | Not Present ✓                      |
| Chain of custody present?                                                                    |                                 | Yes ✓     | No 🗌 |                                    |
| Chain of custody signed whe                                                                  | en relinquished and received?   | Yes ✓     | No 🗌 |                                    |
| Chain of custody agrees with                                                                 | sample labels?                  | Yes ✓     | No 🗌 |                                    |
| Samples in proper container                                                                  | /bottle?                        | Yes ✓     | No 🗌 |                                    |
| Sample containers intact?                                                                    |                                 | Yes ✓     | No 🗌 |                                    |
| Sufficient sample volume for                                                                 | indicated test?                 | Yes ✓     | No 🗌 |                                    |
| All samples received within h<br>(Exclude analyses that are or<br>such as pH, DO, Res Cl, Su | onsidered field parameters      | Yes √     | No 🗌 |                                    |
| Temp Blank received in all sl                                                                | nipping container(s)/cooler(s)? | Yes 🗹     | No 🗌 | Not Applicable                     |
| Container/Temp Blank tempe                                                                   | erature:                        | °C On Ice |      |                                    |
| Water - VOA vials have zero                                                                  | headspace?                      | Yes       | No 🗌 | No VOA vials submitted             |
| Water - pH acceptable upon                                                                   | receipt?                        | Yes 🗸     | No 🗌 | Not Applicable                     |

### **Standard Reporting Procedures:**

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

### **Contact and Corrective Action Comments:**

The Temperature Blank temperature for shipping container 1 was 3.3°C, shipping container 2 was 4.5°C, shipping container 3 was 1.1°C, shipping container 4 was 1.8°C, shipping container 5 was 2.6°C, and shipping container 6 was 3.0°C.



# Chain of Custody & Analytical Request Record

| Account Information (Billing information)                                                               | Report Information (if different than Account Information)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | comments                         |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| CompanyiName Amer Foster Wheeler                                                                        | Company/Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |
| 7 -                                                                                                     | Contact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |
| 7                                                                                                       | Phone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |
| ĮŽ                                                                                                      | Mailing Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
|                                                                                                         | City, State, Zip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |
| a. Soitert of am                                                                                        | Email                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |
| e Invoice MHard Copy                                                                                    | Receive Report GHard Copy   Email                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |
| Purchase Order Quote Bottle Order                                                                       | Special RepartFormats:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |
| Project Information                                                                                     | Матих Codes Analysis Requested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | All transment like               |
| Project Name, PWSID, Permit, etc. Client: Texas Municipe   Power Agency CCRR                            | A - All<br>W - Water<br>Soile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | standard unless marked as RUSH.  |
| Sampler Name B. Giese man Sampler Phone 512-241-2321                                                    | Society Control of the Control of th | Energy Laboratories              |
|                                                                                                         | B - Bioassay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |
| MINING CLIENTS, please indicate sample type. If one has been processed or refined, call before sending. | DW Dinking DW Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | charges and scheduling –         |
| entification Collectic                                                                                  | Number of Sec Codes Codes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S TAT                            |
| tion, Interval, etc.)                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ct                               |
| AF MW-14                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |
| SCP MILLS                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                |
| 1041317                                                                                                 | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>3</b>                         |
| DUP-2                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N                                |
| 6 SFL MW-5 6/14/17 1030                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>9</b>                         |
| 7 SSP MW-2                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| 8 SFL MW-2                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| 9 SSP MW-4                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 9                              |
| 10 EQBK-BJG-061417 V 1255                                                                               | <b>&gt; &gt; &gt;</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                |
| Relinquished by (print) Date/Time 6/15/17 23                                                            | Signature General Regimed by (print) Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16:15 Signature                  |
| Date/Time                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Signature                        |
|                                                                                                         | Temp Blank On Ice Payn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Receipt Number (cash/check only) |
| X N C B X N                                                                                             | Y N Y N CC Cash Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |
|                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This carries as unities of this possibility. All subcontracted data will be clearly notated on your analytical report.

ELI-COC-12/16 v.1



MUST be contacted prior to RUSH sample submittal for All turnaround times are standard unless marked as charges and scheduling -See Instructions Page Page 2 of 2 **Energy Laboratories** Comments bedoettA eed Chain of Custody & Analytical Request Record **Analysis Requested** DIENELIV DINELAC DEDD/EDT (contact laboratory) Di Other. Report Information (if different than Account Information) www.energylab.com Receive Report Differd Copy DEmail Special Report/Formats Matrix Matrix Codes V - Vegetation B - Bioassay Mailing Address Company/Name DW - Drinking Water City, State, Zip S - Soils/ W- Water 0 - Other A- Air Contact Phone Email Project : CCRR Email Mailing Address 3755 S. Capital of TX HWY, #375 Sampler Phone 512-241-2321 ☐ Unprocessed ore (NOT ground or refined)\* Project Name, PWSID, Permit, etc. Client: **Bottle Order** EPA/State Compliance greg. Seitert Damectin. com CompanyiName Amec Foster Wheeler MINING CLIENTS, please indicate sample type. Austin, TX 78704 Account Information (Billing information) 512-795-0360 Receive Invoice OHard Copy Memail Greg Seitent Quote Sampler Name B. Gieselman Trust our People. Trust our Data × ☐ Byproduct 11 (e)2 material Project Information

Purchase Order

City, State, Zip

Email

Contact Phone Sample Origin State

| Sample Identification                   | Ollection Number of Matrix Containers (See Codes | S TAT STATE OF THE |
|-----------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Name, Location, Interval, etc.)        | Date Time Above)                                 | 10001000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TORY SOM ALMIT                          | XX W H 355 H W X                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 MAIN - 17                             | 1353                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 AZEL1:1-15                            | 1430                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4 MNIA - 16                             | /5/3                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5 SE/ Mul-7                             | 1530                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6 MAIN-II                               | 1628                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7 SF/ MU-3                              | /650                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8 SFI MW-4                              | 1745                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9 DKP-3                                 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \            | <b>&gt;</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10                                      |                                                  | - Dated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Custody Relinquished by (print)         | Date Time 1 2 Signature Levelun                  | MACON (print) Data Time Signature Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| be signed Relinquished by (print)       | Date/Time Signature                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Shipped By Cooler ID(s) Custody Seals   | S Intact Receipt Temp Temp Blank On los CC       | Payment Type Amount Receipt Number (cash/check only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| > = = = = = = = = = = = = = = = = = = = | -                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

ELJ-COC-12/16 v.1

age 39 of 39

### **ANALYTICAL SUMMARY REPORT**

December 21, 2017

Texas Municipal Power Agency PO Box 7000 Bryan, TX 77805-7000

Work Order: B17062700 Quote ID: B3997 - CCRR

Project Name: TMPA GC Mine CCR

Energy Laboratories Inc Billings MT received the following 10 samples for Texas Municipal Power Agency on 6/29/2017 for analysis.

| Lab ID        | Client Sample ID | Collect Date Receive Date | Matrix       | Test                                                                                                                                                                                                      |
|---------------|------------------|---------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B17062700-001 | MNW-18           | 06/27/17 14:15 06/29/17   | Ground Water | Metals by ICP/ICPMS, Tot. Rec. Mercury, Total Recoverable Fluoride Anions by Ion Chromatography pH Metals Preparation by EPA 200.2 Digestion, Mercury by CVAA Preparation for TDS Solids, Total Dissolved |

| B17062700-005 | SFL MW-7        | 06/28/17 12:50 06/29/17 | Ground Water Same As Above |
|---------------|-----------------|-------------------------|----------------------------|
| B17062700-006 | MNW-15          | 06/28/17 13:40 06/29/17 | Ground Water Same As Above |
|               |                 |                         |                            |
| B17062700-008 | EQBK-SCM-062717 | 06/27/17 18:30 06/29/17 | Ground Water Same As Above |
| B17062700-009 | EQBK-SCM-062817 | 06/28/17 11:00 06/29/17 | Ground Water Same As Above |

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

Texas Municipal Power Agency

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

**Revised Date:** 12/21/17 **Report Date:** 07/13/17

Project: TMPA GC Mine CCR

Work Order: B17062700 CASE NARRATIVE

Tests associated with analyst identified as ELI-CA were subcontracted to Energy Laboratories, PO Box 247, Casper, WY, EPA Number WY00002 and WY00937.

Revised Report 12/21/2017

**CLIENT:** 

The reporting limits for the following analytes were lowered per request from Greg Seifert.

Analyte Original Reporting Limit (mg/L) Revised Reporting limit (mg/L)

 Antimony
 0.05
 0.006

 Cadmium
 0.01
 0.005

 Thallium
 0.01
 0.002

The report has been revised and replaces any previously issued report in its entirety.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA GC Mine CCR Lab ID: B17062700-001 Client Sample ID: MNW-18

Revised Date: 12/21/17 **Report Date:** 07/13/17 Collection Date: 06/27/17 14:15

DateReceived: 06/29/17

Matrix: Ground Water

| Analyses                           | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By   |
|------------------------------------|--------|-------|------------|-------|-------------|-----------|----------------------|
| MAJOR IONS                         |        |       |            |       |             |           |                      |
| Calcium                            | 394    | mg/L  |            | 1     |             | E200.7    | 07/06/17 00:03 / rlh |
| Magnesium                          | 63     | -     |            | 1     |             | E200.7    | 07/06/17 00:03 / rlh |
| Potassium                          | 36     | mg/L  |            | 1     |             | E200.7    | 07/06/17 00:03 / rlh |
| odium                              | 742    | mg/L  | D          | 4     |             | E200.7    | 07/06/17 00:03 / rlh |
| HYSICAL PROPERTIES                 |        |       |            |       |             |           |                      |
| Н                                  | 7.1    | s.u.  | Н          | 0.1   |             | A4500-H B | 06/29/17 18:09 / pjw |
| olids, Total Dissolved TDS @ 180 C | 3680   | mg/L  | D          | 40    |             | A2540 C   | 06/30/17 13:54 / rik |
| NORGANICS                          |        |       |            |       |             |           |                      |
| chloride                           | 534    | mg/L  | D          | 6     |             | E300.0    | 07/04/17 20:36 / cjm |
| ulfate                             | 1960   | mg/L  | D          | 20    |             | E300.0    | 07/04/17 20:36 / cjm |
| luoride                            | 0.2    | mg/L  |            | 0.1   |             | A4500-F C | 06/30/17 12:32 / bas |
| METALS, TOTAL RECOVERABLE          |        |       |            |       |             |           |                      |
| ntimony                            | ND     | mg/L  |            | 0.006 |             | E200.8    | 07/03/17 16:25 / car |
| rsenic                             | ND     | mg/L  |            | 0.01  |             | E200.8    | 07/03/17 16:25 / car |
| arium                              | 0.06   | mg/L  |            | 0.01  |             | E200.8    | 07/03/17 16:25 / car |
| eryllium                           | ND     | mg/L  |            | 0.001 |             | E200.8    | 07/03/17 16:25 / car |
| oron                               | 0.43   | mg/L  |            | 0.05  |             | E200.7    | 07/06/17 00:03 / rlh |
| admium                             | ND     | mg/L  |            | 0.005 |             | E200.8    | 07/03/17 16:25 / car |
| hromium                            | ND     | mg/L  |            | 0.01  |             | E200.8    | 07/05/17 23:31 / jpv |
| obalt                              | ND     | mg/L  |            | 0.02  |             | E200.8    | 07/03/17 16:25 / car |
| ead                                | 0.01   | mg/L  |            | 0.01  |             | E200.8    | 07/03/17 16:25 / car |
| ithium                             | 0.45   | mg/L  | D          | 0.04  |             | E200.7    | 07/06/17 00:03 / rlh |
| lercury                            | ND     | mg/L  |            | 0.001 |             | E245.1    | 06/30/17 15:16 / jh  |
| lolybdenum                         | ND     | mg/L  |            | 0.05  |             | E200.8    | 07/05/17 23:31 / jpv |
| elenium                            | ND     | mg/L  |            | 0.01  |             | E200.8    | 07/03/17 16:25 / car |
| hallium                            | ND     | mg/L  |            | 0.002 |             | E200.8    | 07/03/17 16:25 / car |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA GC Mine CCR
Lab ID: B17062700-005
Client Sample ID: SFL MW-7

Revised Date: 12/21/17
Report Date: 07/13/17
Collection Date: 06/28/17 12:50
DateReceived: 06/29/17

Matrix: Ground Water

|                                     |        |       |            |       | MCL/ |           |                      |
|-------------------------------------|--------|-------|------------|-------|------|-----------|----------------------|
| Analyses                            | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By   |
| MAJOR IONS                          |        |       |            |       |      |           |                      |
| Calcium                             | 620    | mg/L  |            | 1     |      | E200.7    | 07/06/17 00:34 / rlh |
| Magnesium                           | 96     | mg/L  |            | 1     |      | E200.7    | 07/06/17 00:34 / rlh |
| Potassium                           | 47     | mg/L  |            | 1     |      | E200.7    | 07/06/17 00:34 / rlh |
| Sodium                              | 1240   | mg/L  | D          | 4     |      | E200.7    | 07/06/17 00:34 / rlh |
| PHYSICAL PROPERTIES                 |        |       |            |       |      |           |                      |
| Н                                   | 6.7    | s.u.  | Н          | 0.1   |      | A4500-H B | 06/29/17 18:20 / pjw |
| Solids, Total Dissolved TDS @ 180 C | 6620   | mg/L  | D          | 90    |      | A2540 C   | 06/30/17 13:54 / rik |
| NORGANICS                           |        |       |            |       |      |           |                      |
| Chloride                            | 2850   | mg/L  | D          | 6     |      | E300.0    | 07/04/17 23:12 / cjm |
| Sulfate                             | 787    | mg/L  | D          | 20    |      | E300.0    | 07/04/17 23:12 / cjm |
| Fluoride                            | ND     | mg/L  |            | 0.1   |      | A4500-F C | 06/30/17 12:56 / bas |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |      |           |                      |
| Antimony                            | ND     | mg/L  |            | 0.006 |      | E200.8    | 07/03/17 20:15 / car |
| Arsenic                             | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/03/17 20:15 / car |
| Barium                              | 0.03   | mg/L  |            | 0.01  |      | E200.8    | 07/03/17 20:15 / car |
| Beryllium                           | ND     | mg/L  |            | 0.001 |      | E200.8    | 07/05/17 23:47 / jpv |
| Boron                               | 0.73   | mg/L  |            | 0.05  |      | E200.7    | 07/06/17 00:34 / rlh |
| Cadmium                             | ND     | mg/L  |            | 0.005 |      | E200.8    | 07/03/17 20:15 / car |
| Chromium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/03/17 20:15 / car |
| Cobalt                              | ND     | mg/L  |            | 0.02  |      | E200.8    | 07/03/17 20:15 / car |
| ead                                 | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/03/17 20:15 / car |
| Lithium                             | 0.46   | mg/L  | D          | 0.04  |      | E200.7    | 07/06/17 00:34 / rlh |
| Mercury                             | ND     | mg/L  |            | 0.001 |      | E245.1    | 06/30/17 15:32 / jh  |
| <i>l</i> lolybdenum                 | ND     | mg/L  |            | 0.05  |      | E200.8    | 07/03/17 20:15 / car |
| Selenium                            | 0.01   | mg/L  |            | 0.01  |      | E200.8    | 07/03/17 20:15 / car |
| Гhallium                            | ND     | mg/L  |            | 0.002 |      | E200.8    | 07/03/17 20:15 / car |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

D. Di in an and don to a small

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA GC Mine CCR Lab ID: B17062700-006 Client Sample ID: MNW-15

Revised Date: 12/21/17 **Report Date:** 07/13/17 Collection Date: 06/28/17 13:40 DateReceived: 06/29/17

Matrix: Ground Water

|                                     |        |       |            |       | MCL/ |           |                      |
|-------------------------------------|--------|-------|------------|-------|------|-----------|----------------------|
| Analyses                            | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By   |
| MAJOR IONS                          |        |       |            |       |      |           |                      |
| Calcium                             | 263    | mg/L  |            | 1     |      | E200.7    | 07/06/17 00:38 / rlh |
| Magnesium                           | 49     | mg/L  |            | 1     |      | E200.7    | 07/06/17 00:38 / rlh |
| Potassium                           | 29     | mg/L  |            | 1     |      | E200.7    | 07/06/17 00:38 / rlh |
| Sodium                              | 468    | mg/L  | D          | 2     |      | E200.7    | 07/06/17 00:38 / rlh |
| PHYSICAL PROPERTIES                 |        |       |            |       |      |           |                      |
| рН                                  | 3.6    | s.u.  | Н          | 0.1   |      | A4500-H B | 06/29/17 18:22 / pjw |
| Solids, Total Dissolved TDS @ 180 C | 2580   | mg/L  | D          | 40    |      | A2540 C   | 06/30/17 13:54 / rik |
| NORGANICS                           |        |       |            |       |      |           |                      |
| Chloride                            | 734    | mg/L  | D          | 3     |      | E300.0    | 07/04/17 23:31 / cjm |
| Sulfate                             | 1290   | mg/L  | D          | 9     |      | E300.0    | 07/04/17 23:31 / cjm |
| Fluoride                            | 0.5    | mg/L  |            | 0.1   |      | A4500-F C | 06/30/17 13:07 / bas |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |      |           |                      |
| Antimony                            | ND     | mg/L  |            | 0.006 |      | E200.8    | 07/03/17 20:17 / car |
| Arsenic                             | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/03/17 20:17 / car |
| Barium                              | 0.03   | mg/L  |            | 0.01  |      | E200.8    | 07/03/17 20:17 / car |
| Beryllium                           | 0.076  | mg/L  |            | 0.001 |      | E200.7    | 07/06/17 00:38 / rlh |
| Boron                               | 9.67   | mg/L  |            | 0.05  |      | E200.7    | 07/06/17 00:38 / rlh |
| Cadmium                             | 0.089  | mg/L  |            | 0.005 |      | E200.8    | 07/03/17 20:17 / car |
| Chromium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/03/17 20:17 / car |
| Cobalt                              | 0.30   | mg/L  |            | 0.02  |      | E200.8    | 07/03/17 20:17 / car |
| _ead                                | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/03/17 20:17 / car |
| _ithium                             | 0.08   | mg/L  | D          | 0.02  |      | E200.7    | 07/06/17 00:38 / rlh |
| Mercury                             | ND     | mg/L  |            | 0.001 |      | E245.1    | 06/30/17 15:33 / jh  |
| Molybdenum                          | ND     | mg/L  |            | 0.05  |      | E200.8    | 07/03/17 20:17 / car |
| Selenium                            | 0.02   | mg/L  |            | 0.01  |      | E200.8    | 07/03/17 20:17 / car |
| Thallium                            | ND     | mg/L  |            | 0.002 |      | E200.8    | 07/03/17 20:17 / car |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA GC Mine CCR Lab ID: B17062700-008 Client Sample ID: EQBK-SCM-062717

Revised Date: 12/21/17 **Report Date:** 07/13/17 Collection Date: 06/27/17 18:30 DateReceived: 06/29/17

Matrix: Ground Water

|                                     |        |       |            |       | MCL/ |           |                      |
|-------------------------------------|--------|-------|------------|-------|------|-----------|----------------------|
| Analyses                            | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By   |
| MAJOR IONS                          |        |       |            |       |      |           |                      |
| Calcium                             | ND     | mg/L  |            | 1     |      | E200.7    | 07/06/17 00:45 / rlh |
| Magnesium                           | ND     | mg/L  |            | 1     |      | E200.7    | 07/06/17 00:45 / rlh |
| Potassium                           | ND     | mg/L  |            | 1     |      | E200.7    | 07/06/17 00:45 / rlh |
| Sodium                              | ND     | mg/L  |            | 1     |      | E200.7    | 07/06/17 00:45 / rlh |
| Couldin                             | 110    | 9, _  |            | •     |      | 2200.7    | 07700717 00.1071111  |
| PHYSICAL PROPERTIES                 |        |       |            |       |      |           |                      |
| рН                                  | 6.4    | s.u.  | Н          | 0.1   |      | A4500-H B | 06/29/17 18:30 / pjw |
| Solids, Total Dissolved TDS @ 180 C | ND     | mg/L  |            | 10    |      | A2540 C   | 06/30/17 13:54 / rik |
| INORGANICS                          |        |       |            |       |      |           |                      |
| Chloride                            | ND     | mg/L  |            | 1     |      | E300.0    | 07/05/17 00:11 / cjm |
| Sulfate                             | ND     | mg/L  |            | 1     |      | E300.0    | 07/05/17 00:11 / cjm |
| Fluoride                            | ND     | mg/L  |            | 0.1   |      | A4500-F C | 06/30/17 13:18 / bas |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |      |           |                      |
| Antimony                            | ND     | mg/L  |            | 0.006 |      | E200.8    | 07/03/17 20:31 / car |
| Arsenic                             | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/03/17 20:31 / car |
| Barium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/03/17 20:31 / car |
| Beryllium                           | ND     | mg/L  |            | 0.001 |      | E200.7    | 07/06/17 00:45 / rlh |
| Boron                               | ND     | mg/L  |            | 0.05  |      | E200.7    | 07/06/17 00:45 / rlh |
| Cadmium                             | ND     | mg/L  |            | 0.05  |      | E200.8    | 07/03/17 20:31 / car |
| Chromium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/03/17 20:31 / car |
| Cobalt                              | ND     | mg/L  |            | 0.02  |      | E200.8    | 07/03/17 20:31 / car |
| Lead                                | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/03/17 20:31 / car |
| Lithium                             | ND     | mg/L  |            | 0.01  |      | E200.7    | 07/06/17 00:45 / rlh |
| Mercury                             | ND     | mg/L  |            | 0.001 |      | E245.1    | 06/30/17 15:37 / jh  |
| Molybdenum                          | ND     | mg/L  |            | 0.05  |      | E200.8    | 07/03/17 20:31 / car |
| Selenium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/03/17 20:31 / car |
| Thallium                            | ND     | mg/L  |            | 0.002 |      | E200.8    | 07/03/17 20:31 / car |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA GC Mine CCR Lab ID: B17062700-009 Client Sample ID: EQBK-SCM-062817

Revised Date: 12/21/17 **Report Date:** 07/13/17 Collection Date: 06/28/17 11:00 DateReceived: 06/29/17

Matrix: Ground Water

|                                     |        |       |            | ъ.    | MCL/ |           |                      |
|-------------------------------------|--------|-------|------------|-------|------|-----------|----------------------|
| Analyses                            | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By   |
| MAJOR IONS                          |        |       |            |       |      |           |                      |
| Calcium                             | ND     | mg/L  |            | 1     |      | E200.7    | 07/06/17 00:48 / rlh |
| Magnesium                           | ND     | mg/L  |            | 1     |      | E200.7    | 07/06/17 00:48 / rlh |
| Potassium                           | ND     | mg/L  |            | 1     |      | E200.7    | 07/06/17 00:48 / rlh |
| Sodium                              | ND     | mg/L  |            | 1     |      | E200.7    | 07/06/17 00:48 / rlh |
| PHYSICAL PROPERTIES                 |        |       |            |       |      |           |                      |
| Н                                   | 6.0    | s.u.  | Н          | 0.1   |      | A4500-H B | 06/29/17 18:33 / pjw |
| Solids, Total Dissolved TDS @ 180 C | ND     | mg/L  |            | 10    |      | A2540 C   | 06/30/17 13:54 / rik |
| INORGANICS                          |        |       |            |       |      |           |                      |
| Chloride                            | ND     | mg/L  |            | 1     |      | E300.0    | 07/05/17 00:30 / cjm |
| Sulfate                             | ND     | mg/L  |            | 1     |      | E300.0    | 07/05/17 00:30 / cjm |
| Fluoride                            | ND     | mg/L  |            | 0.1   |      | A4500-F C | 06/30/17 13:25 / bas |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |      |           |                      |
| Antimony                            | ND     | mg/L  |            | 0.006 |      | E200.8    | 07/03/17 20:33 / car |
| Arsenic                             | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/03/17 20:33 / car |
| Barium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/03/17 20:33 / car |
| Beryllium                           | ND     | mg/L  |            | 0.001 |      | E200.7    | 07/06/17 00:48 / rlh |
| Boron                               | ND     | mg/L  |            | 0.05  |      | E200.7    | 07/06/17 00:48 / rlh |
| Cadmium                             | ND     | mg/L  |            | 0.005 |      | E200.8    | 07/03/17 20:33 / car |
| Chromium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/03/17 20:33 / car |
| Cobalt                              | ND     | mg/L  |            | 0.02  |      | E200.8    | 07/03/17 20:33 / car |
| _ead                                | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/03/17 20:33 / car |
| Lithium                             | ND     | mg/L  |            | 0.01  |      | E200.7    | 07/06/17 00:48 / rlh |
| Mercury                             | ND     | mg/L  |            | 0.001 |      | E245.1    | 06/30/17 15:39 / jh  |
| Molybdenum                          | ND     | mg/L  |            | 0.05  |      | E200.8    | 07/03/17 20:33 / car |
| Selenium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/03/17 20:33 / car |
| Thallium                            | ND     | mg/L  |            | 0.002 |      | E200.8    | 07/03/17 20:33 / car |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date: 07/13/17Project:TMPA GC Mine CCRWork Order: B17062700

| Analyte   |                   | Count       | Result       | Units          | RL             | %REC | Low Limit  | High Limit  | RPD        | RPDLimit    | Qual      |
|-----------|-------------------|-------------|--------------|----------------|----------------|------|------------|-------------|------------|-------------|-----------|
| Method:   | E200.7            |             |              |                |                |      |            | Anal        | ytical Run | : ICP203-B_ | 170705A   |
| Lab ID:   | ICV               | 7 Co        | ntinuing Cal | ibration Verif | ication Standa | rd   |            |             |            | 07/05/      | 17 09:44  |
| Beryllium |                   |             | 1.18         | mg/L           | 0.010          | 95   | 95         | 105         |            |             |           |
| Boron     |                   |             | 2.39         | mg/L           | 0.10           | 96   | 95         | 105         |            |             |           |
| Calcium   |                   |             | 24.7         | mg/L           | 1.0            | 99   | 95         | 105         |            |             |           |
| Lithium   |                   |             | 1.22         | mg/L           | 0.10           | 97   | 95         | 105         |            |             |           |
| Magnesium | n                 |             | 24.6         | mg/L           | 1.0            | 99   | 95         | 105         |            |             |           |
| Potassium |                   |             | 24.5         | mg/L           | 1.0            | 98   | 95         | 105         |            |             |           |
| Sodium    |                   |             | 24.4         | mg/L           | 1.0            | 98   | 95         | 105         |            |             |           |
| Method:   | E200.7            |             |              |                |                |      |            |             |            | Batch       | n: 111112 |
| Lab ID:   | MB-111112         | 7 Me        | thod Blank   |                |                |      | Run: ICP20 | 3-B_170705A |            | 07/05/      | 17 23:56  |
| Beryllium |                   |             | ND           | mg/L           | 0.0001         |      |            |             |            |             |           |
| Boron     |                   |             | ND           | mg/L           | 0.003          |      |            |             |            |             |           |
| Calcium   |                   |             | ND           | mg/L           | 0.08           |      |            |             |            |             |           |
| Lithium   |                   |             | ND           | mg/L           | 0.004          |      |            |             |            |             |           |
| Magnesium | n                 |             | ND           | mg/L           | 0.01           |      |            |             |            |             |           |
| Potassium |                   |             | ND           | mg/L           | 0.07           |      |            |             |            |             |           |
| Sodium    |                   |             | ND           | mg/L           | 0.03           |      |            |             |            |             |           |
| Lab ID:   | LCS-111112        | 7 Lal       | ooratory Co  | ntrol Sample   |                |      | Run: ICP20 | 3-B_170705A |            | 07/06/      | 17 00:00  |
| Beryllium |                   |             | 0.256        | mg/L           | 0.010          | 103  | 85         | _<br>115    |            |             |           |
| Boron     |                   |             | 0.468        | mg/L           | 0.10           | 94   | 85         | 115         |            |             |           |
| Calcium   |                   |             | 24.0         | mg/L           | 1.0            | 96   | 85         | 115         |            |             |           |
| Lithium   |                   |             | 0.503        | mg/L           | 0.10           | 101  | 85         | 115         |            |             |           |
| Magnesium | n                 |             | 24.0         | mg/L           | 1.0            | 96   | 85         | 115         |            |             |           |
| Potassium |                   |             | 25.4         | mg/L           | 1.0            | 101  | 85         | 115         |            |             |           |
| Sodium    |                   |             | 25.3         | mg/L           | 1.0            | 101  | 85         | 115         |            |             |           |
| Lab ID:   | B17062700-001BMS3 | 3 7 Sa      | mple Matrix  | Spike          |                |      | Run: ICP20 | 3-B_170705A |            | 07/06/      | 17 00:13  |
| Beryllium |                   |             | 0.266        | mg/L           | 0.0014         | 106  | 70         | 130         |            |             |           |
| Boron     |                   |             | 0.983        | mg/L           | 0.050          | 110  | 70         | 130         |            |             |           |
| Calcium   |                   |             | 419          | mg/L           | 1.0            |      | 70         | 130         |            |             | Α         |
| Lithium   |                   |             | 0.994        | mg/L           | 0.10           | 108  | 70         | 130         |            |             |           |
| Magnesiun | n                 |             | 87.6         | mg/L           | 1.0            | 98   | 70         | 130         |            |             |           |
| Potassium |                   |             | 63.6         | mg/L           | 1.0            | 111  | 70         | 130         |            |             |           |
| Sodium    |                   |             | 789          | mg/L           | 4.2            |      | 70         | 130         |            |             | Α         |
| Lab ID:   | B17062700-001BMSI | <b>7</b> Sa | mple Matrix  | Spike Duplic   | ate            |      | Run: ICP20 | 3-B_170705A |            | 07/06/      | 17 00:24  |
| Beryllium |                   |             | 0.254        | mg/L           | 0.0014         | 102  | 70         | 130         | 4.4        | 20          |           |
| Boron     |                   |             | 0.976        | mg/L           | 0.050          | 109  | 70         | 130         | 0.8        | 20          |           |
| Calcium   |                   |             | 398          | mg/L           | 1.0            |      | 70         | 130         | 5.0        | 20          | Α         |
| Lithium   |                   |             | 0.930        | mg/L           | 0.10           | 95   | 70         | 130         | 6.7        | 20          |           |
| Magnesiun | n                 |             | 82.0         | mg/L           | 1.0            | 76   | 70         | 130         | 6.6        | 20          |           |
| -         |                   |             | 59.2         | mg/L           | 1.0            | 93   | 70         | 130         | 7.3        | 20          |           |
| Potassium |                   |             |              |                |                |      |            |             |            |             |           |

### Qualifiers:

RL - Analyte reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date: 07/13/17Project:TMPA GC Mine CCRWork Order: B17062700

| Analyte   |                   | Count          | Result      | Units           | RL    | %REC | Low Limit  | High Limit  | RPD | RPDLimit | Qual      |
|-----------|-------------------|----------------|-------------|-----------------|-------|------|------------|-------------|-----|----------|-----------|
| Method:   | E200.7            |                |             |                 |       |      |            |             |     | Batcl    | h: 111153 |
| Lab ID:   | MB-111153         | 6 Me           | thod Blank  |                 |       |      | Run: ICP20 | 3-B_170705A |     | 07/06/   | 17 02:16  |
| Boron     |                   |                | ND          | mg/L            | 0.003 |      |            |             |     |          |           |
| Calcium   |                   |                | ND          | mg/L            | 0.08  |      |            |             |     |          |           |
| Lithium   |                   |                | ND          | mg/L            | 0.004 |      |            |             |     |          |           |
| Magnesiur | m                 |                | ND          | mg/L            | 0.01  |      |            |             |     |          |           |
| Potassium | 1                 |                | ND          | mg/L            | 0.07  |      |            |             |     |          |           |
| Sodium    |                   |                | ND          | mg/L            | 0.03  |      |            |             |     |          |           |
| Lab ID:   | LCS-111153        | 6 Lab          | oratory Cor | ntrol Sample    |       |      | Run: ICP20 | 3-B_170705A |     | 07/06/   | 17 02:19  |
| Boron     |                   |                | 0.462       | mg/L            | 0.10  | 92   | 85         | 115         |     |          |           |
| Calcium   |                   |                | 25.5        | mg/L            | 1.0   | 102  | 85         | 115         |     |          |           |
| Lithium   |                   |                | 0.510       | mg/L            | 0.10  | 102  | 85         | 115         |     |          |           |
| Magnesiur | m                 |                | 25.9        | mg/L            | 1.0   | 104  | 85         | 115         |     |          |           |
| Potassium | 1                 |                | 26.2        | mg/L            | 1.0   | 105  | 85         | 115         |     |          |           |
| Sodium    |                   |                | 24.8        | mg/L            | 1.0   | 99   | 85         | 115         |     |          |           |
| Lab ID:   | B17062657-004BMS  | <b>3</b> 6 Sar | mple Matrix | Spike           |       |      | Run: ICP20 | 3-B_170705A |     | 07/06/   | 17 02:33  |
| Boron     |                   |                | 1.20        | mg/L            | 0.050 | 99   | 70         | 130         |     |          |           |
| Calcium   |                   |                | 67.9        | mg/L            | 1.0   | 104  | 70         | 130         |     |          |           |
| Lithium   |                   |                | 0.556       | mg/L            | 0.10  | 98   | 70         | 130         |     |          |           |
| Magnesiur | m                 |                | 47.8        | mg/L            | 1.0   | 104  | 70         | 130         |     |          |           |
| Potassium | 1                 |                | 377         | mg/L            | 1.0   |      | 70         | 130         |     |          | Α         |
| Sodium    |                   |                | 267         | mg/L            | 1.0   |      | 70         | 130         |     |          | Α         |
| Lab ID:   | B17062657-004BMSI | D 6 Sar        | mple Matrix | Spike Duplicate |       |      | Run: ICP20 | 3-B_170705A |     | 07/06/   | 17 02:36  |
| Boron     |                   |                | 1.17        | mg/L            | 0.050 | 92   | 70         | 130         | 2.9 | 20       |           |
| Calcium   |                   |                | 65.3        | mg/L            | 1.0   | 94   | 70         | 130         | 3.9 | 20       |           |
| Lithium   |                   |                | 0.542       | mg/L            | 0.10  | 95   | 70         | 130         | 2.5 | 20       |           |
| Magnesiur | m                 |                | 45.8        | mg/L            | 1.0   | 96   | 70         | 130         | 4.1 | 20       |           |
| Potassium | 1                 |                | 372         | mg/L            | 1.0   |      | 70         | 130         | 1.4 | 20       | Α         |
| Sodium    |                   |                | 262         | mg/L            | 1.0   |      | 70         | 130         | 1.7 | 20       | Α         |

### Qualifiers:

RL - Analyte reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date: 07/13/17Project:TMPA GC Mine CCRWork Order: B17062700

| Analyte   |                   | Count     | Result         | Units         | RL          | %REC | Low Limit | High Limit     | RPD RPDLimit    | Qual       |
|-----------|-------------------|-----------|----------------|---------------|-------------|------|-----------|----------------|-----------------|------------|
| Method:   | E200.8            |           |                |               |             |      |           | Analytical     | Run: ICPMS202-B | _170703A   |
| Lab ID:   | QCS               | 11 Initia | al Calibration | on Verificati | on Standard |      |           |                | 07/03           | 3/17 19:09 |
| Antimony  |                   |           | 0.0491         | mg/L          | 0.050       | 98   | 90        | 110            |                 |            |
| Arsenic   |                   |           | 0.0493         | mg/L          | 0.0050      | 99   | 90        | 110            |                 |            |
| Barium    |                   |           | 0.0500         | mg/L          | 0.10        | 100  | 90        | 110            |                 |            |
| Beryllium |                   |           | 0.0245         | mg/L          | 0.0010      | 98   | 90        | 110            |                 |            |
| Cadmium   |                   |           | 0.0258         | mg/L          | 0.0010      | 103  | 90        | 110            |                 |            |
| Chromium  |                   |           | 0.0504         | mg/L          | 0.010       | 101  | 90        | 110            |                 |            |
| Cobalt    |                   |           | 0.0501         | mg/L          | 0.010       | 100  | 90        | 110            |                 |            |
| Lead      |                   |           | 0.0490         | mg/L          | 0.010       | 98   | 90        | 110            |                 |            |
| Molybdenu | ım                |           | 0.0462         | mg/L          | 0.0050      | 92   | 90        | 110            |                 |            |
| Selenium  |                   |           | 0.0523         | mg/L          | 0.0050      | 105  | 90        | 110            |                 |            |
| Thallium  |                   |           | 0.0489         | mg/L          | 0.10        | 98   | 90        | 110            |                 |            |
| Method:   | E200.8            |           |                |               |             |      |           |                | Bato            | h: 111112  |
| Lab ID:   | MB-111112         | 11 Metl   | hod Blank      |               |             |      | Run: ICPM | S202-B_170703A | 07/03           | 3/17 14:44 |
| Antimony  |                   |           | ND             | mg/L          | 0.00004     |      |           |                |                 |            |
| Arsenic   |                   |           | ND             | mg/L          | 0.00006     |      |           |                |                 |            |
| Barium    |                   |           | ND             | mg/L          | 0.00004     |      |           |                |                 |            |
| Beryllium |                   |           | ND             | mg/L          | 0.00002     |      |           |                |                 |            |
| Cadmium   |                   |           | ND             | mg/L          | 0.00002     |      |           |                |                 |            |
| Chromium  |                   |           | 0.0006         | mg/L          | 0.00009     |      |           |                |                 |            |
| Cobalt    |                   |           | ND             | mg/L          | 0.00003     |      |           |                |                 |            |
| Lead      |                   |           | ND             | mg/L          | 0.00005     |      |           |                |                 |            |
| Molybdenu | ım                |           | 0.0003         | mg/L          | 0.00007     |      |           |                |                 |            |
| Selenium  |                   |           | ND             | mg/L          | 0.0002      |      |           |                |                 |            |
| Thallium  |                   |           | ND             | mg/L          | 0.0001      |      |           |                |                 |            |
| Lab ID:   | LCS-111112        | 11 Lab    | oratory Co     | ntrol Sampl   | e           |      | Run: ICPM | S202-B_170703A | 07/03           | 3/17 15:10 |
| Antimony  |                   |           | 0.504          | mg/L          | 0.0010      | 101  | 85        | 115            |                 |            |
| Arsenic   |                   |           | 0.506          | mg/L          | 0.0010      | 101  | 85        | 115            |                 |            |
| Barium    |                   |           | 0.509          | mg/L          | 0.050       | 102  | 85        | 115            |                 |            |
| Beryllium |                   |           | 0.284          | mg/L          | 0.0010      | 114  | 85        | 115            |                 |            |
| Cadmium   |                   |           | 0.262          | mg/L          | 0.0010      | 105  | 85        | 115            |                 |            |
| Chromium  |                   |           | 0.571          | mg/L          | 0.0050      | 114  | 85        | 115            |                 |            |
| Cobalt    |                   |           | 0.556          | mg/L          | 0.0050      | 111  | 85        | 115            |                 |            |
| Lead      |                   |           | 0.569          | mg/L          | 0.0010      | 114  | 85        | 115            |                 |            |
| Molybdenu | ım                |           | 0.529          | mg/L          | 0.0010      | 106  | 85        | 115            |                 |            |
| Selenium  |                   |           | 0.502          | mg/L          | 0.0010      | 100  | 85        | 115            |                 |            |
| Thallium  |                   |           | 0.565          | mg/L          | 0.00050     | 113  | 85        | 115            |                 |            |
| Lab ID:   | B17062700-001BMS3 | 11 Sam    | nple Matrix    | Spike         |             |      | Run: ICPM | S202-B_170703A | 07/03           | 3/17 16:27 |
| Antimony  |                   |           | 0.518          | mg/L          | 0.0010      | 103  | 70        | 130            |                 |            |
| Arsenic   |                   |           | 0.532          | mg/L          | 0.0010      | 105  | 70        | 130            |                 |            |
| Barium    |                   |           | 0.585          | mg/L          | 0.050       | 105  | 70        | 130            |                 |            |
| Beryllium |                   |           | 0.214          | mg/L          | 0.0010      | 86   | 70        | 130            |                 |            |
| Cadmium   |                   |           | 0.244          | mg/L          | 0.0010      | 98   | 70        | 130            |                 |            |

Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date: 07/13/17Project:TMPA GC Mine CCRWork Order: B17062700

| Analyte            |                   | Count           | Result         | Units                | RL                         | %REC | Low Limit | High Limit    | RPD | RPDLimit | Qual      |
|--------------------|-------------------|-----------------|----------------|----------------------|----------------------------|------|-----------|---------------|-----|----------|-----------|
| Method:            | E200.8            |                 |                |                      |                            |      |           |               |     | Batc     | h: 111112 |
| Lab ID:            | B17062700-001BMS3 | 11 Sar          | mple Matrix    | Spike                |                            |      | Run: ICPM | S202-B_170703 | Ą   | 07/03/   | /17 16:27 |
| Chromium           |                   |                 | 0.576          | mg/L                 | 0.0050                     | 115  | 70        | 130           |     |          |           |
| Cobalt             |                   |                 | 0.541          | mg/L                 | 0.0050                     | 108  | 70        | 130           |     |          |           |
| Lead               |                   |                 | 0.606          | mg/L                 | 0.0010                     | 119  | 70        | 130           |     |          |           |
| Molybdenu          | m                 |                 | 0.531          | mg/L                 | 0.0010                     | 106  | 70        | 130           |     |          |           |
| Selenium           |                   |                 | 0.444          | mg/L                 | 0.0010                     | 88   | 70        | 130           |     |          |           |
| Thallium           |                   |                 | 0.560          | mg/L                 | 0.00050                    | 112  | 70        | 130           |     |          |           |
| Lab ID:            | B17062700-001BMSE | <b>)</b> 11 Sar | nple Matrix    | Spike Dupli          | cate                       |      | Run: ICPM | S202-B_170703 | A   | 07/03/   | /17 16:30 |
| Antimony           |                   |                 | 0.541          | mg/L                 | 0.0010                     | 108  | 70        | 130           | 4.4 | 20       |           |
| Arsenic            |                   |                 | 0.530          | mg/L                 | 0.0010                     | 105  | 70        | 130           | 0.4 | 20       |           |
| Barium             |                   |                 | 0.606          | mg/L                 | 0.050                      | 109  | 70        | 130           | 3.5 | 20       |           |
| Beryllium          |                   |                 | 0.210          | mg/L                 | 0.0010                     | 84   | 70        | 130           | 2.4 | 20       |           |
| Cadmium            |                   |                 | 0.253          | mg/L                 | 0.0010                     | 101  | 70        | 130           | 3.8 | 20       |           |
| Chromium           |                   |                 | 0.584          | mg/L                 | 0.0050                     | 116  | 70        | 130           | 1.5 | 20       |           |
| Cobalt             |                   |                 | 0.538          | mg/L                 | 0.0050                     | 107  | 70        | 130           | 0.6 | 20       |           |
| Lead               |                   |                 | 0.600          | mg/L                 | 0.0010                     | 117  | 70        | 130           | 1.0 | 20       |           |
| Molybdenu          | m                 |                 | 0.552          | mg/L                 | 0.0010                     | 110  | 70        | 130           | 4.0 | 20       |           |
| Selenium           |                   |                 | 0.454          | mg/L                 | 0.0010                     | 90   | 70        | 130           | 2.2 | 20       |           |
| Thallium           |                   |                 | 0.556          | mg/L                 | 0.00050                    | 111  | 70        | 130           | 8.0 | 20       |           |
| Method:            | E200.8            |                 |                |                      |                            |      |           |               |     | Batc     | h: 111153 |
| Lab ID:            | MB-111153         | 11 Me           | thod Blank     |                      |                            |      | Run: ICPM | S202-B_170703 | A   | 07/03/   | /17 14:41 |
| Antimony           |                   |                 | ND             | mg/L                 | 0.00004                    |      |           |               |     |          |           |
| Arsenic            |                   |                 | 0.00007        | mg/L                 | 0.00006                    |      |           |               |     |          |           |
| Barium             |                   |                 | ND             | mg/L                 | 0.00004                    |      |           |               |     |          |           |
| Beryllium          |                   |                 | ND             | mg/L                 | 0.00002                    |      |           |               |     |          |           |
| Cadmium            |                   |                 | ND             | mg/L                 | 0.00002                    |      |           |               |     |          |           |
| Chromium           |                   |                 | ND             | mg/L                 | 0.00009                    |      |           |               |     |          |           |
| Cobalt             |                   |                 | ND             | mg/L                 | 0.00003                    |      |           |               |     |          |           |
| Lead               |                   |                 | ND             | mg/L                 | 0.00005                    |      |           |               |     |          |           |
| Molybdenu          | m                 |                 | 0.0002         | mg/L                 | 0.00007                    |      |           |               |     |          |           |
| Selenium           |                   |                 | ND             | mg/L                 | 0.0002                     |      |           |               |     |          |           |
| Thallium           |                   |                 | ND             | mg/L                 | 0.0001                     |      |           |               |     |          |           |
| Lab ID:            | LCS-111153        | 11 Lat          | oratory Co     | ntrol Sample         | )                          |      | Run: ICPM | S202-B_170703 | A   | 07/03/   | /17 15:54 |
| Antimony           |                   |                 | 0.492          | mg/L                 | 0.0010                     | 98   | 85        | 115           |     |          |           |
| Arsenic            |                   |                 | 0.496          | mg/L                 | 0.0010                     | 99   | 85        | 115           |     |          |           |
| Barium             |                   |                 | 0.492          | mg/L                 | 0.050                      | 98   | 85        | 115           |     |          |           |
| Beryllium          |                   |                 | 0.279          | mg/L                 | 0.0010                     | 111  | 85        | 115           |     |          |           |
| Cadmium            |                   |                 | 0.255          | mg/L                 | 0.0010                     | 102  | 85        | 115           |     |          |           |
| Caaiiiiaiii        |                   |                 | 0.556          | mg/L                 | 0.0050                     | 111  | 85        | 115           |     |          |           |
| Chromium           |                   |                 |                |                      |                            | 110  | 85        | 115           |     |          |           |
|                    |                   |                 | 0.552          | mg/L                 | 0.0050                     | 110  | 00        | 110           |     |          |           |
| Chromium           |                   |                 | 0.552<br>0.555 |                      |                            | 111  | 85        | 115           |     |          |           |
| Chromium<br>Cobalt | m                 |                 |                | mg/L<br>mg/L<br>mg/L | 0.0050<br>0.0010<br>0.0010 |      |           |               |     |          |           |

Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date: 07/13/17Project:TMPA GC Mine CCRWork Order: B17062700

| Analyte   |                  | Count          | Result      | Units        | RL      | %REC | Low Limit  | High Limit     | RPD | RPDLimit | Qual      |
|-----------|------------------|----------------|-------------|--------------|---------|------|------------|----------------|-----|----------|-----------|
| Method:   | E200.8           |                |             |              |         |      |            |                |     | Batch    | n: 111153 |
| Lab ID:   | LCS-111153       | 11 Lal         | boratory Co | ntrol Sample |         |      | Run: ICPMS | S202-B_170703A |     | 07/03/   | 17 15:54  |
| Thallium  |                  |                | 0.555       | mg/L         | 0.00050 | 111  | 85         | 115            |     |          |           |
| Lab ID:   | B17062657-004BMS | 11 Sa          | mple Matrix | Spike        |         |      | Run: ICPMS | S202-B_170703A |     | 07/03/   | 17 19:22  |
| Antimony  |                  |                | 0.504       | mg/L         | 0.0010  | 101  | 70         | 130            |     |          |           |
| Arsenic   |                  |                | 0.598       | mg/L         | 0.0010  | 101  | 70         | 130            |     |          |           |
| Barium    |                  |                | 0.648       | mg/L         | 0.050   | 103  | 70         | 130            |     |          |           |
| Beryllium |                  |                | 0.226       | mg/L         | 0.0010  | 91   | 70         | 130            |     |          |           |
| Cadmium   |                  |                | 0.241       | mg/L         | 0.0010  | 96   | 70         | 130            |     |          |           |
| Chromium  |                  |                | 0.550       | mg/L         | 0.0050  | 109  | 70         | 130            |     |          |           |
| Cobalt    |                  |                | 0.535       | mg/L         | 0.0050  | 107  | 70         | 130            |     |          |           |
| Lead      |                  |                | 0.544       | mg/L         | 0.0010  | 109  | 70         | 130            |     |          |           |
| Molybdenu | ım               |                | 0.876       | mg/L         | 0.0010  | 96   | 70         | 130            |     |          |           |
| Selenium  |                  |                | 0.621       | mg/L         | 0.0010  | 95   | 70         | 130            |     |          |           |
| Thallium  |                  |                | 0.565       | mg/L         | 0.00050 | 113  | 70         | 130            |     |          |           |
| Lab ID:   | B17062657-004BMS | <b>D</b> 11 Sa | mple Matrix | Spike Dupli  | cate    |      | Run: ICPMS | S202-B_170703A |     | 07/03/   | 17 19:25  |
| Antimony  |                  |                | 0.503       | mg/L         | 0.0010  | 100  | 70         | 130            | 0.2 | 20       |           |
| Arsenic   |                  |                | 0.587       | mg/L         | 0.0010  | 98   | 70         | 130            | 1.9 | 20       |           |
| Barium    |                  |                | 0.634       | mg/L         | 0.050   | 101  | 70         | 130            | 2.2 | 20       |           |
| Beryllium |                  |                | 0.226       | mg/L         | 0.0010  | 90   | 70         | 130            | 0.2 | 20       |           |
| Cadmium   |                  |                | 0.237       | mg/L         | 0.0010  | 95   | 70         | 130            | 1.7 | 20       |           |
| Chromium  |                  |                | 0.535       | mg/L         | 0.0050  | 106  | 70         | 130            | 2.8 | 20       |           |
| Cobalt    |                  |                | 0.525       | mg/L         | 0.0050  | 105  | 70         | 130            | 1.8 | 20       |           |
| Lead      |                  |                | 0.537       | mg/L         | 0.0010  | 107  | 70         | 130            | 1.2 | 20       |           |
| Molybdenu | m                |                | 0.877       | mg/L         | 0.0010  | 96   | 70         | 130            | 0.1 | 20       |           |
| Selenium  |                  |                | 0.608       | mg/L         | 0.0010  | 92   | 70         | 130            | 2.1 | 20       |           |
| Thallium  |                  |                | 0.557       | mg/L         | 0.00050 | 111  | 70         | 130            | 1.6 | 20       |           |

### Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date: 07/13/17Project:TMPA GC Mine CCRWork Order: B17062700

| Analyte   |                   | Count Re           | esult     | Units         | RL         | %REC | Low Limit | High Limit             | RPD    | RPDLimit   | Qual      |
|-----------|-------------------|--------------------|-----------|---------------|------------|------|-----------|------------------------|--------|------------|-----------|
| Method:   | E200.8            |                    |           |               |            |      |           | Analytica              | Run: I | CPMS202-B_ | _170705A  |
| Lab ID:   | QCS               | 3 Initial C        | alibratio | n Verificatio | n Standard |      |           |                        |        | 07/05/     | 17 19:19  |
| Beryllium |                   | 0.                 | 0252      | mg/L          | 0.0010     | 101  | 90        | 110                    |        |            |           |
| Chromium  |                   | 0.                 | 0495      | mg/L          | 0.010      | 99   | 90        | 110                    |        |            |           |
| Molybdenu | ım                | 0.                 | 0451      | mg/L          | 0.0050     | 90   | 90        | 110                    |        |            |           |
| Method:   | E200.8            |                    |           |               |            |      |           |                        |        | Batch      | n: 111112 |
| Lab ID:   | MB-111112         | 10 Method          | Blank     |               |            |      | Run: ICPM | S202-B_170705 <i>A</i> | ١      | 07/05/     | 17 23:16  |
| Antimony  |                   | 0.                 | 0001      | mg/L          | 0.00004    |      |           |                        |        |            |           |
| Arsenic   |                   |                    | ND        | mg/L          | 0.00006    |      |           |                        |        |            |           |
| Barium    |                   | 0.0                | 0007      | mg/L          | 0.00004    |      |           |                        |        |            |           |
| Beryllium |                   | 0.0                | 0003      | mg/L          | 0.00002    |      |           |                        |        |            |           |
| Cadmium   |                   |                    | ND        | mg/L          | 0.00002    |      |           |                        |        |            |           |
| Chromium  |                   | 0.                 | 0004      | mg/L          | 0.00009    |      |           |                        |        |            |           |
| Cobalt    |                   | 0.0                | 0005      | mg/L          | 0.00003    |      |           |                        |        |            |           |
| Lead      |                   | 0.                 | 0001      | mg/L          | 0.00005    |      |           |                        |        |            |           |
| Molybdenu | ım                |                    | ND        | mg/L          | 0.00005    |      |           |                        |        |            |           |
| Thallium  |                   |                    | ND        | mg/L          | 0.0001     |      |           |                        |        |            |           |
| Lab ID:   | LCS-111112        | 10 Laborat         | ory Cor   | ntrol Sample  |            |      | Run: ICPM | S202-B_170705 <i>A</i> |        | 07/05/     | 17 23:18  |
| Antimony  |                   | C                  | ).558     | mg/L          | 0.0010     | 112  | 85        | 115                    |        |            |           |
| Arsenic   |                   | C                  | ).554     | mg/L          | 0.0010     | 111  | 85        | 115                    |        |            |           |
| Barium    |                   | C                  | ).557     | mg/L          | 0.050      | 111  | 85        | 115                    |        |            |           |
| Beryllium |                   |                    | ).232     | mg/L          | 0.0010     | 93   | 85        | 115                    |        |            |           |
| Cadmium   |                   |                    | ).276     | mg/L          | 0.0010     | 110  | 85        | 115                    |        |            |           |
| Chromium  |                   |                    | ).522     | mg/L          | 0.0050     | 104  | 85        | 115                    |        |            |           |
| Cobalt    |                   |                    | ).501     | mg/L          | 0.0050     | 100  | 85        | 115                    |        |            |           |
| Lead      |                   |                    | ).552     | mg/L          | 0.0010     | 110  | 85        | 115                    |        |            |           |
| Molybdenu | m                 |                    | ).515     | mg/L          | 0.0010     | 103  | 85        | 115                    |        |            |           |
| Thallium  |                   |                    | ).542     | mg/L          | 0.00050    | 108  | 85        | 115                    |        |            |           |
| Lab ID:   | B17062700-001BMS3 | 3 10 Sample        | Matrix    | Spike         |            |      | Run: ICPM | S202-B_170705 <i>A</i> |        | 07/05/     | 17 23:34  |
| Antimony  |                   | C                  | ).552     | mg/L          | 0.0010     | 110  | 70        | 130                    |        |            |           |
| Arsenic   |                   | C                  | ).554     | mg/L          | 0.0010     | 110  | 70        | 130                    |        |            |           |
| Barium    |                   | C                  | 0.623     | mg/L          | 0.050      | 111  | 70        | 130                    |        |            |           |
| Beryllium |                   | (                  | ).198     | mg/L          | 0.0010     | 79   | 70        | 130                    |        |            |           |
| Cadmium   |                   |                    | ).251     | mg/L          | 0.0010     | 100  | 70        | 130                    |        |            |           |
| Chromium  |                   |                    | ).547     | mg/L          | 0.0050     | 109  | 70        | 130                    |        |            |           |
| Cobalt    |                   |                    | ).531     | mg/L          | 0.0050     | 106  | 70        | 130                    |        |            |           |
| Lead      |                   |                    | ).573     | mg/L          | 0.0010     | 112  | 70        | 130                    |        |            |           |
| Molybdenu | ım                |                    | ).538     | mg/L          | 0.0010     | 108  | 70        | 130                    |        |            |           |
| Thallium  |                   |                    | ).542     | mg/L          | 0.00050    | 108  | 70        | 130                    |        |            |           |
| Lab ID:   | B17062700-001BMSI | <b>)</b> 10 Sample | Matrix    | Spike Dupli   | cate       |      | Run: ICPM | S202-B_170705 <i>A</i> |        | 07/05/     | 17 23:37  |
| Antimony  |                   |                    | ).574     | mg/L          | 0.0010     | 115  | 70        | 130                    | 3.9    | 20         |           |
| Arsenic   |                   |                    | 0.563     | mg/L          | 0.0010     | 112  | 70        | 130                    | 1.5    | 20         |           |
|           |                   |                    | ).648     | mg/L          | 0.050      | 116  | 70        | 130                    | 3.9    | 20         |           |

Qualifiers:

RL - Analyte reporting limit.



Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date: 07/13/17Project:TMPA GC Mine CCRWork Order: B17062700

| Analyte   |                   | Count           | Result      | Units         | RL      | %REC | Low Limit | High Limit     | RPD | RPDLimit | Qual      |
|-----------|-------------------|-----------------|-------------|---------------|---------|------|-----------|----------------|-----|----------|-----------|
| Method:   | E200.8            |                 |             |               |         |      |           |                |     | Batch    | n: 111112 |
| Lab ID:   | B17062700-001BMSE | <b>)</b> 10 Sar | mple Matrix | Spike Duplica | ate     |      | Run: ICPM | S202-B_170705A |     | 07/05/   | 17 23:37  |
| Beryllium |                   |                 | 0.186       | mg/L          | 0.0010  | 74   | 70        | 130            | 6.4 | 20       |           |
| Cadmium   |                   |                 | 0.255       | mg/L          | 0.0010  | 102  | 70        | 130            | 1.9 | 20       |           |
| Chromium  |                   |                 | 0.513       | mg/L          | 0.0050  | 102  | 70        | 130            | 6.3 | 20       |           |
| Cobalt    |                   |                 | 0.491       | mg/L          | 0.0050  | 98   | 70        | 130            | 7.7 | 20       |           |
| Lead      |                   |                 | 0.571       | mg/L          | 0.0010  | 112  | 70        | 130            | 0.4 | 20       |           |
| Molybdenu | ım                |                 | 0.527       | mg/L          | 0.0010  | 105  | 70        | 130            | 2.1 | 20       |           |
| Thallium  |                   |                 | 0.532       | mg/L          | 0.00050 | 106  | 70        | 130            | 1.8 | 20       |           |
| Method:   | E200.8            |                 |             |               |         |      |           |                |     | Batch    | n: 111153 |
| Lab ID:   | MB-111153         | 11 Me           | thod Blank  |               |         |      | Run: ICPM | S202-B_170705A |     | 07/05/   | 17 22:42  |
| Antimony  |                   |                 | 0.00005     | mg/L          | 0.00004 |      |           |                |     |          |           |
| Arsenic   |                   |                 | ND          | mg/L          | 0.00006 |      |           |                |     |          |           |
| Barium    |                   |                 | ND          | mg/L          | 0.00004 |      |           |                |     |          |           |
| Beryllium |                   |                 | ND          | mg/L          | 0.00002 |      |           |                |     |          |           |
| Cadmium   |                   |                 | ND          | mg/L          | 0.00002 |      |           |                |     |          |           |
| Chromium  |                   |                 | 0.0003      | mg/L          | 0.00009 |      |           |                |     |          |           |
| Cobalt    |                   |                 | ND          | mg/L          | 0.00003 |      |           |                |     |          |           |
| Lead      |                   |                 | ND          | mg/L          | 0.00005 |      |           |                |     |          |           |
| Molybdenu | ım                |                 | ND          | mg/L          | 0.00005 |      |           |                |     |          |           |
| Selenium  |                   |                 | 0.0004      | mg/L          | 0.0002  |      |           |                |     |          |           |
| Thallium  |                   |                 | ND          | mg/L          | 0.0001  |      |           |                |     |          |           |
| Lab ID:   | LCS-111153        | 11 Lab          | oratory Co  | ntrol Sample  |         |      | Run: ICPM | S202-B_170705A |     | 07/05/   | 17 22:44  |
| Antimony  |                   |                 | 0.562       | mg/L          | 0.0010  | 112  | 85        | _<br>115       |     |          |           |
| Arsenic   |                   |                 | 0.542       | mg/L          | 0.0010  | 108  | 85        | 115            |     |          |           |
| Barium    |                   |                 | 0.554       | mg/L          | 0.050   | 111  | 85        | 115            |     |          |           |
| Beryllium |                   |                 | 0.214       | mg/L          | 0.0010  | 86   | 85        | 115            |     |          |           |
| Cadmium   |                   |                 | 0.271       | mg/L          | 0.0010  | 108  | 85        | 115            |     |          |           |
| Chromium  |                   |                 | 0.494       | mg/L          | 0.0050  | 99   | 85        | 115            |     |          |           |
| Cobalt    |                   |                 | 0.478       | mg/L          | 0.0050  | 96   | 85        | 115            |     |          |           |
| Lead      |                   |                 | 0.536       | mg/L          | 0.0010  | 107  | 85        | 115            |     |          |           |
| Molybdenu | ım                |                 | 0.500       | mg/L          | 0.0010  | 100  | 85        | 115            |     |          |           |
| Selenium  |                   |                 | 0.562       | mg/L          | 0.0010  | 112  | 85        | 115            |     |          |           |
| Thallium  |                   |                 | 0.531       | mg/L          | 0.00050 | 106  | 85        | 115            |     |          |           |
| Lab ID:   | B17062657-004BMS3 | 11 Sar          | nple Matrix | Spike         |         |      | Run: ICPM | S202-B_170705A |     | 07/05/   | 17 23:00  |
| Antimony  |                   |                 | 0.541       | mg/L          | 0.0010  | 108  | 70        | 130            |     |          |           |
| Arsenic   |                   |                 | 0.619       | mg/L          | 0.0010  | 103  | 70        | 130            |     |          |           |
| Barium    |                   |                 | 0.680       | mg/L          | 0.050   | 108  | 70        | 130            |     |          |           |
| Beryllium |                   |                 | 0.208       | mg/L          | 0.0010  | 83   | 70        | 130            |     |          |           |
| Cadmium   |                   |                 | 0.254       | mg/L          | 0.0010  | 102  | 70        | 130            |     |          |           |
| Chromium  |                   |                 | 0.522       | mg/L          | 0.0050  | 104  | 70        | 130            |     |          |           |
| Cobalt    |                   |                 | 0.504       | mg/L          | 0.0050  | 100  | 70        | 130            |     |          |           |
|           |                   |                 | 0.544       | mg/L          | 0.0030  | 109  | 70        | 130            |     |          |           |
| Lead      |                   |                 | 0.544       | 1119/1        | 0.0010  | 103  | 7.0       | 100            |     |          |           |

### Qualifiers:

RL - Analyte reporting limit.



Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date: 07/13/17Project:TMPA GC Mine CCRWork Order: B17062700

| Analyte   |                   | Count           | Result      | Units    | RL      | %REC | Low Limit | High Limit     | RPD | RPDLimit | Qual      |
|-----------|-------------------|-----------------|-------------|----------|---------|------|-----------|----------------|-----|----------|-----------|
| Method:   | E200.8            |                 |             |          |         |      |           |                |     | Batcl    | n: 111153 |
| Lab ID:   | B17062657-004BMS  | 3 11 Sam        | nple Matrix | Spike    |         |      | Run: ICPM | S202-B_170705A |     | 07/05/   | 17 23:00  |
| Selenium  |                   |                 | 0.653       | mg/L     | 0.0010  | 98   | 70        | 130            |     |          |           |
| Thallium  |                   |                 | 0.541       | mg/L     | 0.00050 | 108  | 70        | 130            |     |          |           |
| Lab ID:   | B17062657-004BMSI | <b>D</b> 11 Sam | nple Matrix | Spike Du | olicate |      | Run: ICPM | S202-B_170705A |     | 07/05/   | 17 23:03  |
| Antimony  |                   |                 | 0.551       | mg/L     | 0.0010  | 110  | 70        | 130            | 1.8 | 20       |           |
| Arsenic   |                   |                 | 0.616       | mg/L     | 0.0010  | 103  | 70        | 130            | 0.5 | 20       |           |
| Barium    |                   |                 | 0.677       | mg/L     | 0.050   | 107  | 70        | 130            | 0.3 | 20       |           |
| Beryllium |                   |                 | 0.198       | mg/L     | 0.0010  | 79   | 70        | 130            | 5.0 | 20       |           |
| Cadmium   |                   |                 | 0.252       | mg/L     | 0.0010  | 101  | 70        | 130            | 1.0 | 20       |           |
| Chromium  |                   |                 | 0.501       | mg/L     | 0.0050  | 100  | 70        | 130            | 4.2 | 20       |           |
| Cobalt    |                   |                 | 0.489       | mg/L     | 0.0050  | 97   | 70        | 130            | 3.1 | 20       |           |
| Lead      |                   |                 | 0.543       | mg/L     | 0.0010  | 108  | 70        | 130            | 0.2 | 20       |           |
| Molybdenu | ım                |                 | 0.900       | mg/L     | 0.0010  | 99   | 70        | 130            | 0.2 | 20       |           |
| Selenium  |                   |                 | 0.651       | mg/L     | 0.0010  | 98   | 70        | 130            | 0.2 | 20       |           |
| Thallium  |                   |                 | 0.531       | mg/L     | 0.00050 | 106  | 70        | 130            | 1.8 | 20       |           |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date: 07/13/17Project:TMPA GC Mine CCRWork Order: B17062700

| Analyte   |                   | Count   | Result               | Units          | RL          | %REC | Low Limit  | High Limit            | RPD     | RPDLimit  | Qual      |
|-----------|-------------------|---------|----------------------|----------------|-------------|------|------------|-----------------------|---------|-----------|-----------|
| Method:   | E200.8            |         |                      |                |             |      |            | Analytica             | Run: IC | PMS206-B_ | _170706A  |
| Lab ID:   | QCS               | 3 Init  | ial Calibration      | on Verificatio | on Standard |      |            |                       |         | 07/06/    | 17 22:28  |
| Beryllium |                   |         | 0.0247               | mg/L           | 0.0010      | 99   | 90         | 110                   |         |           |           |
| Molybdenu | ım                |         | 0.0456               | mg/L           | 0.0050      | 91   | 90         | 110                   |         |           |           |
| Selenium  |                   |         | 0.0503               | mg/L           | 0.0050      | 101  | 90         | 110                   |         |           |           |
| Method:   | E200.8            |         |                      |                |             |      |            |                       |         | Batcl     | n: 111112 |
| Lab ID:   | MB-111112         | 11 Me   | thod Blank           |                |             |      | Run: ICPM  | S206-B_170706A        |         | 07/07/    | 17 02:28  |
| Antimony  |                   |         | ND                   | mg/L           | 0.00004     |      |            | _                     |         |           |           |
| Arsenic   |                   |         | ND                   | mg/L           | 0.0002      |      |            |                       |         |           |           |
| Barium    |                   |         | ND                   | mg/L           | 0.00005     |      |            |                       |         |           |           |
| Beryllium |                   |         | ND                   | mg/L           | 0.00008     |      |            |                       |         |           |           |
| Cadmium   |                   |         | ND                   | mg/L           | 0.00003     |      |            |                       |         |           |           |
| Chromium  |                   |         | ND                   | mg/L           | 0.0001      |      |            |                       |         |           |           |
| Cobalt    |                   |         | ND                   | mg/L           | 0.00002     |      |            |                       |         |           |           |
| Lead      |                   |         | ND                   | mg/L           | 0.00003     |      |            |                       |         |           |           |
| Molybdenu | ım                |         | ND                   | mg/L           | 0.00003     |      |            |                       |         |           |           |
| Selenium  | 4111              |         | ND                   | mg/L           | 0.0004      |      |            |                       |         |           |           |
| Thallium  |                   |         | 0.00004              | mg/L           | 7E-06       |      |            |                       |         |           |           |
| Lab ID:   | LCS-111112        | 11 I ah | ooratory Co          | ntrol Sample   |             |      | Run: ICPM: | S206-B 170706A        |         | 07/07/    | 17 02:34  |
| Antimony  | 2002              | · · Lui | 0.515                | mg/L           | 0.0010      | 103  | 85         | 115                   | •       | 01/01/    | 17 02.04  |
| Arsenic   |                   |         | 0.500                | mg/L           | 0.0010      | 100  | 85         | 115                   |         |           |           |
| Barium    |                   |         | 0.502                | mg/L           | 0.050       | 100  | 85         | 115                   |         |           |           |
| Beryllium |                   |         | 0.235                | mg/L           | 0.0010      | 94   | 85         | 115                   |         |           |           |
| Cadmium   |                   |         | 0.261                | mg/L           | 0.0010      | 105  | 85         | 115                   |         |           |           |
| Chromium  |                   |         | 0.502                | mg/L           | 0.0010      | 100  | 85         | 115                   |         |           |           |
| Cobalt    |                   |         | 0.499                | mg/L           | 0.0050      | 100  | 85         | 115                   |         |           |           |
| Lead      |                   |         | 0.433                | mg/L           | 0.0030      | 103  | 85         | 115                   |         |           |           |
| Molybdenu | ım                |         | 0.470                | mg/L           | 0.0010      | 94   | 85         | 115                   |         |           |           |
| Selenium  | 4111              |         | 0.502                | mg/L           | 0.0010      | 100  | 85         | 115                   |         |           |           |
| Thallium  |                   |         | 0.554                | mg/L           | 0.0010      | 111  | 85         | 115                   |         |           |           |
| Lab ID:   | B17062700-001BMS3 | 11 000  |                      | -              |             |      |            |                       |         | 07/07/    | 47 00.20  |
| Antimony  | B17002700-001BW33 | ıı Sai  | mple Matrix<br>0.509 | mg/L           | 0.0010      | 102  | 70         | S206-B_170706A<br>130 |         | 07/07/    | 17 02:38  |
| •         |                   |         |                      |                |             |      |            |                       |         |           |           |
| Arsenic   |                   |         | 0.495                | mg/L           | 0.0010      | 98   | 70<br>70   | 130                   |         |           |           |
| Barium    |                   |         | 0.548                | mg/L           | 0.050       | 98   | 70<br>70   | 130                   |         |           |           |
| Beryllium |                   |         | 0.226                | mg/L           | 0.0010      | 90   | 70         | 130                   |         |           |           |
| Cadmium   |                   |         | 0.236                | mg/L           | 0.0010      | 95   | 70         | 130                   |         |           |           |
| Chromium  |                   |         | 0.507                | mg/L           | 0.0050      | 101  | 70         | 130                   |         |           |           |
| Cobalt    |                   |         | 0.494                | mg/L           | 0.0050      | 98   | 70         | 130                   |         |           |           |
| Lead      |                   |         | 0.499                | mg/L           | 0.0010      | 97   | 70         | 130                   |         |           |           |
| Molybdenu | ım                |         | 0.479                | mg/L           | 0.0010      | 96   | 70         | 130                   |         |           |           |
| Selenium  |                   |         | 0.409                | mg/L           | 0.0010      | 82   | 70         | 130                   |         |           |           |
| Thallium  |                   |         | 0.512                | mg/L           | 0.00050     | 102  | 70         | 130                   |         |           |           |

### Qualifiers:

RL - Analyte reporting limit.



Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date: 07/13/17Project:TMPA GC Mine CCRWork Order: B17062700

| Analyte   |                   | Count  | Result      | Units        | RL      | %REC | Low Limit | High Limit             | RPD | RPDLimit | Qual      |
|-----------|-------------------|--------|-------------|--------------|---------|------|-----------|------------------------|-----|----------|-----------|
| Method:   | E200.8            |        |             |              |         |      |           |                        |     | Batch    | n: 111112 |
| Lab ID:   | B17062700-001BMSD | 11 Sar | mple Matrix | Spike Duplic | ate     |      | Run: ICPM | S206-B_170706A         |     | 07/07/   | 17 02:41  |
| Antimony  |                   |        | 0.515       | mg/L         | 0.0010  | 103  | 70        | 130                    | 1.3 | 20       |           |
| Arsenic   |                   |        | 0.501       | mg/L         | 0.0010  | 99   | 70        | 130                    | 1.2 | 20       |           |
| Barium    |                   |        | 0.563       | mg/L         | 0.050   | 101  | 70        | 130                    | 2.7 | 20       |           |
| Beryllium |                   |        | 0.226       | mg/L         | 0.0010  | 90   | 70        | 130                    | 0.2 | 20       |           |
| Cadmium   |                   |        | 0.238       | mg/L         | 0.0010  | 95   | 70        | 130                    | 0.6 | 20       |           |
| Chromium  |                   |        | 0.518       | mg/L         | 0.0050  | 103  | 70        | 130                    | 2.3 | 20       |           |
| Cobalt    |                   |        | 0.493       | mg/L         | 0.0050  | 98   | 70        | 130                    | 0.2 | 20       |           |
| Lead      |                   |        | 0.480       | mg/L         | 0.0010  | 94   | 70        | 130                    | 3.9 | 20       |           |
| Molybdenu | m                 |        | 0.486       | mg/L         | 0.0010  | 97   | 70        | 130                    | 1.4 | 20       |           |
| Selenium  |                   |        | 0.424       | mg/L         | 0.0010  | 85   | 70        | 130                    | 3.4 | 20       |           |
| Thallium  |                   |        | 0.504       | mg/L         | 0.00050 | 101  | 70        | 130                    | 1.6 | 20       |           |
| Method:   | E200.8            |        |             |              |         |      |           |                        |     | Batch    | n: 111153 |
| Lab ID:   | MB-111153         | 11 Me  | thod Blank  |              |         |      | Run: ICPM | S206-B 170706A         |     | 07/07/   | 17 03:25  |
| Antimony  |                   |        | ND          | mg/L         | 0.00004 |      |           | _                      |     |          |           |
| Arsenic   |                   |        | ND          | mg/L         | 0.0002  |      |           |                        |     |          |           |
| Barium    |                   |        | ND          | mg/L         | 0.00005 |      |           |                        |     |          |           |
| Beryllium |                   |        | ND          | mg/L         | 0.00008 |      |           |                        |     |          |           |
| Cadmium   |                   |        | ND          | mg/L         | 0.00003 |      |           |                        |     |          |           |
| Chromium  |                   |        | ND          | mg/L         | 0.0001  |      |           |                        |     |          |           |
| Cobalt    |                   |        | ND          | mg/L         | 0.00002 |      |           |                        |     |          |           |
| Lead      |                   |        | ND          | mg/L         | 0.00003 |      |           |                        |     |          |           |
| Molybdenu | m                 |        | ND          | mg/L         | 0.00003 |      |           |                        |     |          |           |
| Selenium  |                   |        | ND          | mg/L         | 0.0004  |      |           |                        |     |          |           |
| Thallium  |                   |        | 0.00003     | mg/L         | 7E-06   |      |           |                        |     |          |           |
| Lab ID:   | LCS-111153        | 11 Lab | oratory Co  | ntrol Sample |         |      | Run: ICPM | S206-B_170706 <i>A</i> |     | 07/07/   | 17 03:35  |
| Antimony  |                   |        | 0.518       | mg/L         | 0.0010  | 104  | 85        | 115                    |     |          |           |
| Arsenic   |                   |        | 0.493       | mg/L         | 0.0010  | 99   | 85        | 115                    |     |          |           |
| Barium    |                   |        | 0.503       | mg/L         | 0.050   | 101  | 85        | 115                    |     |          |           |
| Beryllium |                   |        | 0.229       | mg/L         | 0.0010  | 92   | 85        | 115                    |     |          |           |
| Cadmium   |                   |        | 0.256       | mg/L         | 0.0010  | 102  | 85        | 115                    |     |          |           |
| Chromium  |                   |        | 0.483       | mg/L         | 0.0050  | 97   | 85        | 115                    |     |          |           |
| Cobalt    |                   |        | 0.478       | mg/L         | 0.0050  | 96   | 85        | 115                    |     |          |           |
| Lead      |                   |        | 0.529       | mg/L         | 0.0010  | 106  | 85        | 115                    |     |          |           |
| Molybdenu | m                 |        | 0.468       | mg/L         | 0.0010  | 94   | 85        | 115                    |     |          |           |
| Selenium  |                   |        | 0.494       | mg/L         | 0.0010  | 99   | 85        | 115                    |     |          |           |
| Thallium  |                   |        | 0.568       | mg/L         | 0.00050 | 114  | 85        | 115                    |     |          |           |
| Lab ID:   | B17062859-008DMS3 | 11 Sar | mple Matrix | Spike        |         |      | Run: ICPM | S206-B_170706 <i>A</i> |     | 07/07/   | 17 03:49  |
| Antimony  |                   |        | 0.502       | mg/L         | 0.0010  | 100  | 70        | 130                    |     |          |           |
| Arsenic   |                   |        | 0.480       | mg/L         | 0.0010  | 96   | 70        | 130                    |     |          |           |
| Barium    |                   |        | 0.484       | mg/L         | 0.050   | 97   | 70        | 130                    |     |          |           |
| Beryllium |                   |        | 0.222       | mg/L         | 0.0010  | 89   | 70        | 130                    |     |          |           |
| Cadmium   |                   |        | 0.255       | mg/L         | 0.0010  | 102  | 70        | 130                    |     |          |           |

Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date: 07/13/17Project:TMPA GC Mine CCRWork Order: B17062700

| Analyte   |                   | Count           | Result      | Units     | RL      | %REC | Low Limit | High Limit     | RPD | RPDLimit | Qual      |
|-----------|-------------------|-----------------|-------------|-----------|---------|------|-----------|----------------|-----|----------|-----------|
| Method:   | E200.8            |                 |             |           |         |      |           |                |     | Batch    | n: 111153 |
| Lab ID:   | B17062859-008DMS3 | 11 Sar          | mple Matrix | Spike     |         |      | Run: ICPM | S206-B_170706A |     | 07/07/   | 17 03:49  |
| Chromium  |                   |                 | 0.480       | mg/L      | 0.0050  | 96   | 70        | 130            |     |          |           |
| Cobalt    |                   |                 | 0.474       | mg/L      | 0.0050  | 95   | 70        | 130            |     |          |           |
| Lead      |                   |                 | 0.466       | mg/L      | 0.0010  | 93   | 70        | 130            |     |          |           |
| Molybdenu | m                 |                 | 0.452       | mg/L      | 0.0010  | 90   | 70        | 130            |     |          |           |
| Selenium  |                   |                 | 0.506       | mg/L      | 0.0010  | 101  | 70        | 130            |     |          |           |
| Thallium  |                   |                 | 0.534       | mg/L      | 0.00050 | 107  | 70        | 130            |     |          |           |
| Lab ID:   | B17062859-008DMSE | <b>)</b> 11 Sar | mple Matrix | Spike Dup | licate  |      | Run: ICPM | S206-B_170706A |     | 07/07/   | 17 03:52  |
| Antimony  |                   |                 | 0.511       | mg/L      | 0.0010  | 102  | 70        | 130            | 1.8 | 20       |           |
| Arsenic   |                   |                 | 0.491       | mg/L      | 0.0010  | 98   | 70        | 130            | 2.4 | 20       |           |
| Barium    |                   |                 | 0.493       | mg/L      | 0.050   | 98   | 70        | 130            | 1.7 | 20       |           |
| Beryllium |                   |                 | 0.229       | mg/L      | 0.0010  | 92   | 70        | 130            | 2.9 | 20       |           |
| Cadmium   |                   |                 | 0.259       | mg/L      | 0.0010  | 104  | 70        | 130            | 1.6 | 20       |           |
| Chromium  |                   |                 | 0.486       | mg/L      | 0.0050  | 97   | 70        | 130            | 1.2 | 20       |           |
| Cobalt    |                   |                 | 0.484       | mg/L      | 0.0050  | 97   | 70        | 130            | 2.2 | 20       |           |
| Lead      |                   |                 | 0.482       | mg/L      | 0.0010  | 96   | 70        | 130            | 3.5 | 20       |           |
| Molybdenu | m                 |                 | 0.457       | mg/L      | 0.0010  | 91   | 70        | 130            | 1.0 | 20       |           |
| Selenium  |                   |                 | 0.491       | mg/L      | 0.0010  | 98   | 70        | 130            | 2.9 | 20       |           |
| Thallium  |                   |                 | 0.551       | mg/L      | 0.00050 | 110  | 70        | 130            | 3.2 | 20       |           |

# Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date: 07/13/17Project:TMPA GC Mine CCRWork Order: B17062700

| Analyte |                   | Count        | Result        | Units           | RL       | %REC | Low Limit | High Limit     | RPD  | RPDLimit   | Qual      |
|---------|-------------------|--------------|---------------|-----------------|----------|------|-----------|----------------|------|------------|-----------|
| Method: | E245.1            |              |               |                 |          |      |           | Analytica      | Run: | HGCV202-B_ | _170630A  |
| Lab ID: | ICV               | Initi        | al Calibratio | on Verification | Standard |      |           |                |      | 06/30/     | 17 13:51  |
| Mercury |                   |              | 0.00204       | mg/L            | 0.00010  | 102  | 90        | 110            |      |            |           |
| Method: | E245.1            |              |               |                 |          |      |           |                |      | Batch      | h: 111118 |
| Lab ID: | MB-111118         | Met          | hod Blank     |                 |          |      | Run: HGCV | ′202-B_170630A |      | 06/30/     | 17 14:50  |
| Mercury |                   |              | 8E-06         | mg/L            | 6E-06    |      |           |                |      |            |           |
| Lab ID: | LCS-111118        | Lab          | oratory Cor   | ntrol Sample    |          |      | Run: HGCV | ′202-B_170630A |      | 06/30/     | 17 14:52  |
| Mercury |                   |              | 0.00204       | mg/L            | 0.00010  | 102  | 85        | 115            |      |            |           |
| Lab ID: | B17062700-003BMS  | San          | nple Matrix   | Spike           |          |      | Run: HGCV | ′202-B_170630A |      | 06/30/     | 17 15:26  |
| Mercury |                   |              | 0.00188       | mg/L            | 0.00010  | 93   | 70        | 130            |      |            |           |
| Lab ID: | B17062700-003BMSI | <b>D</b> San | nple Matrix   | Spike Duplica   | ate      |      | Run: HGCV | ′202-B_170630A |      | 06/30/     | 17 15:28  |
| Mercury |                   |              | 0.00188       | mg/L            | 0.00010  | 93   | 70        | 130            | 0.2  | 30         |           |
| Method: | E245.1            |              |               |                 |          |      |           | Analytica      | Run: | HGCV202-B_ | _170703A  |
| Lab ID: | ICV               | Initi        | al Calibratio | on Verification | Standard |      |           |                |      | 07/03/     | 17 09:28  |
| Mercury |                   |              | 0.00192       | mg/L            | 0.00010  | 96   | 90        | 110            |      |            |           |
| Method: | E245.1            |              |               |                 |          |      |           |                |      | Batcl      | h: 111139 |
| Lab ID: | MB-111139         | Met          | hod Blank     |                 |          |      | Run: HGCV | '202-B_170703A |      | 07/03/     | 17 11:06  |
| Mercury |                   |              | ND            | mg/L            | 6E-06    |      |           |                |      |            |           |
| Lab ID: | LCS-111139        | Lab          | oratory Cor   | ntrol Sample    |          |      | Run: HGCV | ′202-B_170703A |      | 07/03/     | 17 11:07  |
| Mercury |                   |              | 0.00201       | mg/L            | 0.00010  | 100  | 85        | 115            |      |            |           |
| Lab ID: | B17062861-001AMS  | San          | nple Matrix   | Spike           |          |      | Run: HGCV | ′202-B_170703A |      | 07/03/     | 17 11:36  |
| Mercury |                   |              | 0.00203       | mg/L            | 0.00010  | 101  | 70        | 130            |      |            |           |
| Lab ID: | B17062861-001AMSI | <b>D</b> Sar | nple Matrix   | Spike Duplica   | ate      |      | Run: HGCV | /202-B_170703A |      | 07/03/     | 17 11:38  |
| Mercury |                   |              | 0.00202       | mg/L            | 0.00010  | 100  | 70        | 130            | 0.6  | 30         |           |

#### Qualifiers:

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date: 07/13/17Project:TMPA GC Mine CCRWork Order: B17062700

| Analyte   | Co                          | unt Resi   | ult     | Units      | RL | %REC | Low Limit  | High Limit    | RPD | RPDLimit | Qual      |
|-----------|-----------------------------|------------|---------|------------|----|------|------------|---------------|-----|----------|-----------|
| Method    | : A2540 C                   |            |         |            |    |      |            |               |     | Batch    | n: 111143 |
| Lab ID:   | B17062664-006A DUP          | Sample D   | uplicat | te         |    |      | Run: BAL#  | SD-15_170630D |     | 06/30/   | 17 13:54  |
| Solids, 7 | Total Dissolved TDS @ 180 C | 34         | 40      | mg/L       | 40 |      |            |               | 0.5 | 5        |           |
| Lab ID:   | B17062700-002A DUP          | Sample D   | uplicat | te         |    |      | Run: BAL # | SD-15_170630D |     | 06/30/   | 17 13:54  |
| Solids, 7 | Total Dissolved TDS @ 180 C | 56         | 30      | mg/L       | 94 |      |            |               | 0.2 | 5        |           |
| Lab ID:   | LCS-111143                  | Laboratory | / Cont  | rol Sample | Э  |      | Run: BAL # | SD-15_170630D |     | 06/30/   | 17 13:54  |
| Solids, T | Total Dissolved TDS @ 180 C | 9          | 75      | mg/L       | 10 | 97   | 90         | 110           |     |          |           |
| Lab ID:   | MB-111143                   | Method BI  | ank     |            |    |      | Run: BAL#  | SD-15_170630D |     | 06/30/   | 17 13:54  |
| Solids, T | Total Dissolved TDS @ 180 C | ; N        | ND      | mg/L       | 4  |      |            |               |     |          |           |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date: 07/13/17Project:TMPA GC Mine CCRWork Order: B17062700

| Analyte  |                  | Count F        | Result     | Units             | RL       | %REC | Low Limit | High Limit   | RPD     | RPDLimit  | Qual     |
|----------|------------------|----------------|------------|-------------------|----------|------|-----------|--------------|---------|-----------|----------|
| Method:  | A4500-F C        |                |            |                   |          |      |           | Analytic     | al Run: | MAN-TECH_ | 170630A  |
| Lab ID:  | ICV              | Initial        | Calibratio | on Verification S | Standard |      |           |              |         | 06/30/    | 17 09:40 |
| Fluoride |                  |                | 0.940      | mg/L              | 0.10     | 94   | 90        | 110          |         |           |          |
| Method:  | A4500-F C        |                |            |                   |          |      |           |              |         | Batch:    | R282467  |
| Lab ID:  | MBLK             | Metho          | d Blank    |                   |          |      | Run: MAN- | TECH_170630A |         | 06/30/    | 17 09:48 |
| Fluoride |                  |                | ND         | mg/L              | 0.02     |      |           |              |         |           |          |
| Lab ID:  | LFB              | Labora         | atory For  | tified Blank      |          |      | Run: MAN- | TECH_170630A |         | 06/30/    | 17 09:51 |
| Fluoride |                  |                | 0.990      | mg/L              | 0.10     | 99   | 90        | 110          |         |           |          |
| Lab ID:  | B17062664-002AMS | Sampl          | e Matrix   | Spike             |          |      | Run: MAN- | TECH_170630A |         | 06/30/    | 17 12:13 |
| Fluoride |                  |                | 0.960      | mg/L              | 0.10     | 85   | 80        | 120          |         |           |          |
| Lab ID:  | B17062664-002AMS | <b>D</b> Sampl | e Matrix   | Spike Duplicate   | e        |      | Run: MAN- | TECH_170630A |         | 06/30/    | 17 12:16 |
| Fluoride |                  |                | 1.02       | mg/L              | 0.10     | 91   | 80        | 120          | 6.1     | 10        |          |
| Lab ID:  | B17062700-005AMS | Sampl          | e Matrix   | Spike             |          |      | Run: MAN- | TECH_170630A |         | 06/30/    | 17 12:58 |
| Fluoride |                  |                | 1.00       | mg/L              | 0.10     | 92   | 80        | 120          |         |           |          |
| Lab ID:  | B17062700-005AMS | <b>D</b> Sampl | e Matrix   | Spike Duplicate   | e        |      | Run: MAN- | TECH_170630A |         | 06/30/    | 17 13:01 |
| Fluoride |                  |                | 1.01       | mg/L              | 0.10     | 93   | 80        | 120          | 1.0     | 10        |          |

#### Qualifiers:



Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date: 07/13/17Project:TMPA GC Mine CCRWork Order: B17062700

| Analyte |                   | Count        | Result        | Units      | RL            | %REC | Low Limit | High Limit  | RPD        | RPDLimit    | Qual     |
|---------|-------------------|--------------|---------------|------------|---------------|------|-----------|-------------|------------|-------------|----------|
| Method: | A4500-H B         |              |               |            |               |      |           | Analytic    | al Run: PH | ISC _101-B_ | _170629A |
| Lab ID: | pH 8              | Initia       | al Calibratio | n Verifica | tion Standard |      |           |             |            | 06/29/      | 17 08:41 |
| рН      |                   |              | 7.98          | s.u.       | 0.10          | 100  | 98        | 102         |            |             |          |
| Method: | A4500-H B         |              |               |            |               |      |           |             |            | Batch:      | R282329  |
| Lab ID: | B17062700-007ADUF | <b>P</b> Sam | nple Duplica  | ate        |               |      | Run: PHSC | _101-B_1706 | 29A        | 06/29/      | 17 18:28 |
| рН      |                   |              | 7.31          | s.u.       | 0.10          |      |           |             | 0.3        | 3           |          |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date: 07/13/17Project:TMPA GC Mine CCRWork Order: B17062700

| Analyte  |                   | Count   | Result         | Units               | RL     | %REC | Low Limit  | High Limit | RPD       | RPDLimit  | Qual      |
|----------|-------------------|---------|----------------|---------------------|--------|------|------------|------------|-----------|-----------|-----------|
| Method:  | E300.0            |         |                |                     |        |      |            | Analytical | Run: IC M | IETROHM 2 | _170703A  |
| Lab ID:  | ICV               | 2 Init  | ial Calibratio | on Verification Sta | andard |      |            |            |           | 07/03/    | /17 13:02 |
| Chloride |                   |         | 2.20           | mg/L                | 1.0    | 98   | 90         | 110        |           |           |           |
| Sulfate  |                   |         | 8.69           | mg/L                | 1.0    | 97   | 90         | 110        |           |           |           |
| Method:  | E300.0            |         |                |                     |        |      |            |            |           | Batch:    | R282595   |
| Lab ID:  | ICB               | 2 Me    | thod Blank     |                     |        |      | Run: IC ME | TROHM 2_17 | 0703A     | 07/03/    | /17 13:21 |
| Chloride |                   |         | ND             | mg/L                | 0.002  |      |            |            |           |           |           |
| Sulfate  |                   |         | ND             | mg/L                | 0.03   |      |            |            |           |           |           |
| Lab ID:  | LFB               | 2 Lab   | oratory For    | tified Blank        |        |      | Run: IC ME | TROHM 2_17 | 0703A     | 07/03/    | /17 13:41 |
| Chloride |                   |         | 10.4           | mg/L                | 1.0    | 104  | 90         | 110        |           |           |           |
| Sulfate  |                   |         | 31.1           | mg/L                | 1.0    | 104  | 90         | 110        |           |           |           |
| Lab ID:  | B17062700-003AMS  | 2 Sar   | mple Matrix    | Spike               |        |      | Run: IC ME | TROHM 2_17 | 0703A     | 07/04/    | /17 22:13 |
| Chloride |                   |         | 5870           | mg/L                | 12     | 96   | 90         | 110        |           |           |           |
| Sulfate  |                   |         | 8370           | mg/L                | 37     | 106  | 90         | 110        |           |           |           |
| Lab ID:  | B17062700-003AMSI | D 2 Sar | mple Matrix    | Spike Duplicate     |        |      | Run: IC ME | TROHM 2_17 | 0703A     | 07/04/    | /17 22:33 |
| Chloride |                   |         | 5850           | mg/L                | 12     | 95   | 90         | 110        | 0.3       | 20        |           |
| Sulfate  |                   |         | 8350           | mg/L                | 37     | 106  | 90         | 110        | 0.2       | 20        |           |
| Lab ID:  | B17062701-003AMS  | 2 Sar   | mple Matrix    | Spike               |        |      | Run: IC ME | TROHM 2_17 | 0703A     | 07/05/    | /17 02:47 |
| Chloride |                   |         | 554            | mg/L                | 3.1    | 108  | 90         | 110        |           |           |           |
| Sulfate  |                   |         | 2520           | mg/L                | 9.2    | 106  | 90         | 110        |           |           |           |
| Lab ID:  | B17062701-003AMSI | D 2 Sar | mple Matrix    | Spike Duplicate     |        |      | Run: IC ME | TROHM 2_17 | 0703A     | 07/05/    | /17 03:06 |
| Chloride |                   |         | 554            | mg/L                | 3.1    | 108  | 90         | 110        | 0.0       | 20        |           |
| Sulfate  |                   |         | 2510           | mg/L                | 9.2    | 106  | 90         | 110        | 0.3       | 20        |           |

#### Qualifiers:

B17062700

# **Work Order Receipt Checklist**

# Texas Municipal Power Agency

Login completed by: Gina McCartney Date Received: 6/29/2017 Reviewed by: Received by: rs4 BL2000\tedwards Reviewed Date: 7/5/2017 Carrier name: FedEx Shipping container/cooler in good condition? Yes √ No □ Not Present □ Custody seals intact on all shipping container(s)/cooler(s)? Yes √ No 🔲 Not Present | Custody seals intact on all sample bottles? Not Present ✓ No 🔲 Yes Chain of custody present? Yes √ No □ Chain of custody signed when relinquished and received? Yes √ No 🔲 Chain of custody agrees with sample labels? Yes √ No 🔲 Samples in proper container/bottle? Yes √ No □ Sample containers intact? Yes √ No 🗌 Sufficient sample volume for indicated test? Yes √ No 🗌 All samples received within holding time? Yes √ No 🗌 (Exclude analyses that are considered field parameters such as pH, DO, Res Cl, Sulfite, Ferrous Iron, etc.) Temp Blank received in all shipping container(s)/cooler(s)? Not Applicable Yes √ No 🔲 Container/Temp Blank temperature: °C Melted Ice Water - VOA vials have zero headspace? No VOA vials submitted Yes No □  $\overline{\mathsf{V}}$ Water - pH acceptable upon receipt? Yes √ No 🗌 Not Applicable

# **Standard Reporting Procedures:**

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

#### **Contact and Corrective Action Comments:**

The temperature of the sample(s) for shipping container 1 was 2.3°C, shipping container 2 was 2.1°C and shipping container 3 was 1.9°C.

Radiochemistry analysis on separate work order per Shari Endy, Energy Laboratories Project Manager.

| <u> </u> |  |
|----------|--|
| FER      |  |

Trust our People, Trust our Data.

# Chain of Custody & Analytical Request Record

| Account Information (Billing information)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Report Information               | Report Information (if different than Account Information) |            | Comments                              | <b>9</b> 2                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------|------------|---------------------------------------|--------------------------------------------------------------------------|
| Company/Name AME Taste Wheeler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Company/Name                     |                                                            |            | =                                     | 7 7                                                                      |
| 18/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Contact                          |                                                            |            | <u>ğ</u>                              | Greg (7                                                                  |
| Phone 518-241-2310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Phone                            |                                                            |            | Q'S                                   | AUCSTONS                                                                 |
| Mailing Address 3755 S Capital of 12 thy 375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mailing Address                  |                                                            |            |                                       | 2                                                                        |
| tate, Zip ASIM TX 78704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | City, State, Zip                 |                                                            |            | MWM-1                                 | 7                                                                        |
| Email Great Serby a greet in an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Email                            |                                                            |            | Ş                                     |                                                                          |
| Carland Copy Vernail Receive Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Receive Report ☐Hard Copy ☐Email | <b>□E</b> mail                                             |            | 1                                     | Prosible 1150 Hz                                                         |
| Purchase Order Quote 3997 Bottle Order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Special Report/Formats:          | □ EDD/EDT (contect laboratory) □ Other                     |            | *Frill                                | Tay A                                                                    |
| Project Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Matrix Codes                     | Analysis Requested                                         | 7          |                                       |                                                                          |
| Project Name, PWSID, Permit, etc. TMPA GC Mine CC R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A - Air<br>W - Water             |                                                            |            |                                       | All tumaround times are standard unless marked as                        |
| , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                                                            |            |                                       | RUSH.                                                                    |
| EPA/State Compl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V - Vegetation B - Bioassay      |                                                            |            |                                       | Energy Laboratories<br>MUST be contacted prior to                        |
| MINING CLIENTS, please indicate sample type. *If ore has been processed or refined, call before sending.  □ Byproduct 11 (e)2 material □ Unprocessed ore (NOT ground or refined)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | O- Other DW - Drinking           |                                                            |            | ttache                                | RUSH sample submittal for charges and scheduling – See Instructions Page |
| Collection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Matrix                           |                                                            |            | A 6                                   |                                                                          |
| Date Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Containers (See Codes Above)     |                                                            |            | es<br>FAT                             | Laboratory Des Chris                                                     |
| 1 MNW-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ×<br>3                           |                                                            |            |                                       | A1701                                                                    |
| 2 MNW-17 6-27-17 1545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ×                                |                                                            |            |                                       |                                                                          |
| 3 MNW-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | * \                              |                                                            |            |                                       | 100-                                                                     |
| 4 KP MW-6 6-28-1/1030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X                                |                                                            |            |                                       | 50C-                                                                     |
| 5 SFL MW-7 6-28-17 1350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | × X                              |                                                            |            |                                       | 1000                                                                     |
| 6 MWW-15 6-8-1 (340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                | -                                                          |            |                                       | 900-                                                                     |
| 11-N-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46.9 ×                           |                                                            |            |                                       | 700-                                                                     |
| <-SCM-062717 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X                                |                                                            |            |                                       | 800-                                                                     |
| * EQBI Sem-06-28-17 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \<br>\                           |                                                            |            |                                       | 7009                                                                     |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | * <del>*</del> +                 |                                                            |            |                                       | 0/0-//                                                                   |
| T Relinguished by (print) Macon 628-17 1630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ramp C. Morn                     | Received by (print)                                        | Date/Time  | Signature                             | line (                                                                   |
| ed Relinquiated by (print)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  | Received by Laboratory (print)                             | L1/16/11/2 | O O Signatur                          | 2                                                                        |
| A STATE OF THE STA | LV SOM                           |                                                            | -          | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |                                                                          |
| Simples By Cooler IC(s) Custody Seals Intact Receipt lemp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Temp Blank On Ice                | Payment Type<br>CC Cash Check                              | Amount     | Receipt No                            | Receipt Number (cashehack only)                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                                            |            |                                       |                                                                          |

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

ELI-COC-12/16 v.1

Page 30 of 30

# **ANALYTICAL SUMMARY REPORT**

July 31, 2017

Texas Municipal Power Agency PO Box 7000 Bryan, TX 77805-7000

Work Order: B17062770 Quote ID: B3997 - CCRR

Project Name: TMPA GC Mine CCR

Energy Laboratories Inc Billings MT received the following 10 samples for Texas Municipal Power Agency on 6/29/2017 for analysis.

| Lab ID        | Client Sample ID | Collect Dat | e Receive Date   | e Matrix       | Test                                                              |
|---------------|------------------|-------------|------------------|----------------|-------------------------------------------------------------------|
| B17062770-001 | MNW-18           | 06/27/17 1  | 14:15 06/29/17   | Ground Water   | Radium 226 + Radium 228<br>Radium 226, Total<br>Radium 228, Total |
| B17062770-005 | SFL MW-7         | 06/28/17 1  | 12:50 06/29/17   | Ground Water   | Same As Above                                                     |
| B17062770-006 | MNW-15           | 06/28/17    | 7 13:40 06/29/17 | Ground Water   | Same As Above                                                     |
| B17062770-008 | EQBK-SCM-062717  | 06/27/1     | 18:30 06/29/17   | Ground Water S | Same As Above                                                     |
| B17062770-009 | EQBK-SCM-062817  | 06/28/17    | 7 11:00 06/29/17 | Ground Water   | Same As Above                                                     |

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

**Report Date:** 07/31/17

**CLIENT:** Texas Municipal Power Agency

**Project:** TMPA GC Mine CCR

Work Order: B17062770 CASE NARRATIVE

Tests associated with analyst identified as ELI-CA were subcontracted to Energy Laboratories, PO Box 247, Casper, WY, EPA Number WY00002 and WY00937.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA GC Mine CCR Lab ID: B17062770-001 Client Sample ID: MNW-18

**Report Date:** 07/31/17 Collection Date: 06/27/17 14:15 DateReceived: 06/29/17

Matrix: Ground Water

| Analyses                              | Result L | Inite  | Qualifiers | RL   | MCL/<br>QCL | Method   | Analysis Date / By      |
|---------------------------------------|----------|--------|------------|------|-------------|----------|-------------------------|
| Allalyses                             | Result   | Jilits | Qualifiers | NL . | QCL         | Metriou  | Analysis Date / By      |
| RADIONUCLIDES - TOTAL                 |          |        |            |      |             |          |                         |
| Radium 226                            | 2.3 p    | oCi/L  |            |      |             | E903.0   | 07/18/17 12:24 / eli-ca |
| Radium 226 precision (±)              | 0.52 p   | oCi/L  |            |      |             | E903.0   | 07/18/17 12:24 / eli-ca |
| Radium 226 MDC                        | 0.15 p   | oCi/L  |            |      |             | E903.0   | 07/18/17 12:24 / eli-ca |
| Radium 228                            | 3.7 p    | oCi/L  |            |      |             | RA-05    | 07/13/17 14:11 / eli-ca |
| Radium 228 precision (±)              | 1.2 p    | oCi/L  |            |      |             | RA-05    | 07/13/17 14:11 / eli-ca |
| Radium 228 MDC                        | 1.4 p    | oCi/L  |            |      |             | RA-05    | 07/13/17 14:11 / eli-ca |
| Radium 226 + Radium 228               | 6.1 p    | oCi/L  |            |      |             | A7500-RA | 07/24/17 16:15 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.3 p    | oCi/L  |            |      |             | A7500-RA | 07/24/17 16:15 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.4 p    | oCi/L  |            |      |             | A7500-RA | 07/24/17 16:15 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA GC Mine CCR
Lab ID: B17062770-005
Client Sample ID: SFL MW-7

**Report Date:** 07/31/17 **Collection Date:** 06/28/17 12:50 **DateReceived:** 06/29/17

Matrix: Ground Water

| Analyses                              | Result Ur | nits | Qualifiers | RL | MCL/<br>QCL | Method   | Analysis Date / By      |
|---------------------------------------|-----------|------|------------|----|-------------|----------|-------------------------|
| RADIONUCLIDES - TOTAL                 |           |      |            |    |             |          |                         |
| Radium 226                            | 1.1 pC    | Ci/L |            |    |             | E903.0   | 07/18/17 14:12 / eli-ca |
| Radium 226 precision (±)              | 0.28 pC   | Ci/L |            |    |             | E903.0   | 07/18/17 14:12 / eli-ca |
| Radium 226 MDC                        | 0.15 pC   | Ci/L |            |    |             | E903.0   | 07/18/17 14:12 / eli-ca |
| Radium 228                            | 1.5 pC    | Ci/L |            |    |             | RA-05    | 07/13/17 14:10 / eli-ca |
| Radium 228 precision (±)              | 0.89 pC   | Ci/L |            |    |             | RA-05    | 07/13/17 14:10 / eli-ca |
| Radium 228 MDC                        | 1.4 pC    | Ci/L |            |    |             | RA-05    | 07/13/17 14:10 / eli-ca |
| Radium 226 + Radium 228               | 2.6 pC    | Ci/L |            |    |             | A7500-RA | 07/24/17 16:15 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 0.9 pC    | Ci/L |            |    |             | A7500-RA | 07/24/17 16:15 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.4 pC    | Ci/L |            |    |             | A7500-RA | 07/24/17 16:15 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.
ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA GC Mine CCR Lab ID: B17062770-006 Client Sample ID: MNW-15

**Report Date:** 07/31/17 Collection Date: 06/28/17 13:40 DateReceived: 06/29/17

Matrix: Ground Water

| Analyses                              | Result | Units | Qualifiers | RL | MCL/<br>QCL | Method   | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|----|-------------|----------|-------------------------|
| RADIONUCLIDES - TOTAL                 |        |       |            |    |             |          |                         |
| Radium 226                            | 0.43   | pCi/L |            |    |             | E903.0   | 07/18/17 14:12 / eli-ca |
| Radium 226 precision (±)              | 0.15   | pCi/L |            |    |             | E903.0   | 07/18/17 14:12 / eli-ca |
| Radium 226 MDC                        | 0.15   | pCi/L |            |    |             | E903.0   | 07/18/17 14:12 / eli-ca |
| Radium 228                            | 1.1    | pCi/L | U          |    |             | RA-05    | 07/13/17 14:10 / eli-ca |
| Radium 228 precision (±)              | 0.92   | pCi/L |            |    |             | RA-05    | 07/13/17 14:10 / eli-ca |
| Radium 228 MDC                        | 1.4    | pCi/L |            |    |             | RA-05    | 07/13/17 14:10 / eli-ca |
| Radium 226 + Radium 228               | 1.5    | pCi/L |            |    |             | A7500-RA | 07/24/17 16:15 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 0.9    | pCi/L |            |    |             | A7500-RA | 07/24/17 16:15 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.5    | pCi/L |            |    |             | A7500-RA | 07/24/17 16:15 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA GC Mine CCR Lab ID: B17062770-008 Client Sample ID: EQBK-SCM-062717

**Report Date:** 07/31/17 Collection Date: 06/27/17 18:30 DateReceived: 06/29/17

Matrix: Ground Water

| Analyses                              | Result U | Inits | Qualifiers | RL | MCL/<br>QCL | Method   | Analysis Date / By      |
|---------------------------------------|----------|-------|------------|----|-------------|----------|-------------------------|
| RADIONUCLIDES - TOTAL                 |          |       |            |    |             |          |                         |
| Radium 226                            | 0.06 p   | Ci/L  | U          |    |             | E903.0   | 07/18/17 14:12 / eli-ca |
| Radium 226 precision (±)              | 0.10 p   | Ci/L  |            |    |             | E903.0   | 07/18/17 14:12 / eli-ca |
| Radium 226 MDC                        | 0.16 p   | Ci/L  |            |    |             | E903.0   | 07/18/17 14:12 / eli-ca |
| Radium 228                            | 2.2 p    | Ci/L  |            |    |             | RA-05    | 07/13/17 14:10 / eli-ca |
| Radium 228 precision (±)              | 1.1 p    | Ci/L  |            |    |             | RA-05    | 07/13/17 14:10 / eli-ca |
| Radium 228 MDC                        | 1.5 p    | Ci/L  |            |    |             | RA-05    | 07/13/17 14:10 / eli-ca |
| Radium 226 + Radium 228               | 2.3 p    | Ci/L  |            |    |             | A7500-RA | 07/24/17 16:15 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.1 p    | Ci/L  |            |    |             | A7500-RA | 07/24/17 16:15 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.5 p    | Ci/L  |            |    |             | A7500-RA | 07/24/17 16:15 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA GC Mine CCR Lab ID: B17062770-009 Client Sample ID: EQBK-SCM-062817

**Report Date:** 07/31/17 Collection Date: 06/28/17 11:00 DateReceived: 06/29/17

Matrix: Ground Water

| Analyses                              | Result | Units | Qualifiers | RL | MCL/<br>QCL | Method   | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|----|-------------|----------|-------------------------|
| RADIONUCLIDES - TOTAL                 |        |       |            |    |             |          |                         |
| Radium 226                            | 0.09   | pCi/L | U          |    |             | E903.0   | 07/18/17 14:12 / eli-ca |
| Radium 226 precision (±)              | 0.11   | pCi/L |            |    |             | E903.0   | 07/18/17 14:12 / eli-ca |
| Radium 226 MDC                        | 0.16   | pCi/L |            |    |             | E903.0   | 07/18/17 14:12 / eli-ca |
| Radium 228                            | 1.2    | pCi/L | U          |    |             | RA-05    | 07/13/17 14:10 / eli-ca |
| Radium 228 precision (±)              | 1.1    | pCi/L |            |    |             | RA-05    | 07/13/17 14:10 / eli-ca |
| Radium 228 MDC                        | 1.5    | pCi/L |            |    |             | RA-05    | 07/13/17 14:10 / eli-ca |
| Radium 226 + Radium 228               | 1.3    | pCi/L | U          |    |             | A7500-RA | 07/24/17 16:15 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.1    | pCi/L |            |    |             | A7500-RA | 07/24/17 16:15 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.5    | pCi/L |            |    |             | A7500-RA | 07/24/17 16:15 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.



Prepared by Casper, WY Branch

Client:Texas Municipal Power AgencyReport Date:07/31/17Project:TMPA GC Mine CCRWork Order:B17062770

| Analyte                   | Result         | Units           | RL % | REC | Low Limit | High L  | imit | RPD | RPDLimit  | Qual       |
|---------------------------|----------------|-----------------|------|-----|-----------|---------|------|-----|-----------|------------|
| Method: E903.0            |                |                 |      |     |           |         |      |     | Batch: RA | 226-8551   |
| Lab ID: LCS-RA226-8551    | Laboratory Cor | trol Sample     |      |     | Run: G542 | M-2_170 | 703A |     | 07/18     | /17 12:24  |
| Radium 226                | 8.5            | pCi/L           |      | 84  | 80        |         | 120  |     |           |            |
| Lab ID: MB-RA226-8551     | Method Blank   |                 |      |     | Run: G542 | M-2_170 | 703A |     | 07/18     | 3/17 12:24 |
| Radium 226                | 0.1            | pCi/L           |      |     |           |         |      |     |           | U          |
| Radium 226 precision (±)  | 0.1            | pCi/L           |      |     |           |         |      |     |           |            |
| Radium 226 MDC            | 0.2            | pCi/L           |      |     |           |         |      |     |           |            |
| Lab ID: C17060927-001CMS  | Sample Matrix  | Spike           |      |     | Run: G542 | M-2_170 | 703A |     | 07/18     | 3/17 12:24 |
| Radium 226                | 20             | pCi/L           |      | 82  | 70        |         | 130  |     |           |            |
| Lab ID: C17060927-001CMSD | Sample Matrix  | Spike Duplicate |      |     | Run: G542 | M-2_170 | 703A |     | 07/18     | /17 12:24  |
| Radium 226                | 20             | pCi/L           |      | 86  | 70        |         | 130  | 4.8 | 20        |            |
| Method: E903.0            |                |                 |      |     |           |         |      |     | Batch: RA | 226-8558   |
| Lab ID: LCS-RA226-8558    | Laboratory Cor | trol Sample     |      |     | Run: G542 | M-2_170 | 712B |     | 07/24     | /17 08:57  |
| Radium 226                | 9.7            | pCi/L           |      | 96  | 80        |         | 120  |     |           |            |
| Lab ID: MB-RA226-8558     | Method Blank   |                 |      |     | Run: G542 | M-2_170 | 712B |     | 07/24     | /17 08:57  |
| Radium 226                | 0.1            | pCi/L           |      |     |           |         |      |     |           | U          |
| Radium 226 precision (±)  | 0.1            | pCi/L           |      |     |           |         |      |     |           |            |
| Radium 226 MDC            | 0.2            | pCi/L           |      |     |           |         |      |     |           |            |
| Lab ID: C17060841-002DMS  | Sample Matrix  | Spike           |      |     | Run: G542 | M-2_170 | 712B |     | 07/24     | /17 08:58  |
| Radium 226                | 21             | pCi/L           |      | 103 | 70        |         | 130  |     |           |            |
| Lab ID: C17060841-002DMSD | Sample Matrix  | Spike Duplicate |      |     | Run: G542 | M-2_170 | 712B |     | 07/24     | /17 08:58  |
| Radium 226                | 19             | pCi/L           |      | 92  | 70        |         | 130  | 11  | 20        |            |

#### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.



Prepared by Casper, WY Branch

Client:Texas Municipal Power AgencyReport Date: 07/31/17Project:TMPA GC Mine CCRWork Order: B17062770

| Analyte                    | Result Units                  | RL %REC Low Limit High Limit RPD RPI | OLimit Qual      |
|----------------------------|-------------------------------|--------------------------------------|------------------|
| Method: RA-05              |                               | Ba                                   | atch: RA228-5535 |
| Lab ID: LCS-228-RA226-8551 | Laboratory Control Sample     | Run: TENNELEC-3_170703A              | 07/13/17 12:24   |
| Radium 228                 | 9.5 pCi/L                     | 89 80 120                            |                  |
| Lab ID: MB-RA226-8551      | Method Blank                  | Run: TENNELEC-3_170703A              | 07/13/17 12:24   |
| Radium 228                 | 0.5 pCi/L                     | _                                    | U                |
| Radium 228 precision (±)   | 0.8 pCi/L                     |                                      |                  |
| Radium 228 MDC             | 1 pCi/L                       |                                      |                  |
| Lab ID: B17062770-010CMS   | Sample Matrix Spike           | Run: TENNELEC-3_170703A              | 07/13/17 12:24   |
| Radium 228                 | 29 pCi/L                      | 102 70 130                           |                  |
| Lab ID: B17062770-010CMSD  | Sample Matrix Spike Duplicate | Run: TENNELEC-3_170703A              | 07/13/17 12:24   |
| Radium 228                 | 31 pCi/L                      | 111 70 130 6.7                       | 20               |
| Method: RA-05              |                               | Ва                                   | atch: RA228-5541 |
| Lab ID: LCS-228-RA226-8558 | Laboratory Control Sample     | Run: TENNELEC-3_170712A              | 07/19/17 11:54   |
| Radium 228                 | 8.9 pCi/L                     | 87 80 <u>-</u><br>120                |                  |
| Lab ID: MB-RA226-8558      | Method Blank                  | Run: TENNELEC-3_170712A              | 07/19/17 11:54   |
| Radium 228                 | 0.2 pCi/L                     |                                      | U                |
| Radium 228 precision (±)   | 0.6 pCi/L                     |                                      |                  |
| Radium 228 MDC             | 1 pCi/L                       |                                      |                  |
| Lab ID: C17060841-003DMS   | Sample Matrix Spike           | Run: TENNELEC-3_170712A              | 07/19/17 13:27   |
| Radium 228                 | 21 pCi/L                      | 97 70 130                            |                  |
| Lab ID: C17060841-003DMSD  | Sample Matrix Spike Duplicate | Run: TENNELEC-3_170712A              | 07/19/17 13:27   |
| Radium 228                 | 21 pCi/L                      | 98 70 130 0.7                        | 20               |
| Method: RA-05              |                               | Bate                                 | ch: RA228-5544R  |
| Lab ID: LCS-228-RA226-8564 | Laboratory Control Sample     | Run: TENNELEC-3_170714C              | 07/27/17 11:41   |
| Radium 228                 | 9.8 pCi/L                     | 95 80 120                            |                  |
| Lab ID: MB-RA226-8564      | Method Blank                  | Run: TENNELEC-3_170714C              | 07/27/17 11:41   |
| Radium 228                 | 0.3 pCi/L                     | <del>-</del>                         | U                |
| Radium 228 precision (±)   | 0.8 pCi/L                     |                                      |                  |
| Radium 228 MDC             | 1 pCi/L                       |                                      |                  |
| Lab ID: C17060746-002CMS   | Sample Matrix Spike           | Run: TENNELEC-3_170714C              | 07/27/17 11:41   |
| Radium 228                 | 18 pCi/L                      | 80 70 130                            |                  |
| Lab ID: C17060746-002CMSD  | Sample Matrix Spike Duplicate | Run: TENNELEC-3_170714C              | 07/27/17 11:41   |
| Radium 228                 | 18 pCi/L                      | 82 70 <u>130</u> 1.1                 | 20               |
|                            |                               |                                      |                  |

#### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

# **Work Order Receipt Checklist**

# **Texas Municipal Power Agency**

Login completed by: Gina McCartney

# B17062770

Date Received: 6/29/2017

| 0 1                                                                                          | •                               |               |      |                        |
|----------------------------------------------------------------------------------------------|---------------------------------|---------------|------|------------------------|
| Reviewed by:                                                                                 | BL2000\tedwards                 |               | Re   | ceived by: rs4         |
| Reviewed Date:                                                                               | 7/5/2017                        |               | Car  | rier name: FedEx       |
| Shipping container/cooler in                                                                 | good condition?                 | Yes [√]       | No 🖂 | Not Present ☐          |
| •                                                                                            |                                 | _             | _    |                        |
| Custody seals intact on all si                                                               | nipping container(s)/cooler(s)? | Yes 🔽         | No 🗌 | Not Present            |
| Custody seals intact on all sa                                                               | ample bottles?                  | Yes           | No 🗌 | Not Present ✓          |
| Chain of custody present?                                                                    |                                 | Yes 🗸         | No 🗌 |                        |
| Chain of custody signed whe                                                                  | en relinquished and received?   | Yes 🔽         | No 🗌 |                        |
| Chain of custody agrees with                                                                 | sample labels?                  | Yes ✓         | No 🗌 |                        |
| Samples in proper container                                                                  | /bottle?                        | Yes √         | No 🗌 |                        |
| Sample containers intact?                                                                    |                                 | Yes ✓         | No 🗌 |                        |
| Sufficient sample volume for                                                                 | indicated test?                 | Yes ✓         | No 🗌 |                        |
| All samples received within h<br>(Exclude analyses that are or<br>such as pH, DO, Res CI, Su | onsidered field parameters      | Yes √         | No 🗌 |                        |
| Temp Blank received in all sl                                                                | nipping container(s)/cooler(s)? | Yes ✓         | No 🗌 | Not Applicable         |
| Container/Temp Blank tempe                                                                   | erature:                        | °C Melted Ice |      |                        |
| Water - VOA vials have zero                                                                  | headspace?                      | Yes           | No 🗌 | No VOA vials submitted |
| Water - pH acceptable upon                                                                   | receipt?                        | Yes √         | No 🗌 | Not Applicable         |
|                                                                                              |                                 |               |      |                        |

# **Standard Reporting Procedures:**

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

#### **Contact and Corrective Action Comments:**

The Temperature Blank temperature for shipping container 1 was 2.3°C, shipping container 2 was 2.1°C and shipping container 3 was 1.9°C.

| 0      | toor People, Past our Deta. |
|--------|-----------------------------|
| ENERGY | Trust our Propie.           |

# Chain of Custody & Analytical Request Record

| Account Information (Billing Information)                               | Report Information (if different than Account Information) | (comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9                                                    |
|-------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Companyithems AMEL Taste Whop el                                        | Company/Name                                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/2 Ed Fr                                            |
| 12                                                                      | Contact                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • 1                                                  |
| Phone 512-341-3310                                                      | Phone                                                      | arv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - Cars 1.970                                         |
| 755 Scorblot F. H.                                                      | A 27 c Melling Address                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                   |
| 78704 °                                                                 | City, Starts, Zip                                          | TANK TO THE TANK T | of the Region Just                                   |
| Emal Greg. Selpil@grectu.com,                                           | Emai                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3. nm                                                |
| Cartard copy Vernal                                                     | mail Receive Report CHard Copy ClEmail                     | TIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | るがあれてお                                               |
| Purchase Order Quote 3997 Bottle Order                                  | Special Report Formula:                                    | □ Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 366+ 136 mily 201 + 236                              |
| Project Information                                                     | веро                                                       | Analysis Requested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | One or self has                                      |
| Project Name, PMSID, Permit, etc. TMPA GC Mine CC                       | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | standard unless marked 85                            |
| r Phone                                                                 | Solids<br>Solids                                           | 1 Ovorille                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Energy Laboratories                                  |
| Sample Orgin State                                                      | _                                                          | 10 10 10 NOV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MUST be contacted prior to RUSH sample submittal for |
| ar se                                                                   | 100 o o o o o o o o o o o o o o o o o o                    | CANTO WOLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | charges and scheduling<br>See Instructions Page      |
| ☐ Byproduct 11 (e)2 material ☐ Unprocessed one (NOT ground or refined)* | Ī                                                          | トマーナでによくも                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |
| Collectio                                                               | Containing (See Code                                       | → 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |
| 1 MAK - (8                                                              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                      | B17063770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18-00-00/8-07-18-                                    |
| 17 6-37-11                                                              | 45 3                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 777002                                               |
| 3 MNW-16 6-27-11/17                                                     | ₹<br>×                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500-                                                 |
| 1-10-XE-9                                                               | 30 # X                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500_                                                 |
| 2-MW-7                                                                  | X 4                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sor                                                  |
| 6 MMW-15                                                                | × + 0+                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2006                                                 |
| 7 MNW-11                                                                | 10 Hea   X                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 700-                                                 |
| · tob(-5cm-062717 6-37-17 183                                           | × + &                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2000                                                 |
| 8 EABI - San - abalit 10                                                | X                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                  |
| 10 Dup-1 627-17                                                         | × + +                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N-O/D                                                |
| Record MUST Settly of Corty Macon 628-17-1630                           | Ramp ( North                                               | DeteTime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Signature                                            |
| Reinquiriped by (print)                                                 | Received by La                                             | (print) (5/29/17 10:0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |
| Shipped By Cooler (D(s) Custody Saals Intact Rec                        | Temp Blank On Ice Pay                                      | Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Receipt Number (cashelack only)                      |
| Z >> 00 C Z >>                                                          | YN YN CC Cash                                              | Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      |

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

EU-COC-12/16 v.1

# **ANALYTICAL SUMMARY REPORT**

December 21, 2017

Texas Municipal Power Agency PO Box 7000 Bryan, TX 77805-7000

Work Order: B17071798

Project Name: CCRR

analysis.

Energy Laboratories Inc Billings MT received the following 10 samples for Texas Municipal Power Agency on 7/21/2017 for

Quote ID: B3997

| Lab ID        | Client Sample ID | Collect Date Receive Date | Matrix       | Test                                                                                                                                                                                                      |
|---------------|------------------|---------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B17071798-001 | MNW-18           | 07/19/17 12:15 07/21/17   | Ground Water | Metals by ICP/ICPMS, Tot. Rec. Mercury, Total Recoverable Fluoride Anions by Ion Chromatography pH Metals Preparation by EPA 200.2 Digestion, Mercury by CVAA Preparation for TDS Solids, Total Dissolved |

| B17071798-005 | EQBK/SCM/071917 | 07/19/17 17:00 07/21/17 | Ground Water Same As Above |
|---------------|-----------------|-------------------------|----------------------------|
| B17071798-006 | MNW-15          | 07/20/17 10:30 07/21/17 | Ground Water Same As Above |
| B17071798-007 | SFL MW-7        | 07/20/17 11:45 07/21/17 | Ground Water Same As Above |
|               |                 |                         |                            |
| B17071798-009 | EQBK/SCM/072017 | 07/20/17 12:25 07/21/17 | Ground Water Same As Above |
| B17071798-010 | Dup-1           | 07/19/17 0:00 07/21/17  | Ground Water Same As Above |

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

**CCRR** 

Texas Municipal Power Agency

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

**Revised Date:** 12/21/17 **Report Date:** 08/09/17

Work Order: B17071798 CASE NARRATIVE

Revised Report 12/21/2017

**CLIENT:** 

Project:

The reporting limits for the following analytes were lowered per request from Greg Seifert.

Analyte Original Reporting Limit (mg/L) Revised Reporting limit (mg/L)

 Antimony
 0.05
 0.006

 Cadmium
 0.01
 0.005

 Thallium
 0.01
 0.002

The report has been revised and replaces any previously issued report in its entirety.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17071798-001

Client Sample ID: MNW-18

Revised Date: 12/21/17 **Report Date:** 08/09/17 Collection Date: 07/19/17 12:15

DateReceived: 07/21/17

Matrix: Ground Water

|                                     |        |       |            |       | MCL/ |           |                      |
|-------------------------------------|--------|-------|------------|-------|------|-----------|----------------------|
| Analyses                            | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By   |
| MAJOR IONS                          |        |       |            |       |      |           |                      |
| Calcium                             | 440    | mg/L  |            | 1     |      | E200.7    | 07/29/17 01:13 / slf |
| Magnesium                           | 71     | -     |            | 1     |      | E200.7    | 07/29/17 01:13 / slf |
| Potassium                           | 37     | Ū     |            | 1     |      | E200.7    | 07/28/17 04:57 / slf |
| Sodium                              | 742    | mg/L  | D          | 4     |      | E200.7    | 07/29/17 01:13 / slf |
| PHYSICAL PROPERTIES                 |        |       |            |       |      |           |                      |
| pH                                  | 7.0    | s.u.  | Н          | 0.1   |      | A4500-H B | 07/21/17 14:46 / pjw |
| Solids, Total Dissolved TDS @ 180 C | 4050   | mg/L  | D          | 40    |      | A2540 C   | 07/21/17 15:28 / mnh |
| INORGANICS                          |        |       |            |       |      |           |                      |
| Chloride                            | 544    | mg/L  | D          | 6     |      | E300.0    | 07/28/17 03:54 / cjm |
| Sulfate                             | 2150   | mg/L  | D          | 20    |      | E300.0    | 07/28/17 03:54 / cjm |
| Fluoride                            | 0.2    | mg/L  |            | 0.1   |      | A4500-F C | 07/24/17 09:33 / bas |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |      |           |                      |
| Antimony                            | ND     | mg/L  |            | 0.006 |      | E200.8    | 07/26/17 06:04 / jpv |
| Arsenic                             | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/26/17 06:04 / jpv |
| Barium                              | 0.06   | mg/L  |            | 0.01  |      | E200.8    | 07/26/17 06:04 / jpv |
| Beryllium                           | ND     | mg/L  |            | 0.001 |      | E200.8    | 07/26/17 06:04 / jpv |
| Boron                               | 0.44   | mg/L  |            | 0.05  |      | E200.8    | 07/26/17 06:04 / jpv |
| Cadmium                             | ND     | mg/L  |            | 0.005 |      | E200.8    | 07/26/17 06:04 / jpv |
| Chromium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/26/17 06:04 / jpv |
| Cobalt                              | ND     | mg/L  |            | 0.02  |      | E200.8    | 07/26/17 06:04 / jpv |
| Lead                                | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/26/17 06:04 / jpv |
| Lithium                             | 0.44   | mg/L  | D          | 0.04  |      | E200.7    | 07/29/17 01:13 / slf |
| Mercury                             | ND     | mg/L  |            | 0.001 |      | E245.1    | 07/25/17 13:00 / jh  |
| Molybdenum                          | ND     | mg/L  |            | 0.05  |      | E200.8    | 07/31/17 20:57 / rlh |
| Selenium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/26/17 06:04 / jpv |
| Thallium                            | ND     | mg/L  |            | 0.002 |      | E200.8    | 07/26/17 06:04 / jpv |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17071798-005 Client Sample ID: EQBK/SCM/071917

Revised Date: 12/21/17 **Report Date:** 08/09/17 Collection Date: 07/19/17 17:00 DateReceived: 07/21/17

Matrix: Ground Water

|                                     |        |       |            |       | MCL/ |           |                      |
|-------------------------------------|--------|-------|------------|-------|------|-----------|----------------------|
| Analyses                            | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By   |
| MAJOR IONS                          |        |       |            |       |      |           |                      |
| Calcium                             | ND     | mg/L  |            | 1     |      | E200.7    | 07/29/17 01:40 / slf |
| Magnesium                           | ND     | mg/L  |            | 1     |      | E200.7    | 07/29/17 01:40 / slf |
| Potassium                           | ND     | mg/L  |            | 1     |      | E200.7    | 07/28/17 05:25 / slf |
| Sodium                              | ND     | Ū     |            | 1     |      | E200.7    | 07/29/17 01:40 / slf |
| Couldin                             | 112    | mg/ = |            |       |      | 2200.7    | 01/20/11 01:10 / 01  |
| PHYSICAL PROPERTIES                 |        |       |            |       |      |           |                      |
| pH                                  | 6.6    | s.u.  | Н          | 0.1   |      | A4500-H B | 07/21/17 14:57 / pjw |
| Solids, Total Dissolved TDS @ 180 C | ND     | mg/L  |            | 10    |      | A2540 C   | 07/21/17 15:30 / mnh |
| INORGANICS                          |        |       |            |       |      |           |                      |
| Chloride                            | ND     | mg/L  |            | 1     |      | E300.0    | 07/28/17 05:12 / cjm |
| Sulfate                             | ND     | mg/L  |            | 1     |      | E300.0    | 07/28/17 05:12 / cjm |
| Fluoride                            | ND     | mg/L  |            | 0.1   |      | A4500-F C | 07/24/17 09:50 / bas |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |      |           |                      |
| Antimony                            | ND     | mg/L  |            | 0.006 |      | E200.8    | 07/26/17 06:35 / jpv |
| Arsenic                             | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/26/17 06:35 / jpv |
| Barium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/26/17 06:35 / jpv |
| Beryllium                           | ND     | mg/L  |            | 0.001 |      | E200.8    | 07/26/17 06:35 / jpv |
| Boron                               | ND     | mg/L  |            | 0.05  |      | E200.8    | 07/26/17 06:35 / jpv |
| Cadmium                             | ND     | mg/L  |            | 0.005 |      | E200.8    | 07/26/17 06:35 / jpv |
| Chromium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/26/17 06:35 / jpv |
| Cobalt                              | ND     | mg/L  |            | 0.02  |      | E200.8    | 07/26/17 06:35 / jpv |
| Lead                                | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/26/17 06:35 / jpv |
| Lithium                             | ND     | mg/L  |            | 0.01  |      | E200.7    | 07/29/17 01:40 / slf |
| Mercury                             | ND     | mg/L  |            | 0.001 |      | E245.1    | 07/25/17 13:07 / jh  |
| Molybdenum                          | ND     | mg/L  |            | 0.05  |      | E200.7    | 07/29/17 01:40 / slf |
| Selenium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/26/17 06:35 / jpv |
| Thallium                            | ND     | mg/L  |            | 0.002 |      | E200.8    | 07/26/17 06:35 / jpv |
|                                     |        |       |            |       |      |           |                      |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17071798-006

Client Sample ID: MNW-15

Revised Date: 12/21/17 **Report Date:** 08/09/17 Collection Date: 07/20/17 10:30

DateReceived: 07/21/17

Matrix: Ground Water

|                                     |        |       |            |       | MCL/       |                          |
|-------------------------------------|--------|-------|------------|-------|------------|--------------------------|
| Analyses                            | Result | Units | Qualifiers | RL    | QCL Method | Analysis Date / By       |
| MAJOR IONS                          |        |       |            |       |            |                          |
| Calcium                             | 275    | mg/L  |            | 1     | E200.7     | 07/29/17 01:44 / slf     |
| Magnesium                           |        | mg/L  |            | 1     | E200.7     | 07/29/17 01:44 / slf     |
| Potassium                           | 27     | -     |            | 1     | E200.7     | 07/28/17 05:29 / slf     |
| Sodium                              | 446    | mg/L  | D          | 2     | E200.7     | 07/29/17 01:44 / slf     |
| PHYSICAL PROPERTIES                 |        |       |            |       |            |                          |
| рН                                  | 3.7    | s.u.  | Н          | 0.1   | A4500-     | H B 07/21/17 15:00 / pjw |
| Solids, Total Dissolved TDS @ 180 C | 2690   | mg/L  | D          | 40    | A2540      | C 07/21/17 15:30 / mnh   |
| INORGANICS                          |        |       |            |       |            |                          |
| Chloride                            | 704    | mg/L  | D          | 3     | E300.0     | 07/28/17 05:31 / cjm     |
| Sulfate                             | 1240   | mg/L  | D          | 9     | E300.0     | 07/28/17 05:31 / cjm     |
| Fluoride                            | 0.5    | mg/L  |            | 0.1   | A4500-     | F C 07/24/17 09:57 / bas |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |            |                          |
| Antimony                            | ND     | mg/L  |            | 0.006 | E200.8     | 07/26/17 06:38 / jpv     |
| Arsenic                             | ND     | mg/L  |            | 0.01  | E200.8     | 07/26/17 06:38 / jpv     |
| Barium                              | 0.02   | mg/L  |            | 0.01  | E200.8     | 07/26/17 06:38 / jpv     |
| Beryllium                           | 0.068  | mg/L  |            | 0.001 | E200.8     | 07/26/17 06:38 / jpv     |
| Boron                               | 9.38   | mg/L  |            | 0.05  | E200.7     | 07/29/17 01:44 / slf     |
| Cadmium                             | 0.091  | mg/L  |            | 0.005 | E200.8     | 07/26/17 06:38 / jpv     |
| Chromium                            | ND     | mg/L  |            | 0.01  | E200.8     | 07/26/17 06:38 / jpv     |
| Cobalt                              | 0.30   | mg/L  |            | 0.02  | E200.8     | 07/26/17 06:38 / jpv     |
| Lead                                | ND     | mg/L  |            | 0.01  | E200.8     | 07/26/17 06:38 / jpv     |
| Lithium                             | 0.06   | mg/L  | D          | 0.02  | E200.7     | 07/29/17 01:44 / slf     |
| Mercury                             | ND     | mg/L  |            | 0.001 | E245.1     | 07/25/17 13:09 / jh      |
| Molybdenum                          | ND     | mg/L  |            | 0.05  | E200.7     | 07/29/17 01:44 / slf     |
| Selenium                            | ND     | mg/L  |            | 0.01  | E200.8     | 08/09/17 12:35 / jpv     |
| Thallium                            | ND     | mg/L  |            | 0.002 | E200.8     | 07/26/17 06:38 / jpv     |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17071798-007 Client Sample ID: SFL MW-7

Revised Date: 12/21/17 **Report Date:** 08/09/17 Collection Date: 07/20/17 11:45

> DateReceived: 07/21/17 Matrix: Ground Water

|                                     |        |       |            |       | MCL/ |           |                      |
|-------------------------------------|--------|-------|------------|-------|------|-----------|----------------------|
| Analyses                            | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By   |
| MAJOR IONS                          |        |       |            |       |      |           |                      |
| Calcium                             | 664    | mg/L  |            | 1     |      | E200.7    | 07/29/17 01:54 / slf |
| Magnesium                           | 104    | mg/L  |            | 1     |      | E200.7    | 07/29/17 01:54 / slf |
| Potassium                           | 47     | mg/L  |            | 1     |      | E200.7    | 07/28/17 05:39 / slf |
| Sodium                              | 1270   | mg/L  | D          | 4     |      | E200.7    | 07/29/17 01:54 / slf |
| PHYSICAL PROPERTIES                 |        |       |            |       |      |           |                      |
| рН                                  | 6.7    | s.u.  | Н          | 0.1   |      | A4500-H B | 07/21/17 15:05 / pjw |
| Solids, Total Dissolved TDS @ 180 C | 6640   | mg/L  | D          | 100   |      | A2540 C   | 07/21/17 15:30 / mnh |
| INORGANICS                          |        |       |            |       |      |           |                      |
| Chloride                            | 2780   | mg/L  | D          | 6     |      | E300.0    | 07/28/17 05:50 / cjm |
| Sulfate                             | 770    | mg/L  | D          | 20    |      | E300.0    | 07/28/17 05:50 / cjm |
| Fluoride                            | ND     | mg/L  |            | 0.1   |      | A4500-F C | 07/24/17 10:00 / bas |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |      |           |                      |
| Antimony                            | ND     | mg/L  |            | 0.006 |      | E200.8    | 07/26/17 06:40 / jpv |
| Arsenic                             | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/26/17 06:40 / jpv |
| Barium                              | 0.04   | mg/L  |            | 0.01  |      | E200.8    | 07/26/17 06:40 / jpv |
| Beryllium                           | ND     | mg/L  |            | 0.001 |      | E200.8    | 07/26/17 06:40 / jpv |
| Boron                               | 0.83   | mg/L  |            | 0.05  |      | E200.7    | 07/29/17 01:54 / slf |
| Cadmium                             | ND     | mg/L  |            | 0.005 |      | E200.8    | 07/26/17 06:40 / jpv |
| Chromium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/26/17 06:40 / jpv |
| Cobalt                              | ND     | mg/L  |            | 0.02  |      | E200.8    | 07/26/17 06:40 / jpv |
| Lead                                | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/26/17 06:40 / jpv |
| Lithium                             | 0.43   | mg/L  | D          | 0.04  |      | E200.7    | 07/29/17 01:54 / slf |
| Mercury                             | ND     | mg/L  |            | 0.001 |      | E245.1    | 07/25/17 13:11 / jh  |
| Molybdenum                          | ND     | mg/L  |            | 0.05  |      | E200.8    | 07/31/17 21:37 / rlh |
| Selenium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/31/17 21:37 / rlh |
| Thallium                            | ND     | mg/L  |            | 0.002 |      | E200.8    | 07/26/17 06:40 / jpv |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17071798-009 Client Sample ID: EQBK/SCM/072017

Revised Date: 12/21/17 **Report Date:** 08/09/17 Collection Date: 07/20/17 12:25 DateReceived: 07/21/17

Matrix: Ground Water

|                                     |        |       |            |       | MCL/ |           |                      |
|-------------------------------------|--------|-------|------------|-------|------|-----------|----------------------|
| Analyses                            | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By   |
| MAJOR IONS                          |        |       |            |       |      |           |                      |
| Calcium                             | ND     | mg/L  |            | 1     |      | E200.7    | 07/29/17 02:01 / slf |
| Magnesium                           | ND     | mg/L  |            | 1     |      | E200.7    | 07/29/17 02:01 / slf |
| Potassium                           | ND     | mg/L  |            | 1     |      | E200.7    | 07/28/17 05:46 / slf |
| Sodium                              | ND     | mg/L  |            | 1     |      | E200.7    | 07/29/17 02:01 / slf |
| PHYSICAL PROPERTIES                 |        |       |            |       |      |           |                      |
| pH                                  | 6.1    | s.u.  | Н          | 0.1   |      | A4500-H B | 07/21/17 15:10 / pjw |
| Solids, Total Dissolved TDS @ 180 C | ND     | mg/L  |            | 10    |      | A2540 C   | 07/21/17 15:31 / mnh |
| INORGANICS                          |        |       |            |       |      |           |                      |
| Chloride                            | ND     | mg/L  |            | 1     |      | E300.0    | 07/28/17 07:08 / cjm |
| Sulfate                             | ND     | mg/L  |            | 1     |      | E300.0    | 07/28/17 07:08 / cjm |
| Fluoride                            | ND     | mg/L  |            | 0.1   |      | A4500-F C | 07/24/17 10:13 / bas |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |      |           |                      |
| Antimony                            | ND     | mg/L  |            | 0.006 |      | E200.8    | 07/26/17 06:46 / jpv |
| Arsenic                             | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/26/17 06:46 / jpv |
| Barium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/26/17 06:46 / jpv |
| Beryllium                           | ND     | mg/L  |            | 0.001 |      | E200.8    | 07/26/17 06:46 / jpv |
| Boron                               | ND     | mg/L  |            | 0.05  |      | E200.8    | 07/26/17 06:46 / jpv |
| Cadmium                             | ND     | mg/L  |            | 0.005 |      | E200.8    | 07/26/17 06:46 / jpv |
| Chromium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/26/17 06:46 / jpv |
| Cobalt                              | ND     | mg/L  |            | 0.02  |      | E200.8    | 07/26/17 06:46 / jpv |
| Lead                                | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/26/17 06:46 / jpv |
| Lithium                             | ND     | mg/L  |            | 0.01  |      | E200.7    | 07/29/17 02:01 / slf |
| Mercury                             | ND     | mg/L  |            | 0.001 |      | E245.1    | 07/27/17 12:04 / jh  |
| Molybdenum                          | ND     | mg/L  |            | 0.05  |      | E200.7    | 07/29/17 02:01 / slf |
| Selenium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 07/26/17 06:46 / jpv |
| Thallium                            | ND     | mg/L  |            | 0.002 |      | E200.8    | 07/26/17 06:46 / jpv |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17071798-010

Client Sample ID: Dup-1

Revised Date: 12/21/17 **Report Date:** 08/09/17 Collection Date: 07/19/17 DateReceived: 07/21/17

Matrix: Ground Water

| Analyses                            | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By   |
|-------------------------------------|--------|-------|------------|-------|-------------|-----------|----------------------|
| MAJOR IONS                          |        |       |            |       |             |           |                      |
| Calcium                             | 443    | mg/L  |            | 1     |             | E200.7    | 07/29/17 02:05 / slf |
| Magnesium                           | 71     | mg/L  |            | 1     |             | E200.7    | 07/29/17 02:05 / slf |
| Potassium                           | 40     | mg/L  |            | 1     |             | E200.7    | 07/28/17 05:50 / slf |
| Sodium                              | 743    | mg/L  | D          | 4     |             | E200.7    | 07/29/17 02:05 / slf |
| PHYSICAL PROPERTIES                 |        |       |            |       |             |           |                      |
| рН                                  | 7.0    | s.u.  | Н          | 0.1   |             | A4500-H B | 07/21/17 15:12 / pjw |
| Solids, Total Dissolved TDS @ 180 C | 4020   | mg/L  | D          | 40    |             | A2540 C   | 07/21/17 15:31 / mnh |
| INORGANICS                          |        |       |            |       |             |           |                      |
| Chloride                            | 534    | mg/L  | D          | 6     |             | E300.0    | 07/28/17 08:26 / cjm |
| Sulfate                             | 2100   | mg/L  | D          | 20    |             | E300.0    | 07/28/17 08:26 / cjm |
| Fluoride                            | 0.1    | mg/L  |            | 0.1   |             | A4500-F C | 07/24/17 10:28 / bas |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |             |           |                      |
| Antimony                            | ND     | mg/L  |            | 0.006 |             | E200.8    | 07/26/17 06:48 / jpv |
| Arsenic                             | ND     | mg/L  |            | 0.01  |             | E200.8    | 07/26/17 06:48 / jpv |
| Barium                              | 0.06   | mg/L  |            | 0.01  |             | E200.8    | 07/26/17 06:48 / jpv |
| Beryllium                           | ND     | mg/L  |            | 0.001 |             | E200.8    | 07/26/17 06:48 / jpv |
| Boron                               | 0.49   | mg/L  |            | 0.05  |             | E200.8    | 07/26/17 06:48 / jpv |
| Cadmium                             | ND     | mg/L  |            | 0.005 |             | E200.8    | 07/26/17 06:48 / jpv |
| Chromium                            | ND     | mg/L  |            | 0.01  |             | E200.8    | 07/26/17 06:48 / jpv |
| Cobalt                              | ND     | mg/L  |            | 0.02  |             | E200.8    | 07/26/17 06:48 / jpv |
| Lead                                | ND     | mg/L  |            | 0.01  |             | E200.8    | 07/26/17 06:48 / jpv |
| Lithium                             | 0.44   | mg/L  | D          | 0.04  |             | E200.7    | 07/29/17 02:05 / slf |
| Mercury                             | ND     | mg/L  |            | 0.001 |             | E245.1    | 07/27/17 12:06 / jh  |
| Molybdenum                          | ND     | mg/L  |            | 0.05  |             | E200.8    | 07/31/17 21:44 / rlh |
| Selenium                            | ND     | mg/L  |            | 0.01  |             | E200.8    | 07/26/17 06:48 / jpv |
| Thallium                            | ND     | mg/L  |            | 0.002 |             | E200.8    | 07/26/17 06:48 / jpv |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

# **QA/QC Summary Report**

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:08/03/17Project:CCRRWork Order:B17071798

| Analyte                          | Count        | Result      | Units        | RL | %REC | Low Limit  | High Limit    | RPD | RPDLimit | Qual      |
|----------------------------------|--------------|-------------|--------------|----|------|------------|---------------|-----|----------|-----------|
| Method: A2540 C                  |              |             |              |    |      |            |               |     | Batcl    | h: 111818 |
| Lab ID: MB-111818                | Met          | thod Blank  |              |    |      | Run: BAL # | SD-15_170721D |     | 07/21/   | /17 15:26 |
| Solids, Total Dissolved TDS @ 18 | 30 C         | ND          | mg/L         | 4  |      |            |               |     |          |           |
| Lab ID: LCS-111818               | Lab          | oratory Cor | ntrol Sample |    |      | Run: BAL # | SD-15_170721D |     | 07/21/   | /17 15:26 |
| Solids, Total Dissolved TDS @ 18 | 30 C         | 970         | mg/L         | 10 | 97   | 90         | 110           |     |          |           |
| Lab ID: B17071798-001A DU        | <b>P</b> Sar | mple Duplic | ate          |    |      | Run: BAL # | SD-15_170721D |     | 07/21/   | /17 15:29 |
| Solids, Total Dissolved TDS @ 18 | 30 C         | 4060        | mg/L         | 40 |      |            |               | 0.1 | 5        |           |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:08/03/17Project:CCRRWork Order:B17071798

| Analyte  |                   | Count Re   | sult      | Units              | RL    | %REC | Low Limit | High Limit   | RPD     | RPDLimit  | Qual     |
|----------|-------------------|------------|-----------|--------------------|-------|------|-----------|--------------|---------|-----------|----------|
| Method:  | A4500-F C         |            |           |                    |       |      |           | Analytic     | al Run: | MAN-TECH_ | 170724A  |
| Lab ID:  | ICV               | Initial Ca | alibratio | n Verification Sta | ndard |      |           |              |         | 07/24/    | 17 09:20 |
| Fluoride |                   |            | 1.02      | mg/L               | 0.10  | 102  | 90        | 110          |         |           |          |
| Method:  | A4500-F C         |            |           |                    |       |      |           |              |         | Batch:    | R283639  |
| Lab ID:  | MBLK              | Method     | Blank     |                    |       |      | Run: MAN- | TECH_170724A |         | 07/24/    | 17 09:17 |
| Fluoride |                   |            | ND        | mg/L               | 0.02  |      |           |              |         |           |          |
| Lab ID:  | LFB               | Laborato   | ory Fort  | ified Blank        |       |      | Run: MAN- | TECH_170724A |         | 07/24/    | 17 09:23 |
| Fluoride |                   |            | 1.00      | mg/L               | 0.10  | 100  | 90        | 110          |         |           |          |
| Lab ID:  | B17071782-001AMS  | Sample     | Matrix    | Spike              |       |      | Run: MAN- | TECH_170724A |         | 07/24/    | 17 09:28 |
| Fluoride |                   |            | 1.43      | mg/L               | 0.10  | 100  | 80        | 120          |         |           |          |
| Lab ID:  | B17071782-001AMSI | D Sample   | Matrix    | Spike Duplicate    |       |      | Run: MAN- | TECH_170724A |         | 07/24/    | 17 09:30 |
| Fluoride |                   |            | 1.48      | mg/L               | 0.10  | 105  | 80        | 120          | 3.4     | 10        |          |
| Lab ID:  | B17071798-010AMS  | Sample     | Matrix    | Spike              |       |      | Run: MAN- | TECH_170724A |         | 07/24/    | 17 10:31 |
| Fluoride |                   |            | 1.11      | mg/L               | 0.10  | 97   | 80        | 120          |         |           |          |
| Lab ID:  | B17071798-010AMSI | D Sample   | Matrix    | Spike Duplicate    |       |      | Run: MAN- | TECH_170724A |         | 07/24/    | 17 10:33 |
| Fluoride |                   |            | 1.12      | mg/L               | 0.10  | 98   | 80        | 120          | 0.9     | 10        |          |



Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:08/03/17Project:CCRRWork Order:B17071798

| Analyte |                   | Count  | Result        | Units       | RL            | %REC | Low Limit | High Limit  | RPD        | RPDLimit    | Qual     |
|---------|-------------------|--------|---------------|-------------|---------------|------|-----------|-------------|------------|-------------|----------|
| Method: | A4500-H B         |        |               |             |               |      |           | Analytic    | al Run: PF | ISC _101-B_ | _170721A |
| Lab ID: | pH 8              | Initia | al Calibratio | n Verificat | tion Standard |      |           |             |            | 07/21/      | 17 08:16 |
| рН      |                   |        | 7.98          | s.u.        | 0.10          | 100  | 98        | 102         |            |             |          |
| Method: | A4500-H B         |        |               |             |               |      |           |             |            | Batch:      | R283525  |
| Lab ID: | B17071798-006ADUI | P San  | nple Duplica  | ate         |               |      | Run: PHSC | _101-B_1707 | 21A        | 07/21/      | 17 15:02 |
| рН      |                   |        | 3.66          | s.u.        | 0.10          |      |           |             | 0.3        | 3           |          |

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Report Date: 08/03/17

Project: CCRR

Work Order: B17071798

| Analyte  |                   | Count         | Result          | Units               | RL     | %REC | Low Limit  | High Limit  | RPD       | RPDLimit  | Qual      |
|----------|-------------------|---------------|-----------------|---------------------|--------|------|------------|-------------|-----------|-----------|-----------|
| Method:  | E300.0            |               |                 |                     |        |      |            | Analytical  | Run: IC M | 1ETROHM 2 | _170727A  |
| Lab ID:  | ICV               | 2 Ini         | tial Calibratio | on Verification Sta | andard |      |            |             |           | 07/27/    | /17 11:39 |
| Chloride |                   |               | 2.15            | mg/L                | 1.0    | 96   | 90         | 110         |           |           |           |
| Sulfate  |                   |               | 8.86            | mg/L                | 1.0    | 98   | 90         | 110         |           |           |           |
| Method:  | E300.0            |               |                 |                     |        |      |            |             |           | Batch:    | R283970   |
| Lab ID:  | ICB               | 2 Me          | ethod Blank     |                     |        |      | Run: IC ME | TROHM 2_170 | )727A     | 07/27/    | /17 11:58 |
| Chloride |                   |               | ND              | mg/L                | 0.03   |      |            |             |           |           |           |
| Sulfate  |                   |               | ND              | mg/L                | 0.02   |      |            |             |           |           |           |
| Lab ID:  | LFB               | 2 La          | boratory For    | tified Blank        |        |      | Run: IC ME | TROHM 2_170 | )727A     | 07/27/    | /17 12:18 |
| Chloride |                   |               | 10.2            | mg/L                | 1.0    | 102  | 90         | 110         |           |           |           |
| Sulfate  |                   |               | 30.4            | mg/L                | 1.0    | 101  | 90         | 110         |           |           |           |
| Lab ID:  | B17071779-012AMS  | 2 Sa          | mple Matrix     | Spike               |        |      | Run: IC ME | TROHM 2_170 | )727A     | 07/28/    | /17 02:55 |
| Chloride |                   |               | 544             | mg/L                | 3.1    | 107  | 90         | 110         |           |           |           |
| Sulfate  |                   |               | 3280            | mg/L                | 9.2    | 98   | 90         | 110         |           |           |           |
| Lab ID:  | B17071779-012AMSI | <b>D</b> 2 Sa | mple Matrix     | Spike Duplicate     |        |      | Run: IC ME | TROHM 2_170 | )727A     | 07/28/    | /17 03:15 |
| Chloride |                   |               | 543             | mg/L                | 3.1    | 107  | 90         | 110         | 0.2       | 20        |           |
| Sulfate  |                   |               | 3280            | mg/L                | 9.2    | 98   | 90         | 110         | 0.0       | 20        |           |
| Lab ID:  | B17071798-009AMS  | 2 Sa          | mple Matrix     | Spike               |        |      | Run: IC ME | TROHM 2_170 | )727A     | 07/28/    | /17 07:28 |
| Chloride |                   |               | 10.9            | mg/L                | 1.0    | 109  | 90         | 110         |           |           |           |
| Sulfate  |                   |               | 32.7            | mg/L                | 1.0    | 109  | 90         | 110         |           |           |           |
| Lab ID:  | B17071798-009AMSI | <b>D</b> 2 Sa | mple Matrix     | Spike Duplicate     |        |      | Run: IC ME | TROHM 2_170 | )727A     | 07/28/    | /17 07:47 |
| Chloride |                   |               | 11.0            | mg/L                | 1.0    | 110  | 90         | 110         | 0.5       | 20        |           |
| Sulfate  |                   |               | 32.8            | mg/L                | 1.0    | 109  | 90         | 110         | 0.4       | 20        |           |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:08/09/17Project:CCRRWork Order:B17071798

| Analyte   |                   | Count         | Result      | Units             | RL            | %REC | Low Limit  | High Limit  | RPD       | RPDLimit    | Qual      |
|-----------|-------------------|---------------|-------------|-------------------|---------------|------|------------|-------------|-----------|-------------|-----------|
| Method:   | E200.7            |               |             |                   |               |      |            | Anal        | ytical Ru | n: ICP203-B | _170727A  |
| Lab ID:   | ICV               | Co            | ntinuing Ca | libration Verific | cation Standa | rd   |            |             |           | 07/27       | /17 09:08 |
| Potassium | ı                 |               | 25.4        | mg/L              | 1.0           | 102  | 95         | 105         |           |             |           |
| Method:   | E200.7            |               |             |                   |               |      |            |             |           | Batc        | h: 111833 |
| Lab ID:   | MB-111833         | 7 Me          | thod Blank  |                   |               |      | Run: ICP20 | 3-B_170727A |           | 07/28       | /17 04:19 |
| Boron     |                   |               | ND          | mg/L              | 0.003         |      |            |             |           |             |           |
| Calcium   |                   |               | ND          | mg/L              | 0.08          |      |            |             |           |             |           |
| Lithium   |                   |               | ND          | mg/L              | 0.004         |      |            |             |           |             |           |
| Magnesiun | n                 |               | ND          | mg/L              | 0.01          |      |            |             |           |             |           |
| Molybdenu | ım                |               | ND          | mg/L              | 0.007         |      |            |             |           |             |           |
| Potassium | l                 |               | ND          | mg/L              | 0.07          |      |            |             |           |             |           |
| Sodium    |                   |               | ND          | mg/L              | 0.03          |      |            |             |           |             |           |
| Lab ID:   | LCS-111833        | 7 La          | boratory Co | ntrol Sample      |               |      | Run: ICP20 | 3-B_170727A |           | 07/28       | /17 04:22 |
| Boron     |                   |               | 0.528       | mg/L              | 0.10          | 106  | 85         | 115         |           |             |           |
| Calcium   |                   |               | 28.4        | mg/L              | 1.0           | 113  | 85         | 115         |           |             |           |
| Lithium   |                   |               | 0.558       | mg/L              | 0.10          | 112  | 85         | 115         |           |             |           |
| Magnesiun | n                 |               | 28.3        | mg/L              | 1.0           | 113  | 85         | 115         |           |             |           |
| Molybdenu | ım                |               | 0.523       | mg/L              | 0.10          | 105  | 85         | 115         |           |             |           |
| Potassium | ı                 |               | 27.8        | mg/L              | 1.0           | 111  | 85         | 115         |           |             |           |
| Sodium    |                   |               | 27.6        | mg/L              | 1.0           | 110  | 85         | 115         |           |             |           |
| Lab ID:   | B17071798-001BMS  | <b>3</b> 7 Sa | mple Matrix | Spike             |               |      | Run: ICP20 | 3-B_170727A |           | 07/28       | /17 05:07 |
| Boron     |                   |               | 0.983       | mg/L              | 0.050         | 105  | 70         | 130         |           |             |           |
| Calcium   |                   |               | 470         | mg/L              | 1.0           |      | 70         | 130         |           |             | Α         |
| Lithium   |                   |               | 0.989       | mg/L              | 0.10          | 108  | 70         | 130         |           |             |           |
| Magnesiun | n                 |               | 100.0       | mg/L              | 1.0           | 117  | 70         | 130         |           |             |           |
| Molybdenu | ım                |               | 0.527       | mg/L              | 0.071         | 105  | 70         | 130         |           |             |           |
| Potassium | l                 |               | 62.3        | mg/L              | 1.0           | 103  | 70         | 130         |           |             |           |
| Sodium    |                   |               | 797         | mg/L              | 4.2           |      | 70         | 130         |           |             | Α         |
| Lab ID:   | B17071798-001BMSI | <b>D</b> 7 Sa | mple Matrix | Spike Duplica     | ite           |      | Run: ICP20 | 3-B_170727A |           | 07/28       | /17 05:11 |
| Boron     |                   |               | 1.04        | mg/L              | 0.050         | 117  | 70         | 130         | 5.9       | 20          |           |
| Calcium   |                   |               | 477         | mg/L              | 1.0           |      | 70         | 130         | 1.5       | 20          | Α         |
| Lithium   |                   |               | 1.02        | mg/L              | 0.10          | 114  | 70         | 130         | 3.2       | 20          |           |
| Magnesiun | n                 |               | 101         | mg/L              | 1.0           | 123  | 70         | 130         | 1.4       | 20          |           |
| Molybdenu | ım                |               | 0.529       | mg/L              | 0.071         | 106  | 70         | 130         | 0.4       | 20          |           |
| Potassium | 1                 |               | 64.4        | mg/L              | 1.0           | 111  | 70         | 130         | 3.3       | 20          |           |
| Sodium    |                   |               | 812         | mg/L              | 4.2           |      | 70         | 130         | 1.8       | 20          | Α         |

#### Qualifiers:

RL - Analyte reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:08/09/17Project:CCRRWork Order:B17071798

| Analyte   |                   | Count          | Result        | Units               | RL         | %REC | Low Limit  | High Limit  | RPD RPDLi        | mit   | Qual      |
|-----------|-------------------|----------------|---------------|---------------------|------------|------|------------|-------------|------------------|-------|-----------|
| Method:   | E200.7            |                |               |                     |            |      |            | Analy       | tical Run: ICP20 | )3-B_ | _170728A  |
| Lab ID:   | ICV               | 7 Co           | ntinuing Cali | ibration Verificati | ion Standa | rd   |            |             | 0                | 7/28/ | 17 09:30  |
| Boron     |                   |                | 2.49          | mg/L                | 0.10       | 100  | 95         | 105         |                  |       |           |
| Calcium   |                   |                | 24.8          | mg/L                | 1.0        | 99   | 95         | 105         |                  |       |           |
| Lithium   |                   |                | 1.24          | mg/L                | 0.10       | 99   | 95         | 105         |                  |       |           |
| Magnesiur | m                 |                | 24.5          | mg/L                | 1.0        | 98   | 95         | 105         |                  |       |           |
| Molybdenu | um                |                | 2.50          | mg/L                | 0.10       | 100  | 95         | 105         |                  |       |           |
| Potassium | 1                 |                | 24.8          | mg/L                | 1.0        | 99   | 95         | 105         |                  |       |           |
| Sodium    |                   |                | 24.8          | mg/L                | 1.0        | 99   | 95         | 105         |                  |       |           |
| Method:   | E200.7            |                |               |                     |            |      |            |             |                  | Batch | n: 111833 |
| Lab ID:   | MB-111833         | 7 Me           | thod Blank    |                     |            |      | Run: ICP20 | 3-B_170728A | 0                | 7/29/ | 17 00:34  |
| Boron     |                   |                | ND            | mg/L                | 0.003      |      |            | _           |                  |       |           |
| Calcium   |                   |                | ND            | mg/L                | 0.08       |      |            |             |                  |       |           |
| Lithium   |                   |                | ND            | mg/L                | 0.004      |      |            |             |                  |       |           |
| Magnesiur | m                 |                | 0.02          | mg/L                | 0.01       |      |            |             |                  |       |           |
| Molybdenu |                   |                | ND            | mg/L                | 0.007      |      |            |             |                  |       |           |
| Potassium |                   |                | ND            | mg/L                | 0.07       |      |            |             |                  |       |           |
| Sodium    |                   |                | 0.07          | mg/L                | 0.03       |      |            |             |                  |       |           |
| Lab ID:   | LCS-111833        | 7 Lak          | oratory Cor   | ntrol Sample        |            |      | Run: ICP20 | 3-B_170728A | 0                | 7/29/ | 17 00:38  |
| Boron     |                   |                | 0.503         | mg/L                | 0.10       | 101  | 85         | _<br>115    |                  |       |           |
| Calcium   |                   |                | 27.2          | mg/L                | 1.0        | 109  | 85         | 115         |                  |       |           |
| Lithium   |                   |                | 0.538         | mg/L                | 0.10       | 108  | 85         | 115         |                  |       |           |
| Magnesiur | m                 |                | 27.3          | mg/L                | 1.0        | 109  | 85         | 115         |                  |       |           |
| Molybdenu |                   |                | 0.506         | mg/L                | 0.10       | 101  | 85         | 115         |                  |       |           |
| Potassium |                   |                | 27.1          | mg/L                | 1.0        | 108  | 85         | 115         |                  |       |           |
| Sodium    |                   |                | 26.7          | mg/L                | 1.0        | 107  | 85         | 115         |                  |       |           |
| Lab ID:   | B17071798-001BMS3 | 3 7 Sai        | mple Matrix   | Spike               |            |      | Run: ICP20 | 3-B_170728A | 0                | 7/29/ | 17 01:23  |
| Boron     |                   |                | 1.03          | mg/L                | 0.050      | 113  | 70         | 130         |                  |       |           |
| Calcium   |                   |                | 481           | mg/L                | 1.0        |      | 70         | 130         |                  |       | Α         |
| Lithium   |                   |                | 1.01          | mg/L                | 0.10       | 114  | 70         | 130         |                  |       |           |
| Magnesiur | m                 |                | 101           | mg/L                | 1.0        | 123  | 70         | 130         |                  |       |           |
| Molybdenu |                   |                | 0.526         | mg/L                | 0.071      | 105  | 70         | 130         |                  |       |           |
| Potassium |                   |                | 66.0          | mg/L                | 1.0        | 118  | 70         | 130         |                  |       |           |
| Sodium    |                   |                | 793           | mg/L                | 4.2        |      | 70         | 130         |                  |       | Α         |
| Lab ID:   | B17071798-001BMSI | <b>)</b> 7 Sai | mple Matrix   | Spike Duplicate     |            |      | Run: ICP20 | 3-B_170728A | 0                | 7/29/ | 17 01:26  |
| Boron     |                   |                | 1.04          | mg/L                | 0.050      | 115  | 70         | 130         |                  | 20    |           |
| Calcium   |                   |                | 485           | mg/L                | 1.0        |      | 70         | 130         |                  | 20    | Α         |
| Lithium   |                   |                | 1.03          | mg/L                | 0.10       | 119  | 70         | 130         |                  | 20    |           |
| Magnesiur | m                 |                | 101           | mg/L                | 1.0        | 121  | 70         | 130         |                  | 20    |           |
| Molybdenu |                   |                | 0.518         | mg/L                | 0.071      | 104  | 70         | 130         |                  | 20    |           |
| Potassium |                   |                | 66.2          | mg/L                | 1.0        | 119  | 70         | 130         |                  | 20    |           |
| Sodium    |                   |                | 805           | mg/L                | 4.2        | 113  | 70         | 130         |                  | 20    | Α         |
| Joululli  |                   |                | 003           | mg/L                | 4.2        |      | 10         | 130         | 1.0              | 20    | ^         |

#### Qualifiers:

RL - Analyte reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:08/09/17Project:CCRRWork Order:B17071798

| Analyte   |                   | Count     | Result       | Units          | RL          | %REC | Low Limit | High Limit    | RPD       | RPDLimit   | Qual      |
|-----------|-------------------|-----------|--------------|----------------|-------------|------|-----------|---------------|-----------|------------|-----------|
| Method:   | E200.8            |           |              |                |             |      |           | Analytica     | al Run: I | CPMS202-B_ | _170725A  |
| Lab ID:   | QCS               | 11 Initia | l Calibratio | on Verificatio | on Standard |      |           |               |           | 07/26/     | 17 05:40  |
| Antimony  |                   |           | 0.0492       | mg/L           | 0.050       | 98   | 90        | 110           |           |            |           |
| Arsenic   |                   |           | 0.0484       | mg/L           | 0.0050      | 97   | 90        | 110           |           |            |           |
| Barium    |                   |           | 0.0483       | mg/L           | 0.10        | 97   | 90        | 110           |           |            |           |
| Beryllium |                   |           | 0.0253       | mg/L           | 0.0010      | 101  | 90        | 110           |           |            |           |
| Boron     |                   |           | 0.0524       | mg/L           | 0.10        | 105  | 90        | 110           |           |            |           |
| Cadmium   |                   |           | 0.0257       | mg/L           | 0.0010      | 103  | 90        | 110           |           |            |           |
| Chromium  |                   |           | 0.0529       | mg/L           | 0.010       | 106  | 90        | 110           |           |            |           |
| Cobalt    |                   |           | 0.0513       | mg/L           | 0.010       | 103  | 90        | 110           |           |            |           |
| Lead      |                   |           | 0.0494       | mg/L           | 0.010       | 99   | 90        | 110           |           |            |           |
| Selenium  |                   |           | 0.0486       | mg/L           | 0.0050      | 97   | 90        | 110           |           |            |           |
| Thallium  |                   |           | 0.0488       | mg/L           | 0.10        | 98   | 90        | 110           |           |            |           |
| Method:   | E200.8            |           |              |                |             |      |           |               |           | Batcl      | n: 111833 |
| Lab ID:   | MB-111833         | 12 Meth   | od Blank     |                |             |      | Run: ICPM | S202-B_170725 | A         | 07/26/     | 17 06:01  |
| Antimony  |                   |           | ND           | mg/L           | 0.00004     |      |           |               |           |            |           |
| Arsenic   |                   |           | 0.0002       | mg/L           | 0.00006     |      |           |               |           |            |           |
| Barium    |                   |           | ND           | mg/L           | 0.00004     |      |           |               |           |            |           |
| Beryllium |                   |           | ND           | mg/L           | 0.00002     |      |           |               |           |            |           |
| Boron     |                   |           | ND           | mg/L           | 0.002       |      |           |               |           |            |           |
| Cadmium   |                   |           | ND           | mg/L           | 0.00002     |      |           |               |           |            |           |
| Chromium  |                   |           | 0.0003       | mg/L           | 0.00009     |      |           |               |           |            |           |
| Cobalt    |                   |           | ND           | mg/L           | 0.00003     |      |           |               |           |            |           |
| Lead      |                   |           | 0.0001       | mg/L           | 0.00005     |      |           |               |           |            |           |
| Molybdenu | m                 |           | 0.0008       | mg/L           | 0.00005     |      |           |               |           |            |           |
| Selenium  |                   |           | 0.0005       | mg/L           | 0.0002      |      |           |               |           |            |           |
| Thallium  |                   |           | ND           | mg/L           | 0.0001      |      |           |               |           |            |           |
| Lab ID:   | LCS-111833        | 12 Labo   | ratory Co    | ntrol Sample   |             |      | Run: ICPM | S202-B_170725 | Α         | 07/26/     | 17 06:06  |
| Antimony  |                   |           | 0.541        | mg/L           | 0.0010      | 108  | 85        | 115           |           |            |           |
| Arsenic   |                   |           | 0.561        | mg/L           | 0.0010      | 112  | 85        | 115           |           |            |           |
| Barium    |                   |           | 0.549        | mg/L           | 0.050       | 110  | 85        | 115           |           |            |           |
| Beryllium |                   |           | 0.272        | mg/L           | 0.0010      | 109  | 85        | 115           |           |            |           |
| Boron     |                   |           | 0.534        | mg/L           | 0.050       | 107  | 85        | 115           |           |            |           |
| Cadmium   |                   |           | 0.278        | mg/L           | 0.0010      | 111  | 85        | 115           |           |            |           |
| Chromium  |                   |           | 0.526        | mg/L           | 0.0050      | 105  | 85        | 115           |           |            |           |
| Cobalt    |                   |           | 0.540        | mg/L           | 0.0050      | 108  | 85        | 115           |           |            |           |
| Lead      |                   |           | 0.550        | mg/L           | 0.0010      | 110  | 85        | 115           |           |            |           |
| Molybdenu | m                 |           | 0.530        | mg/L           | 0.0010      | 106  | 85        | 115           |           |            |           |
| Selenium  |                   |           | 0.559        | mg/L           | 0.0010      | 112  | 85        | 115           |           |            |           |
| Thallium  |                   |           | 0.516        | mg/L           | 0.00050     | 103  | 85        | 115           |           |            |           |
| Lab ID:   | B17071798-001BMS3 | 12 Sam    | ple Matrix   | Spike          |             |      | Run: ICPM | S202-B_170725 | A         | 07/26/     | 17 06:09  |
| Antimony  |                   |           | 0.539        | mg/L           | 0.0010      | 108  | 70        | 130           |           |            |           |
| Arsenic   |                   |           | 0.570        | mg/L           | 0.0010      | 114  | 70        | 130           |           |            |           |
|           |                   |           |              | -              |             | -    | -         |               |           |            |           |

Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:08/09/17Project:CCRRWork Order:B17071798

| Analyte   |                   | Count          | Result      | Units    | RL      | %REC | Low Limit  | High Limit     | RPD | RPDLimit | Qual      |
|-----------|-------------------|----------------|-------------|----------|---------|------|------------|----------------|-----|----------|-----------|
| Method:   | E200.8            |                |             |          |         |      |            |                |     | Batch    | n: 111833 |
| Lab ID:   | B17071798-001BMS3 | 3 12 Sa        | mple Matrix | Spike    |         |      | Run: ICPMS | S202-B_170725A |     | 07/26/   | 17 06:09  |
| Beryllium |                   |                | 0.265       | mg/L     | 0.0010  | 106  | 70         | 130            |     |          |           |
| Boron     |                   |                | 1.01        | mg/L     | 0.050   | 113  | 70         | 130            |     |          |           |
| Cadmium   |                   |                | 0.268       | mg/L     | 0.0010  | 107  | 70         | 130            |     |          |           |
| Chromium  |                   |                | 0.518       | mg/L     | 0.0050  | 103  | 70         | 130            |     |          |           |
| Cobalt    |                   |                | 0.541       | mg/L     | 0.0050  | 108  | 70         | 130            |     |          |           |
| Lead      |                   |                | 0.546       | mg/L     | 0.0010  | 108  | 70         | 130            |     |          |           |
| Molybdenu | m                 |                | 0.546       | mg/L     | 0.0010  | 109  | 70         | 130            |     |          |           |
| Selenium  |                   |                | 0.578       | mg/L     | 0.0011  | 114  | 70         | 130            |     |          |           |
| Thallium  |                   |                | 0.459       | mg/L     | 0.00071 | 92   | 70         | 130            |     |          |           |
| Lab ID:   | B17071798-001BMSE | <b>)</b> 12 Sa | mple Matrix | Spike Du | olicate |      | Run: ICPMS | S202-B_170725A |     | 07/26/   | 17 06:11  |
| Antimony  |                   |                | 0.541       | mg/L     | 0.0010  | 108  | 70         | 130            | 0.5 | 20       |           |
| Arsenic   |                   |                | 0.570       | mg/L     | 0.0010  | 114  | 70         | 130            | 0.1 | 20       |           |
| Barium    |                   |                | 0.593       | mg/L     | 0.050   | 106  | 70         | 130            | 3.6 | 20       |           |
| Beryllium |                   |                | 0.274       | mg/L     | 0.0010  | 109  | 70         | 130            | 3.2 | 20       |           |
| Boron     |                   |                | 1.04        | mg/L     | 0.050   | 119  | 70         | 130            | 3.2 | 20       |           |
| Cadmium   |                   |                | 0.268       | mg/L     | 0.0010  | 107  | 70         | 130            | 0.1 | 20       |           |
| Chromium  |                   |                | 0.520       | mg/L     | 0.0050  | 103  | 70         | 130            | 0.6 | 20       |           |
| Cobalt    |                   |                | 0.544       | mg/L     | 0.0050  | 109  | 70         | 130            | 0.5 | 20       |           |
| Lead      |                   |                | 0.550       | mg/L     | 0.0010  | 108  | 70         | 130            | 0.5 | 20       |           |
| Molybdenu | m                 |                | 0.543       | mg/L     | 0.0010  | 108  | 70         | 130            | 0.6 | 20       |           |
| Selenium  |                   |                | 0.565       | mg/L     | 0.0011  | 112  | 70         | 130            | 2.4 | 20       |           |
| Thallium  |                   |                | 0.448       | mg/L     | 0.00071 | 90   | 70         | 130            | 2.5 | 20       |           |

#### Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:08/09/17Project:CCRRWork Order:B17071798

| Analyte     |                   | Count           | Result        | Units           | RL          | %REC | Low Limit | High Limit    | RPD      | RPDLimit  | Qual      |
|-------------|-------------------|-----------------|---------------|-----------------|-------------|------|-----------|---------------|----------|-----------|-----------|
| Method:     | E200.8            |                 |               |                 |             |      |           | Analytica     | l Run: I | CPMS206-B | _170801A  |
| Lab ID:     | QCS               | 2 Initi         | al Calibratio | on Verification | on Standard |      |           |               |          | 07/31     | /17 16:36 |
| Molybdenu   | m                 |                 | 0.0474        | mg/L            | 0.0050      | 95   | 90        | 110           |          |           |           |
| Selenium    |                   |                 | 0.0517        | mg/L            | 0.0050      | 103  | 90        | 110           |          |           |           |
| Method:     | E200.8            |                 |               |                 |             |      |           |               |          | Batc      | h: 111833 |
| Lab ID:     | MB-111833         | 12 Me           | thod Blank    |                 |             |      | Run: ICPM | S206-B_170801 | 4        | 07/31     | /17 20:53 |
| Antimony    |                   |                 | 0.0001        | mg/L            | 0.00004     |      |           |               |          |           |           |
| Arsenic     |                   |                 | ND            | mg/L            | 0.0002      |      |           |               |          |           |           |
| Barium      |                   |                 | ND            | mg/L            | 0.00005     |      |           |               |          |           |           |
| Beryllium   |                   |                 | ND            | mg/L            | 0.00008     |      |           |               |          |           |           |
| Boron       |                   |                 | ND            | mg/L            | 0.003       |      |           |               |          |           |           |
| Cadmium     |                   |                 | 0.00005       | mg/L            | 0.00003     |      |           |               |          |           |           |
| Chromium    |                   |                 | ND            | mg/L            | 0.0001      |      |           |               |          |           |           |
| Cobalt      |                   |                 | 0.00002       | mg/L            | 0.00002     |      |           |               |          |           |           |
| Lead        |                   |                 | ND            | mg/L            | 0.00003     |      |           |               |          |           |           |
| Molybdenu   | m                 |                 | 0.00005       | mg/L            | 0.00003     |      |           |               |          |           |           |
| Selenium    |                   |                 | ND            | mg/L            | 0.0004      |      |           |               |          |           |           |
| Thallium    |                   |                 | 0.0001        | mg/L            | 7E-06       |      |           |               |          |           |           |
| Lab ID:     | LCS-111833        | 12 Lab          | oratory Cor   | ntrol Sample    | )           |      | Run: ICPM | S206-B 170801 | Α.       | 07/31     | /17 21:00 |
| Antimony    |                   |                 | 0.512         | mg/L            | 0.0050      | 102  | 85        | _<br>115      |          |           |           |
| Arsenic     |                   |                 | 0.544         | mg/L            | 0.0010      | 109  | 85        | 115           |          |           |           |
| Barium      |                   |                 | 0.495         | mg/L            | 0.010       | 99   | 85        | 115           |          |           |           |
| Beryllium   |                   |                 | 0.229         | mg/L            | 0.0010      | 92   | 85        | 115           |          |           |           |
| Boron       |                   |                 | 0.474         | mg/L            | 0.10        | 95   | 85        | 115           |          |           |           |
| Cadmium     |                   |                 | 0.275         | mg/L            | 0.0010      | 110  | 85        | 115           |          |           |           |
| Chromium    |                   |                 | 0.531         | mg/L            | 0.0010      | 106  | 85        | 115           |          |           |           |
| Cobalt      |                   |                 | 0.490         | mg/L            | 0.0010      | 98   | 85        | 115           |          |           |           |
| Lead        |                   |                 | 0.506         | mg/L            | 0.0010      | 101  | 85        | 115           |          |           |           |
| Molybdenu   | m                 |                 | 0.477         | mg/L            | 0.0050      | 95   | 85        | 115           |          |           |           |
| Selenium    |                   |                 | 0.537         | mg/L            | 0.0050      | 107  | 85        | 115           |          |           |           |
| Thallium    |                   |                 | 0.522         | mg/L            | 0.0010      | 104  | 85        | 115           |          |           |           |
| Lab ID:     | B17071798-001BMS3 | <b>3</b> 12 Sar | nple Matrix   | Spike           |             |      | Run: ICPM | S206-B_170801 | 4        | 07/31     | /17 21:03 |
| Antimony    |                   |                 | 0.508         | mg/L            | 0.0010      | 102  | 70        | 130           |          |           |           |
| Arsenic     |                   |                 | 0.532         | mg/L            | 0.0010      | 106  | 70        | 130           |          |           |           |
| Barium      |                   |                 | 0.553         | mg/L            | 0.050       | 99   | 70        | 130           |          |           |           |
| Beryllium   |                   |                 | 0.222         | mg/L            | 0.0010      | 89   | 70        | 130           |          |           |           |
| Boron       |                   |                 | 0.899         | mg/L            | 0.050       | 97   | 70        | 130           |          |           |           |
| Cadmium     |                   |                 | 0.253         | mg/L            | 0.0010      | 101  | 70        | 130           |          |           |           |
| Chromium    |                   |                 | 0.536         | mg/L            | 0.0050      | 107  | 70        | 130           |          |           |           |
| Cobalt      |                   |                 | 0.496         | mg/L            | 0.0050      | 99   | 70        | 130           |          |           |           |
| Lead        |                   |                 | 0.506         | mg/L            | 0.0030      | 100  | 70        | 130           |          |           |           |
| Molybdenu   | m                 |                 | 0.476         | mg/L            | 0.0010      | 95   | 70        | 130           |          |           |           |
| Selenium    | ···               |                 | 0.470         | mg/L            | 0.0010      | 108  | 70        | 130           |          |           |           |
| Thallium    |                   |                 | 0.490         |                 | 0.00010     | 98   | 70        | 130           |          |           |           |
| 11141114111 |                   |                 | 0.490         | mg/L            | 0.00000     | 90   | 70        | 130           |          |           |           |

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:08/09/17Project:CCRRWork Order:B17071798

| Analyte   |                   | Count           | Result         | Units       | RL            | %REC | Low Limit | High Limit             | RPD      | RPDLimit  | Qual             |
|-----------|-------------------|-----------------|----------------|-------------|---------------|------|-----------|------------------------|----------|-----------|------------------|
| Method:   | E200.8            |                 |                |             |               |      |           |                        |          | Batc      | h: 111833        |
| Lab ID:   | B17071798-001BMS3 | 3 12 Sam        | nple Matrix    | Spike       |               |      | Run: ICPM | S206-B_170801 <i>A</i> | A        | 07/31/    | /17 21:03        |
| Lab ID:   | B17071798-001BMS  | <b>D</b> 12 Sam | nple Matrix    | Spike Dup   | olicate       |      | Run: ICPM | S206-B_170801 <i>A</i> | A        | 07/31/    | /17 21:17        |
| Antimony  |                   |                 | 0.544          | mg/L        | 0.0010        | 109  | 70        | 130                    | 6.8      | 20        |                  |
| Arsenic   |                   |                 | 0.565          | mg/L        | 0.0010        | 113  | 70        | 130                    | 6.1      | 20        |                  |
| Barium    |                   |                 | 0.607          | mg/L        | 0.050         | 109  | 70        | 130                    | 9.4      | 20        |                  |
| Beryllium |                   |                 | 0.226          | mg/L        | 0.0010        | 90   | 70        | 130                    | 1.7      | 20        |                  |
| Boron     |                   |                 | 0.873          | mg/L        | 0.050         | 92   | 70        | 130                    | 3.0      | 20        |                  |
| Cadmium   |                   |                 | 0.263          | mg/L        | 0.0010        | 105  | 70        | 130                    | 4.0      | 20        |                  |
| Chromium  |                   |                 | 0.547          | mg/L        | 0.0050        | 109  | 70        | 130                    | 2.1      | 20        |                  |
| Cobalt    |                   |                 | 0.516          | mg/L        | 0.0050        | 103  | 70        | 130                    | 4.0      | 20        |                  |
| Lead      |                   |                 | 0.517          | mg/L        | 0.0010        | 102  | 70        | 130                    | 2.2      | 20        |                  |
| Molybdenu | ım                |                 | 0.510          | mg/L        | 0.0010        | 102  | 70        | 130                    | 7.0      | 20        |                  |
| Selenium  |                   |                 | 0.552          | mg/L        | 0.0010        | 110  | 70        | 130                    | 2.2      | 20        |                  |
| Thallium  |                   |                 | 0.496          | mg/L        | 0.00050       | 99   | 70        | 130                    | 1.2      | 20        |                  |
| Method:   | E200.8            |                 |                |             |               |      |           | Analytica              | l Run: l | CPMS206-B | _170808 <i>A</i> |
| Lab ID:   | QCS               | Initia          | al Calibration | on Verifica | tion Standard |      |           |                        |          | 08/09/    | /17 06:07        |
| Selenium  |                   |                 | 0.0504         | mg/L        | 0.0050        | 101  | 90        | 110                    |          |           |                  |
| Method:   | E200.8            |                 |                |             |               |      |           |                        |          | Batc      | h: 111833        |
| Lab ID:   | MB-111833         | 12 Meth         | hod Blank      |             |               |      | Run: ICPM | S206-B 170808A         | 4        | 08/09/    | /17 12:25        |
| Antimony  |                   |                 | ND             | mg/L        | 0.00004       |      |           | _                      |          |           |                  |
| Arsenic   |                   |                 | ND             | mg/L        | 0.0002        |      |           |                        |          |           |                  |
| Barium    |                   |                 | ND             | mg/L        | 0.00005       |      |           |                        |          |           |                  |
| Beryllium |                   |                 | ND             | mg/L        | 0.00008       |      |           |                        |          |           |                  |
| Boron     |                   |                 | ND             | mg/L        | 0.003         |      |           |                        |          |           |                  |
| Cadmium   |                   |                 | ND             | mg/L        | 0.00003       |      |           |                        |          |           |                  |
| Chromium  |                   |                 | ND             | mg/L        | 0.0001        |      |           |                        |          |           |                  |
| Cobalt    |                   |                 | ND             | mg/L        | 0.00002       |      |           |                        |          |           |                  |
| Lead      |                   |                 | ND             | mg/L        | 0.00003       |      |           |                        |          |           |                  |
| Molybdenu | ım                |                 | ND             | mg/L        | 0.00003       |      |           |                        |          |           |                  |
| Selenium  |                   |                 | ND             | mg/L        | 0.0004        |      |           |                        |          |           |                  |
| Selenium  |                   |                 | 110            | 1119/ =     | 0.0004        |      |           |                        |          |           |                  |

### Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:08/09/17Project:CCRRWork Order:B17071798

| Analyte |                  | Count        | Result        | Units       | RL            | %REC | Low Limit | High Limit     | RPD      | RPDLimit  | Qual      |
|---------|------------------|--------------|---------------|-------------|---------------|------|-----------|----------------|----------|-----------|-----------|
| Method: | E245.1           |              |               |             |               |      |           | Analytica      | l Run: l | HGCV202-B | _170725A  |
| Lab ID: | ICV              | Initi        | al Calibratio | n Verificat | tion Standard |      |           |                |          | 07/25/    | /17 09:54 |
| Mercury |                  |              | 0.00198       | mg/L        | 0.00010       | 99   | 90        | 110            |          |           |           |
| Method: | E245.1           |              |               |             |               |      |           |                |          | Batc      | h: 111889 |
| Lab ID: | MB-111889        | Met          | thod Blank    |             |               |      | Run: HGC\ | /202-B_170725A |          | 07/25/    | /17 12:26 |
| Mercury |                  |              | 0.00002       | mg/L        | 6E-06         |      |           |                |          |           |           |
| Lab ID: | LCS-111889       | Lab          | oratory Cor   | itrol Samp  | le            |      | Run: HGC\ | /202-B_170725A |          | 07/25     | /17 12:28 |
| Mercury |                  |              | 0.00207       | mg/L        | 0.00010       | 103  | 85        | 115            |          |           |           |
| Lab ID: | B17071798-008BMS | Sar          | mple Matrix   | Spike       |               |      | Run: HGC\ | /202-B_170725A |          | 07/25     | /17 13:15 |
| Mercury |                  |              | 0.00196       | mg/L        | 0.00010       | 97   | 70        | 130            |          |           |           |
| Lab ID: | B17071798-008BMS | <b>D</b> Sar | mple Matrix   | Spike Dup   | licate        |      | Run: HGC\ | /202-B_170725A |          | 07/25     | /17 13:17 |
| Mercury |                  |              | 0.00198       | mg/L        | 0.00010       | 98   | 70        | 130            | 8.0      | 30        |           |
| Method: | E245.1           |              |               |             |               |      |           |                |          | Batc      | h: 111952 |
| Lab ID: | MB-111952        | Met          | thod Blank    |             |               |      | Run: HGC\ | /202-B_170727A |          | 07/27     | /17 11:57 |
| Mercury |                  |              | ND            | mg/L        | 6E-06         |      |           |                |          |           |           |
| Lab ID: | LCS-111952       | Lab          | oratory Cor   | itrol Samp  | le            |      | Run: HGC\ | /202-B_170727A |          | 07/27     | /17 11:59 |
| Mercury |                  |              | 0.00196       | mg/L        | 0.00010       | 98   | 85        | 115            |          |           |           |
| Lab ID: | B17072043-001CMS | Sar          | nple Matrix   | Spike       |               |      | Run: HGC\ | /202-B_170727A |          | 07/27     | /17 12:23 |
| Mercury |                  |              | 0.00198       | mg/L        | 0.00010       | 99   | 70        | 130            |          |           |           |
| Lab ID: | B17072043-001CMS | <b>D</b> Sar | mple Matrix   | Spike Dup   | licate        |      | Run: HGC\ | /202-B_170727A |          | 07/27     | /17 12:25 |
| Mercury |                  |              | 0.00193       | mg/L        | 0.00010       | 96   | 70        | 130            | 2.5      | 30        |           |

# **Work Order Receipt Checklist**

# Texas Municipal Power Agency

B17071798

| Login completed by:                                                                     | Gina McCartney                  |       | Date | Received: 7/21/2017      |
|-----------------------------------------------------------------------------------------|---------------------------------|-------|------|--------------------------|
| Reviewed by:                                                                            | BL2000\cindy                    |       | Re   | ceived by: rs4           |
| Reviewed Date:                                                                          | 7/24/2017                       |       | Car  | rier name: FedEx         |
| Shipping container/cooler in                                                            | good condition?                 | Yes ✓ | No 🗌 | Not Present              |
| Custody seals intact on all sl                                                          | hipping container(s)/cooler(s)? | Yes ✓ | No 🗌 | Not Present              |
| Custody seals intact on all sa                                                          | ample bottles?                  | Yes   | No 🗌 | Not Present ✓            |
| Chain of custody present?                                                               |                                 | Yes ✓ | No 🗌 |                          |
| Chain of custody signed whe                                                             | en relinquished and received?   | Yes ✓ | No 🗌 |                          |
| Chain of custody agrees with                                                            | n sample labels?                | Yes ✓ | No 🗌 |                          |
| Samples in proper container                                                             | /bottle?                        | Yes ✓ | No 🗌 |                          |
| Sample containers intact?                                                               |                                 | Yes ✓ | No 🗌 |                          |
| Sufficient sample volume for                                                            | indicated test?                 | Yes ✓ | No 🗌 |                          |
| All samples received within h<br>(Exclude analyses that are couch as pH, DO, Res CI, Su | onsidered field parameters      | Yes 🗹 | No 🗌 |                          |
| Temp Blank received in all si                                                           | hipping container(s)/cooler(s)? | Yes ✓ | No 🗌 | Not Applicable           |
| Container/Temp Blank tempe                                                              | erature:                        | °C    |      |                          |
| Water - VOA vials have zero                                                             | headspace?                      | Yes   | No 🗌 | No VOA vials submitted 🔽 |
| Water - pH acceptable upon                                                              | receipt?                        | Yes ✓ | No 🗌 | Not Applicable           |

### **Standard Reporting Procedures:**

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

### **Contact and Corrective Action Comments:**

The Temperature Blank temperature for shipping container 1 was 4.7°C melted ice, shipping container 2 was 5.2°C on ice and shipping container 3 was 0.7°C on ice.



# Chain of Custody & Analytical Request Record

| Account Information (billing information)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Report Information (if different then Account Information)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CompanyiName AMEC toster Wheeler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Company/Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Contact Grea Selfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Contact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Unity CHONGH WATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Phone 5,3-795-0360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Phone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mailing Address 3755 5, Cap. 10 of Tv. Hw #375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mailing Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Otty, State, Zip Austin, Ty 72 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | City, State, Zip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T continues a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Email greg, sefert @amecfw.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Email                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WALLE TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Hard Cop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Receive Report □Hard Copy □Email                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a BXO Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Pyrchase Order Quote Quote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Special Report/Formats:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | THE STATE OF THE S |
| Project Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Matrix Codes Analysis Remosted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | All tumaround times are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| mit, etc. 7665 Manicipal Pare April                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | W. Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | standard unless marked as RUSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Sampler Name Samue Mr. On Sampler Phone 512-413-376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Energy Laboratories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| EPA/State Compliance Y Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B - Bioassay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ₹ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| fred,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ov Other<br>Dw Ornkhy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C charges and scheduling – Charges – |
| ☐ Byproduct 11 (e)Z material ☐ Unprocessed ore (NOT ground or refined)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \^\\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Collection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Number of Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | THE RELIABILITY OF THE PROPERTY OF THE PROPERT |
| (Name, Location, Interval, etc.) Date Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1 MKW-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 02-36-71 TOTIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2 MW-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 700-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3 MWW-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4 MMW-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 400-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5 EGBK/SCM071917 + 1700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6 MNW-15 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 900-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1W-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8 AP MW-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| * EQBK/SCM/073017 + 1325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 600-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10 Dyp - 1 7-19-17 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>*</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 010-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Record Milet Schridt Mac A. Signature Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Received by (print)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date/Time Signeture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Religion ished by (orint)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ACMINIAL CONTRACTOR OF THE PROPERTY OF THE PRO |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Care I (Fill)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Received by Laboratory (print)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7/21/17 10:00 strange 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A STATE OF THE OWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Construction of the control of the c | Y N Y N CC Cash Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Amount Receipt Number (cash/check only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.
This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

ELI-COC-12/16 v.1

Page 25 of 25

### ANALYTICAL SUMMARY REPORT

August 16, 2017

Texas Municipal Power Agency PO Box 7000 Bryan, TX 77805-7000

Work Order: B17071805 Quote ID: B3997

Project Name: **CCRR** 

Energy Laboratories Inc Billings MT received the following 10 samples for Texas Municipal Power Agency on 7/21/2017 for

| anaı | ysıs. |
|------|-------|
| Lab  | ID    |

| Lab ID        | Client Sample ID | Collect Date Receive Date | Matrix       | Test                                                              |
|---------------|------------------|---------------------------|--------------|-------------------------------------------------------------------|
| B17071805-001 | MNW-18           | 07/19/17 12:15 07/21/17   | Ground Water | Radium 226 + Radium 228<br>Radium 226, Total<br>Radium 228, Total |
| B17071805-005 | EQBK/SCM/071917  | 07/19/17 17:00 07/21/17   | Ground Water | Same As Above                                                     |
| B17071805-006 | MNW-15           | 07/20/17 10:30 07/21/17   | Ground Water | Same As Above                                                     |
| B17071805-007 | SFL MW-7         | 07/20/17 11:45 07/21/17   | Ground Water | Same As Above                                                     |
| B17071805-009 | EQBK/SCM/072017  | 07/20/17 12:25 07/21/17   | Ground Water | Same As Above                                                     |
| B17071805-010 | Dup-1            | 07/19/17 0:00 07/21/17    | Ground Water | Same As Above                                                     |

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

**Report Date:** 08/16/17

**CLIENT:** Texas Municipal Power Agency

Project: CCRR

Work Order: B17071805 CASE NARRATIVE

Tests associated with analyst identified as ELI-CA were subcontracted to Energy Laboratories, PO Box 247, Casper, WY, EPA Number WY00002 and WY00937.



Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17071805-001

Client Sample ID: MNW-18

**Report Date:** 08/16/17 Collection Date: 07/19/17 12:15

DateReceived: 07/21/17

Matrix: Ground Water

| Analyses                              | Result Units | Qualifiers | RL | MCL/<br>QCL | Method   | Analysis Date / By      |
|---------------------------------------|--------------|------------|----|-------------|----------|-------------------------|
| RADIONUCLIDES - TOTAL                 |              |            |    |             |          |                         |
| Radium 226                            | 2.0 pCi/L    |            |    |             | E903.0   | 08/09/17 08:12 / eli-ca |
| Radium 226 precision (±)              | 0.45 pCi/L   |            |    |             | E903.0   | 08/09/17 08:12 / eli-ca |
| Radium 226 MDC                        | 0.13 pCi/L   |            |    |             | E903.0   | 08/09/17 08:12 / eli-ca |
| Radium 228                            | 3.1 pCi/L    |            |    |             | RA-05    | 08/02/17 14:30 / eli-ca |
| Radium 228 precision (±)              | 1.2 pCi/L    |            |    |             | RA-05    | 08/02/17 14:30 / eli-ca |
| Radium 228 MDC                        | 1.7 pCi/L    |            |    |             | RA-05    | 08/02/17 14:30 / eli-ca |
| Radium 226 + Radium 228               | 5.1 pCi/L    |            |    |             | A7500-RA | 08/09/17 13:32 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.2 pCi/L    |            |    |             | A7500-RA | 08/09/17 13:32 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.7 pCi/L    |            |    |             | A7500-RA | 08/09/17 13:32 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17071805-005 Client Sample ID: EQBK/SCM/071917

**Report Date:** 08/16/17 Collection Date: 07/19/17 17:00

DateReceived: 07/21/17

Matrix: Ground Water

| Analyses                              | Result | Units | Qualifiers | RL | MCL/<br>QCL | Method   | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|----|-------------|----------|-------------------------|
| RADIONUCLIDES - TOTAL                 |        |       |            |    |             |          |                         |
| Radium 226                            | 0.12   | pCi/L | U          |    |             | E903.0   | 08/07/17 14:17 / eli-ca |
| Radium 226 precision (±)              | 0.14   | pCi/L |            |    |             | E903.0   | 08/07/17 14:17 / eli-ca |
| Radium 226 MDC                        | 0.21   | pCi/L |            |    |             | E903.0   | 08/07/17 14:17 / eli-ca |
| Radium 228                            | -0.3   | pCi/L | U          |    |             | RA-05    | 08/02/17 12:51 / eli-ca |
| Radium 228 precision (±)              | 0.78   | pCi/L |            |    |             | RA-05    | 08/02/17 12:51 / eli-ca |
| Radium 228 MDC                        | 1.4    | pCi/L |            |    |             | RA-05    | 08/02/17 12:51 / eli-ca |
| Radium 226 + Radium 228               | -0.2   | pCi/L | U          |    |             | A7500-RA | 08/09/17 13:32 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 8.0    | pCi/L |            |    |             | A7500-RA | 08/09/17 13:32 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.4    | pCi/L |            |    |             | A7500-RA | 08/09/17 13:32 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17071805-006

Client Sample ID: MNW-15

**Report Date:** 08/16/17 Collection Date: 07/20/17 10:30

DateReceived: 07/21/17 Matrix: Ground Water

| Analyses                              | Result | Units | Qualifiers | RL | MCL/<br>QCL | Method   | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|----|-------------|----------|-------------------------|
| RADIONUCLIDES - TOTAL                 |        |       |            |    |             |          |                         |
| Radium 226                            | 0.42   | pCi/L |            |    |             | E903.0   | 08/07/17 13:13 / eli-ca |
| Radium 226 precision (±)              | 0.16   | pCi/L |            |    |             | E903.0   | 08/07/17 13:13 / eli-ca |
| Radium 226 MDC                        | 0.18   | pCi/L |            |    |             | E903.0   | 08/07/17 13:13 / eli-ca |
| Radium 228                            | 0.34   | pCi/L | U          |    |             | RA-05    | 08/02/17 16:12 / eli-ca |
| Radium 228 precision (±)              | 1.0    | pCi/L |            |    |             | RA-05    | 08/02/17 16:12 / eli-ca |
| Radium 228 MDC                        | 1.7    | pCi/L |            |    |             | RA-05    | 08/02/17 16:12 / eli-ca |
| Radium 226 + Radium 228               | 0.8    | pCi/L | U          |    |             | A7500-RA | 08/09/17 13:32 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.1    | pCi/L |            |    |             | A7500-RA | 08/09/17 13:32 / eli-ca |
| Radium 226 + Radium 228 MDC           | 17     | nCi/l |            |    |             | A7500-RA | 08/09/17 13:32 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17071805-007 Client Sample ID: SFL MW-7

**Report Date:** 08/16/17 Collection Date: 07/20/17 11:45 DateReceived: 07/21/17

Matrix: Ground Water

| Analyses                              | Result | Units | Qualifiers | RL | MCL/<br>QCL | Method   | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|----|-------------|----------|-------------------------|
| RADIONUCLIDES - TOTAL                 |        |       |            |    |             |          |                         |
| Radium 226                            | 1.3    | pCi/L |            |    |             | E903.0   | 08/07/17 13:13 / eli-ca |
| Radium 226 precision (±)              | 0.34   | pCi/L |            |    |             | E903.0   | 08/07/17 13:13 / eli-ca |
| Radium 226 MDC                        | 0.20   | pCi/L |            |    |             | E903.0   | 08/07/17 13:13 / eli-ca |
| Radium 228                            | 1.4    | pCi/L | U          |    |             | RA-05    | 08/02/17 16:12 / eli-ca |
| Radium 228 precision (±)              | 0.91   | pCi/L |            |    |             | RA-05    | 08/02/17 16:12 / eli-ca |
| Radium 228 MDC                        | 1.9    | pCi/L |            |    |             | RA-05    | 08/02/17 16:12 / eli-ca |
| Radium 226 + Radium 228               | 2.6    | pCi/L |            |    |             | A7500-RA | 08/09/17 13:32 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1      | pCi/L |            |    |             | A7500-RA | 08/09/17 13:32 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.9    | pCi/L |            |    |             | A7500-RA | 08/09/17 13:32 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17071805-009 Client Sample ID: EQBK/SCM/072017

**Report Date:** 08/16/17 Collection Date: 07/20/17 12:25

DateReceived: 07/21/17 Matrix: Ground Water

| Analyses                              | Result | Units | Qualifiers | RL | MCL/<br>QCL | Method   | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|----|-------------|----------|-------------------------|
| RADIONUCLIDES - TOTAL                 |        |       |            |    |             |          |                         |
| Radium 226                            | 0.13   | pCi/L | U          |    |             | E903.0   | 08/07/17 13:13 / eli-ca |
| Radium 226 precision (±)              | 0.14   | pCi/L |            |    |             | E903.0   | 08/07/17 13:13 / eli-ca |
| Radium 226 MDC                        | 0.20   | pCi/L |            |    |             | E903.0   | 08/07/17 13:13 / eli-ca |
| Radium 228                            | 0.55   | pCi/L | U          |    |             | RA-05    | 08/02/17 16:11 / eli-ca |
| Radium 228 precision (±)              | 1.2    | pCi/L |            |    |             | RA-05    | 08/02/17 16:11 / eli-ca |
| Radium 228 MDC                        | 1.9    | pCi/L |            |    |             | RA-05    | 08/02/17 16:11 / eli-ca |
| Radium 226 + Radium 228               | 0.7    | pCi/L | U          |    |             | A7500-RA | 08/09/17 13:32 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.2    | pCi/L |            |    |             | A7500-RA | 08/09/17 13:32 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.9    | pCi/L |            |    |             | A7500-RA | 08/09/17 13:32 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17071805-010

Client Sample ID: Dup-1

**Report Date:** 08/16/17 Collection Date: 07/19/17

DateReceived: 07/21/17

Matrix: Ground Water

|                                       |        |       |            |    | MCL/ |          |                         |
|---------------------------------------|--------|-------|------------|----|------|----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL | QCL  | Method   | Analysis Date / By      |
| RADIONUCLIDES - TOTAL                 |        |       |            |    |      |          |                         |
| Radium 226                            | 2.8    | pCi/L |            |    |      | E903.0   | 08/07/17 13:13 / eli-ca |
| Radium 226 precision (±)              | 0.63   | pCi/L |            |    |      | E903.0   | 08/07/17 13:13 / eli-ca |
| Radium 226 MDC                        | 0.22   | pCi/L |            |    |      | E903.0   | 08/07/17 13:13 / eli-ca |
| Radium 228                            | 1.4    | pCi/L | U          |    |      | RA-05    | 08/02/17 16:11 / eli-ca |
| Radium 228 precision (±)              | 0.94   | pCi/L |            |    |      | RA-05    | 08/02/17 16:11 / eli-ca |
| Radium 228 MDC                        | 2.0    | pCi/L |            |    |      | RA-05    | 08/02/17 16:11 / eli-ca |
| Radium 226 + Radium 228               | 4.1    | pCi/L |            |    |      | A7500-RA | 08/09/17 13:32 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.1    | pCi/L |            |    |      | A7500-RA | 08/09/17 13:32 / eli-ca |
| Radium 226 + Radium 228 MDC           | 2.1    | pCi/L |            |    |      | A7500-RA | 08/09/17 13:32 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.



Prepared by Casper, WY Branch

Client: Texas Municipal Power Agency **Report Date:** 08/15/17 Project: CCRR Work Order: B17071805

| Analyte                                                              | Result                | Units                 | RL %R          | EC   | Low Limit H       | ligh Limit      | RPD     | RPDLimit         | Qual           |
|----------------------------------------------------------------------|-----------------------|-----------------------|----------------|------|-------------------|-----------------|---------|------------------|----------------|
| Method: E903.0                                                       |                       |                       |                |      |                   |                 |         | Batch: RA        | 226-8575       |
| Lab ID: LCS-RA226-8575                                               | Laboratory Co         | ntrol Sample          |                |      | Run: G542M        | 170727A         |         | 08/07            | /17 12:15      |
| Radium 226                                                           | 11                    | pCi/L                 | 1              | 03   | 80                | 120             |         |                  |                |
| Lab ID: MB-RA226-8575                                                | Method Blank          |                       |                |      | Duni CE40M        | 1707074         |         | 00/07            | /17 12:15      |
| <b>Lab ID:</b> MB-RA226-8575 Radium 226                              | 0.1                   | pCi/L                 |                |      | Run: G542M        | _170727A        |         | 06/07            | /1/ 12.15<br>U |
| Radium 226 precision (±)                                             | 0.1                   | pCi/L                 |                |      |                   |                 |         |                  | O              |
| Radium 226 MDC                                                       | 0.1                   | pCi/L                 |                |      |                   |                 |         |                  |                |
| - Tadiani 220 MBO                                                    | 0.2                   | po#2                  |                |      |                   |                 |         |                  |                |
| Method: E903.0                                                       |                       |                       |                |      |                   |                 |         | Batch: RA        | 226-8576       |
| Lab ID: LCS-RA226-8576                                               | Laboratory Co         | ntrol Sample          |                |      | Run: G542M        | -2_170727A      |         | 08/07            | /17 13:13      |
| Radium 226                                                           | 7.8                   | pCi/L                 |                | 77   | 80                | 120             |         |                  | S              |
| - LCS response is outside of the acceptance                          | e range for this anal | ysis. Since the MB, M | S, and MSD ar  | e ac | ceptable the bate | ch is approved. |         |                  |                |
| Lab ID: MB-RA226-8576                                                | Method Blank          |                       |                |      | Run: G542M        | -2_170727A      |         | 08/07            | /17 13:13      |
| Radium 226                                                           | 0.07                  | pCi/L                 |                |      |                   |                 |         |                  | U              |
| Radium 226 precision (±)                                             | 0.1                   | pCi/L                 |                |      |                   |                 |         |                  |                |
| Radium 226 MDC                                                       | 0.2                   | pCi/L                 |                |      |                   |                 |         |                  |                |
| Lab ID: B17071805-010AMS                                             | Sample Matrix         | Spike                 |                |      | Run: G542M        | -2 170727A      |         | 08/07            | /17 13:13      |
| Radium 226                                                           | 18                    | pCi/L                 |                | 79   | 70                | 130             |         |                  |                |
| Lab ID: B17071805-010AMSD                                            | Sample Matrix         | Spike Duplicate       |                |      | Run: G542M        | -2 170727A      |         | 08/07            | /17 13:13      |
| Radium 226                                                           | 18                    | pCi/L                 |                | 79   | 70                | 130             | 0.1     | 20               |                |
| Method: E903.0                                                       |                       |                       |                |      |                   |                 |         | Batch: RA        | 226-8575       |
| Lab ID: MB-RA226-8575                                                | Method Blank          |                       |                |      | Run: TENNE        | LEC-3_170727    | 'C      | 08/09            | /17 08:12      |
| Radium 226                                                           | 0.3                   | pCi/L                 |                |      |                   |                 |         |                  |                |
| Radium 226 precision (±)                                             | 0.1                   | pCi/L                 |                |      |                   |                 |         |                  |                |
| Radium 226 MDC                                                       | 0.1                   | pCi/L                 |                |      |                   |                 |         |                  |                |
| Lab ID: B17071805-001AMS                                             | Sample Matrix         | Spike                 |                |      | Run: TENNE        | LEC-3_170727    | 'C      | 08/09            | /17 08:12      |
| Radium 226                                                           | 14                    | pCi/L                 |                | 61   | 70                | 130             |         |                  | S              |
| - Spike response is outside of the acceptance The batch is approved. |                       | •                     | al LCS and the |      |                   |                 | conside | ered to be matri |                |
| Lab ID: B17071805-001AMSD                                            | Sample Matrix         | Spike Duplicate       |                |      | Run: TENNF        | LEC-3_170727    | 'C      | 08/09            | /17 08:12      |
| Radium 226                                                           | 19                    | pCi/L                 |                | 82   | 70                | 130             | 26      | 20               | R              |
| - For all R qualified analytes the RERs are le                       |                       | •                     |                |      |                   |                 |         | <del></del>      |                |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

S - Spike recovery outside of advisory limits.

ND - Not detected at the reporting limit.

R - RPD exceeds advisory limit.



Prepared by Casper, WY Branch

Client:Texas Municipal Power AgencyReport Date:08/15/17Project:CCRRWork Order:B17071805

| Analyte                    | Result Units                  | RL %REC Low Limit High Limit RPD R | RPDLimit Qual     |
|----------------------------|-------------------------------|------------------------------------|-------------------|
| Method: RA-05              |                               |                                    | Batch: RA228-5551 |
| Lab ID: LCS-228-RA226-8575 | Laboratory Control Sample     | Run: TENNELEC-3_170727A            | 08/02/17 12:51    |
| Radium 228                 | 9.2 pCi/L                     | 89 80 120                          |                   |
| Lab ID: MB-RA226-8575      | Method Blank                  | Run: TENNELEC-3_170727A            | 08/02/17 12:51    |
| Radium 228                 | 0.4 pCi/L                     | _                                  | U                 |
| Radium 228 precision (±)   | 0.9 pCi/L                     |                                    |                   |
| Radium 228 MDC             | 1 pCi/L                       |                                    |                   |
| Lab ID: B17071805-005AMS   | Sample Matrix Spike           | Run: TENNELEC-3_170727A            | 08/02/17 12:51    |
| Radium 228                 | 20 pCi/L                      | 102 70 130                         |                   |
| Lab ID: B17071805-005AMSD  | Sample Matrix Spike Duplicate | Run: TENNELEC-3_170727A            | 08/02/17 12:51    |
| Radium 228                 | 18 pCi/L                      | 94 70 130 8.2                      | 20                |
| Method: RA-05              |                               |                                    | Batch: RA228-5552 |
| Lab ID: LCS-228-RA226-8576 | Laboratory Control Sample     | Run: TENNELEC-3_170727B            | 08/02/17 16:11    |
| Radium 228                 | 10 pCi/L                      | 109 80 120                         |                   |
| Lab ID: MB-RA226-8576      | Method Blank                  | Run: TENNELEC-3_170727B            | 08/02/17 16:11    |
| Radium 228                 | -0.7 pCi/L                    | _                                  | U                 |
| Radium 228 precision (±)   | 1 pCi/L                       |                                    |                   |
| Radium 228 MDC             | 2 pCi/L                       |                                    |                   |
| Lab ID: C17070175-001CMS   | Sample Matrix Spike           | Run: TENNELEC-3_170727B            | 08/02/17 16:11    |
| Radium 228                 | 19 pCi/L                      | 89 70 130                          |                   |
| Lab ID: C17070175-001CMSD  | Sample Matrix Spike Duplicate | Run: TENNELEC-3_170727B            | 08/02/17 16:11    |
| Radium 228                 | 19 pCi/L                      | 91 70 130 1.1                      | 20                |
| Method: RA-05              |                               |                                    | Batch: RA228-5561 |
| Lab ID: LCS-228-RA226-8588 | Laboratory Control Sample     | Run: TENNELEC-3_170808C            | 08/14/17 15:32    |
| Radium 228                 | 10 pCi/L                      | 101 80 120                         |                   |
| Lab ID: MB-RA226-8588      | Method Blank                  | Run: TENNELEC-3_170808C            | 08/14/17 15:32    |
| Radium 228                 | 0.3 pCi/L                     | _                                  | U                 |
| Radium 228 precision (±)   | 0.8 pCi/L                     |                                    |                   |
| Radium 228 MDC             | 1 pCi/L                       |                                    |                   |
| Lab ID: C17080003-004CMS   | Sample Matrix Spike           | Run: TENNELEC-3_170808C            | 08/14/17 15:32    |
| Radium 228                 | 19 pCi/L                      | 83 70 130                          |                   |
| Lab ID: C17080003-004CMSD  | Sample Matrix Spike Duplicate | Run: TENNELEC-3_170808C            | 08/14/17 15:32    |
| Radium 228                 | 19 pCi/L                      | 86 70 130 4.8                      | 20                |
|                            |                               |                                    |                   |

### Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

# **Work Order Receipt Checklist**

# Texas Municipal Power Agency

B17071805

| Login completed by:                                                                          | Gina McCartney                  |       | Date F | Received: 7/21/2017    |
|----------------------------------------------------------------------------------------------|---------------------------------|-------|--------|------------------------|
| Reviewed by:                                                                                 | BL2000\cindy                    |       | Red    | ceived by: rs4         |
| Reviewed Date:                                                                               | 7/24/2017                       |       | Carr   | ier name: FedEx        |
| Shipping container/cooler in                                                                 | good condition?                 | Yes 🗸 | No 🗌   | Not Present            |
| Custody seals intact on all sh                                                               | nipping container(s)/cooler(s)? | Yes 🗹 | No 🗌   | Not Present            |
| Custody seals intact on all sa                                                               | ample bottles?                  | Yes   | No 🗌   | Not Present ✓          |
| Chain of custody present?                                                                    |                                 | Yes 🗹 | No 🗌   |                        |
| Chain of custody signed whe                                                                  | n relinquished and received?    | Yes 🗹 | No 🗌   |                        |
| Chain of custody agrees with                                                                 | sample labels?                  | Yes 🗹 | No 🗌   |                        |
| Samples in proper container/                                                                 | bottle?                         | Yes 🗹 | No 🗌   |                        |
| Sample containers intact?                                                                    |                                 | Yes 🗹 | No 🗌   |                        |
| Sufficient sample volume for                                                                 | indicated test?                 | Yes ✓ | No 🗌   |                        |
| All samples received within h<br>(Exclude analyses that are or<br>such as pH, DO, Res Cl, Su | onsidered field parameters      | Yes √ | No 🗌   |                        |
| Temp Blank received in all sl                                                                | nipping container(s)/cooler(s)? | Yes ✓ | No 🗌   | Not Applicable         |
| Container/Temp Blank tempe                                                                   | erature:                        | °C    |        |                        |
| Water - VOA vials have zero                                                                  | headspace?                      | Yes   | No 🗌   | No VOA vials submitted |
| Water - pH acceptable upon                                                                   | receipt?                        | Yes 🗹 | No 🗌   | Not Applicable         |
|                                                                                              |                                 |       |        |                        |

## **Standard Reporting Procedures:**

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

### **Contact and Corrective Action Comments:**

The Temperature Blank temperature for shipping container 1 was 4.7°C melted ice, shipping container 2 was 5.2°C on ice and shipping container 3 was 0.7°C on ice.



Wheele,

たんか

AMEX

Company/Name

700

Contact Phone Mailing Address

City, State, Zip

Account Information (Billing information)

# Chain of Custody & Analytical Request Record

to 3 aut of to the continues of MNW Comments ☐ EDD/EDT (contact laboratory) ☐ Other Report Information (if different than Account Information) www.energylab.com Mailing Address Company/Name City, State, Zlp Contact Phone

All turnaround times are standard unless marked as RUSH. MUST be contacted prior to RUSH sample submittal for charges and scheduling -See Instructions Page **Energy Laboratories** vork order only Attached **Analysis Requested** Receive Report THard Copy DEmail DIEVELIV DINELAC Special Report/Formats: Matrix Codes V - Vegetation B - Bioassay DW Drinking W- Water S - Soils/ Solids 0 - Other A-Air Email **Tr**Email **%** Sampler Phone 512 - 413 - 3276 ☐ Unprocessed ore (NOT ground or refined)\* EPA/State Compliance Bottle Orde amentu.cam exas Municipal MINING CLIENTS, please indicate sample type. MEmail Macon Project Name, PWSiD, Permit, etc. MINING CLIENTS, please indicate ser 8 Receive Invoice Athard Copy Project Information ☐ Byproduct 11 (e)2 material Sampler Name Samue Sample Origin State Purchase Order Email

|                                 |                    |                  | `<br>[            |                                |                             |              |           |
|---------------------------------|--------------------|------------------|-------------------|--------------------------------|-----------------------------|--------------|-----------|
| Sample Identification           | Collection         | Number of Ma     | 9                 |                                | 999                         | ELILABID     | 810       |
| (Name, Locadon, Interval, etc.) | Date Time          | Containers (See  | (See Codes Above) |                                |                             |              | Use Only  |
| 1 - MNW - 18                    | 17-19-17 1315      | \<br>\tau        | <u> </u>          |                                |                             | BCTD7/805-00 | )<br>OSSO |
| 2 MW-17                         | 1320               | M                |                   |                                |                             | <b>L</b>     | -002      |
| 3 MNW-1                         | 1510               | エ                |                   |                                |                             |              | -003      |
| - 1 7/V/V 4                     | 5171               | <b>±</b>         |                   |                                |                             |              | 7 aO-     |
| 5 EGBK/5CM071917                | 1700               | <del>+</del>     |                   |                                |                             | -            | 200-      |
| 6 MWW - 15                      | 7-26-17 1030       | +                |                   |                                |                             |              | -006      |
| 7 SFL MN-7                      | 1145               | <b>4</b>         |                   |                                |                             |              | -007      |
| 8 AP MW-K                       | 1305               | 1                |                   |                                |                             |              | -008      |
| 9 EQBK/SCM/072017               | 1325               | <b></b>          |                   |                                |                             | // /         | -009      |
| 10 Dyp - 1                      | 7-19-17 -          | <b>y</b>         | •                 |                                |                             | >            | 9/0       |
| Record MUST Somble Macon        | Objectine 7 C Sign | Signature Askuru | C. M              | Received by (print)            | Date/Time Siç               | Signature    |           |
| Relinquished by (print)         |                    | Signature        |                   | Received by Laboratory (print) | manufathis N. C. C. Cilling | Meture /     |           |

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.
This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

Receipt Number (cash/check only)

LABORATORY USE <u>8</u> z 5 ≻

Blank N

em ≺

Z ⊒z Z

0

Sea C

Cooler ID(s)

Shipped By

nent Type Check

Cash

Page 16 of 16

### **ANALYTICAL SUMMARY REPORT**

December 15, 2017

Texas Municipal Power Agency PO Box 7000 Bryan, TX 77805-7000

Work Order: B17082461

Quote ID: B3997

Project Name: CCRR

Energy Laboratories Inc Billings MT received the following 16 samples for Texas Municipal Power Agency on 8/24/2017 for analysis.

| Lab ID        | Client Sample ID | Collect Date Receive Date | Matrix       | Test                                                                                                                                                                                                      |
|---------------|------------------|---------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B17082461-001 | SFL MW-4         | 08/22/17 17:00 08/24/17   | Ground Water | Metals by ICP/ICPMS, Tot. Rec. Mercury, Total Recoverable Fluoride Anions by Ion Chromatography pH Metals Preparation by EPA 200.2 Digestion, Mercury by CVAA Preparation for TDS Solids, Total Dissolved |
| B17082461-002 | SFL MW-3         | 08/22/17 18:10 08/24/17   | Ground Water | Same As Above                                                                                                                                                                                             |
| B17082461-003 | EQBK/SCM/0822    | 08/22/17 18:50 08/24/17   | Ground Water | Same As Above                                                                                                                                                                                             |
| B17082461-004 | AP MW-3          | 08/22/17 18:45 08/24/17   | Ground Water | Same As Above                                                                                                                                                                                             |
| B17082461-005 | MNW-15           | 08/22/17 17:15 08/24/17   | Ground Water | Same As Above                                                                                                                                                                                             |
| B17082461-006 | DUP-1            | 08/22/17 0:00 08/24/17    | Ground Water | Same As Above                                                                                                                                                                                             |
| B17082461-007 | SFL MW-6         | 08/23/17 9:55 08/24/17    | Ground Water | Same As Above                                                                                                                                                                                             |
| B17082461-008 | SFL MW-7         | 08/23/17 10:00 08/24/17   | Ground Water | Same As Above                                                                                                                                                                                             |
| B17082461-009 | SFL MW-5         | 08/23/17 11:05 08/24/17   | Ground Water | Same As Above                                                                                                                                                                                             |
| B17082461-010 | MNW-18           | 08/23/17 11:49 08/24/17   | Ground Water | Same As Above                                                                                                                                                                                             |
| B17082461-011 | SFL MW-2         | 08/23/17 12:00 08/24/17   | Ground Water | Same As Above                                                                                                                                                                                             |

| B17082461-014 | SSP/AP MW-1     | 08/23/17 15:50 08/24/17 | Ground Water Same As Above |
|---------------|-----------------|-------------------------|----------------------------|
| B17082461-015 | EQBK-BJG-082317 | 08/23/17 15:25 08/24/17 | Ground Water Same As Above |
| B17082461-016 | EQBK/SCM/082317 | 08/23/17 16:20 08/24/17 | Ground Water Same As Above |

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

Texas Municipal Power Agency

Billings, MT **800.735.4489** • Casper, WY **888.235.0515** Gillette, WY **866.686.7175** • Helena, MT **877.472.0711** 

**Revised Date:** 12/15/17 **Report Date:** 09/05/17

Project: CCRR Report Date: 09/05/17
Work Order: B17082461 CASE NARRATIVE

Revised Report 12/15/2017

**CLIENT:** 

The reporting limits for the following analytes were lowered per request from Greg Seifert.

Analyte Original Reporting Limit (mg/L) Revised Reporting limit (mg/L)

 Antimony
 0.05
 0.006

 Cadmium
 0.01
 0.005

 Thallium
 0.01
 0.002

The report has been revised and replaces any previously issued report in its entirety.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**CCRR** Project:

Lab ID: B17082461-001 Client Sample ID: SFL MW-4

Revised Date: 12/15/17 **Report Date:** 09/05/17 Collection Date: 08/22/17 17:00

DateReceived: 08/24/17

Matrix: Ground Water

| Analyses Resul                           | t l | Units        | Qualifiers | ъ.     | MCL/<br>QCL |                  |                                                |
|------------------------------------------|-----|--------------|------------|--------|-------------|------------------|------------------------------------------------|
|                                          |     |              | Qualificis | RL     | QCL         | Method           | Analysis Date / By                             |
| MAJOR IONS                               |     |              |            |        |             |                  |                                                |
|                                          | ٠.  | m a/I        |            | 4      |             | E200.7           | 09/01/17 03:47 / rlh                           |
|                                          |     | mg/L<br>mg/L |            | 1<br>1 |             | E200.7<br>E200.7 | 09/01/17 03:47 / IIII<br>09/01/17 03:47 / IIIh |
| <u> </u>                                 |     | •            |            | -      |             |                  |                                                |
| Potassium 51                             |     | mg/L         |            | 1      |             | E200.7           | 09/01/17 03:47 / rlh                           |
| Sodium 973                               | o r | mg/L         | D          | 4      |             | E200.7           | 09/01/17 03:47 / rlh                           |
| PHYSICAL PROPERTIES                      |     |              |            |        |             |                  |                                                |
| pH 6.6                                   | 3 8 | s.u.         | Н          | 0.1    |             | A4500-H B        | 08/25/17 10:45 / pjw                           |
| Solids, Total Dissolved TDS @ 180 C 5900 | ) r | mg/L         | D          | 90     |             | A2540 C          | 08/25/17 09:34 / rik                           |
| INORGANICS                               |     |              |            |        |             |                  |                                                |
| Chloride 1730                            | ) r | mg/L         | D          | 6      |             | E300.0           | 08/26/17 15:08 / cjm                           |
| Sulfate 2240                             |     | mg/L         | D          | 20     |             | E300.0           | 08/26/17 15:08 / cjm                           |
| Fluoride 0.1                             |     | mg/L         |            | 0.1    |             | A4500-F C        | 08/29/17 11:19 / cjm                           |
| METALS, TOTAL RECOVERABLE                |     |              |            |        |             |                  |                                                |
| Antimony                                 | ) r | mg/L         |            | 0.006  |             | E200.8           | 08/29/17 01:03 / jpv                           |
| Arsenic NE                               | ) r | mg/L         |            | 0.01   |             | E200.8           | 08/29/17 01:03 / jpv                           |
| Barium 0.02                              | 2 r | mg/L         |            | 0.01   |             | E200.8           | 08/29/17 01:03 / jpv                           |
| Beryllium NE                             | ) r | mg/L         |            | 0.001  |             | E200.8           | 08/29/17 01:03 / jpv                           |
| · · · · · ·                              |     | mg/L         |            | 0.05   |             | E200.7           | 09/01/17 03:47 / rlh                           |
| Cadmium                                  | ) r | mg/L         |            | 0.005  |             | E200.8           | 08/29/17 01:03 / jpv                           |
| Chromium                                 | ) r | mg/L         |            | 0.01   |             | E200.8           | 08/29/17 01:03 / jpv                           |
| Cobalt                                   | ) r | mg/L         |            | 0.02   |             | E200.8           | 08/29/17 01:03 / jpv                           |
| Lead                                     | ) r | mg/L         |            | 0.01   |             | E200.8           | 08/29/17 01:03 / jpv                           |
| Lithium 0.34                             | 4 r | mg/L         | D          | 0.04   |             | E200.7           | 09/01/17 03:47 / rlh                           |
| Mercury NE                               |     | mg/L         |            | 0.001  |             | E245.1           | 08/25/17 15:49 / jag                           |
| Molybdenum NE                            | ) r | mg/L         |            | 0.05   |             | E200.8           | 08/29/17 01:03 / jpv                           |
| Selenium NE                              |     | mg/L         |            | 0.01   |             | E200.8           | 08/29/17 01:03 / jpv                           |
| Thallium 0.006                           | 3 r | mg/L         |            | 0.002  |             | E200.8           | 08/30/17 14:00 / jpv                           |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

Lab ID: B17082461-002 Client Sample ID: SFL MW-3

Revised Date: 12/15/17 Report Date: 09/05/17 Collection Date: 08/22/17 18:10

**DateReceived:** 08/24/17 **Matrix:** Ground Water

|                                     |        |       |            |       | MCL/ |           |                      |
|-------------------------------------|--------|-------|------------|-------|------|-----------|----------------------|
| Analyses                            | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By   |
| MAJOR IONS                          |        |       |            |       |      |           |                      |
|                                     | 507    |       |            |       |      | E000 7    | 00/04/47 00 50 /     |
| Calcium                             |        | mg/L  |            | 1     |      | E200.7    | 09/01/17 03:50 / rlh |
| Magnesium                           | 108    | J.    |            | 1     |      | E200.7    | 09/01/17 03:50 / rlh |
| Potassium                           | 49     | U     |            | 1     |      | E200.7    | 09/01/17 03:50 / rlh |
| Sodium                              | 785    | mg/L  | D          | 4     |      | E200.7    | 09/01/17 03:50 / rlh |
| PHYSICAL PROPERTIES                 |        |       |            |       |      |           |                      |
| рН                                  | 3.8    | s.u.  | Н          | 0.1   |      | A4500-H B | 08/25/17 10:55 / pjw |
| Solids, Total Dissolved TDS @ 180 C | 5260   | mg/L  | D          | 100   |      | A2540 C   | 08/25/17 09:34 / rik |
| INORGANICS                          |        |       |            |       |      |           |                      |
| Chloride                            | 1390   | mg/L  | D          | 6     |      | E300.0    | 08/26/17 16:06 / cjm |
| Sulfate                             |        | mg/L  | D          | 20    |      | E300.0    | 08/26/17 16:06 / cjm |
| Fluoride                            | 0.6    | mg/L  |            | 0.1   |      | A4500-F C | 08/29/17 11:35 / cjm |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |      |           |                      |
| Antimony                            | ND     | mg/L  |            | 0.006 |      | E200.8    | 08/29/17 01:06 / jpv |
| Arsenic                             | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:06 / jpv |
| Barium                              | 0.07   | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:06 / jpv |
| Beryllium                           | 0.038  | mg/L  |            | 0.001 |      | E200.8    | 08/29/17 01:06 / jpv |
| Boron                               | 2.64   | mg/L  |            | 0.05  |      | E200.7    | 09/01/17 03:50 / rlh |
| Cadmium                             | 0.008  | mg/L  |            | 0.005 |      | E200.8    | 08/29/17 01:06 / jpv |
| Chromium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:06 / jpv |
| Cobalt                              | 0.07   | mg/L  |            | 0.02  |      | E200.8    | 08/29/17 01:06 / jpv |
| Lead                                | 0.03   | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:06 / jpv |
| Lithium                             | 0.25   | mg/L  | D          | 0.04  |      | E200.7    | 09/01/17 03:50 / rlh |
| Mercury                             | 0.002  | mg/L  |            | 0.001 |      | E245.1    | 08/25/17 15:55 / jag |
| Molybdenum                          | ND     | mg/L  |            | 0.05  |      | E200.8    | 08/29/17 01:06 / jpv |
| Selenium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:06 / jpv |
| Thallium                            | 0.007  | mg/L  |            | 0.002 |      | E200.8    | 08/30/17 14:02 / jpv |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17082461-003 Client Sample ID: EQBK/SCM/0822

Revised Date: 12/15/17 **Report Date:** 09/05/17 Collection Date: 08/22/17 18:50 DateReceived: 08/24/17

Matrix: Ground Water

| Analyses                           | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By   |
|------------------------------------|--------|-------|------------|-------|-------------|-----------|----------------------|
| MAJOR IONS                         |        |       |            |       |             |           |                      |
| Calcium                            | ND     | mg/L  |            | 1     |             | E200.7    | 09/01/17 03:54 / rlh |
| Magnesium                          | ND     | mg/L  |            | 1     |             | E200.7    | 09/01/17 03:54 / rlh |
| Potassium                          | ND     | mg/L  |            | 1     |             | E200.7    | 09/01/17 03:54 / rlh |
| odium                              | ND     | mg/L  |            | 1     |             | E200.7    | 09/01/17 03:54 / rlh |
| HYSICAL PROPERTIES                 |        |       |            |       |             |           |                      |
| Н                                  | 6.1    | s.u.  | Н          | 0.1   |             | A4500-H B | 08/25/17 11:00 / pjw |
| olids, Total Dissolved TDS @ 180 C | ND     | mg/L  |            | 10    |             | A2540 C   | 08/25/17 09:34 / rik |
| NORGANICS                          |        |       |            |       |             |           |                      |
| Chloride                           | ND     | mg/L  |            | 1     |             | E300.0    | 08/26/17 17:05 / cjm |
| ulfate                             | ND     | mg/L  |            | 1     |             | E300.0    | 08/26/17 17:05 / cjm |
| luoride                            | ND     | mg/L  |            | 0.1   |             | A4500-F C | 08/29/17 11:46 / cjm |
| METALS, TOTAL RECOVERABLE          |        |       |            |       |             |           |                      |
| ntimony                            | ND     | mg/L  |            | 0.006 |             | E200.8    | 08/29/17 01:10 / jpv |
| rsenic                             | ND     | mg/L  |            | 0.01  |             | E200.8    | 08/29/17 01:10 / jpv |
| arium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 08/29/17 01:10 / jpv |
| eryllium                           | ND     | mg/L  |            | 0.001 |             | E200.8    | 08/29/17 01:10 / jpv |
| oron                               | ND     | mg/L  |            | 0.05  |             | E200.7    | 09/01/17 03:54 / rlh |
| admium                             | ND     | mg/L  |            | 0.005 |             | E200.8    | 08/29/17 01:10 / jpv |
| hromium                            | ND     | mg/L  |            | 0.01  |             | E200.8    | 08/29/17 01:10 / jpv |
| obalt                              | ND     | mg/L  |            | 0.02  |             | E200.8    | 08/29/17 01:10 / jpv |
| ead                                | ND     | mg/L  |            | 0.01  |             | E200.8    | 08/29/17 01:10 / jpv |
| ithium                             | ND     | mg/L  |            | 0.01  |             | E200.7    | 09/01/17 03:54 / rlh |
| ercury                             | ND     | mg/L  |            | 0.001 |             | E245.1    | 08/25/17 16:01 / jag |
| olybdenum                          | ND     | mg/L  |            | 0.05  |             | E200.8    | 08/29/17 01:10 / jpv |
| elenium                            | ND     | mg/L  |            | 0.01  |             | E200.8    | 08/29/17 01:10 / jpv |
| hallium                            | ND     | mg/L  |            | 0.002 |             | E200.8    | 08/30/17 14:05 / jpv |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Matrix: Ground Water

### LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**CCRR** Project:

Lab ID: B17082461-004 Client Sample ID: AP MW-3

Revised Date: 12/15/17 **Report Date:** 09/05/17 Collection Date: 08/22/17 18:45

DateReceived: 08/24/17

|                                     |        |        |            |        | MCL/ |                  |                      |
|-------------------------------------|--------|--------|------------|--------|------|------------------|----------------------|
| Analyses                            | Result | Units  | Qualifiers | RL     | QCL  | Method           | Analysis Date / By   |
| MAJOR IONS                          |        |        |            |        |      |                  |                      |
| Calcium                             | 124    | no a/I |            | 4      |      | E200.7           | 09/01/17 03:58 / rlh |
|                                     | 21     | mg/L   |            | 1<br>1 |      | E200.7<br>E200.7 | 09/01/17 03:58 / rlh |
| Magnesium<br>Potassium              |        | J.     |            | =      |      |                  | 09/01/17 03:58 / rlh |
|                                     |        | mg/L   |            | 1      |      | E200.7           |                      |
| Sodium                              | 233    | mg/L   |            | 1      |      | E200.7           | 09/01/17 03:58 / rlh |
| PHYSICAL PROPERTIES                 |        |        |            |        |      |                  |                      |
| рН                                  | 5.4    | s.u.   | Н          | 0.1    |      | A4500-H B        | 08/25/17 11:03 / pjw |
| Solids, Total Dissolved TDS @ 180 C | 1360   | mg/L   | D          | 20     |      | A2540 C          | 08/28/17 08:55 / rik |
| INORGANICS                          |        |        |            |        |      |                  |                      |
| Chloride                            | 155    | mg/L   |            | 1      |      | E300.0           | 08/26/17 17:24 / cjm |
| Sulfate                             | 751    | _      | D          | 4      |      | E300.0           | 08/26/17 17:24 / cjm |
| Fluoride                            | 0.1    | mg/L   |            | 0.1    |      | A4500-F C        | 08/29/17 11:50 / cjm |
| METALS, TOTAL RECOVERABLE           |        |        |            |        |      |                  |                      |
| Antimony                            | ND     | mg/L   |            | 0.006  |      | E200.8           | 08/29/17 01:23 / jpv |
| Arsenic                             | ND     | mg/L   |            | 0.01   |      | E200.8           | 08/29/17 01:23 / jpv |
| Barium                              | 0.02   | mg/L   |            | 0.01   |      | E200.8           | 08/29/17 01:23 / jpv |
| Beryllium                           | 0.003  | mg/L   |            | 0.001  |      | E200.8           | 08/29/17 01:23 / jpv |
| Boron                               | 3.82   | mg/L   |            | 0.05   |      | E200.7           | 09/01/17 03:58 / rlh |
| Cadmium                             | ND     | mg/L   |            | 0.005  |      | E200.8           | 08/29/17 01:23 / jpv |
| Chromium                            | ND     | mg/L   |            | 0.01   |      | E200.8           | 08/29/17 01:23 / jpv |
| Cobalt                              | 0.04   | mg/L   |            | 0.02   |      | E200.8           | 08/29/17 01:23 / jpv |
| Lead                                | ND     | _      |            | 0.01   |      | E200.8           | 08/29/17 01:23 / jpv |
| Lithium                             | 0.04   | mg/L   |            | 0.01   |      | E200.7           | 09/01/17 03:58 / rlh |
| Mercury                             | ND     | mg/L   |            | 0.001  |      | E245.1           | 08/25/17 16:03 / jag |
| Molybdenum                          | ND     | mg/L   |            | 0.05   |      | E200.8           | 08/29/17 01:23 / jpv |
| Selenium                            | ND     | mg/L   |            | 0.01   |      | E200.8           | 08/29/17 01:23 / jpv |
| Thallium                            | ND     | mg/L   |            | 0.002  |      | E200.8           | 08/30/17 14:08 / jpv |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17082461-005

Client Sample ID: MNW-15

Revised Date: 12/15/17 **Report Date:** 09/05/17 Collection Date: 08/22/17 17:15

DateReceived: 08/24/17

Matrix: Ground Water

|                                    |        |       |            |       | MCL/ |           |                      |
|------------------------------------|--------|-------|------------|-------|------|-----------|----------------------|
| Analyses                           | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By   |
| MAJOR IONS                         |        |       |            |       |      |           |                      |
| Calcium                            | 254    | mg/L  |            | 1     |      | E200.7    | 09/01/17 04:01 / rlh |
| Magnesium                          | 48     | mg/L  |            | 1     |      | E200.7    | 09/01/17 04:01 / rlh |
| Potassium                          | 27     | mg/L  |            | 1     |      | E200.7    | 09/01/17 04:01 / rlh |
| odium                              | 424    | mg/L  | D          | 2     |      | E200.7    | 09/01/17 04:01 / rlh |
| PHYSICAL PROPERTIES                |        |       |            |       |      |           |                      |
| Н                                  | 3.6    | s.u.  | Н          | 0.1   |      | A4500-H B | 08/25/17 11:06 / pjw |
| olids, Total Dissolved TDS @ 180 C | 2620   | mg/L  | D          | 40    |      | A2540 C   | 08/25/17 09:35 / rik |
| NORGANICS                          |        |       |            |       |      |           |                      |
| Chloride                           | 718    | mg/L  | D          | 3     |      | E300.0    | 08/26/17 17:44 / cjm |
| ulfate                             | 1250   | mg/L  | D          | 9     |      | E300.0    | 08/26/17 17:44 / cjm |
| luoride                            | 0.5    | mg/L  |            | 0.1   |      | A4500-F C | 08/29/17 11:57 / cjm |
| METALS, TOTAL RECOVERABLE          |        |       |            |       |      |           |                      |
| ntimony                            | ND     | mg/L  |            | 0.006 |      | E200.8    | 08/29/17 01:27 / jpv |
| rsenic                             | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:27 / jpv |
| arium                              | 0.02   | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:27 / jpv |
| eryllium                           | 0.074  | mg/L  |            | 0.001 |      | E200.8    | 08/29/17 01:27 / jpv |
| oron                               | 9.22   | mg/L  |            | 0.05  |      | E200.7    | 09/01/17 04:01 / rlh |
| admium                             | 0.084  | mg/L  |            | 0.005 |      | E200.8    | 08/29/17 01:27 / jpv |
| chromium                           | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:27 / jpv |
| Cobalt                             | 0.29   | mg/L  |            | 0.02  |      | E200.8    | 08/29/17 01:27 / jpv |
| ead                                | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:27 / jpv |
| ithium                             | 0.05   | mg/L  | D          | 0.02  |      | E200.7    | 09/01/17 04:01 / rlh |
| lercury                            | ND     | mg/L  |            | 0.001 |      | E245.1    | 08/25/17 16:05 / jag |
| lolybdenum                         | ND     | mg/L  |            | 0.05  |      | E200.8    | 08/29/17 01:27 / jpv |
| elenium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:27 / jpv |
| <sup>-</sup> hallium               | 0.002  | mg/L  |            | 0.002 |      | E200.8    | 08/30/17 14:10 / jpv |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17082461-006

Client Sample ID: DUP-1

Revised Date: 12/15/17 **Report Date:** 09/05/17 Collection Date: 08/22/17 DateReceived: 08/24/17

Matrix: Ground Water

|                                     |        |       |            |       | MCL/ |           |                      |
|-------------------------------------|--------|-------|------------|-------|------|-----------|----------------------|
| Analyses                            | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By   |
| MAJOR IONS                          |        |       |            |       |      |           |                      |
| Calcium                             | 256    | mg/L  |            | 1     |      | E200.7    | 09/01/17 04:05 / rlh |
| Magnesium                           | 49     | mg/L  |            | 1     |      | E200.7    | 09/01/17 04:05 / rlh |
| Potassium                           | 26     | mg/L  |            | 1     |      | E200.7    | 09/01/17 04:05 / rlh |
| Sodium                              | 419    | mg/L  | D          | 2     |      | E200.7    | 09/01/17 04:05 / rlh |
| PHYSICAL PROPERTIES                 |        |       |            |       |      |           |                      |
| oH.                                 | 3.6    | s.u.  | Н          | 0.1   |      | A4500-H B | 08/25/17 11:08 / pjw |
| Solids, Total Dissolved TDS @ 180 C | 2640   | mg/L  | D          | 40    |      | A2540 C   | 08/25/17 09:35 / rik |
| INORGANICS                          |        |       |            |       |      |           |                      |
| Chloride                            | 720    | mg/L  | D          | 3     |      | E300.0    | 08/26/17 18:03 / cjm |
| Sulfate                             | 1290   | mg/L  | D          | 9     |      | E300.0    | 08/26/17 18:03 / cjm |
| Fluoride                            | 0.5    | mg/L  |            | 0.1   |      | A4500-F C | 08/29/17 12:04 / cjm |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |      |           |                      |
| Antimony                            | ND     | mg/L  |            | 0.006 |      | E200.8    | 08/29/17 01:30 / jpv |
| Arsenic                             | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:30 / jpv |
| Barium                              | 0.02   | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:30 / jpv |
| Beryllium                           | 0.070  | mg/L  |            | 0.001 |      | E200.8    | 08/29/17 01:30 / jpv |
| Boron                               | 9.12   | mg/L  |            | 0.05  |      | E200.7    | 09/01/17 04:05 / rlh |
| Cadmium                             | 0.084  | mg/L  |            | 0.005 |      | E200.8    | 08/29/17 01:30 / jpv |
| Chromium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:30 / jpv |
| Cobalt                              | 0.28   | mg/L  |            | 0.02  |      | E200.8    | 08/29/17 01:30 / jpv |
| Lead                                | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:30 / jpv |
| Lithium                             | 0.04   | mg/L  | D          | 0.02  |      | E200.7    | 09/01/17 04:05 / rlh |
| Mercury                             | ND     | mg/L  |            | 0.001 |      | E245.1    | 08/25/17 16:06 / jag |
| Molybdenum                          | ND     | mg/L  |            | 0.05  |      | E200.8    | 08/29/17 01:30 / jpv |
| Selenium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:30 / jpv |
| Thallium                            | 0.002  | mg/L  |            | 0.002 |      | E200.8    | 08/30/17 14:13 / jpv |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**CCRR** Project:

Lab ID: B17082461-007 Client Sample ID: SFL MW-6

Revised Date: 12/15/17 **Report Date:** 09/05/17 Collection Date: 08/23/17 09:55

DateReceived: 08/24/17 Matrix: Ground Water

|                                     |        |       |            |       | MCL/ |           |                      |
|-------------------------------------|--------|-------|------------|-------|------|-----------|----------------------|
| Analyses                            | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By   |
| MAJOR IONS                          |        |       |            |       |      |           |                      |
| Calcium                             | 864    | mg/L  | D          | 2     |      | E200.7    | 09/01/17 04:08 / rlh |
| Magnesium                           | 231    | Ū     | D          | 1     |      | E200.7    | 09/01/17 04:08 / rlh |
| Potassium                           | 71     | 3     |            | 1     |      | E200.7    | 09/01/17 04:08 / rlh |
| Sodium                              |        | mg/L  | D          | 8     |      | E200.7    | 09/01/17 04:08 / rlh |
| PHYSICAL PROPERTIES                 |        |       |            |       |      |           |                      |
| рН                                  | 4.0    | s.u.  | Н          | 0.1   |      | A4500-H B | 08/25/17 11:11 / pjw |
| Solids, Total Dissolved TDS @ 180 C |        | mg/L  | D          | 90    |      | A2540 C   | 08/25/17 09:35 / rik |
| INORGANICS                          |        |       |            |       |      |           |                      |
| Chloride                            | 3730   | mg/L  | D          | 10    |      | E300.0    | 08/26/17 18:23 / cjm |
| Sulfate                             | 2470   | mg/L  | D          | 40    |      | E300.0    | 08/26/17 18:23 / cjm |
| Fluoride                            | 0.7    | mg/L  |            | 0.1   |      | A4500-F C | 08/29/17 12:16 / cjm |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |      |           |                      |
| Antimony                            | ND     | mg/L  |            | 0.006 |      | E200.8    | 08/29/17 01:33 / jpv |
| Arsenic                             | 0.01   | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:33 / jpv |
| Barium                              | 0.04   | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:33 / jpv |
| Beryllium                           | 0.056  | mg/L  |            | 0.001 |      | E200.8    | 08/29/17 01:33 / jpv |
| Boron                               | 0.35   | mg/L  | D          | 0.07  |      | E200.7    | 09/01/17 04:08 / rlh |
| Cadmium                             | 0.012  | mg/L  |            | 0.005 |      | E200.8    | 08/29/17 01:33 / jpv |
| Chromium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:33 / jpv |
| Cobalt                              | 0.12   | mg/L  |            | 0.02  |      | E200.8    | 08/29/17 01:33 / jpv |
| Lead                                | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:33 / jpv |
| Lithium                             | 0.56   | mg/L  | D          | 0.09  |      | E200.7    | 09/01/17 04:08 / rlh |
| Mercury                             | ND     | mg/L  |            | 0.001 |      | E245.1    | 08/25/17 16:08 / jag |
| Molybdenum                          | ND     | mg/L  |            | 0.05  |      | E200.8    | 08/29/17 01:33 / jpv |
| Selenium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:33 / jpv |
| Thallium                            | 0.003  | mg/L  |            | 0.002 |      | E200.8    | 08/30/17 14:23 / jpv |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**CCRR** Project:

Lab ID: B17082461-008 Client Sample ID: SFL MW-7

Revised Date: 12/15/17 **Report Date:** 09/05/17 Collection Date: 08/23/17 10:00

DateReceived: 08/24/17

Matrix: Ground Water

|                                     |        |       |            |       | MCL/ |           |                      |
|-------------------------------------|--------|-------|------------|-------|------|-----------|----------------------|
| Analyses                            | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By   |
| MAJOR IONS                          |        |       |            |       |      |           |                      |
| Calcium                             | 693    | mg/L  |            | 1     |      | E200.7    | 09/01/17 04:19 / rlh |
| Magnesium                           | 108    | mg/L  |            | 1     |      | E200.7    | 09/01/17 04:19 / rlh |
| Potassium                           | 47     | mg/L  |            | 1     |      | E200.7    | 09/01/17 04:19 / rlh |
| Sodium                              | 1260   | mg/L  | D          | 4     |      | E200.7    | 09/01/17 04:19 / rlh |
| PHYSICAL PROPERTIES                 |        |       |            |       |      |           |                      |
| oH                                  | 6.7    | s.u.  | Н          | 0.1   |      | A4500-H B | 08/25/17 11:13 / pjw |
| Solids, Total Dissolved TDS @ 180 C | 6230   | mg/L  | D          | 90    |      | A2540 C   | 08/25/17 09:35 / rik |
| NORGANICS                           |        |       |            |       |      |           |                      |
| Chloride                            | 2810   | mg/L  | D          | 6     |      | E300.0    | 08/26/17 18:42 / cjm |
| Sulfate                             | 801    | mg/L  | D          | 20    |      | E300.0    | 08/26/17 18:42 / cjm |
| luoride                             | 0.1    | mg/L  |            | 0.1   |      | A4500-F C | 08/29/17 12:19 / cjm |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |      |           |                      |
| Antimony                            | ND     | mg/L  |            | 0.006 |      | E200.8    | 08/29/17 01:37 / jpv |
| rsenic                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:37 / jpv |
| Barium                              | 0.03   | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:37 / jpv |
| eryllium                            | ND     | mg/L  |            | 0.001 |      | E200.8    | 08/29/17 01:37 / jpv |
| Boron                               | 0.92   | mg/L  |            | 0.05  |      | E200.7    | 09/01/17 04:19 / rlh |
| Cadmium                             | ND     | mg/L  |            | 0.005 |      | E200.8    | 08/29/17 01:37 / jpv |
| Chromium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:37 / jpv |
| Cobalt                              | ND     | mg/L  |            | 0.02  |      | E200.8    | 08/29/17 01:37 / jpv |
| ead                                 | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:37 / jpv |
| ithium                              | 0.40   | mg/L  | D          | 0.04  |      | E200.7    | 09/01/17 04:19 / rlh |
| Mercury                             | ND     | mg/L  |            | 0.001 |      | E245.1    | 08/25/17 16:10 / jag |
| Nolybdenum                          | ND     | mg/L  |            | 0.05  |      | E200.8    | 08/29/17 01:37 / jpv |
| Selenium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:37 / jpv |
| <sup>-</sup> hallium                | ND     | mg/L  |            | 0.002 |      | E200.8    | 08/30/17 14:26 / jpv |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

Lab ID: B17082461-009 Client Sample ID: SFL MW-5

Revised Date: 12/15/17 Report Date: 09/05/17 Collection Date: 08/23/17 11:05

DateReceived: 08/24/17

Matrix: Ground Water

|                                     |        |       |            |       | MCL/ |           |                      |
|-------------------------------------|--------|-------|------------|-------|------|-----------|----------------------|
| Analyses                            | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By   |
| MAJOR IONS                          |        |       |            |       |      |           |                      |
| Calcium                             | 864    | mg/L  | D          | 2     |      | E200.7    | 09/01/17 04:22 / rlh |
| Magnesium                           | 170    | mg/L  |            | 1     |      | E200.7    | 09/01/17 04:22 / rlh |
| Potassium                           | 56     | mg/L  |            | 1     |      | E200.7    | 09/01/17 04:22 / rlh |
| Sodium                              | 1650   | mg/L  | D          | 8     |      | E200.7    | 09/01/17 04:22 / rlh |
| PHYSICAL PROPERTIES                 |        |       |            |       |      |           |                      |
| р<br>Н                              | 4.9    | s.u.  | Н          | 0.1   |      | A4500-H B | 08/25/17 11:16 / pjw |
| Solids, Total Dissolved TDS @ 180 C | 7520   | mg/L  | D          | 100   |      | A2540 C   | 08/25/17 09:36 / rik |
| NORGANICS                           |        |       |            |       |      |           |                      |
| Chloride                            | 3190   | mg/L  | D          | 10    |      | E300.0    | 08/26/17 19:02 / cjm |
| Sulfate                             | 2240   | mg/L  | D          | 40    |      | E300.0    | 08/26/17 19:02 / cjm |
| Fluoride                            | 0.2    | mg/L  |            | 0.1   |      | A4500-F C | 08/29/17 12:26 / cjm |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |      |           |                      |
| Antimony                            | ND     | mg/L  |            | 0.006 |      | E200.8    | 08/29/17 01:40 / jpv |
| Arsenic                             | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:40 / jpv |
| Barium                              | 0.02   | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:40 / jpv |
| Beryllium                           | 0.010  | mg/L  |            | 0.001 |      | E200.8    | 08/29/17 01:40 / jpv |
| Boron                               | 4.12   | mg/L  | D          | 0.07  |      | E200.7    | 09/01/17 04:22 / rlh |
| Cadmium                             | 0.006  | mg/L  |            | 0.005 |      | E200.8    | 08/29/17 01:40 / jpv |
| Chromium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:40 / jpv |
| Cobalt                              | 0.05   | mg/L  |            | 0.02  |      | E200.8    | 08/29/17 01:40 / jpv |
| Lead                                | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:40 / jpv |
| Lithium                             | 0.62   | mg/L  | D          | 0.09  |      | E200.7    | 09/01/17 04:22 / rlh |
| Mercury                             | ND     | mg/L  |            | 0.001 |      | E245.1    | 08/25/17 16:12 / jag |
| Nolybdenum                          | ND     | mg/L  |            | 0.05  |      | E200.8    | 08/29/17 01:40 / jpv |
| Selenium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:40 / jpv |
| <sup>-</sup> hallium                | ND     | mg/L  |            | 0.002 |      | E200.8    | 08/30/17 14:28 / jpv |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

B. Di :

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17082461-010

Client Sample ID: MNW-18

Revised Date: 12/15/17 **Report Date:** 09/05/17

Collection Date: 08/23/17 11:49 DateReceived: 08/24/17

Matrix: Ground Water

|                                     |        |       |            |       | MCL/ |           |                      |
|-------------------------------------|--------|-------|------------|-------|------|-----------|----------------------|
| Analyses                            | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By   |
| MAJOR IONS                          |        |       |            |       |      |           |                      |
| Calcium                             | 447    | mg/L  |            | 1     |      | E200.7    | 09/01/17 04:26 / rlh |
| Magnesium                           | 71     | •     |            | 1     |      | E200.7    | 09/01/17 04:26 / rlh |
| Potassium                           | 40     | mg/L  |            | 1     |      | E200.7    | 09/01/17 04:26 / rlh |
| Sodium                              | 782    | mg/L  | D          | 4     |      | E200.7    | 09/01/17 04:26 / rlh |
| PHYSICAL PROPERTIES                 |        |       |            |       |      |           |                      |
| pH                                  | 7.0    | s.u.  | Н          | 0.1   |      | A4500-H B | 08/25/17 11:19 / pjw |
| Solids, Total Dissolved TDS @ 180 C | 3920   | mg/L  | D          | 40    |      | A2540 C   | 08/28/17 08:19 / rik |
| INORGANICS                          |        |       |            |       |      |           |                      |
| Chloride                            | 529    | mg/L  | D          | 6     |      | E300.0    | 08/26/17 19:21 / cjm |
| Sulfate                             | 2090   | mg/L  | D          | 20    |      | E300.0    | 08/26/17 19:21 / cjm |
| Fluoride                            | 0.1    | •     |            | 0.1   |      | A4500-F C | 08/29/17 12:29 / cjm |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |      |           |                      |
| Antimony                            | ND     | mg/L  |            | 0.006 |      | E200.8    | 08/29/17 01:44 / jpv |
| Arsenic                             | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:44 / jpv |
| Barium                              | 0.06   | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:44 / jpv |
| Beryllium                           | ND     | mg/L  |            | 0.001 |      | E200.8    | 08/29/17 01:44 / jpv |
| Boron                               | 0.54   | mg/L  |            | 0.05  |      | E200.7    | 09/01/17 04:26 / rlh |
| Cadmium                             | ND     | mg/L  |            | 0.005 |      | E200.8    | 08/29/17 01:44 / jpv |
| Chromium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:44 / jpv |
| Cobalt                              | ND     | mg/L  |            | 0.02  |      | E200.8    | 08/29/17 01:44 / jpv |
| Lead                                | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:44 / jpv |
| Lithium                             | 0.44   | mg/L  | D          | 0.04  |      | E200.7    | 09/01/17 04:26 / rlh |
| Mercury                             | ND     | mg/L  |            | 0.001 |      | E245.1    | 08/25/17 16:14 / jag |
| Molybdenum                          | ND     | mg/L  |            | 0.05  |      | E200.8    | 08/29/17 01:44 / jpv |
| Selenium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:44 / jpv |
| Thallium                            | ND     | mg/L  |            | 0.002 |      | E200.8    | 08/30/17 14:31 / jpv |
|                                     |        |       |            |       |      |           |                      |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

Lab ID: B17082461-011 Client Sample ID: SFL MW-2

Revised Date: 12/15/17
Report Date: 09/05/17
Collection Date: 08/23/17 12:00
DateReceived: 08/24/17

Matrix: Ground Water

|                                     |        |       |            |       | MCL/ |           |                      |
|-------------------------------------|--------|-------|------------|-------|------|-----------|----------------------|
| Analyses                            | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By   |
| MAJOR IONS                          |        |       |            |       |      |           |                      |
| Calcium                             | 833    | mg/L  | D          | 2     |      | E200.7    | 09/01/17 04:29 / rlh |
| //agnesium                          | 129    | mg/L  |            | 1     |      | E200.7    | 09/01/17 04:29 / rlh |
| Potassium                           | 48     | mg/L  |            | 1     |      | E200.7    | 09/01/17 04:29 / rlh |
| odium                               | 1510   | mg/L  | D          | 8     |      | E200.7    | 09/01/17 04:29 / rlh |
| PHYSICAL PROPERTIES                 |        |       |            |       |      |           |                      |
| Н                                   | 6.6    | s.u.  | Н          | 0.1   |      | A4500-H B | 08/25/17 11:21 / pjw |
| Solids, Total Dissolved TDS @ 180 C | 7120   | mg/L  | D          | 90    |      | A2540 C   | 08/28/17 08:19 / rik |
| NORGANICS                           |        |       |            |       |      |           |                      |
| Chloride                            | 2910   | mg/L  | D          | 10    |      | E300.0    | 08/26/17 19:41 / cjm |
| ulfate                              | 1890   | mg/L  | D          | 40    |      | E300.0    | 08/26/17 19:41 / cjm |
| luoride                             | 0.3    | mg/L  |            | 0.1   |      | A4500-F C | 08/29/17 12:44 / cjm |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |      |           |                      |
| ntimony                             | ND     | mg/L  |            | 0.006 |      | E200.8    | 08/29/17 01:47 / jpv |
| rsenic                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:47 / jpv |
| arium                               | 0.02   | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:47 / jpv |
| eryllium                            | 0.003  | mg/L  |            | 0.001 |      | E200.8    | 08/29/17 01:47 / jpv |
| Boron                               | 0.57   | mg/L  | D          | 0.07  |      | E200.7    | 09/01/17 04:29 / rlh |
| cadmium                             | ND     | mg/L  |            | 0.005 |      | E200.8    | 08/29/17 01:47 / jpv |
| Chromium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:47 / jpv |
| Cobalt                              | 0.02   | mg/L  |            | 0.02  |      | E200.8    | 08/29/17 01:47 / jpv |
| ead                                 | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:47 / jpv |
| ithium                              | 0.33   | mg/L  | D          | 0.09  |      | E200.7    | 09/01/17 04:29 / rlh |
| 1ercury                             | ND     | mg/L  |            | 0.001 |      | E245.1    | 08/25/17 16:17 / jag |
| lolybdenum                          | ND     | mg/L  |            | 0.05  |      | E200.8    | 08/29/17 01:47 / jpv |
| elenium                             | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 01:47 / jpv |
| <sup>-</sup> hallium                | ND     | mg/L  |            | 0.002 |      | E200.8    | 08/30/17 14:34 / jpv |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

D. D. :

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17082461-014 Client Sample ID: SSP/AP MW-1

Revised Date: 12/15/17 **Report Date:** 09/05/17 Collection Date: 08/23/17 15:50

DateReceived: 08/24/17

Matrix: Ground Water

|                                     |        |       |            |       | MCL/ |           |                      |
|-------------------------------------|--------|-------|------------|-------|------|-----------|----------------------|
| Analyses                            | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By   |
| MAJOR IONS                          |        |       |            |       |      |           |                      |
| Calcium                             | 653    | mg/L  |            | 1     |      | E200.7    | 09/01/17 04:40 / rlh |
| Magnesium                           | 158    | mg/L  |            | 1     |      | E200.7    | 09/01/17 04:40 / rlh |
| Potassium                           | 57     | mg/L  |            | 1     |      | E200.7    | 09/01/17 04:40 / rlh |
| Sodium                              | 1370   | mg/L  | D          | 4     |      | E200.7    | 09/01/17 04:40 / rlh |
| PHYSICAL PROPERTIES                 |        |       |            |       |      |           |                      |
| )H                                  | 6.2    | s.u.  | Н          | 0.1   |      | A4500-H B | 08/25/17 11:32 / pjw |
| Solids, Total Dissolved TDS @ 180 C | 6530   | mg/L  | D          | 100   |      | A2540 C   | 08/28/17 08:20 / rik |
| NORGANICS                           |        |       |            |       |      |           |                      |
| Chloride                            | 1600   | mg/L  | D          | 6     |      | E300.0    | 08/26/17 21:57 / cjm |
| ulfate                              | 3070   | mg/L  | D          | 20    |      | E300.0    | 08/26/17 21:57 / cjm |
| luoride                             | 0.1    | mg/L  |            | 0.1   |      | A4500-F C | 08/29/17 12:57 / cjm |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |      |           |                      |
| Antimony                            | ND     | mg/L  |            | 0.006 |      | E200.8    | 08/29/17 02:07 / jpv |
| rsenic                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 02:07 / jpv |
| arium                               | 0.05   | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 02:07 / jpv |
| eryllium                            | 0.001  | mg/L  |            | 0.001 |      | E200.8    | 08/29/17 02:07 / jpv |
| soron                               | 0.81   | mg/L  |            | 0.05  |      | E200.7    | 09/01/17 04:40 / rlh |
| Cadmium                             | ND     | mg/L  |            | 0.005 |      | E200.8    | 08/29/17 02:07 / jpv |
| Chromium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 02:07 / jpv |
| Cobalt                              | ND     | mg/L  |            | 0.02  |      | E200.8    | 08/29/17 02:07 / jpv |
| ead                                 | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 02:07 / jpv |
| ithium                              | 1.35   | mg/L  | D          | 0.04  |      | E200.7    | 09/01/17 04:40 / rlh |
| 1ercury                             | ND     | mg/L  |            | 0.001 |      | E245.1    | 08/25/17 16:27 / jag |
| lolybdenum                          | ND     | mg/L  |            | 0.05  |      | E200.8    | 08/29/17 02:07 / jpv |
| Selenium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 02:07 / jpv |
| <sup>-</sup> hallium                | ND     | mg/L  |            | 0.002 |      | E200.8    | 08/30/17 14:41 / jpv |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17082461-015 Client Sample ID: EQBK-BJG-082317

Revised Date: 12/15/17 **Report Date:** 09/05/17 Collection Date: 08/23/17 15:25

DateReceived: 08/24/17

Matrix: Ground Water

|                                     |        |       |            |       | MCL/ |           |                      |
|-------------------------------------|--------|-------|------------|-------|------|-----------|----------------------|
| Analyses                            | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By   |
| MAJOR IONS                          |        |       |            |       |      |           |                      |
| Calcium                             | ND     | mg/L  |            | 1     |      | E200.7    | 09/01/17 04:44 / rlh |
| Magnesium                           | ND     | mg/L  |            | 1     |      | E200.7    | 09/01/17 04:44 / rlh |
| Potassium                           | ND     | mg/L  |            | 1     |      | E200.7    | 09/01/17 04:44 / rlh |
| Sodium                              | ND     | mg/L  |            | 1     |      | E200.7    | 09/01/17 04:44 / rlh |
| PHYSICAL PROPERTIES                 |        |       |            |       |      |           |                      |
| H                                   | 6.2    | s.u.  | Н          | 0.1   |      | A4500-H B | 08/25/17 11:34 / pjw |
| Solids, Total Dissolved TDS @ 180 C | ND     | mg/L  |            | 10    |      | A2540 C   | 08/28/17 08:20 / rik |
| NORGANICS                           |        |       |            |       |      |           |                      |
| Chloride                            | ND     | mg/L  |            | 1     |      | E300.0    | 08/26/17 22:17 / cjm |
| Sulfate                             | ND     | mg/L  |            | 1     |      | E300.0    | 08/26/17 22:17 / cjm |
| luoride                             | ND     | mg/L  |            | 0.1   |      | A4500-F C | 08/29/17 13:07 / cjm |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |      |           |                      |
| antimony                            | ND     | mg/L  |            | 0.006 |      | E200.8    | 08/29/17 02:11 / jpv |
| rsenic                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 02:11 / jpv |
| arium                               | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 02:11 / jpv |
| eryllium                            | ND     | mg/L  |            | 0.001 |      | E200.8    | 08/29/17 02:11 / jpv |
| Boron                               | ND     | mg/L  |            | 0.05  |      | E200.7    | 09/01/17 04:44 / rlh |
| Cadmium                             | ND     | mg/L  |            | 0.005 |      | E200.8    | 08/29/17 02:11 / jpv |
| Chromium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 02:11 / jpv |
| Cobalt                              | ND     | mg/L  |            | 0.02  |      | E200.8    | 08/29/17 02:11 / jpv |
| ead                                 | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 02:11 / jpv |
| ithium                              | ND     | mg/L  |            | 0.01  |      | E200.7    | 09/01/17 04:44 / rlh |
| 1ercury                             | ND     | mg/L  |            | 0.001 |      | E245.1    | 08/25/17 16:29 / jag |
| lolybdenum                          | ND     | mg/L  |            | 0.05  |      | E200.8    | 08/29/17 02:11 / jpv |
| Selenium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 02:11 / jpv |
| -hallium                            | ND     | mg/L  |            | 0.002 |      | E200.8    | 08/30/17 14:44 / jpv |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Page 17 of 34

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17082461-016 Client Sample ID: EQBK/SCM/082317

Revised Date: 12/15/17 **Report Date:** 09/05/17 Collection Date: 08/23/17 16:20

DateReceived: 08/24/17 Matrix: Ground Water

|                                     |        |       |            |       | MCL/ |           |                      |
|-------------------------------------|--------|-------|------------|-------|------|-----------|----------------------|
| Analyses                            | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By   |
| MAJOR IONS                          |        |       |            |       |      |           |                      |
| Calcium                             | ND     | mg/L  |            | 1     |      | E200.7    | 09/01/17 04:47 / rlh |
| Magnesium                           | ND     | mg/L  |            | 1     |      | E200.7    | 09/01/17 04:47 / rlh |
| Potassium                           | ND     | mg/L  |            | 1     |      | E200.7    | 09/01/17 04:47 / rlh |
| Sodium                              | ND     | mg/L  |            | 1     |      | E200.7    | 09/01/17 04:47 / rlh |
| PHYSICAL PROPERTIES                 |        |       |            |       |      |           |                      |
| рН                                  | 5.8    | s.u.  | Н          | 0.1   |      | A4500-H B | 08/25/17 11:37 / pjw |
| Solids, Total Dissolved TDS @ 180 C | ND     | mg/L  |            | 10    |      | A2540 C   | 08/28/17 08:21 / rik |
| INORGANICS                          |        |       |            |       |      |           |                      |
| Chloride                            | ND     | mg/L  |            | 1     |      | E300.0    | 08/26/17 22:36 / cjm |
| Sulfate                             | ND     | mg/L  |            | 1     |      | E300.0    | 08/26/17 22:36 / cjm |
| Fluoride                            | ND     | mg/L  |            | 0.1   |      | A4500-F C | 08/29/17 13:14 / cjm |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |      |           |                      |
| Antimony                            | ND     | mg/L  |            | 0.006 |      | E200.8    | 08/29/17 02:14 / jpv |
| Arsenic                             | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 02:14 / jpv |
| Barium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 02:14 / jpv |
| Beryllium                           | ND     | mg/L  |            | 0.001 |      | E200.8    | 08/29/17 02:14 / jpv |
| Boron                               | ND     | mg/L  |            | 0.05  |      | E200.7    | 09/01/17 04:47 / rlh |
| Cadmium                             | ND     | mg/L  |            | 0.005 |      | E200.8    | 08/29/17 02:14 / jpv |
| Chromium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 02:14 / jpv |
| Cobalt                              | ND     | mg/L  |            | 0.02  |      | E200.8    | 08/29/17 02:14 / jpv |
| Lead                                | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 02:14 / jpv |
| Lithium                             | ND     | mg/L  |            | 0.01  |      | E200.7    | 09/01/17 04:47 / rlh |
| Mercury                             | ND     | mg/L  |            | 0.001 |      | E245.1    | 08/25/17 16:31 / jag |
| Molybdenum                          | ND     | mg/L  |            | 0.05  |      | E200.8    | 08/29/17 02:14 / jpv |
| Selenium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/29/17 02:14 / jpv |
| Thallium                            | ND     | mg/L  |            | 0.002 |      | E200.8    | 08/30/17 14:47 / jpv |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.



Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/05/17Project:CCRRWork Order:B17082461

| Analyte Cou                         | nt Result      | Units        | RL | %REC | Low Limit  | High Limit    | RPD | RPDLimit | Qual      |
|-------------------------------------|----------------|--------------|----|------|------------|---------------|-----|----------|-----------|
| Method: A2540 C                     |                |              |    |      |            |               |     | Batch    | n: 113036 |
| Lab ID: LCS-113036                  | Laboratory Con | ntrol Sample |    |      | Run: BAL # | SD-15_170825D |     | 08/25/   | 17 09:30  |
| Solids, Total Dissolved TDS @ 180 C | 983            | mg/L         | 10 | 97   | 90         | 110           |     |          |           |
| Lab ID: B17082448-002A DUP          | Sample Duplica | ate          |    |      | Run: BAL # | SD-15_170825D |     | 08/25/   | 17 09:33  |
| Solids, Total Dissolved TDS @ 180 C | 782            | mg/L         | 10 |      |            |               | 0.6 | 5        |           |
| Lab ID: MB-113036                   | Method Blank   |              |    |      | Run: BAL # | SD-15_170825D |     | 08/28/   | 17 08:48  |
| Solids, Total Dissolved TDS @ 180 C | ND             | mg/L         | 4  |      |            |               |     |          |           |
| Method: A2540 C                     |                |              |    |      |            |               |     | Batch    | n: 113070 |
| Lab ID: MB-113070                   | Method Blank   |              |    |      | Run: BAL # | SD-15_170828C |     | 08/28/   | 17 08:16  |
| Solids, Total Dissolved TDS @ 180 C | ND             | mg/L         | 4  |      |            |               |     |          |           |
| Lab ID: LCS-113070                  | Laboratory Con | ntrol Sample |    |      | Run: BAL # | SD-15_170828C |     | 08/28/   | 17 08:17  |
| Solids, Total Dissolved TDS @ 180 C | 987            | mg/L         | 10 | 99   | 90         | 110           |     |          |           |
| Lab ID: B17082598-003A DUP          | Sample Duplica | ate          |    |      | Run: BAL # | SD-15_170828C |     | 08/28/   | 17 08:18  |
| Solids, Total Dissolved TDS @ 180 C | 6410           | mg/L         | 98 |      |            |               | 0.5 | 5        |           |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/05/17Project:CCRRWork Order:B17082461

| Analyte  |                   | Count        | Result        | Units              | RL     | %REC | Low Limit | High Limit   | RPD     | RPDLimit  | Qual     |
|----------|-------------------|--------------|---------------|--------------------|--------|------|-----------|--------------|---------|-----------|----------|
| Method:  | A4500-F C         |              |               |                    |        |      |           | Analytic     | al Run: | MAN-TECH_ | 170829A  |
| Lab ID:  | ICV               | Initia       | al Calibratio | on Verification St | andard |      |           |              |         | 08/29/    | 17 10:16 |
| Fluoride |                   |              | 0.950         | mg/L               | 0.10   | 95   | 90        | 110          |         |           |          |
| Method:  | A4500-F C         |              |               |                    |        |      |           |              |         | Batch:    | R285788  |
| Lab ID:  | MBLK              | Meth         | nod Blank     |                    |        |      | Run: MAN- | TECH_170829A |         | 08/29/    | 17 10:13 |
| Fluoride |                   |              | 0.02          | mg/L               | 0.02   |      |           |              |         |           |          |
| Lab ID:  | B17082461-001AMS  | Sam          | ple Matrix    | Spike              |        |      | Run: MAN- | TECH_170829A |         | 08/29/    | 17 11:21 |
| Fluoride |                   |              | 1.05          | mg/L               | 0.10   | 95   | 80        | 120          |         |           |          |
| Lab ID:  | B17082461-001AMSI | <b>D</b> Sam | ple Matrix    | Spike Duplicate    |        |      | Run: MAN- | TECH_170829A |         | 08/29/    | 17 11:24 |
| Fluoride |                   |              | 1.07          | mg/L               | 0.10   | 97   | 80        | 120          | 1.9     | 10        |          |
| Lab ID:  | B17082461-011AMS  | Sam          | ple Matrix    | Spike              |        |      | Run: MAN- | TECH_170829A |         | 08/29/    | 17 12:46 |
| Fluoride |                   |              | 1.20          | mg/L               | 0.10   | 93   | 80        | 120          |         |           |          |
| Lab ID:  | B17082461-011AMSI | <b>D</b> Sam | ple Matrix    | Spike Duplicate    |        |      | Run: MAN- | TECH_170829A |         | 08/29/    | 17 12:49 |
| Fluoride |                   |              | 1.23          | mg/L               | 0.10   | 96   | 80        | 120          | 2.5     | 10        |          |
| Lab ID:  | LFB               | Labo         | oratory For   | tified Blank       |        |      | Run: MAN- | TECH_170829A |         | 08/29/    | 17 17:01 |
| Fluoride |                   |              | 0.920         | mg/L               | 0.10   | 92   | 90        | 110          |         |           |          |

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

# **QA/QC Summary Report**

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/05/17Project:CCRRWork Order:B17082461

| Analyte |                   | Count        | Result        | Units      | RL             | %REC | Low Limit | High Limit   | RPD        | RPDLimit    | Qual      |
|---------|-------------------|--------------|---------------|------------|----------------|------|-----------|--------------|------------|-------------|-----------|
| Method: | A4500-H B         |              |               |            |                |      |           | Analytica    | al Run: Pl | HSC _101-B_ | _170825A  |
| Lab ID: | pH 8              | Initi        | al Calibratio | n Verifica | ation Standard |      |           |              |            | 08/25/      | /17 08:12 |
| рН      |                   |              | 7.98          | s.u.       | 0.10           | 100  | 98        | 102          |            |             |           |
| Method: | A4500-H B         |              |               |            |                |      |           |              |            | Batch:      | R285537   |
| Lab ID: | B17082461-002ADUF | <b>P</b> Sar | nple Duplica  | ate        |                |      | Run: PHSC | _101-B_17082 | 25A        | 08/25/      | /17 10:58 |
| рН      |                   |              | 3.83          | s.u.       | 0.10           |      |           |              | 0.3        | 3           |           |
| Lab ID: | B17082461-012ADUF | <b>P</b> Sar | nple Duplica  | ate        |                |      | Run: PHSC | _101-B_17082 | 25A        | 08/25/      | /17 11:26 |
| рН      |                   |              | 7.26          | s.u.       | 0.10           |      |           |              | 0.3        | 3           |           |

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Report Date: 09/05/17

Work Order: B17082461

Project: CCRR

Analyte Count Result Units **RL %REC Low Limit High Limit RPD RPDLimit** E300.0 Analytical Run: IC METROHM 1 170825A Method: Lab ID: ICV 2 Initial Calibration Verification Standard 08/25/17 16:04 Chloride 2.22 mg/L 99 90 110 101 Sulfate 9.08 mg/L 1.0 90 110 Batch: R285660 Method: E300.0 Lab ID: **ICB** 2 Method Blank Run: IC METROHM 1 170825A 08/25/17 16:23 Chloride ND mg/L 0.006 Sulfate ND 0.02 mg/L Lab ID: LFB 2 Laboratory Fortified Blank Run: IC METROHM 1 170825A 08/25/17 16:43 Chloride 10.1 mg/L 1.0 101 90 110 Sulfate 30.1 90 mg/L 1.0 100 110 Lab ID: B17082461-002AMS 2 Sample Matrix Spike Run: IC METROHM 1 170825A 08/26/17 16:26 Chloride 2430 mg/L 6 1 104 90 110 Sulfate 5500 mg/L 18 106 90 110 Lab ID: B17082461-002AMSD 2 Sample Matrix Spike Duplicate Run: IC METROHM 1 170825A 08/26/17 16:45 Chloride 2410 ma/L 6.1 103 90 110 0.7 20 5470 90 20 Sulfate mg/L 18 105 110 0.7 B17082461-012AMS Lab ID: 2 Sample Matrix Spike Run: IC METROHM 1 170825A 08/26/17 20:59 3140 mg/L 6.1 90 110 Ε Chloride 99 Sulfate 4140 90 110 mg/L 18 108 Lab ID: B17082461-012AMSD 2 Sample Matrix Spike Duplicate 08/26/17 21:18 Run: IC METROHM 1\_170825A Chloride 3130 6.1 98 90 110 20 Ε mg/L 20 Sulfate 4140 90 0.1 mg/L 18 108 110 Method: E300.0 Analytical Run: IC METROHM 1 170829A Lab ID: ICV Initial Calibration Verification Standard 08/29/17 15:29 Chloride 2.21 mg/L 98 90 110 Method: E300.0 Batch: R285818 Lab ID: **ICB** Method Blank Run: IC METROHM 1 170829A 08/29/17 15:49 Chloride ND mg/L 0.006 Lab ID: Laboratory Fortified Blank LFB Run: IC METROHM 1 170829A 08/29/17 16:08 Chloride 10.2 mg/L 1.0 102 90 110 Lab ID: B17081933-011AMS Sample Matrix Spike Run: IC METROHM 1 170829A 08/29/17 17:06 Chloride 6160 mg/L 31 107 90 110 Lab ID: B17081933-011AMSD Sample Matrix Spike Duplicate Run: IC METROHM 1 170829A 08/29/17 17:26 Chloride 6150 mg/L 31 107 90 110 0.0 20

## Qualifiers:

RL - Analyte reporting limit.

E - Estimated value. Result exceeds the instrument upper quantitation limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/05/17Project:CCRRWork Order:B17082461

| Analyte    |                   | Count       | Result       | Units            | RL           | %REC | Low Limit  | High Limit  | RPD F       | RPDLimit  | Qual      |
|------------|-------------------|-------------|--------------|------------------|--------------|------|------------|-------------|-------------|-----------|-----------|
| Method:    | E200.7            |             |              |                  |              |      |            | Anal        | ytical Run: | ICP203-B_ | _170831   |
| Lab ID:    | ICV               | 6 Co        | ntinuing Cal | ibration Verific | ation Standa | rd   |            |             |             | 08/31/    | /17 11:49 |
| Boron      |                   |             | 2.50         | mg/L             | 0.10         | 100  | 95         | 105         |             |           |           |
| Calcium    |                   |             | 25.0         | mg/L             | 1.0          | 100  | 95         | 105         |             |           |           |
| Lithium    |                   |             | 1.27         | mg/L             | 0.10         | 101  | 95         | 105         |             |           |           |
| Magnesiur  | m                 |             | 24.9         | mg/L             | 1.0          | 99   | 95         | 105         |             |           |           |
| Potassium  | 1                 |             | 25.8         | mg/L             | 1.0          | 103  | 95         | 105         |             |           |           |
| Sodium     |                   |             | 25.6         | mg/L             | 1.0          | 103  | 95         | 105         |             |           |           |
| Method:    | E200.7            |             |              |                  |              |      |            |             |             | Batcl     | h: 113004 |
| Lab ID:    | MB-113004         | 6 Me        | thod Blank   |                  |              |      | Run: ICP20 | 3-B_170831A |             | 09/01/    | /17 03:08 |
| Boron      |                   |             | ND           | mg/L             | 0.003        |      |            |             |             |           |           |
| Calcium    |                   |             | 0.2          | mg/L             | 0.08         |      |            |             |             |           |           |
| Lithium    |                   |             | ND           | mg/L             | 0.004        |      |            |             |             |           |           |
| Magnesiur  | m                 |             | ND           | mg/L             | 0.01         |      |            |             |             |           |           |
| Potassium  | 1                 |             | ND           | mg/L             | 0.07         |      |            |             |             |           |           |
| Sodium     |                   |             | ND           | mg/L             | 0.03         |      |            |             |             |           |           |
| Lab ID:    | LCS-113004        | 6 Lat       | ooratory Cor | ntrol Sample     |              |      | Run: ICP20 | 3-B_170831A |             | 09/01/    | /17 03:12 |
| Boron      |                   |             | 0.452        | mg/L             | 0.10         | 90   | 85         | 115         |             |           |           |
| Calcium    |                   |             | 24.2         | mg/L             | 1.0          | 96   | 85         | 115         |             |           |           |
| Lithium    |                   |             | 0.468        | mg/L             | 0.10         | 94   | 85         | 115         |             |           |           |
| Magnesiur  | m                 |             | 24.2         | mg/L             | 1.0          | 97   | 85         | 115         |             |           |           |
| Potassium  | 1                 |             | 24.1         | mg/L             | 1.0          | 96   | 85         | 115         |             |           |           |
| Sodium     |                   |             | 24.2         | mg/L             | 1.0          | 97   | 85         | 115         |             |           |           |
| Lab ID:    | B17082448-001CMS3 | 6 Sa        | mple Matrix  | Spike            |              |      | Run: ICP20 | 3-B_170831A |             | 09/01/    | /17 03:26 |
| Boron      |                   |             | 0.686        | mg/L             | 0.050        | 101  | 70         | 130         |             |           |           |
| Calcium    |                   |             | 104          | mg/L             | 1.0          | 98   | 70         | 130         |             |           |           |
| Lithium    |                   |             | 0.506        | mg/L             | 0.10         | 98   | 70         | 130         |             |           |           |
| Magnesiur  | m                 |             | 77.0         | mg/L             | 1.0          | 99   | 70         | 130         |             |           |           |
| Potassium  | 1                 |             | 29.5         | mg/L             | 1.0          | 98   | 70         | 130         |             |           |           |
| Sodium     |                   |             | 105          | mg/L             | 1.0          | 96   | 70         | 130         |             |           |           |
| Lab ID:    | B17082448-001CMSE | <b>6</b> Sa | mple Matrix  | Spike Duplica    | ite          |      | Run: ICP20 | 3-B_170831A |             | 09/01/    | /17 03:36 |
| Boron      |                   |             | 0.688        | mg/L             | 0.050        | 102  | 70         | 130         | 0.4         | 20        |           |
| Calcium    |                   |             | 105          | mg/L             | 1.0          | 101  | 70         | 130         | 0.7         | 20        |           |
| Lithium    |                   |             | 0.514        | mg/L             | 0.10         | 99   | 70         | 130         | 1.5         | 20        |           |
| Magnesiur  | m                 |             | 77.3         | mg/L             | 1.0          | 100  | 70         | 130         | 0.4         | 20        |           |
| Potassium  | 1                 |             | 29.7         | mg/L             | 1.0          | 99   | 70         | 130         | 0.6         | 20        |           |
| Sodium     |                   |             | 107          | mg/L             | 1.0          | 101  | 70         | 130         | 1.3         | 20        |           |
| Lab ID:    | B17082461-016BMS3 | 6 Sa        | mple Matrix  | Spike            |              |      | Run: ICP20 | 3-B_170831A |             | 09/01/    | /17 05:05 |
| Boron      |                   |             | 0.496        | mg/L             | 0.050        | 99   | 70         | 130         |             |           |           |
| Calcium    |                   |             | 26.6         | mg/L             | 1.0          | 105  | 70         | 130         |             |           |           |
| Lithium    |                   |             | 0.516        | mg/L             | 0.10         | 103  | 70         | 130         |             |           |           |
| Littinaiii |                   |             |              | mg/L             |              |      | 70         | 130         |             |           |           |

Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/05/17Project:CCRRWork Order:B17082461

| Analyte   |                   | Count | Result       | Units         | RL    | %REC | Low Limit  | High Limit  | RPD | RPDLimit | Qual      |
|-----------|-------------------|-------|--------------|---------------|-------|------|------------|-------------|-----|----------|-----------|
| Method:   | E200.7            |       |              |               |       |      |            |             |     | Batcl    | h: 113004 |
| Lab ID:   | B17082461-016BMS3 | 6 S   | ample Matrix | Spike         |       |      | Run: ICP20 | 3-B_170831A |     | 09/01/   | 17 05:05  |
| Potassium |                   |       | 26.8         | mg/L          | 1.0   | 107  | 70         | 130         |     |          |           |
| Sodium    |                   |       | 26.5         | mg/L          | 1.0   | 104  | 70         | 130         |     |          |           |
| Lab ID:   | B17082461-016BMSI | 0 6 S | ample Matrix | Spike Duplica | te    |      | Run: ICP20 | 3-B_170831A |     | 09/01/   | 17 05:08  |
| Boron     |                   |       | 0.484        | mg/L          | 0.050 | 97   | 70         | 130         | 2.5 | 20       |           |
| Calcium   |                   |       | 25.5         | mg/L          | 1.0   | 101  | 70         | 130         | 4.0 | 20       |           |
| Lithium   |                   |       | 0.504        | mg/L          | 0.10  | 101  | 70         | 130         | 2.3 | 20       |           |
| Magnesium | ı                 |       | 25.5         | mg/L          | 1.0   | 102  | 70         | 130         | 2.3 | 20       |           |
| Potassium |                   |       | 26.0         | mg/L          | 1.0   | 103  | 70         | 130         | 3.1 | 20       |           |
| Sodium    |                   |       | 25.7         | mg/L          | 1.0   | 101  | 70         | 130         | 3.1 | 20       |           |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/05/17Project:CCRRWork Order:B17082461

| Analyte               |                    | Coun        | t Result            | Units         | RL                | %REC       | Low Limit  | High Limit     | RPD    | RPDLimit   | Qual      |
|-----------------------|--------------------|-------------|---------------------|---------------|-------------------|------------|------------|----------------|--------|------------|-----------|
| Method:               | E200.8             |             |                     |               |                   |            |            | Analytical     | Run: I | CPMS202-B_ | _170830A  |
| Lab ID:               | QCS                |             | Initial Calibration | n Verificatio | on Standard       |            |            |                |        | 08/30/     | 17 13:06  |
| Thallium              |                    |             | 0.0491              | mg/L          | 0.10              | 98         | 90         | 110            |        |            |           |
| Method:               | E200.8             |             |                     |               |                   |            |            |                |        | Batcl      | h: 113004 |
| Lab ID:               | MB-113004          | 11          | Method Blank        |               |                   |            | Run: ICPM  | S202-B_170830A |        | 08/30/     | 17 13:37  |
| Antimony              |                    |             | 0.00007             | mg/L          | 0.00004           |            |            |                |        |            |           |
| Arsenic               |                    |             | 0.0002              | mg/L          | 0.00006           |            |            |                |        |            |           |
| Barium                |                    |             | ND                  | mg/L          | 0.00004           |            |            |                |        |            |           |
| Beryllium             |                    |             | ND                  | mg/L          | 0.00002           |            |            |                |        |            |           |
| Cadmium               |                    |             | ND                  | mg/L          | 0.00002           |            |            |                |        |            |           |
| Chromium              |                    |             | 0.0003              | mg/L          | 0.00009           |            |            |                |        |            |           |
| Cobalt                |                    |             | ND                  | mg/L          | 0.00003           |            |            |                |        |            |           |
| Lead                  |                    |             | 0.00009             | mg/L          | 0.00005           |            |            |                |        |            |           |
| Molybdenu             | m                  |             | 0.006               | mg/L          | 0.00005           |            |            |                |        |            |           |
| Selenium              |                    |             | ND                  | mg/L          | 0.0002            |            |            |                |        |            |           |
| Thallium              |                    |             | ND                  | mg/L          | 0.0001            |            |            |                |        |            |           |
| Lab ID:               | LCS-113004         | 11          | Laboratory Cor      | trol Sample   | <b>)</b>          |            | Run: ICPMS | S202-B_170830A |        | 08/30/     | 17 13:50  |
| Antimony              |                    |             | 0.573               | mg/L          | 0.0050            | 115        | 85         | 115            |        |            |           |
| Arsenic               |                    |             | 0.522               | mg/L          | 0.0010            | 104        | 85         | 115            |        |            |           |
| Barium                |                    |             | 0.525               | mg/L          | 0.010             | 105        | 85         | 115            |        |            |           |
| Beryllium             |                    |             | 0.255               | mg/L          | 0.0010            | 102        | 85         | 115            |        |            |           |
| Cadmium               |                    |             | 0.265               | mg/L          | 0.0010            | 106        | 85         | 115            |        |            |           |
| Chromium              |                    |             | 0.494               | mg/L          | 0.0010            | 99         | 85         | 115            |        |            |           |
| Cobalt                |                    |             | 0.490               | mg/L          | 0.0010            | 98         | 85         | 115            |        |            |           |
| Lead                  |                    |             | 0.430               | mg/L          | 0.0010            | 107        | 85         | 115            |        |            |           |
|                       | m                  |             | 0.537               | -             | 0.0010            | 107        | 85         | 115            |        |            |           |
| Molybdenu<br>Selenium | III                |             | 0.512               | mg/L          | 0.0050            | 100        | 85         | 115            |        |            |           |
| Thallium              |                    |             | 0.512               | mg/L<br>mg/L  | 0.0030            | 102        | 85         | 115            |        |            |           |
| Lab ID:               | B17082448-001CMS3  | R 11        | Sample Matrix       | -             |                   |            | Run: ICPM  | S202-B_170830A |        | 08/30/     | 17 13:52  |
| Antimony              |                    |             | 0.541               | mg/L          | 0.0010            | 108        | 70         | 130            |        | 00/00/     | 17 10.02  |
| Arsenic               |                    |             | 0.530               | mg/L          | 0.0010            | 106        | 70         | 130            |        |            |           |
| Barium                |                    |             | 0.593               | mg/L          | 0.050             | 106        | 70         | 130            |        |            |           |
| Beryllium             |                    |             | 0.247               | mg/L          | 0.0010            | 99         | 70         | 130            |        |            |           |
| Cadmium               |                    |             | 0.258               | mg/L          | 0.0010            | 103        | 70         | 130            |        |            |           |
| Chromium              |                    |             | 0.500               | mg/L          | 0.0010            | 100        | 70         | 130            |        |            |           |
| Cobalt                |                    |             | 0.493               |               | 0.0050            | 99         |            | 130            |        |            |           |
|                       |                    |             |                     | mg/L          |                   |            | 70<br>70   |                |        |            |           |
| Lead                  | -                  |             | 0.542               | mg/L          | 0.0010            | 108        | 70<br>70   | 130            |        |            |           |
| Molybdenu             | III                |             | 0.526               | mg/L          | 0.0010            | 104        | 70<br>70   | 130            |        |            |           |
| Selenium<br>Thallium  |                    |             | 0.505<br>0.510      | mg/L<br>mg/L  | 0.0010<br>0.00050 | 101<br>102 | 70<br>70   | 130<br>130     |        |            |           |
|                       | D17002440 004CF4CF | <b>)</b> 11 |                     |               |                   |            |            |                |        | 00/20      | 117 12:55 |
| Lab ID:               | B17082448-001CMSE  | ۱۱ ر        | •                   |               |                   | 400        |            | S202-B_170830A |        |            | 17 13:55  |
| Antimony              |                    |             | 0.532               | mg/L          | 0.0010            | 106        | 70         | 130            | 1.8    | 20         |           |
| Arsenic               |                    |             | 0.531               | mg/L          | 0.0010            | 106        | 70         | 130            | 0.1    | 20         |           |

Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/05/17Project:CCRRWork Order:B17082461

| Analyte   |                   | Count          | Result      | Units      | RL      | %REC | Low Limit | High Limit    | RPD | RPDLimit | Qual      |
|-----------|-------------------|----------------|-------------|------------|---------|------|-----------|---------------|-----|----------|-----------|
| Method:   | E200.8            |                |             |            |         |      |           |               |     | Batcl    | n: 113004 |
| Lab ID:   | B17082448-001CMSE | 11 Sa          | mple Matrix | Spike Dupl | icate   |      | Run: ICPM | S202-B_170830 | Α   | 08/30/   | 17 13:55  |
| Barium    |                   |                | 0.597       | mg/L       | 0.050   | 107  | 70        | 130           | 0.6 | 20       |           |
| Beryllium |                   |                | 0.250       | mg/L       | 0.0010  | 100  | 70        | 130           | 1.4 | 20       |           |
| Cadmium   |                   |                | 0.258       | mg/L       | 0.0010  | 103  | 70        | 130           | 0.0 | 20       |           |
| Chromium  |                   |                | 0.496       | mg/L       | 0.0050  | 99   | 70        | 130           | 0.8 | 20       |           |
| Cobalt    |                   |                | 0.492       | mg/L       | 0.0050  | 98   | 70        | 130           | 0.2 | 20       |           |
| Lead      |                   |                | 0.553       | mg/L       | 0.0010  | 110  | 70        | 130           | 1.9 | 20       |           |
| Molybdenu | m                 |                | 0.520       | mg/L       | 0.0010  | 103  | 70        | 130           | 1.1 | 20       |           |
| Selenium  |                   |                | 0.505       | mg/L       | 0.0010  | 101  | 70        | 130           | 0.0 | 20       |           |
| Thallium  |                   |                | 0.515       | mg/L       | 0.00050 | 103  | 70        | 130           | 0.9 | 20       |           |
| Lab ID:   | B17082461-016BMS3 | 11 Sa          | mple Matrix | Spike      |         |      | Run: ICPM | S202-B_170830 | Α   | 08/30/   | 17 14:57  |
| Antimony  |                   |                | 0.549       | mg/L       | 0.0010  | 110  | 70        | 130           |     |          |           |
| Arsenic   |                   |                | 0.532       | mg/L       | 0.0010  | 106  | 70        | 130           |     |          |           |
| Barium    |                   |                | 0.572       | mg/L       | 0.050   | 114  | 70        | 130           |     |          |           |
| Beryllium |                   |                | 0.263       | mg/L       | 0.0010  | 105  | 70        | 130           |     |          |           |
| Cadmium   |                   |                | 0.274       | mg/L       | 0.0010  | 110  | 70        | 130           |     |          |           |
| Chromium  |                   |                | 0.498       | mg/L       | 0.0050  | 99   | 70        | 130           |     |          |           |
| Cobalt    |                   |                | 0.505       | mg/L       | 0.0050  | 101  | 70        | 130           |     |          |           |
| Lead      |                   |                | 0.553       | mg/L       | 0.0010  | 111  | 70        | 130           |     |          |           |
| Molybdenu | m                 |                | 0.503       | mg/L       | 0.0010  | 101  | 70        | 130           |     |          |           |
| Selenium  |                   |                | 0.519       | mg/L       | 0.0010  | 104  | 70        | 130           |     |          |           |
| Thallium  |                   |                | 0.529       | mg/L       | 0.00050 | 106  | 70        | 130           |     |          |           |
| Lab ID:   | B17082461-016BMSE | <b>)</b> 11 Sa | mple Matrix | Spike Dup  | icate   |      | Run: ICPM | S202-B_170830 | Α   | 08/30/   | 17 14:59  |
| Antimony  |                   |                | 0.555       | mg/L       | 0.0010  | 111  | 70        | 130           | 1.1 | 20       |           |
| Arsenic   |                   |                | 0.532       | mg/L       | 0.0010  | 106  | 70        | 130           | 0.0 | 20       |           |
| Barium    |                   |                | 0.558       | mg/L       | 0.050   | 111  | 70        | 130           | 2.5 | 20       |           |
| Beryllium |                   |                | 0.260       | mg/L       | 0.0010  | 104  | 70        | 130           | 1.0 | 20       |           |
| Cadmium   |                   |                | 0.274       | mg/L       | 0.0010  | 110  | 70        | 130           | 0.0 | 20       |           |
| Chromium  |                   |                | 0.504       | mg/L       | 0.0050  | 101  | 70        | 130           | 1.3 | 20       |           |
| Cobalt    |                   |                | 0.501       | mg/L       | 0.0050  | 100  | 70        | 130           | 8.0 | 20       |           |
| Lead      |                   |                | 0.551       | mg/L       | 0.0010  | 110  | 70        | 130           | 0.4 | 20       |           |
| Molybdenu | m                 |                | 0.514       | mg/L       | 0.0010  | 103  | 70        | 130           | 2.2 | 20       |           |
| Selenium  |                   |                | 0.520       | mg/L       | 0.0010  | 104  | 70        | 130           | 0.4 | 20       |           |
| Thallium  |                   |                | 0.527       | mg/L       | 0.00050 | 105  | 70        | 130           | 0.3 | 20       |           |

## Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/05/17Project:CCRRWork Order:B17082461

| Analyte   |                   | Count Resu       | lt Units         | RL           | %REC | Low Limit | High Limit             | RPD    | RPDLimit   | Qual      |
|-----------|-------------------|------------------|------------------|--------------|------|-----------|------------------------|--------|------------|-----------|
| Method:   | E200.8            |                  |                  |              |      |           | Analytica              | Run: I | CPMS206-B_ | _170828A  |
| Lab ID:   | QCS               | 10 Initial Calib | ration Verificat | ion Standard |      |           |                        |        | 08/28/     | 17 23:35  |
| Antimony  |                   | 0.049            | 8 mg/L           | 0.050        | 100  | 90        | 110                    |        |            |           |
| Arsenic   |                   | 0.052            | 0 mg/L           | 0.0050       | 104  | 90        | 110                    |        |            |           |
| Barium    |                   | 0.049            | 1 mg/L           | 0.10         | 98   | 90        | 110                    |        |            |           |
| Beryllium |                   | 0.026            | 8 mg/L           | 0.0010       | 107  | 90        | 110                    |        |            |           |
| Cadmium   |                   | 0.026            | 5 mg/L           | 0.0010       | 106  | 90        | 110                    |        |            |           |
| Chromium  |                   | 0.053            | 8 mg/L           | 0.010        | 108  | 90        | 110                    |        |            |           |
| Cobalt    |                   | 0.051            | 0 mg/L           | 0.010        | 102  | 90        | 110                    |        |            |           |
| Lead      |                   | 0.049            | 0 mg/L           | 0.010        | 98   | 90        | 110                    |        |            |           |
| Molybdenu | um                | 0.047            | 1 mg/L           | 0.0050       | 94   | 90        | 110                    |        |            |           |
| Selenium  |                   | 0.051            | 5 mg/L           | 0.0050       | 103  | 90        | 110                    |        |            |           |
| Method:   | E200.8            |                  |                  |              |      |           |                        |        | Batch      | n: 113004 |
| Lab ID:   | MB-113004         | 11 Method Bla    | nk               |              |      | Run: ICPM | S206-B_170828 <i>A</i> | ١      | 08/29/     | 17 00:43  |
| Antimony  |                   | 0.0000           | 9 mg/L           | 0.00004      |      |           |                        |        |            |           |
| Arsenic   |                   | N                | D mg/L           | 0.0002       |      |           |                        |        |            |           |
| Barium    |                   | N                | D mg/L           | 0.00005      |      |           |                        |        |            |           |
| Beryllium |                   | N                | D mg/L           | 0.00008      |      |           |                        |        |            |           |
| Cadmium   |                   | N                | D mg/L           | 0.00003      |      |           |                        |        |            |           |
| Chromium  |                   | N                | D mg/L           | 0.0001       |      |           |                        |        |            |           |
| Cobalt    |                   | 0.0000           | 2 mg/L           | 0.00002      |      |           |                        |        |            |           |
| Lead      |                   | N                | D mg/L           | 0.00003      |      |           |                        |        |            |           |
| Molybdenu | um                | N                | D mg/L           | 0.00003      |      |           |                        |        |            |           |
| Selenium  |                   | N                | D mg/L           | 0.0004       |      |           |                        |        |            |           |
| Thallium  |                   | 0.0000           | 8 mg/L           | 7E-06        |      |           |                        |        |            |           |
| Lab ID:   | LCS-113004        | 11 Laboratory    | Control Samp     | le           |      | Run: ICPM | S206-B_170828 <i>A</i> | ١      | 08/29/     | 17 00:49  |
| Antimony  |                   | 0.57             | 1 mg/L           | 0.0050       | 114  | 85        | 115                    |        |            |           |
| Arsenic   |                   | 0.52             | 4 mg/L           | 0.0010       | 105  | 85        | 115                    |        |            |           |
| Barium    |                   | 0.50             | 9 mg/L           | 0.010        | 102  | 85        | 115                    |        |            |           |
| Beryllium |                   | 0.25             | 5 mg/L           | 0.0010       | 102  | 85        | 115                    |        |            |           |
| Cadmium   |                   | 0.26             | 3 mg/L           | 0.0010       | 105  | 85        | 115                    |        |            |           |
| Chromium  |                   | 0.52             | 4 mg/L           | 0.0010       | 105  | 85        | 115                    |        |            |           |
| Cobalt    |                   | 0.52             | 5 mg/L           | 0.0010       | 105  | 85        | 115                    |        |            |           |
| Lead      |                   | 0.51             | 5 mg/L           | 0.0010       | 103  | 85        | 115                    |        |            |           |
| Molybdenu | um                | 0.51             | 6 mg/L           | 0.0050       | 103  | 85        | 115                    |        |            |           |
| Selenium  |                   | 0.52             | 8 mg/L           | 0.0050       | 106  | 85        | 115                    |        |            |           |
| Thallium  |                   | 0.56             | 1 mg/L           | 0.0010       | 112  | 85        | 115                    |        |            |           |
| Lab ID:   | B17082448-001CMS3 | 11 Sample Ma     | trix Spike       |              |      | Run: ICPM | S206-B_170828 <i>A</i> |        | 08/29/     | 17 00:53  |
| Antimony  |                   | 0.53             | 1 mg/L           | 0.0010       | 106  | 70        | 130                    |        |            |           |
| Arsenic   |                   | 0.54             | -                | 0.0010       | 108  | 70        | 130                    |        |            |           |
| Barium    |                   | 0.57             | •                | 0.050        | 103  | 70        | 130                    |        |            |           |
| Beryllium |                   | 0.24             | •                | 0.0010       | 97   | 70        | 130                    |        |            |           |
| Cadmium   |                   | 0.26             | •                | 0.0010       | 106  | 70        | 130                    |        |            |           |
| Chromium  |                   | 0.52             | •                | 0.0050       | 104  | 70        | 130                    |        |            |           |

Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/05/17Project:CCRRWork Order:B17082461

| Analyte   |                   | Count           | Result      | Units       | RL      | %REC | Low Limit | High Limit     | RPD | RPDLimit | Qual      |
|-----------|-------------------|-----------------|-------------|-------------|---------|------|-----------|----------------|-----|----------|-----------|
| Method:   | E200.8            |                 |             |             |         |      |           |                |     | Batc     | h: 113004 |
| Lab ID:   | B17082448-001CMS3 | 11 Sar          | nple Matrix | Spike       |         |      | Run: ICPM | S206-B_170828  | A   | 08/29    | /17 00:53 |
| Cobalt    |                   |                 | 0.517       | mg/L        | 0.0050  | 103  | 70        | 130            |     |          |           |
| Lead      |                   |                 | 0.510       | mg/L        | 0.0010  | 102  | 70        | 130            |     |          |           |
| Molybdenu | ım                |                 | 0.495       | mg/L        | 0.0010  | 98   | 70        | 130            |     |          |           |
| Selenium  |                   |                 | 0.532       | mg/L        | 0.0010  | 106  | 70        | 130            |     |          |           |
| Thallium  |                   |                 | 0.512       | mg/L        | 0.00050 | 102  | 70        | 130            |     |          |           |
| Lab ID:   | B17082448-001CMSE | <b>)</b> 11 Sar | nple Matrix | Spike Dupli | cate    |      | Run: ICPM | S206-B_170828  | A   | 08/29    | /17 00:56 |
| Antimony  |                   |                 | 0.538       | mg/L        | 0.0010  | 108  | 70        | 130            | 1.3 | 20       |           |
| Arsenic   |                   |                 | 0.541       | mg/L        | 0.0010  | 108  | 70        | 130            | 0.0 | 20       |           |
| Barium    |                   |                 | 0.580       | mg/L        | 0.050   | 104  | 70        | 130            | 1.0 | 20       |           |
| Beryllium |                   |                 | 0.252       | mg/L        | 0.0010  | 101  | 70        | 130            | 3.9 | 20       |           |
| Cadmium   |                   |                 | 0.266       | mg/L        | 0.0010  | 106  | 70        | 130            | 0.5 | 20       |           |
| Chromium  |                   |                 | 0.524       | mg/L        | 0.0050  | 105  | 70        | 130            | 0.5 | 20       |           |
| Cobalt    |                   |                 | 0.520       | mg/L        | 0.0050  | 104  | 70        | 130            | 0.6 | 20       |           |
| Lead      |                   |                 | 0.508       | mg/L        | 0.0010  | 101  | 70        | 130            | 0.4 | 20       |           |
| Molybdenu | ım                |                 | 0.505       | mg/L        | 0.0010  | 100  | 70        | 130            | 2.0 | 20       |           |
| Selenium  |                   |                 | 0.535       | mg/L        | 0.0010  | 107  | 70        | 130            | 0.5 | 20       |           |
| Thallium  |                   |                 | 0.510       | mg/L        | 0.00050 | 102  | 70        | 130            | 0.4 | 20       |           |
| Lab ID:   | B17082461-016BMS3 | 11 Sar          | nple Matrix | Spike       |         |      | Run: ICPM | S206-B_170828  | A   | 08/29    | /17 02:18 |
| Antimony  |                   |                 | 0.528       | mg/L        | 0.0010  | 106  | 70        | 130            |     |          |           |
| Arsenic   |                   |                 | 0.531       | mg/L        | 0.0010  | 106  | 70        | 130            |     |          |           |
| Barium    |                   |                 | 0.520       | mg/L        | 0.050   | 104  | 70        | 130            |     |          |           |
| Beryllium |                   |                 | 0.247       | mg/L        | 0.0010  | 99   | 70        | 130            |     |          |           |
| Cadmium   |                   |                 | 0.267       | mg/L        | 0.0010  | 107  | 70        | 130            |     |          |           |
| Chromium  |                   |                 | 0.530       | mg/L        | 0.0050  | 106  | 70        | 130            |     |          |           |
| Cobalt    |                   |                 | 0.536       | mg/L        | 0.0050  | 107  | 70        | 130            |     |          |           |
| Lead      |                   |                 | 0.520       | mg/L        | 0.0010  | 104  | 70        | 130            |     |          |           |
| Molybdenu | ım                |                 | 0.474       | mg/L        | 0.0010  | 95   | 70        | 130            |     |          |           |
| Selenium  |                   |                 | 0.534       | mg/L        | 0.0010  | 107  | 70        | 130            |     |          |           |
| Thallium  |                   |                 | 0.579       | mg/L        | 0.00050 | 116  | 70        | 130            |     |          |           |
| Lab ID:   | B17082461-016BMSD | <b>)</b> 11 Sar | nple Matrix | Spike Dupli | cate    |      | Run: ICPM | S206-B_170828/ | A   | 08/29    | /17 02:21 |
| Antimony  |                   |                 | 0.540       | mg/L        | 0.0010  | 108  | 70        | 130            | 2.3 | 20       |           |
| Arsenic   |                   |                 | 0.523       | mg/L        | 0.0010  | 105  | 70        | 130            | 1.5 | 20       |           |
| Barium    |                   |                 | 0.517       | mg/L        | 0.050   | 103  | 70        | 130            | 0.5 | 20       |           |
| Beryllium |                   |                 | 0.253       | mg/L        | 0.0010  | 101  | 70        | 130            | 2.5 | 20       |           |
| Cadmium   |                   |                 | 0.266       | mg/L        | 0.0010  | 106  | 70        | 130            | 0.3 | 20       |           |
| Chromium  |                   |                 | 0.536       | mg/L        | 0.0050  | 107  | 70        | 130            | 1.1 | 20       |           |
| Cobalt    |                   |                 | 0.532       | mg/L        | 0.0050  | 106  | 70        | 130            | 0.7 | 20       |           |
| Lead      |                   |                 | 0.520       | mg/L        | 0.0010  | 104  | 70        | 130            | 0.0 | 20       |           |
| Molybdenu | ım                |                 | 0.492       | mg/L        | 0.0010  | 98   | 70        | 130            | 3.8 | 20       |           |
| Selenium  |                   |                 | 0.523       | mg/L        | 0.0010  | 105  | 70        | 130            | 2.1 | 20       |           |
| Thallium  |                   |                 | 0.576       | mg/L        | 0.00050 | 115  | 70        | 130            | 0.4 | 20       |           |

Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/05/17Project:CCRRWork Order:B17082461

| Analyte   |                   | Count           | Result      | Units       | RL      | %REC | Low Limit | High Limit     | RPD | RPDLimit            | Qual     |
|-----------|-------------------|-----------------|-------------|-------------|---------|------|-----------|----------------|-----|---------------------|----------|
| Method:   | E200.8            |                 |             |             |         |      |           |                |     | Batch               | : 113004 |
| Lab ID:   | B17082448-001CMS3 | 11 Sar          | mple Matrix | Spike       |         |      | Run: ICPM | S206-B_170829A |     | 08/29/              | 17 23:54 |
| Antimony  |                   |                 | 0.541       | mg/L        | 0.0010  | 108  | 70        | 130            |     |                     |          |
| Arsenic   |                   |                 | 0.533       | mg/L        | 0.0010  | 106  | 70        | 130            |     |                     |          |
| Barium    |                   |                 | 0.578       | mg/L        | 0.050   | 103  | 70        | 130            |     |                     |          |
| Beryllium |                   |                 | 0.238       | mg/L        | 0.0010  | 95   | 70        | 130            |     |                     |          |
| Cadmium   |                   |                 | 0.258       | mg/L        | 0.0010  | 103  | 70        | 130            |     |                     |          |
| Chromium  |                   |                 | 0.508       | mg/L        | 0.0050  | 101  | 70        | 130            |     |                     |          |
| Cobalt    |                   |                 | 0.565       | mg/L        | 0.0050  | 113  | 70        | 130            |     |                     |          |
| Lead      |                   |                 | 0.524       | mg/L        | 0.0010  | 105  | 70        | 130            |     |                     |          |
| Molybdenu | m                 |                 | 0.510       | mg/L        | 0.0010  | 101  | 70        | 130            |     |                     |          |
| Selenium  |                   |                 | 0.509       | mg/L        | 0.0010  | 101  | 70        | 130            |     |                     |          |
| Thallium  |                   |                 | 0.512       | mg/L        | 0.00050 | 102  | 70        | 130            |     |                     |          |
| Lab ID:   | B17082448-001CMSE | <b>)</b> 11 Sar | mple Matrix | Spike Dupli | cate    |      | Run: ICPM | S206-B_170829A |     | 08/29/ <sup>-</sup> | 17 23:57 |
| Antimony  |                   |                 | 0.545       | mg/L        | 0.0010  | 109  | 70        | 130            | 8.0 | 20                  |          |
| Arsenic   |                   |                 | 0.532       | mg/L        | 0.0010  | 106  | 70        | 130            | 0.2 | 20                  |          |
| Barium    |                   |                 | 0.585       | mg/L        | 0.050   | 105  | 70        | 130            | 1.2 | 20                  |          |
| Beryllium |                   |                 | 0.243       | mg/L        | 0.0010  | 97   | 70        | 130            | 2.4 | 20                  |          |
| Cadmium   |                   |                 | 0.257       | mg/L        | 0.0010  | 103  | 70        | 130            | 0.1 | 20                  |          |
| Chromium  |                   |                 | 0.508       | mg/L        | 0.0050  | 101  | 70        | 130            | 0.1 | 20                  |          |
| Cobalt    |                   |                 | 0.545       | mg/L        | 0.0050  | 109  | 70        | 130            | 3.5 | 20                  |          |
| Lead      |                   |                 | 0.521       | mg/L        | 0.0010  | 104  | 70        | 130            | 0.6 | 20                  |          |
| Molybdenu | m                 |                 | 0.511       | mg/L        | 0.0010  | 101  | 70        | 130            | 0.1 | 20                  |          |
| Selenium  |                   |                 | 0.506       | mg/L        | 0.0010  | 101  | 70        | 130            | 0.7 | 20                  |          |
| Thallium  |                   |                 | 0.498       | mg/L        | 0.00050 | 100  | 70        | 130            | 2.7 | 20                  |          |
| Lab ID:   | B17082461-016BMS3 | 3 11 Sar        | mple Matrix | Spike       |         |      | Run: ICPM | S206-B_170829A |     | 08/30/              | 17 01:19 |
| Antimony  |                   |                 | 0.542       | mg/L        | 0.0010  | 108  | 70        | 130            |     |                     |          |
| Arsenic   |                   |                 | 0.535       | mg/L        | 0.0010  | 107  | 70        | 130            |     |                     |          |
| Barium    |                   |                 | 0.544       | mg/L        | 0.050   | 109  | 70        | 130            |     |                     |          |
| Beryllium |                   |                 | 0.255       | mg/L        | 0.0010  | 102  | 70        | 130            |     |                     |          |
| Cadmium   |                   |                 | 0.269       | mg/L        | 0.0010  | 108  | 70        | 130            |     |                     |          |
| Chromium  |                   |                 | 0.530       | mg/L        | 0.0050  | 106  | 70        | 130            |     |                     |          |
| Cobalt    |                   |                 | 0.590       | mg/L        | 0.0050  | 118  | 70        | 130            |     |                     |          |
| Lead      |                   |                 | 0.526       | mg/L        | 0.0010  | 105  | 70        | 130            |     |                     |          |
| Molybdenu | m                 |                 | 0.498       | mg/L        | 0.0010  | 100  | 70        | 130            |     |                     |          |
| Selenium  |                   |                 | 0.521       | mg/L        | 0.0010  | 104  | 70        | 130            |     |                     |          |
| Thallium  |                   |                 | 0.667       | mg/L        | 0.00050 | 133  | 70        | 130            |     |                     | S        |
| Lab ID:   | B17082461-016BMSE | <b>)</b> 11 Sar |             |             |         |      |           | S206-B_170829A |     |                     | 17 01:22 |
| Antimony  |                   |                 | 0.572       | mg/L        | 0.0010  | 114  | 70        | 130            | 5.3 | 20                  |          |
| Arsenic   |                   |                 | 0.480       | mg/L        | 0.0010  | 96   | 70        | 130            | 11  | 20                  |          |
| Barium    |                   |                 | 0.554       | mg/L        | 0.050   | 111  | 70        | 130            | 1.8 | 20                  |          |
| Beryllium |                   |                 | 0.258       | mg/L        | 0.0010  | 103  | 70        | 130            | 1.1 | 20                  |          |
| Cadmium   |                   |                 | 0.239       | mg/L        | 0.0010  | 96   | 70        | 130            | 12  | 20                  |          |
| Chromium  |                   |                 | 0.472       | mg/L        | 0.0050  | 94   | 70        | 130            | 11  | 20                  |          |

## Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

S - Spike recovery outside of advisory limits.



Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/05/17Project:CCRRWork Order:B17082461

| Analyte   |                  | Count           | Result     | Units           | RL      | %REC | Low Limit | High Limit     | RPD | RPDLimit | Qual      |
|-----------|------------------|-----------------|------------|-----------------|---------|------|-----------|----------------|-----|----------|-----------|
| Method:   | E200.8           |                 |            |                 |         |      |           |                |     | Batch    | n: 113004 |
| Lab ID:   | B17082461-016BMS | <b>D</b> 11 Sam | ple Matrix | Spike Duplicate |         |      | Run: ICPM | S206-B_170829A |     | 08/30/   | 17 01:22  |
| Cobalt    |                  |                 | 0.588      | mg/L            | 0.0050  | 118  | 70        | 130            | 0.3 | 20       |           |
| Lead      |                  |                 | 0.546      | mg/L            | 0.0010  | 109  | 70        | 130            | 3.7 | 20       |           |
| Molybdenu | m                |                 | 0.526      | mg/L            | 0.0010  | 105  | 70        | 130            | 5.4 | 20       |           |
| Selenium  |                  |                 | 0.506      | mg/L            | 0.0010  | 101  | 70        | 130            | 3.0 | 20       |           |
| Thallium  |                  |                 | 0.677      | mg/L            | 0.00050 | 135  | 70        | 130            | 1.4 | 20       | S         |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/05/17Project:CCRRWork Order:B17082461

| Analyte |                  | Count        | Result       | Units        | RL          | %REC | Low Limit | High Limit     | RPD     | RPDLimit   | Qual      |
|---------|------------------|--------------|--------------|--------------|-------------|------|-----------|----------------|---------|------------|-----------|
| Method: | E245.1           |              |              |              |             |      |           | Analytica      | al Run: | HGCV202-B_ | _170825A  |
| Lab ID: | ICV              | Initia       | l Calibratio | n Verificati | on Standard |      |           |                |         | 08/25/     | 17 14:51  |
| Mercury |                  | (            | 0.00182      | mg/L         | 0.00010     | 91   | 90        | 110            |         |            |           |
| Method: | E245.1           |              |              |              |             |      |           |                |         | Batcl      | h: 113011 |
| Lab ID: | MB-113011        | Meth         | od Blank     |              |             |      | Run: HGC\ | /202-B_170825A |         | 08/25/     | 17 15:46  |
| Mercury |                  |              | ND           | mg/L         | 1E-06       |      |           |                |         |            |           |
| Lab ID: | LCS-113011       | Labo         | ratory Con   | trol Sample  | e           |      | Run: HGC\ | /202-B_170825A |         | 08/25/     | 17 15:48  |
| Mercury |                  | (            | 0.00186      | mg/L         | 0.00010     | 93   | 85        | 115            |         |            |           |
| Lab ID: | B17082461-001BMS | Sam          | ple Matrix   | Spike        |             |      | Run: HGC\ | /202-B_170825A |         | 08/25/     | 17 15:51  |
| Mercury |                  | (            | 0.00179      | mg/L         | 0.00010     | 89   | 70        | 130            |         |            |           |
| Lab ID: | B17082461-001BMS | <b>D</b> Sam | ple Matrix   | Spike Dupli  | cate        |      | Run: HGC\ | /202-B_170825A |         | 08/25/     | 17 15:53  |
| Mercury |                  | (            | 0.00186      | mg/L         | 0.00010     | 93   | 70        | 130            | 4.2     | 30         |           |
| Lab ID: | B17082517-001BMS | Sam          | ple Matrix   | Spike        |             |      | Run: HGC\ | /202-B_170825A |         | 08/25/     | 17 16:34  |
| Mercury |                  | (            | 0.00187      | mg/L         | 0.00010     | 93   | 70        | 130            |         |            |           |
| Lab ID: | B17082517-001BMS | <b>D</b> Sam | ple Matrix   | Spike Dupli  | cate        |      | Run: HGC\ | /202-B_170825A |         | 08/25/     | 17 16:36  |
| Mercury |                  | (            | 0.00185      | mg/L         | 0.00010     | 92   | 70        | 130            | 1.0     | 30         |           |

# **Work Order Receipt Checklist**

# Texas Municipal Power Agency

Login completed by: Gina McCartney

B17082461

Date Received: 8/24/2017

| Logiii compictod by.                                                                         | oma modarino,                   |           | Date i | 10001104. 0/2 1/2011   |
|----------------------------------------------------------------------------------------------|---------------------------------|-----------|--------|------------------------|
| Reviewed by:                                                                                 | BL2000\tedwards                 |           | Red    | ceived by: se          |
| Reviewed Date:                                                                               | 8/29/2017                       |           | Carr   | ier name: FedEx        |
| Shipping container/cooler in                                                                 | good condition?                 | Yes ✓     | No 🗌   | Not Present            |
| Custody seals intact on all sh                                                               | nipping container(s)/cooler(s)? | Yes 🗹     | No 🗌   | Not Present            |
| Custody seals intact on all sa                                                               | ample bottles?                  | Yes       | No 🗌   | Not Present ✓          |
| Chain of custody present?                                                                    |                                 | Yes ✓     | No 🗌   |                        |
| Chain of custody signed whe                                                                  | en relinquished and received?   | Yes ✓     | No 🗌   |                        |
| Chain of custody agrees with                                                                 | sample labels?                  | Yes       | No 🔽   |                        |
| Samples in proper container/                                                                 | /bottle?                        | Yes ✓     | No 🗌   |                        |
| Sample containers intact?                                                                    |                                 | Yes 🗹     | No 🗌   |                        |
| Sufficient sample volume for                                                                 | indicated test?                 | Yes 🗹     | No 🗌   |                        |
| All samples received within h<br>(Exclude analyses that are or<br>such as pH, DO, Res Cl, Su | onsidered field parameters      | Yes 🗸     | No 🗌   |                        |
| Temp Blank received in all sh                                                                | nipping container(s)/cooler(s)? | Yes ✓     | No 🗌   | Not Applicable         |
| Container/Temp Blank tempe                                                                   | erature:                        | °C On Ice |        |                        |
| Water - VOA vials have zero                                                                  | headspace?                      | Yes       | No 🗌   | No VOA vials submitted |
| Water - pH acceptable upon                                                                   | receipt?                        | Yes ✓     | No 🗌   | Not Applicable         |
|                                                                                              |                                 |           |        |                        |

## **Standard Reporting Procedures:**

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

## **Contact and Corrective Action Comments:**

The Temperature Blank temperature for shipping container 1 was 2.5°C, shipping container 2 was 4.0°C, shipping container 3 was 1.0°C, shipping container 4 was 2.8°C and shipping container 5 was 2.0°C.

The collection time indicated on the container label for sample MNW-11 is 12:00 and on the Chain of Custody it is 13:00. Proceeded with the collection time as indicated on the Chain of Custody.



# Chain of Custody & Analytical Request Record

| Account Information (Billing information)                    | Report Information (if different then Account Information (if different the Account Inf | 8          |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| CompanyiName Amec Foster Wheeler                             | Company/Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| Contact Grea Seifert                                         | Contact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| Phone 512-715-0360                                           | Phone Phone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100x       |
| Mailing Address 3755 S. Capital of TX Hwy #375               | Mailing Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 700        |
| City. State, Zip Austin, TX 78704                            | City, State, Zip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | アンゲーン      |
| Email gres, seitert Damectw. com                             | Email Control  | <br>:<br>: |
| Receive Invoice Opy CEmail Receive Report   Hard Copy DEmail | Receive Report CHard Copy   Email                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| Purchase Order Quote Bottle Order                            | Special Report Formats:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
|                                                              | □ LEVEL IV □ NELAC □ EDD/EDT (context laboratory) □ Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |

All turnaround times are standard unless marked as MUST be contacted prior to RUSH sample submittal for 00-1918 charges and scheduling -See Instructions Page Energy Laboratories GLE DAG TO See Attached **Analysis Requested** Matrix (See Codes Matrix Codes B - Bioassay V - Vegetation O · Other DW · Drinking Water S - Soils/ Solids W- Water A-Air Number of Containers 7 1700 EPA/State Compliance Arges INo Time Sampler Phone 512-241-232 Project : CCRR ☐ Unprocessed ore (NOT ground or refined)\* Collection 1/ce/8 MINING CLIENTS, please indicate sample type. \*If ore has been processed or refined, call before sending. Project Name, PWSID, Permit etc. TMPA Sample Identification (Name, Location, Interval, etc.) Sampler Name B. Gieselman Project Information □ Byproduct 11 (e)2 material SFL MW-4 Sample Origin State

903

500

900-

00

200

00

7007

850

EaBK/SCM/0822

SFL MW-3

1845 7/15

8/0

0955

2/23/17

000/ 1/05

SFL MW-5 SFL MW-7

SFL MW-6

MNW-15 AP MW-3

DUP-1

| 2001                               | Date/Ture               |                                             | B/D/mom                      | Amount Receipt Number (cashcheck only) |
|------------------------------------|-------------------------|---------------------------------------------|------------------------------|----------------------------------------|
| <b>&gt; &gt;</b>                   | Received by (print)     | Received by Leboratory (print)              | PATORY USE GREY 18           | Y N CC Cash Chart                      |
| <b>♦ 6 6 6 1 1 1 1 1 1 1 1 1 1</b> | 08/23/17 @ 18/5 Suggium | Signature                                   | Intact Receipt Tems   Tems   |                                        |
|                                    | seman                   | De signed Relinquished by (print) Date/Time | Cooler ID(s)   Custody Seals |                                        |
| 10 MNW-18                          | Record MUST Bri         | pe signed                                   | Shipped By                   |                                        |

| les submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested. This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| In certain circumstances, samples submitted to Energ                                                                                                                                                                                                              |

Cash

႘

ე ა ა

EU-COC-12/16 v.1

Receipt Number (cash/check only)

Page 33 of 34



# Chain of Custody & Analytical Request Record

| Account Information (Billing information)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Report Information (if different than Account Information) | اق<br> <br> | Comments                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------|------------------------------------------------|
| companyiname Amer Foster Wheeler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Company/Name                                               | <u> </u>    | H) amalysis                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Contact                                                    |             | 100 CO 100 CO                                  |
| Phone 5/2-795-0360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Phone                                                      | υ <u>.</u>  |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mailing Address                                            | <u>b</u>    | A TON MOLECULAR                                |
| City, State, Zip Austhn, TX 78704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | City, State, Zip                                           |             | 1247-0 MG                                      |
| +00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Email                                                      |             |                                                |
| Receive Invoice Offerd Copy Agemail Receive Report Shard Copy Agemail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Receive Report Dident Copy DEmail                          |             |                                                |
| Purchase Order Quote Bottle Order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Special Report Formats:                                    |             |                                                |
| Project Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Matrix Codes Analysis Requested                            | 9           | All framework fime are                         |
| Project Name, PWSID, Permit, etc. Client: TMPA Project: CCRR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>₹</b> ≱                                                 |             | standard unless marked as                      |
| 5,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S. Solis.                                                  |             | Energy Laboratories                            |
| Sample Origin State TX EPA/State Compliance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B · Bioassay                                               |             |                                                |
| MINING CL'ENTS, please indicate sample type. "If ore has been processed or refined, call before sending.  □ Byproduct 11 (e)2 material □ Unprocessed ore (NOT ground or refined)"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | O. Other DW. Dinking DW. Water                             |             | charges and scheduling – See Instructions Page |
| entification Collectio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Number of Matrix C                                         |             | RUSH                                           |
| (Name, Location, Interval, etc.) Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Above)                                                     |             | 1A1 7 1A   |
| 5FL MW-2 8/a3/17 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 8 3 X                                                    | :           | ā                                              |
| 2 MNW-11 ( 1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |             | 700                                            |
| 3 MNW-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                            | ,           | 600                                            |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i.e.                                                       |             | 5/0                                            |
| 5 Eqbk-BJG-082317 /525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T 10                                                       |             | 510-1                                          |
| 6 EQBK/SCM/082317 V /620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ><br>>                                                     |             | 21010                                          |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            |             |                                                |
| 80 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |             |                                                |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |             |                                                |
| Custody Relinquished by/print) DetayTime Segra Segra Beacond Milest Review (2005)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Received by (print)                                        | Date/Time   | III Streethe                                   |
| Relinquished by (print) DeterTime Sig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                            | 八個山         | TO COLOMBIA                                    |
| Action (Control of the Control of th | Tare Plant Color                                           | Amount      | Receipt Number (cash/check only)               |
| Shipped By Cooler ID(s) Custody Seals Interd Receipt Temp 'C 'N C B Y N 'C 'S  | i emp Blank On ice Y N Y CC Cas                            | <b>\$</b>   |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            | i           |                                                |

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

ELI-COC-12/16 v.1

## **ANALYTICAL SUMMARY REPORT**

October 13, 2017

Texas Municipal Power Agency

PO Box 7000

Bryan, TX 77805-7000

Work Order: B17082465 Quote ID: B3997

Project Name: CCRR

Energy Laboratories Inc Billings MT received the following 16 samples for Texas Municipal Power Agency on 8/24/2017 for analysis.

| Lab ID        | Client Sample ID | Collect Date Receive Da | te Matrix    | Test                                                              |
|---------------|------------------|-------------------------|--------------|-------------------------------------------------------------------|
| B17082465-001 | SFL MW-4         | 08/22/17 17:00 08/24/17 | Ground Water | Radium 226 + Radium 228<br>Radium 226, Total<br>Radium 228, Total |
| B17082465-002 | SFL MW-3         | 08/22/17 18:10 08/24/17 | Ground Water | Same As Above                                                     |
| B17082465-003 | EQBK/SCM/0822    | 08/22/17 18:50 08/24/17 | Ground Water | Same As Above                                                     |
| B17082465-004 | AP MW-3          | 08/22/17 18:45 08/24/17 | Ground Water | Same As Above                                                     |
| B17082465-005 | MNW-15           | 08/22/17 17:15 08/24/17 | Ground Water | Same As Above                                                     |
| B17082465-006 | DUP-1            | 08/22/17 0:00 08/24/17  | Ground Water | Same As Above                                                     |
| B17082465-007 | SFL MW-6         | 08/23/17 9:55 08/24/17  | Ground Water | Same As Above                                                     |
| B17082465-008 | SFL MW-7         | 08/23/17 10:00 08/24/17 | Ground Water | Same As Above                                                     |
| B17082465-009 | SFL MW-5         | 08/23/17 11:05 08/24/17 | Ground Water | Same As Above                                                     |
| B17082465-010 | MNW-18           | 08/23/17 11:49 08/24/17 | Ground Water | Same As Above                                                     |
| B17082465-011 | SFL MW-2         | 08/23/17 12:00 08/24/17 | Ground Water | Same As Above                                                     |
|               |                  |                         |              | e                                                                 |
| B17082465-014 | SSP/AP MW-1      | 08/23/17 15:50 08/24/17 | Ground Water | Same As Above                                                     |
| B17082465-015 | EQBK-BJG-082317  | 08/23/17 15:25 08/24/17 | Ground Water | Same As Above                                                     |
| B17082465-016 | EQBK/SCM/082317  | 08/23/17 16:20 08/24/17 | Ground Water | Same As Above                                                     |

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

**Revised Date:** 10/13/17 **Report Date:** 09/21/17

CASE NARRATIVE

CLIENT: Texas Municipal Power Agency

Project: CCRR Work Order: B17082465

Tests associated with analyst identified as ELI-CA were subcontracted to Energy Laboratories, PO Box 247, Casper, WY, EPA Number WY00002 and WY00937.

Revised Report 10/10/2017

Per request from Shari Endy on 9/22/17, re-analyze Radium 228 on sample MNW-15 and DUP-1.

Before re-analysis bottle identifications were verified.

For MNW-15 a result of -0.03 pCi/L was originally reported from an analytical run on 9/14/17. The sample was re-analyzed on 9/27/17 with a result of 1.1 pCi/L. Both results were below the Minimum Detectable Concentration (MDC). The reanalysis result confirmed the original result. The original total of Ra226 and Ra228 was retained.

For DUP-1 a result of 5.7 pCi/L was originally reported from an analytical run on 9/14/17. The sample was re-analyzed on 9/27/17 with a result of 0.80 pCi/L. Since the re-analysis did not meet our replication criteria, a third analysis was performed 10/8/2017 with a result of 1.0 pCi/L. Both re-analysis results were below the MDC. The re-analysis result will be reported. Since the Ra228 value has changed, the total of Ra226 and Ra228 has been revised.

The report has been revised and replaces any previously issued report in its entirety.

## LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

Lab ID: B17082465-001 Client Sample ID: SFL MW-4

Revised Date: 10/13/17 Report Date: 09/21/17 Collection Date: 08/22/17 17:00

DateReceived: 08/24/17

Matrix: Ground Water

|                                       |        |       |            |    | MCL/ |          |                         |
|---------------------------------------|--------|-------|------------|----|------|----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL | QCL  | Method   | Analysis Date / By      |
| RADIONUCLIDES - TOTAL                 |        |       |            |    |      |          |                         |
| Radium 226                            | 0.59   | pCi/L |            |    |      | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 226 precision (±)              | 0.16   | pCi/L |            |    |      | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 226 MDC                        | 0.18   | pCi/L |            |    |      | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 228                            | 1.5    | pCi/L | U          |    |      | RA-05    | 09/14/17 13:15 / eli-ca |
| Radium 228 precision (±)              | 0.99   | pCi/L |            |    |      | RA-05    | 09/14/17 13:15 / eli-ca |
| Radium 228 MDC                        | 1.9    | pCi/L |            |    |      | RA-05    | 09/14/17 13:15 / eli-ca |
| Radium 226 + Radium 228               | 2.1    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.0    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.9    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.ND - Not detected at the reporting limit.



## LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

Lab ID: B17082465-002 Client Sample ID: SFL MW-3

Revised Date: 10/13/17 Report Date: 09/21/17 Collection Date: 08/22/17 18:10

DateReceived: 08/24/17

Matrix: Ground Water

|                                       |        |       |            |    | MCL/ |          |                         |
|---------------------------------------|--------|-------|------------|----|------|----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL | QCL  | Method   | Analysis Date / By      |
| RADIONUCLIDES - TOTAL                 |        |       |            |    |      |          |                         |
| Radium 226                            | 1.6    | pCi/L |            |    |      | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 226 precision (±)              | 0.39   | pCi/L |            |    |      | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 226 MDC                        | 0.17   | pCi/L |            |    |      | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 228                            | 4.4    | pCi/L |            |    |      | RA-05    | 09/14/17 13:15 / eli-ca |
| Radium 228 precision (±)              | 1.4    | pCi/L |            |    |      | RA-05    | 09/14/17 13:15 / eli-ca |
| Radium 228 MDC                        | 1.8    | pCi/L |            |    |      | RA-05    | 09/14/17 13:15 / eli-ca |
| Radium 226 + Radium 228               | 6.1    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.4    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.8    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.

## LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

**Lab ID:** B17082465-003 **Client Sample ID:** EQBK/SCM/0822

Revised Date: 10/13/17 Report Date: 09/21/17 Collection Date: 08/22/17 18:50

DateReceived: 08/24/17

Matrix: Ground Water

| Analyses                              | Result | Unite | Qualifiere | RL   | MCL/<br>QCL | Method   | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|------|-------------|----------|-------------------------|
| Allalyses                             | Resuit | Units | Qualifiers | NL . | QUL         | Wethou   | Analysis Date / By      |
| RADIONUCLIDES - TOTAL                 |        |       |            |      |             |          |                         |
| Radium 226                            | 0.16   | pCi/L | U          |      |             | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 226 precision (±)              | 0.14   | pCi/L |            |      |             | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 226 MDC                        | 0.20   | pCi/L |            |      |             | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 228                            | 0.41   | pCi/L | U          |      |             | RA-05    | 09/14/17 13:15 / eli-ca |
| Radium 228 precision (±)              | 1.3    | pCi/L |            |      |             | RA-05    | 09/14/17 13:15 / eli-ca |
| Radium 228 MDC                        | 2.1    | pCi/L |            |      |             | RA-05    | 09/14/17 13:15 / eli-ca |
| Radium 226 + Radium 228               | 0.6    | pCi/L | U          |      |             | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.3    | pCi/L |            |      |             | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 MDC           | 2.1    | pCi/L |            |      |             | A7500-RA | 09/20/17 17:14 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.ND - Not detected at the reporting limit.

## LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

Lab ID: B17082465-004 Client Sample ID: AP MW-3

Revised Date: 10/13/17
Report Date: 09/21/17
Collection Date: 08/22/17 18:45
DateReceived: 08/24/17

Matrix: Ground Water

|                                       |        |       |            |    | MCL/ |          |                         |
|---------------------------------------|--------|-------|------------|----|------|----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL | QCL  | Method   | Analysis Date / By      |
| RADIONUCLIDES - TOTAL                 |        |       |            |    |      |          |                         |
| Radium 226                            | 0.55   | pCi/L |            |    |      | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 226 precision (±)              | 0.19   | pCi/L |            |    |      | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 226 MDC                        | 0.19   | pCi/L |            |    |      | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 228                            | 4.2    | pCi/L |            |    |      | RA-05    | 09/14/17 13:15 / eli-ca |
| Radium 228 precision (±)              | 1.4    | pCi/L |            |    |      | RA-05    | 09/14/17 13:15 / eli-ca |
| Radium 228 MDC                        | 1.9    | pCi/L |            |    |      | RA-05    | 09/14/17 13:15 / eli-ca |
| Radium 226 + Radium 228               | 4.8    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.4    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.9    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.

## LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

**Lab ID:** B17082465-005

Client Sample ID: MNW-15

**Revised Date:** 10/13/17 **Report Date:** 09/21/17

Collection Date: 08/22/17 17:15

DateReceived: 08/24/17

Matrix: Ground Water

|                                       |        |       |            |    | MCL/ |          |                         |
|---------------------------------------|--------|-------|------------|----|------|----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL | QCL  | Method   | Analysis Date / By      |
| RADIONUCLIDES - TOTAL                 |        |       |            |    |      |          |                         |
| Radium 226                            | 0.28   | pCi/L |            |    |      | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 226 precision (±)              | 0.14   | pCi/L |            |    |      | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 226 MDC                        | 0.17   | pCi/L |            |    |      | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 228                            | -0.03  | pCi/L | U          |    |      | RA-05    | 09/14/17 13:15 / eli-ca |
| Radium 228 precision (±)              | 1.0    | pCi/L |            |    |      | RA-05    | 09/14/17 13:15 / eli-ca |
| Radium 228 MDC                        | 1.8    | pCi/L |            |    |      | RA-05    | 09/14/17 13:15 / eli-ca |
| Radium 226 + Radium 228               | 0.3    | pCi/L | U          |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.0    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.8    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

## LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

**Lab ID:** B17082465-006

Client Sample ID: DUP-1

**Revised Date:** 10/13/17 **Report Date:** 09/21/17

Collection Date: 08/22/17
DateReceived: 08/24/17

Matrix: Ground Water

|                                       |        |       |            |    | MCL/ |          |                         |
|---------------------------------------|--------|-------|------------|----|------|----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL | QCL  | Method   | Analysis Date / By      |
| RADIONUCLIDES - TOTAL                 |        |       |            |    |      |          |                         |
| Radium 226                            | 0.24   | pCi/L |            |    |      | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 226 precision (±)              | 0.13   | pCi/L |            |    |      | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 226 MDC                        | 0.18   | pCi/L |            |    |      | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 228                            | 0.80   | pCi/L | U          |    |      | RA-05    | 09/27/17 23:04 / eli-ca |
| Radium 228 precision (±)              | 0.90   | pCi/L |            |    |      | RA-05    | 09/27/17 23:04 / eli-ca |
| Radium 228 MDC                        | 1.4    | pCi/L |            |    |      | RA-05    | 09/27/17 23:04 / eli-ca |
| Radium 226 + Radium 228               | 1.0    | pCi/L | U          |    |      | A7500-RA | 10/02/17 16:16 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 0.9    | pCi/L |            |    |      | A7500-RA | 10/02/17 16:16 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.4    | pCi/L |            |    |      | A7500-RA | 10/02/17 16:16 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

## LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

Lab ID: B17082465-007 Client Sample ID: SFL MW-6

Revised Date: 10/13/17 Report Date: 09/21/17 Collection Date: 08/23/17 09:55

DateReceived: 08/24/17

Matrix: Ground Water

| Analyses                              | Result | Units | Qualifiers | RL | MCL/<br>QCL | Method   | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|----|-------------|----------|-------------------------|
|                                       |        |       |            |    |             |          |                         |
| RADIONUCLIDES - TOTAL                 |        |       |            |    |             |          |                         |
| Radium 226                            | 2.7    | pCi/L |            |    |             | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 226 precision (±)              | 0.58   | pCi/L |            |    |             | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 226 MDC                        | 0.16   | pCi/L |            |    |             | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 228                            | 1.2    | pCi/L | U          |    |             | RA-05    | 09/14/17 13:15 / eli-ca |
| Radium 228 precision (±)              | 1.1    | pCi/L |            |    |             | RA-05    | 09/14/17 13:15 / eli-ca |
| Radium 228 MDC                        | 1.7    | pCi/L |            |    |             | RA-05    | 09/14/17 13:15 / eli-ca |
| Radium 226 + Radium 228               | 3.9    | pCi/L |            |    |             | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.2    | pCi/L |            |    |             | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.7    | pCi/L |            |    |             | A7500-RA | 09/20/17 17:14 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.
ND - Not detected at the reporting limit.

## LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

Lab ID: B17082465-008 Client Sample ID: SFL MW-7

Revised Date: 10/13/17 Report Date: 09/21/17 Collection Date: 08/23/17 10:00

DateReceived: 08/24/17

Matrix: Ground Water

| Analyses                              | Result | Unito | Qualifica  | ВI | MCL/<br>QCL | Method   | Analysis Data / By      |
|---------------------------------------|--------|-------|------------|----|-------------|----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL | - QOL       | wethod   | Analysis Date / By      |
| RADIONUCLIDES - TOTAL                 |        |       |            |    |             |          |                         |
| Radium 226                            | 0.69   | pCi/L |            |    |             | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 226 precision (±)              | 0.18   | pCi/L |            |    |             | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 226 MDC                        | 0.19   | pCi/L |            |    |             | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 228                            | 2.7    | pCi/L |            |    |             | RA-05    | 09/14/17 13:15 / eli-ca |
| Radium 228 precision (±)              | 1.4    | pCi/L |            |    |             | RA-05    | 09/14/17 13:15 / eli-ca |
| Radium 228 MDC                        | 1.9    | pCi/L |            |    |             | RA-05    | 09/14/17 13:15 / eli-ca |
| Radium 226 + Radium 228               | 3.4    | pCi/L |            |    |             | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.4    | pCi/L |            |    |             | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.9    | pCi/L |            |    |             | A7500-RA | 09/20/17 17:14 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.



Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

**Lab ID:** B17082465-009 **Client Sample ID:** SFL MW-5

**Revised Date:** 10/13/17 **Report Date:** 09/21/17

Collection Date: 08/23/17 11:05 DateReceived: 08/24/17

Matrix: Ground Water

|                                       |        |       |            |    | MCL/ |          |                         |
|---------------------------------------|--------|-------|------------|----|------|----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL | QCL  | Method   | Analysis Date / By      |
| RADIONUCLIDES - TOTAL                 |        |       |            |    |      |          |                         |
| Radium 226                            | 2.8    | pCi/L |            |    |      | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 226 precision (±)              | 0.59   | pCi/L |            |    |      | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 226 MDC                        | 0.17   | pCi/L |            |    |      | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 228                            | 9.6    | pCi/L |            |    |      | RA-05    | 09/14/17 13:15 / eli-ca |
| Radium 228 precision (±)              | 2.3    | pCi/L |            |    |      | RA-05    | 09/14/17 13:15 / eli-ca |
| Radium 228 MDC                        | 1.7    | pCi/L |            |    |      | RA-05    | 09/14/17 13:15 / eli-ca |
| Radium 226 + Radium 228               | 12.3   | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 2.4    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.7    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |

**Report** RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.



Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

**Lab ID:** B17082465-010

Client Sample ID: MNW-18

Revised Date: 10/13/17 Report Date: 09/21/17

**Collection Date:** 08/23/17 11:49

DateReceived: 08/24/17

Matrix: Ground Water

|                                       |        |       |            |    | MCL/ |          |                         |
|---------------------------------------|--------|-------|------------|----|------|----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL | QCL  | Method   | Analysis Date / By      |
| RADIONUCLIDES - TOTAL                 |        |       |            |    |      |          |                         |
| Radium 226                            | 1.8    | pCi/L |            |    |      | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 226 precision (±)              | 0.42   | pCi/L |            |    |      | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 226 MDC                        | 0.18   | pCi/L |            |    |      | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 228                            | 5.0    | pCi/L |            |    |      | RA-05    | 09/14/17 13:15 / eli-ca |
| Radium 228 precision (±)              | 1.5    | pCi/L |            |    |      | RA-05    | 09/14/17 13:15 / eli-ca |
| Radium 228 MDC                        | 1.8    | pCi/L |            |    |      | RA-05    | 09/14/17 13:15 / eli-ca |
| Radium 226 + Radium 228               | 6.7    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.6    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.9    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |

**Report** RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.





Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

Lab ID: B17082465-011 Client Sample ID: SFL MW-2

Revised Date: 10/13/17 Report Date: 09/21/17 Collection Date: 08/23/17 12:00

DateReceived: 08/24/17

Matrix: Ground Water

|                                       |        |       |            |    | MCL/ |          |                         |
|---------------------------------------|--------|-------|------------|----|------|----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL | QCL  | Method   | Analysis Date / By      |
| RADIONUCLIDES - TOTAL                 |        |       |            |    |      |          |                         |
| Radium 226                            | 1.8    | pCi/L |            |    |      | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 226 precision (±)              | 0.41   | pCi/L |            |    |      | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 226 MDC                        | 0.14   | pCi/L |            |    |      | E903.0   | 09/19/17 08:54 / eli-ca |
| Radium 228                            | 7.2    | pCi/L |            |    |      | RA-05    | 09/14/17 13:15 / eli-ca |
| Radium 228 precision (±)              | 2.1    | pCi/L |            |    |      | RA-05    | 09/14/17 13:15 / eli-ca |
| Radium 228 MDC                        | 1.5    | pCi/L |            |    |      | RA-05    | 09/14/17 13:15 / eli-ca |
| Radium 226 + Radium 228               | 9.0    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 2.1    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.5    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |

**Report** RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.

## LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

**Lab ID:** B17082465-012

Client Sample ID: MNW-11

**Revised Date:** 10/13/17 **Report Date:** 09/21/17

**Collection Date:** 08/23/17 13:00 **DateReceived:** 08/24/17

Matrix: Ground Water

|                                       |        |       |            |    | MCL/ |          |                         |
|---------------------------------------|--------|-------|------------|----|------|----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL | QCL  | Method   | Analysis Date / By      |
| RADIONUCLIDES - TOTAL                 |        |       |            |    |      |          |                         |
| Radium 226                            | 0.40   | pCi/L |            |    |      | E903.0   | 09/19/17 11:04 / eli-ca |
| Radium 226 precision (±)              | 0.15   | pCi/L |            |    |      | E903.0   | 09/19/17 11:04 / eli-ca |
| Radium 226 MDC                        | 0.17   | pCi/L |            |    |      | E903.0   | 09/19/17 11:04 / eli-ca |
| Radium 228                            | 1.6    | pCi/L | U          |    |      | RA-05    | 09/14/17 15:00 / eli-ca |
| Radium 228 precision (±)              | 1.4    | pCi/L |            |    |      | RA-05    | 09/14/17 15:00 / eli-ca |
| Radium 228 MDC                        | 2.2    | pCi/L |            |    |      | RA-05    | 09/14/17 15:00 / eli-ca |
| Radium 226 + Radium 228               | 2.0    | pCi/L | U          |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.4    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 MDC           | 2.2    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.



## LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17082465-013

Client Sample ID: MNW-16

Revised Date: 10/13/17 **Report Date:** 09/21/17

Collection Date: 08/23/17 14:26 DateReceived: 08/24/17

Matrix: Ground Water

|                                       |        |       |            |    | MCL/ |          |                         |
|---------------------------------------|--------|-------|------------|----|------|----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL | QCL  | Method   | Analysis Date / By      |
| RADIONUCLIDES - TOTAL                 |        |       |            |    |      |          |                         |
| Radium 226                            | 1.8    | pCi/L |            |    |      | E903.0   | 09/19/17 11:04 / eli-ca |
| Radium 226 precision (±)              | 0.42   | pCi/L |            |    |      | E903.0   | 09/19/17 11:04 / eli-ca |
| Radium 226 MDC                        | 0.17   | pCi/L |            |    |      | E903.0   | 09/19/17 11:04 / eli-ca |
| Radium 228                            | 6.2    | pCi/L |            |    |      | RA-05    | 09/14/17 15:00 / eli-ca |
| Radium 228 precision (±)              | 1.7    | pCi/L |            |    |      | RA-05    | 09/14/17 15:00 / eli-ca |
| Radium 228 MDC                        | 2.2    | pCi/L |            |    |      | RA-05    | 09/14/17 15:00 / eli-ca |
| Radium 226 + Radium 228               | 8.0    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.8    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 MDC           | 2.2    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |

Report RL - Analyte reporting limit. Definitions: QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.

## LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

Lab ID: B17082465-014 Client Sample ID: SSP/AP MW-1

Revised Date: 10/13/17 Report Date: 09/21/17 Collection Date: 08/23/17 15:50

**DateReceived:** 08/24/17 **Matrix:** Ground Water

|                                       |        |       |            |    | MCL/ |          |                         |
|---------------------------------------|--------|-------|------------|----|------|----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL | QCL  | Method   | Analysis Date / By      |
| RADIONUCLIDES - TOTAL                 |        |       |            |    |      |          |                         |
| Radium 226                            | 0.35   | pCi/L |            |    |      | E903.0   | 09/19/17 11:04 / eli-ca |
| Radium 226 precision (±)              | 0.18   | pCi/L |            |    |      | E903.0   | 09/19/17 11:04 / eli-ca |
| Radium 226 MDC                        | 0.23   | pCi/L |            |    |      | E903.0   | 09/19/17 11:04 / eli-ca |
| Radium 228                            | 1.4    | pCi/L | U          |    |      | RA-05    | 09/14/17 15:00 / eli-ca |
| Radium 228 precision (±)              | 1.3    | pCi/L |            |    |      | RA-05    | 09/14/17 15:00 / eli-ca |
| Radium 228 MDC                        | 2.9    | pCi/L |            |    |      | RA-05    | 09/14/17 15:00 / eli-ca |
| Radium 226 + Radium 228               | 1.7    | pCi/L | U          |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.3    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 MDC           | 2.9    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

## LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

**Lab ID:** B17082465-015 **Client Sample ID:** EQBK-BJG-082317

Revised Date: 10/13/17

Report Date: 09/21/17

Collection Date: 08/23/17 15:25

**DateReceived:** 08/24/17 **Matrix:** Ground Water

|                                       |        |       |            |    | MCL/ |          |                         |
|---------------------------------------|--------|-------|------------|----|------|----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL | QCL  | Method   | Analysis Date / By      |
| RADIONUCLIDES - TOTAL                 |        |       |            |    |      |          |                         |
| Radium 226                            | 0.18   | pCi/L | U          |    |      | E903.0   | 09/19/17 11:04 / eli-ca |
| Radium 226 precision (±)              | 0.14   | pCi/L |            |    |      | E903.0   | 09/19/17 11:04 / eli-ca |
| Radium 226 MDC                        | 0.22   | pCi/L |            |    |      | E903.0   | 09/19/17 11:04 / eli-ca |
| Radium 228                            | -0.4   | pCi/L | U          |    |      | RA-05    | 09/14/17 15:00 / eli-ca |
| Radium 228 precision (±)              | 1.6    | pCi/L |            |    |      | RA-05    | 09/14/17 15:00 / eli-ca |
| Radium 228 MDC                        | 2.7    | pCi/L |            |    |      | RA-05    | 09/14/17 15:00 / eli-ca |
| Radium 226 + Radium 228               | -0.2   | pCi/L | U          |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.6    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 MDC           | 2.7    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

## LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

**Lab ID:** B17082465-016 **Client Sample ID:** EQBK/SCM/082317

Revised Date: 10/13/17
Report Date: 09/21/17

**Collection Date:** 08/23/17 16:20 **DateReceived:** 08/24/17

Matrix: Ground Water

|                                       |        |       |            |    | MCL/ |          |                         |
|---------------------------------------|--------|-------|------------|----|------|----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL | QCL  | Method   | Analysis Date / By      |
| RADIONUCLIDES - TOTAL                 |        |       |            |    |      |          |                         |
| Radium 226                            | 0.25   | pCi/L |            |    |      | E903.0   | 09/19/17 11:04 / eli-ca |
| Radium 226 precision (±)              | 0.17   | pCi/L |            |    |      | E903.0   | 09/19/17 11:04 / eli-ca |
| Radium 226 MDC                        | 0.22   | pCi/L |            |    |      | E903.0   | 09/19/17 11:04 / eli-ca |
| Radium 228                            | 1.8    | pCi/L | U          |    |      | RA-05    | 09/14/17 15:00 / eli-ca |
| Radium 228 precision (±)              | 1.2    | pCi/L |            |    |      | RA-05    | 09/14/17 15:00 / eli-ca |
| Radium 228 MDC                        | 2.7    | pCi/L |            |    |      | RA-05    | 09/14/17 15:00 / eli-ca |
| Radium 226 + Radium 228               | 2.1    | pCi/L | U          |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.2    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 MDC           | 2.7    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

# **QA/QC Summary Report**

Prepared by Casper, WY Branch

Client: Texas Municipal Power Agency

Project: CCRR Wor

Revised Date: 10/11/17 Report Date: 09/20/17 Work Order: B17082465

| Analyte                   | Result          | Units           | RL | %REC | Low Limit | High Lin | nit RPD | RPDLimit  | Qual       |
|---------------------------|-----------------|-----------------|----|------|-----------|----------|---------|-----------|------------|
| Method: E903.0            |                 |                 |    |      |           |          |         | Batch: RA | 226-8625   |
| Lab ID: LCS-RA226-8625    | Laboratory Cont | rol Sample      |    |      | Run: G542 | M_170904 | В       | 09/19     | 9/17 08:54 |
| Radium 226                | 8.7             | pCi/L           |    | 86   | 80        | 12       | 20      |           |            |
| Lab ID: MB-RA226-8625     | Method Blank    |                 |    |      | Run: G542 | M_170904 | В       | 09/19     | 9/17 08:54 |
| Radium 226                | 0.06            | pCi/L           |    |      |           |          |         |           | U          |
| Radium 226 precision (±)  | 0.1             | pCi/L           |    |      |           |          |         |           |            |
| Radium 226 MDC            | 0.2             | pCi/L           |    |      |           |          |         |           |            |
| Lab ID: B17082465-001AMS  | Sample Matrix S | Spike           |    |      | Run: G542 | M_170904 | В       | 09/19     | 9/17 08:54 |
| Radium 226                | 15              | pCi/L           |    | 71   | 70        | 13       | 30      |           |            |
| Lab ID: B17082465-001AMSD | Sample Matrix S | Spike Duplicate |    |      | Run: G542 | M_170904 | В       | 09/19     | 9/17 08:54 |
| Radium 226                | 15              | pCi/L           |    | 72   | 70        | 13       | 30 2.3  | 20        |            |

# **QA/QC Summary Report**

Prepared by Casper, WY Branch

Client: Texas Municipal Power Agency

Project: CCRR

Revised Date: 10/11/17 Report Date: 09/20/17

Work Order: B17082465

| Analyte                 | Resu                   | ılt Units        | RL      | %REC | Low Limit | High Limit     | RPD | RPDLimit  | Qual       |
|-------------------------|------------------------|------------------|---------|------|-----------|----------------|-----|-----------|------------|
| Method: RA-05           |                        |                  |         |      |           |                |     | Batch: RA | 228-5586   |
| Lab ID: LCS-228-        | RA226-8625 Laborator   | / Control Sampl  | le      |      | Run: TENN | IELEC-3_170904 | В   | 09/14     | /17 13:15  |
| Radium 228              | 1                      | 0 pCi/L          |         | 99   | 80        | 120            |     |           |            |
| Lab ID: MB-RA22         | <b>6-8625</b> Method B | ank              |         |      | Run: TENN | IELEC-3_170904 | В   | 09/14     | /17 13:15  |
| Radium 228              | 0                      | .2 pCi/L         |         |      |           |                |     |           | U          |
| Radium 228 precision (: | ±)                     | 1 pCi/L          |         |      |           |                |     |           |            |
| Radium 228 MDC          |                        | 2 pCi/L          |         |      |           |                |     |           |            |
| Lab ID: B1708246        | 5-002AMS Sample M      | atrix Spike      |         |      | Run: TENN | IELEC-3_170904 | В   | 09/14     | /17 13:15  |
| Radium 228              | 2                      | 23 pCi/L         |         | 92   | 70        | 130            |     |           |            |
| Lab ID: B1708246        | 5-002AMSD Sample M     | atrix Spike Dupl | olicate |      | Run: TENN | IELEC-3_170904 | В   | 09/14     | /17 13:15  |
| Radium 228              | 2                      | 0 pCi/L          |         | 80   | 70        | 130            | 11  | 20        |            |
| Method: RA-05           |                        |                  |         |      |           |                |     | Batch: RA | 228-5619   |
| Lab ID: LCS-228-        | RA228-5619 Laborator   | / Control Sampl  | le      |      | Run: TENN | IELEC-3_170924 | В   | 09/27     | /17 23:04  |
| Radium 228              | 9                      | .5 pCi/L         |         | 89   | 80        | 120            |     |           |            |
| Lab ID: MB-228-R        | A228-5619 Method B     | ank              |         |      | Run: TENN | IELEC-3_170924 | В   | 09/27     | 7/17 23:04 |
| Radium 228              | 0                      | .8 pCi/L         |         |      |           |                |     |           | U          |
| Radium 228 precision (: | ±) 0                   | .9 pCi/L         |         |      |           |                |     |           |            |
| Radium 228 MDC          |                        | 1 pCi/L          |         |      |           |                |     |           |            |
| Lab ID: C1708076        | 8-004CMS Sample M      | atrix Spike      |         |      | Run: TENN | IELEC-3_170924 | В   | 09/27     | /17 23:04  |
| Radium 228              | 2                      | ?7 pCi/L         |         | 104  | 70        | 130            |     |           |            |
| Lab ID: C1708076        | 8-004CMSD Sample M     | atrix Spike Dupl | olicate |      | Run: TENN | IELEC-3_170924 | В   | 09/27     | 7/17 23:04 |
| Radium 228              | 2                      | 24 pCi/L         |         | 93   | 70        | 130            | 12  | 20        |            |

B17082465

# **Work Order Receipt Checklist**

# Texas Municipal Power Agency

| Login completed by:                                                                      | Gina McCartney                  | Date Received: 8/24/2017 |      |                        |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------|---------------------------------|--------------------------|------|------------------------|--|--|--|--|--|--|--|
| Reviewed by:                                                                             | BL2000\tedwards                 |                          | Re   | eceived by: se         |  |  |  |  |  |  |  |
| Reviewed Date:                                                                           | 8/29/2017                       |                          | Ca   | rrier name: FedEx      |  |  |  |  |  |  |  |
| Shipping container/cooler in                                                             | good condition?                 | Yes ✓                    | No 🗌 | Not Present            |  |  |  |  |  |  |  |
| Custody seals intact on all st                                                           | nipping container(s)/cooler(s)? | Yes 🔽                    | No 🗌 | Not Present            |  |  |  |  |  |  |  |
| Custody seals intact on all sa                                                           | ample bottles?                  | Yes                      | No 🗌 | Not Present ✓          |  |  |  |  |  |  |  |
| Chain of custody present?                                                                |                                 | Yes 🗹                    | No 🗌 |                        |  |  |  |  |  |  |  |
| Chain of custody signed whe                                                              | en relinquished and received?   | Yes 🗹                    | No 🗌 |                        |  |  |  |  |  |  |  |
| Chain of custody agrees with                                                             | n sample labels?                | Yes                      | No ✓ |                        |  |  |  |  |  |  |  |
| Samples in proper container                                                              | /bottle?                        | Yes ✓                    | No 🗌 |                        |  |  |  |  |  |  |  |
| Sample containers intact?                                                                |                                 | Yes 🗹                    | No 🗌 |                        |  |  |  |  |  |  |  |
| Sufficient sample volume for                                                             | indicated test?                 | Yes 🗹                    | No 🗌 |                        |  |  |  |  |  |  |  |
| All samples received within h<br>(Exclude analyses that are countries pH, DO, Res Cl, Su | onsidered field parameters      | Yes ✓                    | No 🗌 |                        |  |  |  |  |  |  |  |
| Temp Blank received in all sl                                                            | hipping container(s)/cooler(s)? | Yes 🔽                    | No 🗌 | Not Applicable         |  |  |  |  |  |  |  |
| Container/Temp Blank tempe                                                               | erature:                        | °C On Ice                |      |                        |  |  |  |  |  |  |  |
| Water - VOA vials have zero                                                              | headspace?                      | Yes                      | No 🗌 | No VOA vials submitted |  |  |  |  |  |  |  |
| Water - pH acceptable upon                                                               | receipt?                        | Yes 🗸                    | No 🗌 | Not Applicable         |  |  |  |  |  |  |  |

## **Standard Reporting Procedures:**

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

## **Contact and Corrective Action Comments:**

The Temperature Blank temperature for shipping container 1 was 2.5°C, shipping container 2 was 4.0°C, shipping container 3 was 1.0°C, shipping container 4 was 2.8°C and shipping container 5 was 2.0°C.

The collection time indicated on the container label for sample MNW-11 is 12:00 and on the Chain of Custody it is 13:00. Proceeded with the collection time as indicated on the Chain of Custody.

# Chain of Custody & Analytical Request Record

| Account Information (Billing information)                                                                                                                                        |                            | Report Information                    | Report Information (if different than Account Information) | Ŏ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Comments                                                     | -                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|
| Company Name Amec Foster Wheeler                                                                                                                                                 |                            | Company/Name                          |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77 C                                                         | Ahom Can                                           |
| Contact Grea Seitert                                                                                                                                                             |                            | Contact                               |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )                                                            | こうとう                                               |
| Phone 512-715-0360                                                                                                                                                               |                            | Phone                                 |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25                                                           | 50140164<br>0180164                                |
| ( of TX                                                                                                                                                                          | 11wy #375                  | Mailing Address                       |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SULV<br>SULV<br>SULV<br>SULV<br>SULV<br>SULV<br>SULV<br>SULV | 1742-8 mg                                          |
| 104                                                                                                                                                                              |                            | City, State, Zip                      |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>S</b>                                                     |                                                    |
| Email greg. Seifert Damecfw. com                                                                                                                                                 |                            | Email                                 |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                    |
| ABard Copy AEmail Receive Repor                                                                                                                                                  | □Hard Copy <b>Leg</b> mail | Receive Report Parfard Copy     Email | □Email                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                    |
| Purchase Order Quote Bott                                                                                                                                                        | Bottle Order               | Special Report/Formats:               | EDD/EDT (contact leboratory) □ Other_                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                    |
| Project Information                                                                                                                                                              |                            | Matrix Codes                          | Analysis Requested                                         | ted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |                                                    |
| Project Name, PWSID, Perzy etc. TMPA Project                                                                                                                                     | Project ; CCRR             | W. Water                              |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - sts                                                        | All turnaround times are standard unless marked as |
| Sampler Name B. Giese/man Sampler Phone 5/                                                                                                                                       | Sampler Phone 5/2-241-2321 | S Solids S                            | ع                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | RUSH.                                              |
| Sample Origin State T                                                                                                                                                            | iance Arges 🗆 No           | B - Bioassay                          | داد                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | MUST be contacted prior to                         |
| MINING CLIENTS, please indicate sample type.  "If ore has been processed or refined, call before sending.  Byproduct 11 (e)2 material □ Unprocessed ore (NOT ground or refined)* | ground or refined)*        | O. Other O. Other Water               | 1pa y                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Attache                                                      | charges and scheduling –<br>See Instructions Page  |
| Sample Identification                                                                                                                                                            | ollection                  | Number of Matrix See Cords            | °S                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 998                                                          |                                                    |
|                                                                                                                                                                                  | 8/22/1 /700                |                                       | ×                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | 1708 24/2500/                                      |
| 2 SFL MW-3                                                                                                                                                                       |                            |                                       |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | 2002                                               |
| 3 EaBK/SCM/0822                                                                                                                                                                  | 1850                       |                                       |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | , -003                                             |
| 4 AP MW-3                                                                                                                                                                        | 1845                       |                                       |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | 400-                                               |
| 5 MNW-15                                                                                                                                                                         | 17/5                       |                                       |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | _200_                                              |
| 6 DWP-1                                                                                                                                                                          | <br>                       |                                       |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | 900-                                               |
|                                                                                                                                                                                  | 8/23/17 0955               |                                       |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | 700-                                               |
| 8 SFL MW-7                                                                                                                                                                       | 1000                       |                                       |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | 200                                                |
| 9 SFL MW-5                                                                                                                                                                       | 50//                       |                                       |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | 600-/N                                             |
| 10 MNW-18                                                                                                                                                                        | <i>♦ 1144</i>              | →<br>→                                | -                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | 010-1                                              |
| Record MUST Stray Gieselmon 08/2                                                                                                                                                 | 08/23/17 @ 18/5 Stague     | in Heale                              | Received by (print)                                        | Date/Tipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Signature C                                                  | 9                                                  |
| Relinquished by (print)                                                                                                                                                          | me Signature               |                                       | Received by Laboratory (print)                             | TO X must                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Signatur                                                     | BIT LAWY                                           |
| , , , , , , , , , , , , , , , , , , ,                                                                                                                                            |                            | LABORAT                               |                                                            | A CONTRACTOR OF THE PARTY OF TH | Section Section                                              |                                                    |
| Shipped by Cooler ID(s) Custody Seals                                                                                                                                            | Intact Receipt Temp        | Temp Blank On ice                     | CC Cash Check                                              | Amount<br>\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Receipt Num                                                  | Receipt Number (cash/eheck only)                   |

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.



# Chain of Custody & Analytical Request Record

| Comments                                                   | 1 QUAN COM COM                   |                      | AND MOCKORS        | The part of the                        |                                  | )      |                                                              | 1                                                  |                     | All turnaround times are standard unless marked as | RUSH.                                      |                       | charges and scheduling – charges and scheduling – See Instructions Page                                                                                                           |                             | TAT                              | 10-201700110  | 777  | 277            |                  | 7/0-7             |   |    |    | Sonature                            | Kpth (Signature wow Call       | Service Communication of the C | Receipt Number (cash/check only)      |
|------------------------------------------------------------|----------------------------------|----------------------|--------------------|----------------------------------------|----------------------------------|--------|--------------------------------------------------------------|----------------------------------------------------|---------------------|----------------------------------------------------|--------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------|---------------|------|----------------|------------------|-------------------|---|----|----|-------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Report Information (if different than Account Information) |                                  |                      |                    |                                        |                                  |        | Receive Report □ Hard Copy □ Email                           | ials; NELAC □ EDD/EDT (contact taboratory) □ Other | Analysis Requested  |                                                    | 9                                          | اد ا                  | npəl                                                                                                                                                                              |                             |                                  |               |      |                |                  | ><br>>            |   |    |    | Received by (print) Date/Time       | Received by Laboratory (print) | A STATE OF THE STA | On Ice Payment Type Amount            |
| Report Info                                                | Company/Name                     | Contact              | Phone              | Hwy #375 Mailing Address               | City, State, Zip                 | Email  | Hard Copy DEmail                                             | Bottle Order Special Report Ormals;                | Matrix Codes        | Profect : CCRR W- Water                            |                                            |                       | O - Other Dow - Drinking Dow - Water                                                                                                                                              | Collection Number of Matrix | Time containers                  | 0/43/1/1400 7 | 7577 | 1550           | /525             | V /620 V V        |   |    |    | 33/17 81815 Signature / Just        | Signature                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Intact Receipt Temp Temp Blank        |
| Account Information (Billing information)                  | CompanyiName Amec Foster Wheeler | Contact Greg Seifert | Phone 512-795-0360 | Mailing Address 3755 5, Capaylad of TX | City, State, Zip Austh, TX 78704 | +<br>0 | Receive Invoice Offerd Copy DEmail Receive Report Chard Copy |                                                    | Project Information | Project Name, PWSID, Permit, etc. Client: TMPA     | Sampler Name B. Giese Man. Sampler Phone 5 | Sample Origin State 7 | MINING CLIENTS, please indicate sample type. "If ore has been processed or refined, call before sending.  □ Byproduct 11 (e)2 material □ Unprocessed ore (NOT ground or refined)* | antif                       | (Name, Location, Interval, etc.) |               | 1    | 4 SSD/45 Mul-1 | 5 EQBK-BJG-03317 | 6 FABK/SCM/0823/7 | 7 | 80 | 10 | Record MUST Brian Gresselman 08/33/ | Relinquished by (print)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Shipped By Cooler ID(s) Custody Seals |

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

EU-COC-12/16 v.1

Page 23 of 23

# **ANALYTICAL SUMMARY REPORT**

December 15, 2017

Texas Municipal Power Agency PO Box 7000 Bryan, TX 77805-7000

Work Order: B17082599

Project Name: CCRR

analysis.

Energy Laboratories Inc Billings MT received the following 11 samples for Texas Municipal Power Agency on 8/25/2017 for

Quote ID: B3997

| Lab ID        | Client Sample ID | Collect Date F | Receive Date | Matrix       | Test                                                                                                                                                                                                   |
|---------------|------------------|----------------|--------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B17082599-001 | SSP MW-2         | 08/24/17 9:30  | 08/25/17     | Ground Water | Metals by ICP/ICPMS, Tot. Rec.<br>Mercury, Total Recoverable<br>Fluoride<br>Anions by Ion Chromatography<br>pH<br>Metals Preparation by EPA 200.2<br>Digestion, Mercury by CVAA<br>Preparation for TDS |

| B17082599-003 | SSP MW-3        | 08/24/17 10:35 08/25/17 | Ground Water | Same As Above |
|---------------|-----------------|-------------------------|--------------|---------------|
| B17082599-004 | AP MW-1D        | 08/24/17 11:00 08/25/17 | Ground Water | Same As Above |
| B17082599-005 | SSP MW-4        | 08/24/17 11:50 08/25/17 | Ground Water | Same As Above |
| B17082599-006 | AP MW-5         | 08/24/17 12:09 08/25/17 | Ground Water | Same As Above |
| B17082599-007 | AP MW-4         | 08/24/17 13:00 08/25/17 | Ground Water | Same As Above |
| B17082599-008 | EQBK/SCM/082417 | 08/24/17 13:30 08/25/17 | Ground Water | Same As Above |
| B17082599-009 | EQBK-BJG-082417 | 08/24/17 13:35 08/25/17 | Ground Water | Same As Above |
| B17082599-010 | DUP-2           | 08/24/17 0:00 08/25/17  | Ground Water | Same As Above |
| B17082599-011 | DUP-3           | 08/24/17 0:00 08/25/17  | Ground Water | Same As Above |
|               |                 |                         |              |               |

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

**CCRR** 

Texas Municipal Power Agency

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

**Revised Date:** 12/15/17 **Report Date:** 09/08/17

Work Order: B17082599 CASE NARRATIVE

Revised Report 12/15/2017

**CLIENT:** 

Project:

The reporting limits for the following analytes were lowered per request from Greg Seifert.

Analyte Original Reporting Limit (mg/L) Revised Reporting limit (mg/L)

 Antimony
 0.05
 0.006

 Cadmium
 0.01
 0.005

 Thallium
 0.01
 0.002

The report has been revised and replaces any previously issued report in its entirety.

Matrix: Ground Water

# LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**CCRR** Project:

Lab ID: B17082599-001 Client Sample ID: SSP MW-2

Revised Date: 12/15/17 **Report Date:** 09/08/17 Collection Date: 08/24/17 09:30

DateReceived: 08/25/17

|                                     |        |       |            |       | MCL/ |           |                      |  |
|-------------------------------------|--------|-------|------------|-------|------|-----------|----------------------|--|
| Analyses                            | Result | Units | Qualifiers | RL    |      | Method    | Analysis Date / By   |  |
| MAJOR IONS                          |        |       |            |       |      |           |                      |  |
| Calcium                             | 811    | mg/L  | D          | 2     |      | E200.7    | 09/01/17 18:01 / rlh |  |
| Magnesium                           | 196    | mg/L  |            | 1     |      | E200.7    | 09/01/17 18:01 / rlh |  |
| Potassium                           | 57     | mg/L  |            | 1     |      | E200.7    | 09/01/17 18:01 / rlh |  |
| Sodium                              | 1080   | mg/L  | D          | 8     |      | E200.7    | 09/01/17 18:01 / rlh |  |
| PHYSICAL PROPERTIES                 |        |       |            |       |      |           |                      |  |
| Н                                   | 4.7    | s.u.  | Н          | 0.1   |      | A4500-H B | 08/28/17 11:17 / pjw |  |
| Solids, Total Dissolved TDS @ 180 C | 6910   | mg/L  | D          | 90    |      | A2540 C   | 08/29/17 08:20 / rik |  |
| NORGANICS                           |        |       |            |       |      |           |                      |  |
| Chloride                            | 2790   | mg/L  | D          | 10    |      | E300.0    | 08/31/17 04:17 / cjm |  |
| Sulfate                             | 2070   | mg/L  | D          | 40    |      | E300.0    | 08/31/17 04:17 / cjm |  |
| Fluoride                            | 0.3    | mg/L  |            | 0.1   |      | A4500-F C | 09/01/17 15:45 / cjm |  |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |      |           |                      |  |
| Antimony                            | ND     | mg/L  |            | 0.006 |      | E200.8    | 08/30/17 22:24 / jpv |  |
| Arsenic                             | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 22:24 / jpv |  |
| Barium                              | 0.06   | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 22:24 / jpv |  |
| Beryllium                           | 0.040  | mg/L  |            | 0.001 |      | E200.8    | 08/30/17 22:24 / jpv |  |
| Boron                               | 0.45   | mg/L  |            | 0.05  |      | E200.8    | 09/01/17 03:45 / jpv |  |
| Cadmium                             | ND     | mg/L  |            | 0.005 |      | E200.8    | 08/30/17 22:24 / jpv |  |
| Chromium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 22:24 / jpv |  |
| Cobalt                              | 0.06   | mg/L  |            | 0.02  |      | E200.8    | 08/30/17 22:24 / jpv |  |
| Lead                                | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 22:24 / jpv |  |
| Lithium                             | 0.67   | mg/L  | D          | 0.09  |      | E200.7    | 09/01/17 18:01 / rlh |  |
| Mercury                             | ND     | mg/L  |            | 0.001 |      | E245.1    | 08/29/17 11:53 / jh  |  |
| Nolybdenum                          | ND     | mg/L  |            | 0.05  |      | E200.8    | 08/30/17 22:24 / jpv |  |
| Selenium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 22:24 / jpv |  |
| Гhallium                            | ND     | mg/L  |            | 0.002 |      | E200.8    | 09/01/17 03:45 / jpv |  |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Matrix: Ground Water

### LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

Lab ID: B17082599-003 Client Sample ID: SSP MW-3 Revised Date: 12/15/17

Report Date: 09/08/17

Collection Date: 08/24/17 10:35

DateReceived: 08/25/17

MCL/ QCL **Analyses Result Units** Qualifiers RL Method Analysis Date / By **MAJOR IONS** Calcium 646 mg/L 1 E200.7 09/01/17 18:28 / rlh 169 mg/L 1 E200.7 09/01/17 18:28 / rlh Magnesium 09/01/17 18:28 / rlh Potassium 47 mg/L 1 E200.7 Sodium 1020 mg/L D 4 E200.7 09/01/17 18:28 / rlh **PHYSICAL PROPERTIES** 4.5 s.u. Н 0.1 A4500-H B рΗ 08/28/17 11:22 / pjw Solids, Total Dissolved TDS @ 180 C 6260 mg/L D 90 A2540 C 08/29/17 08:20 / rik **INORGANICS** Chloride 1790 mg/L D 6 E300.0 08/31/17 05:35 / cjm Sulfate 2510 mg/L D 20 E300.0 08/31/17 05:35 / cjm A4500-F C Fluoride 0.8 mg/L 0.1 09/05/17 13:06 / cjm **METALS, TOTAL RECOVERABLE** Antimony ND mg/L 0.006 E200.8 08/30/17 22:55 / jpv Arsenic ND mg/L 0.01 E200.8 08/30/17 22:55 / jpv 0.03 mg/L Barium 0.01 E200.8 08/30/17 22:55 / jpv Beryllium 0.113 mg/L 0.001 E200.8 08/30/17 22:55 / jpv 2.59 mg/L 0.05 E200.7 09/01/17 18:28 / rlh **Boron** 0.078 mg/L 0.005 Cadmium E200.8 08/30/17 22:55 / jpv Chromium ND mg/L 0.01 E200.8 08/30/17 22:55 / jpv Cobalt 0.58 mg/L 0.02 E200.8 08/30/17 22:55 / jpv Lead ND mg/L 0.01 E200.8 08/30/17 22:55 / jpv Lithium D 0.53 mg/L 0.04 E200.7 09/01/17 18:28 / rlh Mercury ND mg/L 0.001 E245.1 08/29/17 11:57 / jh Molybdenum ND mg/L 0.05 E200.8 08/30/17 22:55 / jpv Selenium ND mg/L 0.01 E200.8 08/30/17 22:55 / jpv Thallium 0.008 mg/L 0.002 E200.8 09/01/17 04:15 / jpv

Report RL - Analyte reporting limit.

Definitions: OCL - Quality control limit

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**CCRR** Project:

Lab ID: B17082599-004 Client Sample ID: AP MW-1D

Revised Date: 12/15/17 **Report Date:** 09/08/17 Collection Date: 08/24/17 11:00

> DateReceived: 08/25/17 Matrix: Ground Water

|                                     |        |       |            |       | MCL/ |           |                      |
|-------------------------------------|--------|-------|------------|-------|------|-----------|----------------------|
| Analyses                            | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By   |
| MAJOR IONS                          |        |       |            |       |      |           |                      |
| Calcium                             | 70     | mg/L  |            | 1     |      | E200.7    | 09/01/17 18:32 / rlh |
| Magnesium                           | 13     | mg/L  |            | 1     |      | E200.7    | 09/01/17 18:32 / rlh |
| Potassium                           | 11     | mg/L  |            | 1     |      | E200.7    | 09/01/17 18:32 / rlh |
| Sodium                              | 290    | mg/L  |            | 1     |      | E200.7    | 09/01/17 18:32 / rlh |
| PHYSICAL PROPERTIES                 |        |       |            |       |      |           |                      |
| рН                                  | 6.3    | s.u.  | Н          | 0.1   |      | A4500-H B | 08/28/17 11:25 / pjw |
| Solids, Total Dissolved TDS @ 180 C | 1270   | mg/L  | D          | 20    |      | A2540 C   | 08/29/17 08:21 / rik |
| INORGANICS                          |        |       |            |       |      |           |                      |
| Chloride                            | 227    | mg/L  |            | 1     |      | E300.0    | 08/31/17 06:33 / cjm |
| Sulfate                             | 517    | mg/L  | D          | 4     |      | E300.0    | 08/31/17 06:33 / cjm |
| Fluoride                            | 0.8    | mg/L  |            | 0.1   |      | A4500-F C | 09/05/17 13:27 / cjm |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |      |           |                      |
| Antimony                            | ND     | mg/L  |            | 0.006 |      | E200.8    | 08/30/17 22:58 / jpv |
| Arsenic                             | 0.01   | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 22:58 / jpv |
| Barium                              | 0.01   | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 22:58 / jpv |
| Beryllium                           | ND     | mg/L  |            | 0.001 |      | E200.8    | 08/30/17 22:58 / jpv |
| Boron                               | 4.28   | mg/L  |            | 0.05  |      | E200.7    | 09/01/17 18:32 / rlh |
| Cadmium                             | ND     | mg/L  |            | 0.005 |      | E200.8    | 08/30/17 22:58 / jpv |
| Chromium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 22:58 / jpv |
| Cobalt                              | ND     | mg/L  |            | 0.02  |      | E200.8    | 08/30/17 22:58 / jpv |
| Lead                                | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 22:58 / jpv |
| Lithium                             | 0.01   | mg/L  |            | 0.01  |      | E200.7    | 09/01/17 18:32 / rlh |
| Mercury                             | ND     | mg/L  |            | 0.001 |      | E245.1    | 08/29/17 12:10 / jh  |
| Molybdenum                          | ND     | mg/L  |            | 0.05  |      | E200.8    | 08/30/17 22:58 / jpv |
| Selenium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 22:58 / jpv |
| Thallium                            | ND     | mg/L  |            | 0.002 |      | E200.8    | 09/01/17 04:19 / jpv |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

Lab ID: B17082599-005 Client Sample ID: SSP MW-4 Revised Date: 12/15/17 Report Date: 09/08/17 Collection Date: 08/24/17 11:50

**DateReceived:** 08/25/17 **Matrix:** Ground Water

|                                     |        |       |            |       | MCL/       |                        |
|-------------------------------------|--------|-------|------------|-------|------------|------------------------|
| Analyses                            | Result | Units | Qualifiers | RL    | QCL Method | Analysis Date / By     |
| MAJOR IONS                          |        |       |            |       |            |                        |
| Calcium                             | 365    | mg/L  |            | 1     | E200.7     | 09/01/17 18:35 / rlh   |
| Magnesium                           | 79     | mg/L  |            | 1     | E200.7     | 09/01/17 18:35 / rlh   |
| Potassium                           | 52     | mg/L  |            | 1     | E200.7     | 09/01/17 18:35 / rlh   |
| Sodium                              | 677    | mg/L  | D          | 4     | E200.7     | 09/01/17 18:35 / rlh   |
| PHYSICAL PROPERTIES                 |        |       |            |       |            |                        |
| ρΗ                                  | 6.5    | s.u.  | Н          | 0.1   | A4500-H    | B 08/28/17 11:27 / pjw |
| Solids, Total Dissolved TDS @ 180 C | 3630   | mg/L  | D          | 40    | A2540 C    | 08/29/17 08:21 / rik   |
| NORGANICS                           |        |       |            |       |            |                        |
| Chloride                            | 1190   | mg/L  | D          | 6     | E300.0     | 08/31/17 06:53 / cjm   |
| Sulfate                             | 1170   | mg/L  | D          | 20    | E300.0     | 08/31/17 06:53 / cjm   |
| luoride                             | ND     | mg/L  |            | 0.1   | A4500-F    | C 09/05/17 13:30 / cjm |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |            |                        |
| Antimony                            | ND     | mg/L  |            | 0.006 | E200.8     | 08/30/17 23:01 / jpv   |
| Arsenic                             | ND     | mg/L  |            | 0.01  | E200.8     | 08/30/17 23:01 / jpv   |
| Barium                              | 0.02   | mg/L  |            | 0.01  | E200.8     | 08/30/17 23:01 / jpv   |
| Beryllium                           | ND     | mg/L  |            | 0.001 | E200.8     | 08/30/17 23:01 / jpv   |
| Boron                               | 1.15   | mg/L  |            | 0.05  | E200.7     | 09/01/17 18:35 / rlh   |
| Cadmium                             | ND     | mg/L  |            | 0.005 | E200.8     | 08/30/17 23:01 / jpv   |
| Chromium                            | ND     | mg/L  |            | 0.01  | E200.8     | 08/30/17 23:01 / jpv   |
| Cobalt                              | ND     | mg/L  |            | 0.02  | E200.8     | 08/30/17 23:01 / jpv   |
| ead                                 | ND     | mg/L  |            | 0.01  | E200.8     | 08/30/17 23:01 / jpv   |
| ithium                              | 0.78   | mg/L  | D          | 0.04  | E200.7     | 09/01/17 18:35 / rlh   |
| Mercury                             | ND     | mg/L  |            | 0.001 | E245.1     | 08/29/17 12:16 / jh    |
| Nolybdenum                          | ND     | mg/L  |            | 0.05  | E200.8     | 08/30/17 23:01 / jpv   |
| Selenium                            | ND     | mg/L  |            | 0.01  | E200.8     | 08/30/17 23:01 / jpv   |
| Гhallium                            | ND     | mg/L  |            | 0.002 | E200.8     | 09/01/17 04:22 / jpv   |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

B Bl :

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**CCRR** Project:

Lab ID: B17082599-006 Client Sample ID: AP MW-5

Revised Date: 12/15/17 **Report Date:** 09/08/17 Collection Date: 08/24/17 12:09

DateReceived: 08/25/17 Matrix: Ground Water

|                                     |        |       |            |       | MCL/ |           |                      |
|-------------------------------------|--------|-------|------------|-------|------|-----------|----------------------|
| Analyses                            | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By   |
| MAJOR IONS                          |        |       |            |       |      |           |                      |
| Calcium                             | 498    | mg/L  |            | 1     |      | E200.7    | 09/01/17 18:39 / rlh |
| Magnesium                           |        | mg/L  |            | 1     |      | E200.7    | 09/01/17 18:39 / rlh |
| Potassium                           | 44     | mg/L  |            | 1     |      | E200.7    | 09/01/17 18:39 / rlh |
| Sodium                              | 651    | mg/L  | D          | 4     |      | E200.7    | 09/01/17 18:39 / rlh |
| PHYSICAL PROPERTIES                 |        |       |            |       |      |           |                      |
| pH                                  | 3.6    | s.u.  | Н          | 0.1   |      | A4500-H B | 08/28/17 11:33 / pjw |
| Solids, Total Dissolved TDS @ 180 C | 4720   | mg/L  | D          | 40    |      | A2540 C   | 08/29/17 08:21 / rik |
| INORGANICS                          |        |       |            |       |      |           |                      |
| Chloride                            | 473    | mg/L  | D          | 6     |      | E300.0    | 08/31/17 07:12 / cjm |
| Sulfate                             | 2960   | mg/L  | D          | 20    |      | E300.0    | 08/31/17 07:12 / cjm |
| Fluoride                            | 1.2    | mg/L  |            | 0.1   |      | A4500-F C | 09/05/17 13:42 / cjm |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |      |           |                      |
| Antimony                            | ND     | mg/L  |            | 0.006 |      | E200.8    | 08/30/17 23:05 / jpv |
| Arsenic                             | 0.01   | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 23:05 / jpv |
| Barium                              | 0.01   | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 23:05 / jpv |
| Beryllium                           | 0.084  | mg/L  |            | 0.001 |      | E200.8    | 08/30/17 23:05 / jpv |
| Boron                               | 3.26   | mg/L  |            | 0.05  |      | E200.7    | 09/01/17 18:39 / rlh |
| Cadmium                             | 0.010  | mg/L  |            | 0.005 |      | E200.8    | 08/30/17 23:05 / jpv |
| Chromium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 23:05 / jpv |
| Cobalt                              | 0.18   | mg/L  |            | 0.02  |      | E200.8    | 08/30/17 23:05 / jpv |
| Lead                                | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 23:05 / jpv |
| Lithium                             | 0.45   | mg/L  | D          | 0.04  |      | E200.7    | 09/01/17 18:39 / rlh |
| Mercury                             | ND     | mg/L  |            | 0.001 |      | E245.1    | 08/29/17 12:18 / jh  |
| Molybdenum                          | ND     | mg/L  |            | 0.05  |      | E200.8    | 08/30/17 23:05 / jpv |
| Selenium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 23:05 / jpv |
| Thallium                            | 0.002  | mg/L  |            | 0.002 |      | E200.8    | 09/01/17 04:26 / jpv |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**CCRR** Project:

Lab ID: B17082599-007 Client Sample ID: AP MW-4

Revised Date: 12/15/17 **Report Date:** 09/08/17 Collection Date: 08/24/17 13:00

DateReceived: 08/25/17 Matrix: Ground Water

|                                     |        |       |            |       | MCL/ |           |                      |
|-------------------------------------|--------|-------|------------|-------|------|-----------|----------------------|
| Analyses                            | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By   |
| MAJOR IONS                          |        |       |            |       |      |           |                      |
| Calcium                             | 489    | mg/L  |            | 1     |      | E200.7    | 09/01/17 18:43 / rlh |
| Magnesium                           |        | mg/L  |            | 1     |      | E200.7    | 09/01/17 18:43 / rlh |
| Potassium                           |        | mg/L  |            | 1     |      | E200.7    | 09/01/17 18:43 / rlh |
| Sodium                              |        | mg/L  | D          | 2     |      | E200.7    | 09/01/17 18:43 / rlh |
| PHYSICAL PROPERTIES                 |        |       |            |       |      |           |                      |
| Hq                                  | 6.0    | s.u.  | Н          | 0.1   |      | A4500-H B | 08/28/17 11:35 / pjw |
| Solids, Total Dissolved TDS @ 180 C | 4000   | mg/L  | D          | 40    |      | A2540 C   | 08/29/17 08:21 / rik |
| INORGANICS                          |        |       |            |       |      |           |                      |
| Chloride                            | 543    | mg/L  | D          | 3     |      | E300.0    | 08/31/17 07:32 / cjm |
| Sulfate                             | 2500   | mg/L  | D          | 9     |      | E300.0    | 08/31/17 07:32 / cjm |
| Fluoride                            | ND     | mg/L  |            | 0.1   |      | A4500-F C | 09/05/17 13:45 / cjm |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |      |           |                      |
| Antimony                            | ND     | mg/L  |            | 0.006 |      | E200.8    | 08/30/17 23:08 / jpv |
| Arsenic                             | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 23:08 / jpv |
| Barium                              | 0.02   | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 23:08 / jpv |
| Beryllium                           | ND     | mg/L  |            | 0.001 |      | E200.8    | 08/30/17 23:08 / jpv |
| Boron                               | 1.96   | mg/L  |            | 0.05  |      | E200.7    | 09/01/17 18:43 / rlh |
| Cadmium                             | ND     | mg/L  |            | 0.005 |      | E200.8    | 08/30/17 23:08 / jpv |
| Chromium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 23:08 / jpv |
| Cobalt                              | ND     | mg/L  |            | 0.02  |      | E200.8    | 08/30/17 23:08 / jpv |
| Lead                                | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 23:08 / jpv |
| Lithium                             | 0.85   | mg/L  | D          | 0.02  |      | E200.7    | 09/01/17 18:43 / rlh |
| Mercury                             | ND     | mg/L  |            | 0.001 |      | E245.1    | 08/29/17 12:20 / jh  |
| Molybdenum                          | ND     | mg/L  |            | 0.05  |      | E200.8    | 08/30/17 23:08 / jpv |
| Selenium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 23:08 / jpv |
| Thallium                            | ND     | mg/L  |            | 0.002 |      | E200.8    | 09/01/17 04:29 / jpv |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17082599-008 Client Sample ID: EQBK/SCM/082417 Revised Date: 12/15/17 **Report Date:** 09/08/17

Collection Date: 08/24/17 13:30 DateReceived: 08/25/17

Matrix: Ground Water

|                                     |        |       |            |       | MCL/ |           |                      |
|-------------------------------------|--------|-------|------------|-------|------|-----------|----------------------|
| Analyses                            | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By   |
| MAJOR IONS                          |        |       |            |       |      |           |                      |
| Calcium                             | ND     | mg/L  |            | 1     |      | E200.7    | 09/01/17 18:53 / rlh |
| Magnesium                           | ND     | mg/L  |            | 1     |      | E200.7    | 09/01/17 18:53 / rlh |
| Potassium                           | ND     | mg/L  |            | 1     |      | E200.7    | 09/01/17 18:53 / rlh |
| Sodium                              | ND     | mg/L  |            | 1     |      | E200.7    | 09/01/17 18:53 / rlh |
| PHYSICAL PROPERTIES                 |        |       |            |       |      |           |                      |
| oH                                  | 6.1    | s.u.  | Н          | 0.1   |      | A4500-H B | 08/28/17 11:38 / pjw |
| Solids, Total Dissolved TDS @ 180 C | ND     | mg/L  |            | 10    |      | A2540 C   | 08/29/17 08:22 / rik |
| NORGANICS                           |        |       |            |       |      |           |                      |
| Chloride                            | ND     | mg/L  |            | 1     |      | E300.0    | 08/31/17 07:51 / cjm |
| Sulfate                             | ND     | mg/L  |            | 1     |      | E300.0    | 08/31/17 07:51 / cjm |
| Fluoride                            | ND     | mg/L  |            | 0.1   |      | A4500-F C | 09/05/17 13:54 / cjm |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |      |           |                      |
| Antimony                            | ND     | mg/L  |            | 0.006 |      | E200.8    | 08/30/17 23:22 / jpv |
| Arsenic                             | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 23:22 / jpv |
| Barium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 23:22 / jpv |
| Beryllium                           | ND     | mg/L  |            | 0.001 |      | E200.8    | 08/30/17 23:22 / jpv |
| Boron                               | ND     | mg/L  |            | 0.05  |      | E200.7    | 09/01/17 18:53 / rlh |
| Cadmium                             | ND     | mg/L  |            | 0.005 |      | E200.8    | 08/30/17 23:22 / jpv |
| Chromium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 23:22 / jpv |
| Cobalt                              | ND     | mg/L  |            | 0.02  |      | E200.8    | 08/30/17 23:22 / jpv |
| Lead                                | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 23:22 / jpv |
| Lithium                             | ND     | mg/L  |            | 0.01  |      | E200.7    | 09/01/17 18:53 / rlh |
| Mercury                             | ND     | mg/L  |            | 0.001 |      | E245.1    | 08/29/17 12:22 / jh  |
| Nolybdenum                          | ND     | mg/L  |            | 0.05  |      | E200.8    | 08/30/17 23:22 / jpv |
| Selenium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 23:22 / jpv |
| Thallium                            | ND     | mg/L  |            | 0.002 |      | E200.8    | 09/01/17 04:33 / jpv |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17082599-009 Client Sample ID: EQBK-BJG-082417

Revised Date: 12/15/17 **Report Date:** 09/08/17 Collection Date: 08/24/17 13:35

DateReceived: 08/25/17 Matrix: Ground Water

|                                     |        |       |            |       | MCL/ |           |                      |
|-------------------------------------|--------|-------|------------|-------|------|-----------|----------------------|
| Analyses                            | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By   |
| MAJOR IONS                          |        |       |            |       |      |           |                      |
| Calcium                             | ND     | mg/L  |            | 1     |      | E200.7    | 09/01/17 18:56 / rlh |
| Magnesium                           | ND     | mg/L  |            | 1     |      | E200.7    | 09/01/17 18:56 / rlh |
| Potassium                           | ND     | mg/L  |            | 1     |      | E200.7    | 09/01/17 18:56 / rlh |
| Sodium                              | ND     | mg/L  |            | 1     |      | E200.7    | 09/01/17 18:56 / rlh |
| PHYSICAL PROPERTIES                 |        |       |            |       |      |           |                      |
| Н                                   | 5.9    | s.u.  | Н          | 0.1   |      | A4500-H B | 08/28/17 11:40 / pjw |
| Solids, Total Dissolved TDS @ 180 C | ND     | mg/L  |            | 10    |      | A2540 C   | 08/29/17 08:22 / rik |
| NORGANICS                           |        |       |            |       |      |           |                      |
| Chloride                            | ND     | mg/L  |            | 1     |      | E300.0    | 08/31/17 08:11 / cjm |
| Sulfate                             | ND     | mg/L  |            | 1     |      | E300.0    | 08/31/17 08:11 / cjm |
| Fluoride                            | ND     | mg/L  |            | 0.1   |      | A4500-F C | 09/05/17 14:00 / cjm |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |      |           |                      |
| Antimony                            | ND     | mg/L  |            | 0.006 |      | E200.8    | 08/30/17 23:25 / jpv |
| Arsenic                             | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 23:25 / jpv |
| Barium                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 23:25 / jpv |
| Beryllium                           | ND     | mg/L  |            | 0.001 |      | E200.8    | 08/30/17 23:25 / jpv |
| Boron                               | ND     | mg/L  |            | 0.05  |      | E200.7    | 09/01/17 18:56 / rlh |
| Cadmium                             | ND     | mg/L  |            | 0.005 |      | E200.8    | 08/30/17 23:25 / jpv |
| Chromium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 23:25 / jpv |
| Cobalt                              | ND     | mg/L  |            | 0.02  |      | E200.8    | 08/30/17 23:25 / jpv |
| _ead                                | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 23:25 / jpv |
| Lithium                             | ND     | mg/L  |            | 0.01  |      | E200.7    | 09/01/17 18:56 / rlh |
| Mercury                             | ND     | mg/L  |            | 0.001 |      | E245.1    | 08/29/17 12:24 / jh  |
| Molybdenum                          | ND     | mg/L  |            | 0.05  |      | E200.8    | 08/30/17 23:25 / jpv |
| Selenium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 23:25 / jpv |
| Thallium                            | ND     | mg/L  |            | 0.002 |      | E200.8    | 09/01/17 04:36 / jpv |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Matrix: Ground Water

# LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17082599-010

Client Sample ID: DUP-2

Revised Date: 12/15/17 **Report Date:** 09/08/17 Collection Date: 08/24/17 DateReceived: 08/25/17

|                                    |        |       |            |       | MCL/ |           |                      |
|------------------------------------|--------|-------|------------|-------|------|-----------|----------------------|
| nalyses                            | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By   |
| MAJOR IONS                         |        |       |            |       |      |           |                      |
| calcium                            | 661    | mg/L  |            | 1     |      | E200.7    | 09/01/17 19:00 / rlh |
| 1agnesium                          | 172    | mg/L  |            | 1     |      | E200.7    | 09/01/17 19:00 / rlh |
| otassium                           | 47     | mg/L  |            | 1     |      | E200.7    | 09/01/17 19:00 / rlh |
| odium                              | 1030   | mg/L  | D          | 4     |      | E200.7    | 09/01/17 19:00 / rlh |
| HYSICAL PROPERTIES                 |        |       |            |       |      |           |                      |
| Н                                  | 4.5    | s.u.  | Н          | 0.1   |      | A4500-H B | 08/28/17 11:43 / pjw |
| olids, Total Dissolved TDS @ 180 C | 6100   | mg/L  | D          | 90    |      | A2540 C   | 08/29/17 08:22 / rik |
| NORGANICS                          |        |       |            |       |      |           |                      |
| Chloride                           | 1840   | mg/L  | D          | 6     |      | E300.0    | 08/31/17 08:30 / cjm |
| Sulfate                            | 2570   | mg/L  | D          | 20    |      | E300.0    | 08/31/17 08:30 / cjm |
| luoride                            | 0.8    | mg/L  |            | 0.1   |      | A4500-F C | 09/05/17 14:09 / cjm |
| METALS, TOTAL RECOVERABLE          |        |       |            |       |      |           |                      |
| ntimony                            | ND     | mg/L  |            | 0.006 |      | E200.8    | 08/30/17 23:29 / jpv |
| rsenic                             | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 23:29 / jpv |
| arium                              | 0.03   | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 23:29 / jpv |
| eryllium                           | 0.112  | mg/L  |            | 0.001 |      | E200.8    | 08/30/17 23:29 / jpv |
| soron                              | 2.70   | mg/L  |            | 0.05  |      | E200.7    | 09/01/17 19:00 / rlh |
| Cadmium                            | 0.075  | mg/L  |            | 0.005 |      | E200.8    | 08/30/17 23:29 / jpv |
| Chromium                           | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 23:29 / jpv |
| Cobalt                             | 0.57   | mg/L  |            | 0.02  |      | E200.8    | 08/30/17 23:29 / jpv |
| ead                                | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 23:29 / jpv |
| ithium                             | 0.55   | mg/L  | D          | 0.04  |      | E200.7    | 09/01/17 19:00 / rlh |
| lercury                            | ND     | mg/L  |            | 0.001 |      | E245.1    | 08/29/17 12:26 / jh  |
| lolybdenum                         | ND     | mg/L  |            | 0.05  |      | E200.8    | 08/30/17 23:29 / jpv |
| elenium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 23:29 / jpv |
| hallium                            | 0.007  | mg/L  |            | 0.002 |      | E200.8    | 09/01/17 04:40 / jpv |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17082599-011

Client Sample ID: DUP-3

Revised Date: 12/15/17 **Report Date:** 09/08/17 Collection Date: 08/24/17 DateReceived: 08/25/17

Matrix: Ground Water

|                                     |        |       |            |       | MCL/ |           |                      |
|-------------------------------------|--------|-------|------------|-------|------|-----------|----------------------|
| Analyses                            | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By   |
| MAJOR IONS                          |        |       |            |       |      |           |                      |
| Calcium                             | 496    | mg/L  |            | 1     |      | E200.7    | 09/01/17 19:04 / rlh |
| Magnesium                           | 112    | mg/L  |            | 1     |      | E200.7    | 09/01/17 19:04 / rlh |
| Potassium                           | 41     | mg/L  |            | 1     |      | E200.7    | 09/01/17 19:04 / rlh |
| Sodium                              | 638    | mg/L  | D          | 4     |      | E200.7    | 09/01/17 19:04 / rlh |
| PHYSICAL PROPERTIES                 |        |       |            |       |      |           |                      |
| Н                                   | 3.6    | s.u.  | Н          | 0.1   |      | A4500-H B | 08/28/17 11:45 / pjw |
| Solids, Total Dissolved TDS @ 180 C | 4670   | mg/L  | D          | 40    |      | A2540 C   | 08/29/17 08:22 / rik |
| NORGANICS                           |        |       |            |       |      |           |                      |
| Chloride                            | 471    | mg/L  | D          | 6     |      | E300.0    | 08/31/17 09:29 / cjm |
| Sulfate                             | 2940   | mg/L  | D          | 20    |      | E300.0    | 08/31/17 09:29 / cjm |
| Fluoride                            | 1.2    | mg/L  |            | 0.1   |      | A4500-F C | 09/05/17 14:21 / cjm |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |      |           |                      |
| Antimony                            | ND     | mg/L  |            | 0.006 |      | E200.8    | 08/30/17 23:32 / jpv |
| Arsenic                             | 0.01   | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 23:32 / jpv |
| Barium                              | 0.01   | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 23:32 / jpv |
| Beryllium                           | 0.085  | mg/L  |            | 0.001 |      | E200.8    | 08/30/17 23:32 / jpv |
| Boron                               | 3.31   | mg/L  |            | 0.05  |      | E200.7    | 09/01/17 19:04 / rlh |
| Cadmium                             | 0.010  | mg/L  |            | 0.005 |      | E200.8    | 08/30/17 23:32 / jpv |
| Chromium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 23:32 / jpv |
| Cobalt                              | 0.18   | mg/L  |            | 0.02  |      | E200.8    | 08/30/17 23:32 / jpv |
| _ead                                | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 23:32 / jpv |
| _ithium                             | 0.43   | mg/L  | D          | 0.04  |      | E200.7    | 09/01/17 19:04 / rlh |
| Mercury                             | ND     | mg/L  |            | 0.001 |      | E245.1    | 08/29/17 12:27 / jh  |
| Molybdenum                          | ND     | mg/L  |            | 0.05  |      | E200.8    | 08/30/17 23:32 / jpv |
| Selenium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 08/30/17 23:32 / jpv |
| Thallium                            | 0.002  | mg/L  |            | 0.002 |      | E200.8    | 09/01/17 04:53 / jpv |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/07/17Project:CCRRWork Order:B17082599

| Analyte   |                   | Count         | Result       | Units             | RL           | %REC | Low Limit  | High Limit  | RPD        | RPDLimit     | Qual      |
|-----------|-------------------|---------------|--------------|-------------------|--------------|------|------------|-------------|------------|--------------|-----------|
| Method:   | E200.7            |               |              |                   |              |      |            | Anal        | ytical Rui | n: ICP203-B_ | _170901A  |
| Lab ID:   | ICV               | 6 Cc          | ntinuing Cal | ibration Verifica | ation Standa | rd   |            |             |            | 09/01/       | 17 12:41  |
| Boron     |                   |               | 2.48         | mg/L              | 0.10         | 99   | 95         | 105         |            |              |           |
| Calcium   |                   |               | 25.9         | mg/L              | 1.0          | 104  | 95         | 105         |            |              |           |
| Lithium   |                   |               | 1.29         | mg/L              | 0.10         | 104  | 95         | 105         |            |              |           |
| Magnesiun | n                 |               | 25.3         | mg/L              | 1.0          | 101  | 95         | 105         |            |              |           |
| Potassium |                   |               | 25.7         | mg/L              | 1.0          | 103  | 95         | 105         |            |              |           |
| Sodium    |                   |               | 25.8         | mg/L              | 1.0          | 103  | 95         | 105         |            |              |           |
| Method:   | E200.7            |               |              |                   |              |      |            |             |            | Batcl        | n: 113054 |
| Lab ID:   | MB-113054         | 6 Me          | thod Blank   |                   |              |      | Run: ICP20 | 3-B_170901A |            | 09/01/       | 17 17:32  |
| Boron     |                   |               | ND           | mg/L              | 0.003        |      |            |             |            |              |           |
| Calcium   |                   |               | ND           | mg/L              | 0.08         |      |            |             |            |              |           |
| Lithium   |                   |               | ND           | mg/L              | 0.004        |      |            |             |            |              |           |
| Magnesiun | n                 |               | ND           | mg/L              | 0.01         |      |            |             |            |              |           |
| Potassium |                   |               | ND           | mg/L              | 0.07         |      |            |             |            |              |           |
| Sodium    |                   |               | ND           | mg/L              | 0.03         |      |            |             |            |              |           |
| Lab ID:   | LCS-113054        | 6 La          | boratory Cor | ntrol Sample      |              |      | Run: ICP20 | 3-B_170901A |            | 09/01/       | 17 17:36  |
| Boron     |                   |               | 0.473        | mg/L              | 0.10         | 95   | 85         | 115         |            |              |           |
| Calcium   |                   |               | 25.7         | mg/L              | 1.0          | 103  | 85         | 115         |            |              |           |
| Lithium   |                   |               | 0.499        | mg/L              | 0.10         | 100  | 85         | 115         |            |              |           |
| Magnesiun | n                 |               | 26.4         | mg/L              | 1.0          | 105  | 85         | 115         |            |              |           |
| Potassium |                   |               | 25.2         | mg/L              | 1.0          | 101  | 85         | 115         |            |              |           |
| Sodium    |                   |               | 25.7         | mg/L              | 1.0          | 103  | 85         | 115         |            |              |           |
| Lab ID:   | B17082663-006BMS3 | 6 Sa          | mple Matrix  | Spike             |              |      | Run: ICP20 | 3-B_170901A |            | 09/01/       | 17 17:54  |
| Boron     |                   |               | 0.459        | mg/L              | 0.050        | 92   | 70         | 130         |            |              |           |
| Calcium   |                   |               | 159          | mg/L              | 1.0          |      | 70         | 130         |            |              | Α         |
| Lithium   |                   |               | 0.515        | mg/L              | 0.10         | 103  | 70         | 130         |            |              |           |
| Magnesiun | n                 |               | 101          | mg/L              | 1.0          | 96   | 70         | 130         |            |              |           |
| Potassium |                   |               | 28.6         | mg/L              | 1.0          | 103  | 70         | 130         |            |              |           |
| Sodium    |                   |               | 29.0         | mg/L              | 1.0          | 99   | 70         | 130         |            |              |           |
| Lab ID:   | B17082663-006BMSD | <b>)</b> 6 Sa | mple Matrix  | Spike Duplicate   | е            |      | Run: ICP20 | 3-B_170901A |            | 09/01/       | 17 17:57  |
| Boron     |                   |               | 0.446        | mg/L              | 0.050        | 89   | 70         | 130         | 3.0        | 20           |           |
| Calcium   |                   |               | 157          | mg/L              | 1.0          |      | 70         | 130         | 1.0        | 20           | Α         |
| Lithium   |                   |               | 0.488        | mg/L              | 0.10         | 98   | 70         | 130         | 5.3        | 20           |           |
| Magnesiun | n                 |               | 101          | mg/L              | 1.0          | 95   | 70         | 130         | 0.2        | 20           |           |
| Potassium |                   |               | 27.0         | mg/L              | 1.0          | 96   | 70         | 130         | 5.9        | 20           |           |
| Sodium    |                   |               | 28.1         | mg/L              | 1.0          | 95   | 70         | 130         | 3.0        | 20           |           |
| Lab ID:   | B17082599-001BMS3 | 6 Sa          | mple Matrix  | Spike             |              |      | Run: ICP20 | 3-B_170901A |            | 09/01/       | 17 18:18  |
| Boron     |                   |               | 0.939        | mg/L              | 0.068        | 116  | 70         | 130         |            |              |           |
| Calcium   |                   |               | 864          | mg/L              | 1.6          |      | 70         | 130         |            |              | Α         |
| Lithium   |                   |               | 1.18         | mg/L              | 0.10         | 102  | 70         | 130         |            |              |           |
| Magnesiun | n                 |               | 232          | mg/L              | 1.5          |      | 70         | 130         |            |              | Α         |

# Qualifiers:

RL - Analyte reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

ND - Not detected at the reporting limit.



Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency **Report Date:** 09/07/17 Project: CCRR Work Order: B17082599

| Analyte   |                   | Count         | Result      | Units           | RL    | %REC | Low Limit  | High Limit  | RPD | RPDLimit | Qual      |
|-----------|-------------------|---------------|-------------|-----------------|-------|------|------------|-------------|-----|----------|-----------|
| Method:   | E200.7            |               |             |                 |       |      |            |             |     | Batcl    | n: 113054 |
| Lab ID:   | B17082599-001BMS3 | 6 Sa          | mple Matrix | Spike           |       |      | Run: ICP20 | 3-B_170901A |     | 09/01/   | 17 18:18  |
| Potassium |                   |               | 83.5        | mg/L            | 1.4   | 107  | 70         | 130         |     |          |           |
| Sodium    |                   |               | 1150        | mg/L            | 8.4   |      | 70         | 130         |     |          | Α         |
| Lab ID:   | B17082599-001BMSI | <b>o</b> 6 Sa | mple Matrix | Spike Duplicate |       |      | Run: ICP20 | 3-B_170901A |     | 09/01/   | 17 18:21  |
| Boron     |                   |               | 0.843       | mg/L            | 0.068 | 96   | 70         | 130         | 11  | 20       |           |
| Calcium   |                   |               | 833         | mg/L            | 1.6   |      | 70         | 130         | 3.7 | 20       | Α         |
| Lithium   |                   |               | 1.16        | mg/L            | 0.10  | 98   | 70         | 130         | 1.8 | 20       |           |
| Magnesium | ı                 |               | 223         | mg/L            | 1.5   |      | 70         | 130         | 3.7 | 20       | Α         |
| Potassium |                   |               | 80.8        | mg/L            | 1.4   | 97   | 70         | 130         | 3.3 | 20       |           |
| Sodium    |                   |               | 1110        | mg/L            | 8.4   |      | 70         | 130         | 3.2 | 20       | Α         |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/07/17Project:CCRRWork Order:B17082599

| Analyte   |                   | Count Res       | ult Units      | RL              | %REC | Low Limit | High Limit             | RPD      | RPDLimit   | Qual      |
|-----------|-------------------|-----------------|----------------|-----------------|------|-----------|------------------------|----------|------------|-----------|
| Method:   | E200.8            |                 |                |                 |      |           | Analytica              | l Run: I | CPMS206-B_ | _170831A  |
| Lab ID:   | QCS               | 10 Initial Cali | bration Verifi | cation Standard |      |           |                        |          | 08/30/     | 17 17:30  |
| Antimony  |                   | 0.05            | 23 mg/L        | 0.050           | 105  | 90        | 110                    |          |            |           |
| Arsenic   |                   | 0.05            | 10 mg/L        | 0.0050          | 102  | 90        | 110                    |          |            |           |
| Barium    |                   | 0.05            | 12 mg/L        | 0.10            | 102  | 90        | 110                    |          |            |           |
| Beryllium |                   | 0.02            | 60 mg/L        | 0.0010          | 104  | 90        | 110                    |          |            |           |
| Cadmium   |                   | 0.02            | 64 mg/L        | 0.0010          | 106  | 90        | 110                    |          |            |           |
| Chromium  |                   | 0.05            | 22 mg/L        | 0.010           | 104  | 90        | 110                    |          |            |           |
| Cobalt    |                   | 0.05            | 29 mg/L        | 0.010           | 106  | 90        | 110                    |          |            |           |
| Lead      |                   | 0.05            | 03 mg/L        | 0.010           | 101  | 90        | 110                    |          |            |           |
| Molybdenu | ım                | 0.04            | 94 mg/L        | 0.0050          | 99   | 90        | 110                    |          |            |           |
| Selenium  |                   | 0.05            | 04 mg/L        | 0.0050          | 101  | 90        | 110                    |          |            |           |
| Method:   | E200.8            |                 |                |                 |      |           |                        |          | Batch      | h: 113054 |
| Lab ID:   | MB-113054         | 12 Method Bl    | ank            |                 |      | Run: ICPM | S206-B_170831 <i>F</i> | 4        | 08/30/     | 17 22:20  |
| Antimony  |                   | 0.000           | 09 mg/L        | 0.00004         |      |           |                        |          |            |           |
| Arsenic   |                   | 1               | ND mg/L        | 0.0002          |      |           |                        |          |            |           |
| Barium    |                   | 1               | ND mg/L        | 0.00005         |      |           |                        |          |            |           |
| Beryllium |                   | 1               | ND mg/L        | 0.00008         |      |           |                        |          |            |           |
| Boron     |                   | 0.              | 09 mg/L        | 0.003           |      |           |                        |          |            |           |
| Cadmium   |                   | 1               | ND mg/L        | 0.00003         |      |           |                        |          |            |           |
| Chromium  |                   | 0.00            | 08 mg/L        | 0.0001          |      |           |                        |          |            |           |
| Cobalt    |                   | 1               | ND mg/L        | 0.00002         |      |           |                        |          |            |           |
| Lead      |                   | 1               | ND mg/L        | 0.00003         |      |           |                        |          |            |           |
| Molybdenu | ım                | 1               | ND mg/L        | 0.00003         |      |           |                        |          |            |           |
| Selenium  |                   | 1               | ND mg/L        | 0.0004          |      |           |                        |          |            |           |
| Thallium  |                   | 1               | ND mg/L        | 7E-06           |      |           |                        |          |            |           |
| Lab ID:   | LCS-113054        | 12 Laborator    | / Control Sa   | mple            |      | Run: ICPM | S206-B_170831 <i>F</i> | 4        | 08/30/     | 17 22:37  |
| Antimony  |                   | 0.5             | 64 mg/L        | 0.0050          | 113  | 85        | 115                    |          |            |           |
| Arsenic   |                   | 0.5             | 28 mg/L        | 0.0010          | 106  | 85        | 115                    |          |            |           |
| Barium    |                   | 0.5             | 24 mg/L        | 0.010           | 105  | 85        | 115                    |          |            |           |
| Beryllium |                   | 0.2             | 45 mg/L        | 0.0010          | 98   | 85        | 115                    |          |            |           |
| Boron     |                   | 0.5             | 96 mg/L        | 0.10            | 100  | 85        | 115                    |          |            |           |
| Cadmium   |                   | 0.2             | 72 mg/L        | 0.0010          | 109  | 85        | 115                    |          |            |           |
| Chromium  |                   | 0.5             | 06 mg/L        | 0.0010          | 101  | 85        | 115                    |          |            |           |
| Cobalt    |                   | 0.5             | 24 mg/L        | 0.0010          | 105  | 85        | 115                    |          |            |           |
| Lead      |                   | 0.5             | 16 mg/L        | 0.0010          | 103  | 85        | 115                    |          |            |           |
| Molybdenu | ım                | 0.5             | 08 mg/L        | 0.0050          | 102  | 85        | 115                    |          |            |           |
| Selenium  |                   | 0.5             | 05 mg/L        | 0.0050          | 101  | 85        | 115                    |          |            |           |
| Thallium  |                   | 0.5             | 68 mg/L        | 0.0010          | 114  | 85        | 115                    |          |            |           |
| Lab ID:   | B17082599-001BMS3 | 3 12 Sample M   | atrix Spike    |                 |      | Run: ICPM | S206-B_170831 <i>F</i> | 4        | 08/30/     | 17 22:41  |
| Antimony  |                   | 0.5             | 20 mg/L        | 0.0010          | 104  | 70        | 130                    |          |            |           |
| Arsenic   |                   | 0.5             | _              | 0.0010          | 109  | 70        | 130                    |          |            |           |
| Barium    |                   | 0.5             | _              | 0.050           | 100  | 70        | 130                    |          |            |           |
| Beryllium |                   | 0.2             |                | 0.0010          | 94   | 70        | 130                    |          |            |           |

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/07/17Project:CCRRWork Order:B17082599

| Analyte   |                   | Count F  | Result   | Units      | RL      | %REC | Low Limit | High Limit     | RPD | RPDLimit | Qual      |
|-----------|-------------------|----------|----------|------------|---------|------|-----------|----------------|-----|----------|-----------|
| Method:   | E200.8            |          |          |            |         |      |           |                |     | Batcl    | n: 113054 |
| Lab ID:   | B17082599-001BMS3 | 12 Sampl | e Matrix | Spike      |         |      | Run: ICPM | S206-B_170831A |     | 08/30/   | 17 22:41  |
| Boron     |                   |          | 1.50     | mg/L       | 0.050   | 82   | 70        | 130            |     |          |           |
| Cadmium   |                   |          | 0.270    | mg/L       | 0.0010  | 108  | 70        | 130            |     |          |           |
| Chromium  |                   |          | 0.509    | mg/L       | 0.0050  | 101  | 70        | 130            |     |          |           |
| Cobalt    |                   |          | 0.550    | mg/L       | 0.0050  | 98   | 70        | 130            |     |          |           |
| Lead      |                   |          | 0.490    | mg/L       | 0.0010  | 97   | 70        | 130            |     |          |           |
| Molybdenu | m                 |          | 0.501    | mg/L       | 0.0010  | 100  | 70        | 130            |     |          |           |
| Selenium  |                   |          | 0.502    | mg/L       | 0.0018  | 100  | 70        | 130            |     |          |           |
| Thallium  |                   |          | 0.441    | mg/L       | 0.00050 | 88   | 70        | 130            |     |          |           |
| Lab ID:   | B17082599-001BMSD | 12 Sampl | e Matrix | Spike Dupl | licate  |      | Run: ICPM | S206-B_170831A |     | 08/30/   | 17 22:44  |
| Antimony  |                   |          | 0.514    | mg/L       | 0.0010  | 103  | 70        | 130            | 1.2 | 20       |           |
| Arsenic   |                   |          | 0.567    | mg/L       | 0.0010  | 112  | 70        | 130            | 3.1 | 20       |           |
| Barium    |                   |          | 0.569    | mg/L       | 0.050   | 103  | 70        | 130            | 2.8 | 20       |           |
| Beryllium |                   |          | 0.286    | mg/L       | 0.0010  | 98   | 70        | 130            | 3.8 | 20       |           |
| Boron     |                   |          | 1.49     | mg/L       | 0.050   | 80   | 70        | 130            | 0.6 | 20       |           |
| Cadmium   |                   |          | 0.276    | mg/L       | 0.0010  | 110  | 70        | 130            | 2.2 | 20       |           |
| Chromium  |                   |          | 0.536    | mg/L       | 0.0050  | 107  | 70        | 130            | 5.3 | 20       |           |
| Cobalt    |                   |          | 0.568    | mg/L       | 0.0050  | 102  | 70        | 130            | 3.2 | 20       |           |
| Lead      |                   |          | 0.520    | mg/L       | 0.0010  | 104  | 70        | 130            | 6.0 | 20       |           |
| Molybdenu | m                 |          | 0.491    | mg/L       | 0.0010  | 98   | 70        | 130            | 2.1 | 20       |           |
| Selenium  |                   |          | 0.530    | mg/L       | 0.0018  | 106  | 70        | 130            | 5.5 | 20       |           |
| Thallium  |                   |          | 0.467    | mg/L       | 0.00050 | 93   | 70        | 130            | 5.9 | 20       |           |
| Lab ID:   | B17082663-006BMS3 | 12 Sampl | e Matrix | Spike      |         |      | Run: ICPM | S206-B_170831A |     | 08/31/   | 17 00:10  |
| Antimony  |                   |          | 0.557    | mg/L       | 0.0010  | 111  | 70        | 130            |     |          |           |
| Arsenic   |                   |          | 0.528    | mg/L       | 0.0010  | 106  | 70        | 130            |     |          |           |
| Barium    |                   |          | 0.578    | mg/L       | 0.050   | 105  | 70        | 130            |     |          |           |
| Beryllium |                   |          | 0.236    | mg/L       | 0.0010  | 94   | 70        | 130            |     |          |           |
| Boron     |                   |          | 0.528    | mg/L       | 0.050   | 105  | 70        | 130            |     |          |           |
| Cadmium   |                   |          | 0.274    | mg/L       | 0.0010  | 110  | 70        | 130            |     |          |           |
| Chromium  |                   |          | 0.525    | mg/L       | 0.0050  | 105  | 70        | 130            |     |          |           |
| Cobalt    |                   |          | 0.504    | mg/L       | 0.0050  | 101  | 70        | 130            |     |          |           |
| Lead      |                   |          | 0.522    | mg/L       | 0.0010  | 104  | 70        | 130            |     |          |           |
| Molybdenu | m                 |          | 0.504    | mg/L       | 0.0010  | 100  | 70        | 130            |     |          |           |
| Selenium  |                   |          | 0.511    | mg/L       | 0.0010  | 102  | 70        | 130            |     |          |           |
| Thallium  |                   |          | 0.574    | mg/L       | 0.00050 | 115  | 70        | 130            |     |          |           |
| Lab ID:   | B17082663-006BMSD | 12 Sampl | e Matrix | Spike Dupl | licate  |      | Run: ICPM | S206-B_170831A |     | 08/31/   | 17 00:13  |
| Antimony  |                   |          | 0.556    | mg/L       | 0.0010  | 111  | 70        | 130            | 0.2 | 20       |           |
| Arsenic   |                   |          | 0.517    | mg/L       | 0.0010  | 103  | 70        | 130            | 2.0 | 20       |           |
| Barium    |                   |          | 0.576    | mg/L       | 0.050   | 104  | 70        | 130            | 0.3 | 20       |           |
| Beryllium |                   |          | 0.237    | mg/L       | 0.0010  | 95   | 70        | 130            | 0.7 | 20       |           |
| Boron     |                   |          | 0.547    | mg/L       | 0.050   | 109  | 70        | 130            | 3.5 | 20       |           |
| Cadmium   |                   |          | 0.268    | mg/L       | 0.0010  | 107  | 70        | 130            | 2.3 | 20       |           |
| Chromium  |                   |          | 0.514    | mg/L       | 0.0050  | 103  | 70        | 130            | 2.2 | 20       |           |

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/07/17Project:CCRRWork Order:B17082599

| Analyte   |                  | Count           | Result     | Units           | RL      | %REC | Low Limit | High Limit     | RPD | RPDLimit | Qual      |
|-----------|------------------|-----------------|------------|-----------------|---------|------|-----------|----------------|-----|----------|-----------|
| Method:   | E200.8           |                 |            |                 |         |      |           |                |     | Batch    | ı: 113054 |
| Lab ID:   | B17082663-006BMS | <b>D</b> 12 Sam | ple Matrix | Spike Duplicate |         |      | Run: ICPM | S206-B_170831A | ı   | 08/31/   | 17 00:13  |
| Cobalt    |                  |                 | 0.510      | mg/L            | 0.0050  | 102  | 70        | 130            | 1.3 | 20       |           |
| Lead      |                  |                 | 0.513      | mg/L            | 0.0010  | 103  | 70        | 130            | 1.7 | 20       |           |
| Molybdenu | m                |                 | 0.508      | mg/L            | 0.0010  | 101  | 70        | 130            | 8.0 | 20       |           |
| Selenium  |                  |                 | 0.513      | mg/L            | 0.0010  | 103  | 70        | 130            | 0.3 | 20       |           |
| Thallium  |                  |                 | 0.561      | mg/L            | 0.00050 | 112  | 70        | 130            | 2.4 | 20       |           |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/07/17Project:CCRRWork Order:B17082599

| Analyte    |                 | Count   | Result         | Units        | RL           | %REC | Low Limit | High Limit     | RPD    | RPDLimit   | Qual      |
|------------|-----------------|---------|----------------|--------------|--------------|------|-----------|----------------|--------|------------|-----------|
| Method: E2 | 200.8           |         |                |              |              |      |           | Analytical     | Run: I | CPMS206-B_ | 170831B   |
| Lab ID: QC | cs              | 2 Initi | al Calibration | on Verificat | ion Standard |      |           |                |        | 08/31/     | 17 23:28  |
| Boron      |                 |         | 0.0483         | mg/L         | 0.10         | 97   | 90        | 110            |        |            |           |
| Thallium   |                 |         | 0.0502         | mg/L         | 0.10         | 100  | 90        | 110            |        |            |           |
| Method: E2 | 200.8           |         |                |              |              |      |           |                |        | Batcl      | n: 113054 |
| Lab ID: ME | 3-113054        | 12 Me   | thod Blank     |              |              |      | Run: ICPM | S206-B_170831B | }      | 09/01/     | 17 03:41  |
| Antimony   |                 |         | 0.00009        | mg/L         | 0.00004      |      |           |                |        |            |           |
| Arsenic    |                 |         | ND             | mg/L         | 0.0002       |      |           |                |        |            |           |
| Barium     |                 |         | ND             | mg/L         | 0.00005      |      |           |                |        |            |           |
| Beryllium  |                 |         | ND             | mg/L         | 0.00008      |      |           |                |        |            |           |
| Boron      |                 |         | ND             | mg/L         | 0.003        |      |           |                |        |            |           |
| Cadmium    |                 |         | ND             | mg/L         | 0.00003      |      |           |                |        |            |           |
| Chromium   |                 |         | 0.0007         | mg/L         | 0.0001       |      |           |                |        |            |           |
| Cobalt     |                 |         | ND             | mg/L         | 0.00002      |      |           |                |        |            |           |
| Lead       |                 |         | 0.00003        | mg/L         | 0.00003      |      |           |                |        |            |           |
| Molybdenum |                 |         | 0.0001         | mg/L         | 0.00003      |      |           |                |        |            |           |
| Selenium   |                 |         | ND             | mg/L         | 0.0004       |      |           |                |        |            |           |
| Thallium   |                 |         | 0.00004        | mg/L         | 7E-06        |      |           |                |        |            |           |
|            |                 |         |                | -            |              |      |           |                |        |            |           |
| Lab ID: LC | S-113054        | 12 Lab  | oratory Co     |              | е            |      | Run: ICPM | S206-B_170831B | 3      | 09/01/     | 17 03:48  |
| Antimony   |                 |         | 0.564          | mg/L         | 0.0010       | 113  | 85        | 115            |        |            |           |
| Arsenic    |                 |         | 0.517          | mg/L         | 0.0010       | 103  | 85        | 115            |        |            |           |
| Barium     |                 |         | 0.536          | mg/L         | 0.050        | 107  | 85        | 115            |        |            |           |
| Beryllium  |                 |         | 0.251          | mg/L         | 0.0010       | 100  | 85        | 115            |        |            |           |
| Boron      |                 |         | 0.502          | mg/L         | 0.050        | 100  | 85        | 115            |        |            |           |
| Cadmium    |                 |         | 0.263          | mg/L         | 0.0010       | 105  | 85        | 115            |        |            |           |
| Chromium   |                 |         | 0.522          | mg/L         | 0.0050       | 104  | 85        | 115            |        |            |           |
| Cobalt     |                 |         | 0.532          | mg/L         | 0.0050       | 106  | 85        | 115            |        |            |           |
| Lead       |                 |         | 0.530          | mg/L         | 0.0010       | 106  | 85        | 115            |        |            |           |
| Molybdenum |                 |         | 0.505          | mg/L         | 0.0010       | 101  | 85        | 115            |        |            |           |
| Selenium   |                 |         | 0.521          | mg/L         | 0.0010       | 104  | 85        | 115            |        |            |           |
| Thallium   |                 |         | 0.531          | mg/L         | 0.00050      | 106  | 85        | 115            |        |            |           |
| Lab ID: B1 | 7082599-001BMS3 | 12 Sar  | nple Matrix    | Spike        |              |      | Run: ICPM | S206-B_170831B | }      | 09/01/     | 17 03:52  |
| Antimony   |                 |         | 0.531          | •            | 0.0010       | 106  | 70        | 130            |        |            |           |
| Arsenic    |                 |         | 0.538          | mg/L         | 0.0016       | 107  | 70        | 130            |        |            |           |
| Barium     |                 |         | 0.562          | mg/L         | 0.050        | 100  | 70        | 130            |        |            |           |
| Beryllium  |                 |         | 0.285          | mg/L         | 0.0010       | 96   | 70        | 130            |        |            |           |
| Boron      |                 |         | 1.01           | mg/L         | 0.050        | 113  | 70        | 130            |        |            |           |
| Cadmium    |                 |         | 0.269          | mg/L         | 0.0010       | 108  | 70        | 130            |        |            |           |
| Chromium   |                 |         | 0.209          | mg/L         | 0.0010       | 107  | 70        | 130            |        |            |           |
| Cobalt     |                 |         | 0.537          |              | 0.0050       | 107  | 70<br>70  | 130            |        |            |           |
|            |                 |         |                | mg/L         |              |      |           |                |        |            |           |
| Lead       |                 |         | 0.516          | mg/L         | 0.0010       | 103  | 70<br>70  | 130            |        |            |           |
| Molybdenum |                 |         | 0.504          | mg/L         | 0.0010       | 100  | 70<br>70  | 130            |        |            |           |
| Selenium   |                 |         | 0.526          | mg/L         | 0.0036       | 105  | 70        | 130            |        |            |           |
| Thallium   |                 |         | 0.420          | mg/L         | 0.00050      | 84   | 70        | 130            |        |            |           |

# Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/07/17Project:CCRRWork Order:B17082599

| Analyte   |                   | Count           | Result      | Units           | RL      | %REC | Low Limit | High Limit     | RPD | RPDLimit | Qual      |
|-----------|-------------------|-----------------|-------------|-----------------|---------|------|-----------|----------------|-----|----------|-----------|
| Method:   | E200.8            |                 |             |                 |         |      |           |                |     | Batch    | n: 113054 |
| Lab ID:   | B17082599-001BMS3 | 12 Sar          | mple Matrix | Spike           |         |      | Run: ICPM | S206-B_170831B |     | 09/01/   | 17 03:52  |
| Lab ID:   | B17082599-001BMSE | <b>)</b> 12 San | nple Matrix | Spike Duplicate |         |      | Run: ICPM | S206-B_170831B |     | 09/01/   | 17 03:55  |
| Antimony  |                   |                 | 0.537       | mg/L            | 0.0010  | 107  | 70        | 130            | 1.1 | 20       |           |
| Arsenic   |                   |                 | 0.564       | mg/L            | 0.0016  | 112  | 70        | 130            | 4.8 | 20       |           |
| Barium    |                   |                 | 0.609       | mg/L            | 0.050   | 110  | 70        | 130            | 8.0 | 20       |           |
| Beryllium |                   |                 | 0.300       | mg/L            | 0.0010  | 102  | 70        | 130            | 5.1 | 20       |           |
| Boron     |                   |                 | 1.00        | mg/L            | 0.050   | 111  | 70        | 130            | 1.1 | 20       |           |
| Cadmium   |                   |                 | 0.278       | mg/L            | 0.0010  | 111  | 70        | 130            | 3.3 | 20       |           |
| Chromium  |                   |                 | 0.557       | mg/L            | 0.0050  | 111  | 70        | 130            | 3.8 | 20       |           |
| Cobalt    |                   |                 | 0.604       | mg/L            | 0.0050  | 108  | 70        | 130            | 5.4 | 20       |           |
| Lead      |                   |                 | 0.541       | mg/L            | 0.0010  | 107  | 70        | 130            | 4.7 | 20       |           |
| Molybdenu | m                 |                 | 0.512       | mg/L            | 0.0010  | 102  | 70        | 130            | 1.6 | 20       |           |
| Selenium  |                   |                 | 0.560       | mg/L            | 0.0036  | 112  | 70        | 130            | 6.3 | 20       |           |
| Thallium  |                   |                 | 0.446       | mg/L            | 0.00050 | 89   | 70        | 130            | 6.0 | 20       |           |

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/07/17Project:CCRRWork Order:B17082599

| Analyte |                  | Count        | Result       | Units          | RL          | %REC | Low Limit | High Limit     | RPD      | RPDLimit   | Qual      |
|---------|------------------|--------------|--------------|----------------|-------------|------|-----------|----------------|----------|------------|-----------|
| Method: | E245.1           |              |              |                |             |      |           | Analytica      | l Run: l | HGCV202-B_ | _170829A  |
| Lab ID: | ICV              | Initi        | al Calibrati | on Verificatio | on Standard |      |           |                |          | 08/29/     | 17 09:26  |
| Mercury |                  |              | 0.00190      | mg/L           | 0.00010     | 95   | 90        | 110            |          |            |           |
| Method: | E245.1           |              |              |                |             |      |           |                |          | Batcl      | n: 113075 |
| Lab ID: | MB-113075        | Met          | thod Blank   |                |             |      | Run: HGC\ | /202-B_170829A |          | 08/29/     | 17 11:06  |
| Mercury |                  |              | 0.00001      | mg/L           | 1E-06       |      |           |                |          |            |           |
| Lab ID: | LCS-113075       | Lab          | oratory Co   | ntrol Sample   | e           |      | Run: HGC\ | /202-B_170829A |          | 08/29/     | 17 11:08  |
| Mercury |                  |              | 0.00203      | mg/L           | 0.00010     | 101  | 85        | 115            |          |            |           |
| Lab ID: | B17082668-005BMS | Sar          | nple Matrix  | Spike          |             |      | Run: HGC\ | /202-B_170829A |          | 08/29/     | 17 11:15  |
| Mercury |                  |              | 0.00200      | mg/L           | 0.00010     | 99   | 70        | 130            |          |            |           |
| Lab ID: | B17082668-005BMS | <b>D</b> Sar | mple Matrix  | Spike Dupli    | cate        |      | Run: HGC\ | /202-B_170829A |          | 08/29/     | 17 11:17  |
| Mercury |                  |              | 0.00200      | mg/L           | 0.00010     | 99   | 70        | 130            | 0.0      | 30         |           |
| Lab ID: | B17082599-003BMS | Sar          | mple Matrix  | Spike          |             |      | Run: HGC\ | /202-B_170829A |          | 08/29/     | 17 13:18  |
| Mercury |                  |              | 0.00192      | mg/L           | 0.00010     | 92   | 70        | 130            |          |            |           |
| Lab ID: | B17082599-003BMS | <b>D</b> Sar | nple Matrix  | Spike Dupli    | cate        |      | Run: HGC\ | /202-B_170829A |          | 08/29/     | 17 13:20  |
| Mercury |                  |              | 0.00193      | mg/L           | 0.00010     | 93   | 70        | 130            | 0.6      | 30         |           |
| Method: | E245.1           |              |              |                |             |      |           |                |          | Batcl      | n: 113077 |
| Lab ID: | MB-113077        | Met          | thod Blank   |                |             |      | Run: HGC\ | /202-B_170829A |          | 08/29/     | 17 12:03  |
| Mercury |                  |              | 4E-06        | mg/L           | 1E-06       |      |           |                |          |            |           |
| Lab ID: | LCS-113077       | Lab          | oratory Co   | ntrol Sample   | )           |      | Run: HGC\ | /202-B_170829A |          | 08/29/     | 17 12:05  |
| Mercury |                  |              | 0.00209      | mg/L           | 0.00010     | 104  | 85        | 115            |          |            |           |
| Lab ID: | B17082599-004BMS | Sar          | nple Matrix  | Spike          |             |      | Run: HGC\ | /202-B_170829A |          | 08/29/     | 17 12:12  |
| Mercury |                  |              | 0.00178      | mg/L           | 0.00010     | 88   | 70        | 130            |          |            |           |
| Lab ID: | B17082599-004BMS | <b>D</b> Sar | mple Matrix  | Spike Dupli    | cate        |      | Run: HGC\ | /202-B_170829A |          | 08/29/     | 17 12:14  |
| Mercury |                  |              | 0.00180      | mg/L           | 0.00010     | 89   | 70        | 130            | 1.2      | 30         |           |
| Lab ID: | B17082614-002BMS | Sar          | mple Matrix  | Spike          |             |      | Run: HGC\ | /202-B_170829A |          | 08/29/     | 17 12:43  |
| Mercury |                  |              | 0.00228      | mg/L           | 0.00010     | 113  | 70        | 130            |          |            |           |
| Lab ID: | B17082614-002BMS | <b>D</b> Sar | mple Matrix  | Spike Dupli    | cate        |      | Run: HGC\ | /202-B_170829A |          | 08/29/     | 17 12:45  |
| Mercury |                  |              | 0.00226      | mg/L           | 0.00010     | 112  | 70        | 130            | 0.6      | 30         |           |

# Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.



Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/06/17Project:CCRRWork Order:B17082599

| Analyte                                                       | Count Result              | Units                 | RL | %REC | Low Limit  | High Limit           | RPD | RPDLimit    | Qual      |
|---------------------------------------------------------------|---------------------------|-----------------------|----|------|------------|----------------------|-----|-------------|-----------|
| Method: A2540 C                                               |                           |                       |    |      |            |                      |     | Batcl       | n: 113120 |
| Lab ID: MB-113120                                             | Method Blank              |                       |    |      | Run: BAL # | SD-15_170829A        |     | 08/29/      | 17 08:18  |
| Solids, Total Dissolved TDS @ 18                              | 30 C ND                   | mg/L                  | 4  |      |            |                      |     |             |           |
| Lab ID: LCS-113120<br>Solids, Total Dissolved TDS @ 18        | Laboratory Co<br>30 C 991 | ontrol Sample<br>mg/L | 10 | 99   | Run: BAL # | SD-15_170829A<br>110 |     | 08/29/      | 17 08:19  |
| Lab ID: B17082598-008A DU                                     | P Sample Dupli            | cate                  |    |      | Run: BAL # | SD-15_170829A        |     | 08/29/      | 17 08:19  |
| Solids, Total Dissolved TDS @ 18                              | 30 C 2390                 | mg/L                  | 20 |      |            |                      | 0.1 | 5           |           |
| Lab ID: B17082599-006A DU<br>Solids, Total Dissolved TDS @ 18 | - Gampio Bapii            | cate<br>mg/L          | 39 |      | Run: BAL # | SD-15_170829A        | 1.5 | 08/29/<br>5 | 17 08:21  |

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**Report Date:** 09/06/17

Project: CCRR

Work Order: B17082599

| Analyte  |                  | Count        | Result         | Units               | RL    | %REC | Low Limit | High Limit   | RPD     | RPDLimit  | Qual     |
|----------|------------------|--------------|----------------|---------------------|-------|------|-----------|--------------|---------|-----------|----------|
| Method:  | A4500-F C        |              |                |                     |       |      |           | Analytica    | al Run: | MAN-TECH_ | 170901A  |
| Lab ID:  | ICV              | Initia       | al Calibration | on Verification Sta | ndard |      |           |              |         | 09/01/    | 17 15:08 |
| Fluoride |                  |              | 1.02           | mg/L                | 0.10  | 102  | 90        | 110          |         |           |          |
| Method:  | A4500-F C        |              |                |                     |       |      |           |              |         | Batch:    | R286042  |
| Lab ID:  | MBLK             | Meth         | nod Blank      |                     |       |      | Run: MAN- | TECH_170901A |         | 09/01/    | 17 15:06 |
| Fluoride |                  |              | ND             | mg/L                | 0.02  |      |           |              |         |           |          |
| Lab ID:  | LFB              | Labo         | oratory For    | tified Blank        |       |      | Run: MAN- | TECH 170901A |         | 09/01/    | 17 15:11 |
| Fluoride |                  |              | 1.05           | mg/L                | 0.10  | 105  | 90        | 110          |         |           |          |
| Lab ID:  | B17082598-005AMS | Sam          | ple Matrix     | Spike               |       |      | Run: MAN- | TECH_170901A |         | 09/01/    | 17 15:16 |
| Fluoride |                  |              | 1.59           | mg/L                | 0.10  | 106  | 80        | 120          |         |           |          |
| Lab ID:  | B17082598-005AMS | <b>D</b> Sam | ple Matrix     | Spike Duplicate     |       |      | Run: MAN- | TECH_170901A |         | 09/01/    | 17 15:19 |
| Fluoride |                  |              | 1.56           | mg/L                | 0.10  | 103  | 80        | 120          | 1.9     | 10        |          |
| Lab ID:  | B17082599-011AMS | Sam          | ple Matrix     | Spike               |       |      | Run: MAN- | TECH_170901A |         | 09/01/    | 17 17:17 |
| Fluoride |                  |              | 1.47           | mg/L                | 0.10  | 37   | 80        | 120          |         |           | S        |
| Lab ID:  | B17082599-011AMS | <b>D</b> Sam | ple Matrix     | Spike Duplicate     |       |      | Run: MAN- | TECH_170901A |         | 09/01/    | 17 17:29 |
| Fluoride |                  |              | 1.47           | mg/L                | 0.10  | 37   | 80        | 120          | 0.0     | 10        | S        |
| Method:  | A4500-F C        |              |                |                     |       |      |           | Analytica    | al Run: | MAN-TECH_ | _170905A |
| Lab ID:  | ICV              | Initia       | al Calibration | on Verification Sta | ndard |      |           |              |         | 09/05/    | 17 12:55 |
| Fluoride |                  |              | 1.05           | mg/L                | 0.10  | 105  | 90        | 110          |         |           |          |
| Method:  | A4500-F C        |              |                |                     |       |      |           |              |         | Batch:    | R286127  |
| Lab ID:  | MBLK             | Meth         | nod Blank      |                     |       |      | Run: MAN- | TECH_170905A |         | 09/05/    | 17 12:53 |
| Fluoride |                  |              | ND             | mg/L                | 0.02  |      |           |              |         |           |          |
| Lab ID:  | LFB              | Labo         | oratory For    | tified Blank        |       |      | Run: MAN- | TECH_170905A |         | 09/05/    | 17 12:58 |
| Fluoride |                  |              | 1.08           | mg/L                | 0.10  | 108  | 90        | 110          |         |           |          |
| Lab ID:  | B17082599-003AMS | Sam          | ple Matrix     | Spike               |       |      | Run: MAN- | TECH_170905A |         | 09/05/    | 17 13:15 |
| Fluoride |                  |              | 1.60           | mg/L                | 0.10  | 82   | 80        | 120          |         |           |          |
| Lab ID:  | B17082599-003AMS | <b>D</b> Sam | ple Matrix     | Spike Duplicate     |       |      | Run: MAN- | TECH_170905A |         | 09/05/    | 17 13:24 |
| Fluoride |                  |              | 1.62           | mg/L                | 0.10  | 84   | 80        | 120          | 1.2     | 10        |          |
| Lab ID:  | B17082614-001AMS | Sam          | ple Matrix     | Spike               |       |      | Run: MAN- | TECH_170905A |         | 09/05/    | 17 14:26 |
| Fluoride |                  |              | 1.25           | mg/L                | 0.10  | 101  | 80        | 120          |         |           |          |
| Lab ID:  | B17082614-001AMS | <b>D</b> Sam | ple Matrix     | Spike Duplicate     |       |      | Run: MAN- | TECH_170905A |         | 09/05/    | 17 14:29 |
| Fluoride |                  |              | 1.27           | mg/L                | 0.10  | 103  | 80        | 120          | 1.6     | 10        |          |

# Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

ND - Not detected at the reporting limit.

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

# **QA/QC Summary Report**

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/06/17Project:CCRRWork Order:B17082599

| Analyte |                  | Count  | Result        | Units      | RL            | %REC | Low Limit | High Limit  | RPD        | RPDLimit    | Qual     |
|---------|------------------|--------|---------------|------------|---------------|------|-----------|-------------|------------|-------------|----------|
| Method: | A4500-H B        |        |               |            |               |      |           | Analytic    | al Run: PF | ISC _101-B_ | _170828A |
| Lab ID: | pH 8             | Initia | al Calibratio | n Verifica | tion Standard |      |           |             |            | 08/28/      | 17 08:36 |
| рН      |                  |        | 7.97          | s.u.       | 0.10          | 100  | 98        | 102         |            |             |          |
| Method: | A4500-H B        |        |               |            |               |      |           |             |            | Batch:      | R285634  |
| Lab ID: | B17082599-005ADU | P San  | nple Duplica  | ate        |               |      | Run: PHSC | _101-B_1708 | 28A        | 08/28/      | 17 11:30 |
| рН      |                  |        | 6.53          | s.u.       | 0.10          |      |           |             | 0.2        | 3           |          |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/06/17Project:CCRRWork Order:B17082599

| Analyte  |                   | Count         | Result         | Units              | RL    | %REC | Low Limit  | High Limit  | RPD       | RPDLimit    | Qual     |
|----------|-------------------|---------------|----------------|--------------------|-------|------|------------|-------------|-----------|-------------|----------|
| Method:  | E300.0            |               |                |                    |       |      |            | Analytical  | Run: IC N | /IETROHM 2_ | _170830A |
| Lab ID:  | ICV               | 2 Init        | ial Calibratio | n Verification Sta | ndard |      |            |             |           | 08/30/      | 17 17:14 |
| Chloride |                   |               | 2.17           | mg/L               | 1.0   | 96   | 90         | 110         |           |             |          |
| Sulfate  |                   |               | 8.85           | mg/L               | 1.0   | 98   | 90         | 110         |           |             |          |
| Method:  | E300.0            |               |                |                    |       |      |            |             |           | Batch:      | R285893  |
| Lab ID:  | ICB               | 2 Me          | thod Blank     |                    |       |      | Run: IC ME | TROHM 2_170 | 0830A     | 08/30/      | 17 17:33 |
| Chloride |                   |               | 0.04           | mg/L               | 0.03  |      |            |             |           |             |          |
| Sulfate  |                   |               | ND             | mg/L               | 0.02  |      |            |             |           |             |          |
| Lab ID:  | LFB               | 2 Lal         | ooratory Fort  | tified Blank       |       |      | Run: IC ME | TROHM 2_17  | 0830A     | 08/30/      | 17 17:53 |
| Chloride |                   |               | 10.5           | mg/L               | 1.0   | 104  | 90         | 110         |           |             |          |
| Sulfate  |                   |               | 31.2           | mg/L               | 1.0   | 104  | 90         | 110         |           |             |          |
| Lab ID:  | B17082599-001AMS  | 2 Sa          | mple Matrix    | Spike              |       |      | Run: IC ME | TROHM 2_170 | 0830A     | 08/31/      | 17 04:36 |
| Chloride |                   |               | 4840           | mg/L               | 12    | 103  | 90         | 110         |           |             |          |
| Sulfate  |                   |               | 8560           | mg/L               | 37    | 108  | 90         | 110         |           |             |          |
| Lab ID:  | B17082599-001AMSI | <b>)</b> 2 Sa | mple Matrix    | Spike Duplicate    |       |      | Run: IC ME | TROHM 2_170 | 0830A     | 08/31/      | 17 04:56 |
| Chloride |                   |               | 4830           | mg/L               | 12    | 102  | 90         | 110         | 0.1       | 20          |          |
| Sulfate  |                   |               | 8580           | mg/L               | 37    | 108  | 90         | 110         | 0.3       | 20          |          |
| Lab ID:  | B17082599-010AMS  | 2 Sa          | mple Matrix    | Spike              |       |      | Run: IC ME | TROHM 2_170 | 0830A     | 08/31/      | 17 08:50 |
| Chloride |                   |               | 2820           | mg/L               | 6.1   | 98   | 90         | 110         |           |             |          |
| Sulfate  |                   |               | 5700           | mg/L               | 18    | 104  | 90         | 110         |           |             |          |
| Lab ID:  | B17082599-010AMSI | <b>)</b> 2 Sa | mple Matrix    | Spike Duplicate    |       |      | Run: IC ME | TROHM 2_170 | 0830A     | 08/31/      | 17 09:09 |
| Chloride |                   |               | 2800           | mg/L               | 6.1   | 96   | 90         | 110         | 0.6       | 20          |          |
| Sulfate  |                   |               | 5670           | mg/L               | 18    | 103  | 90         | 110         | 0.5       | 20          |          |

# **Work Order Receipt Checklist**

# Texas Municipal Power Agency

# B17082599

| Login completed by:                                                                          | Gina McCartney                  |           | Date | Received: 8/25/2017      |
|----------------------------------------------------------------------------------------------|---------------------------------|-----------|------|--------------------------|
| Reviewed by:                                                                                 | BL2000\tedwards                 |           | Re   | ceived by: se            |
| Reviewed Date:                                                                               | 8/31/2017                       |           | Car  | rier name: FedEx         |
| Shipping container/cooler in                                                                 | good condition?                 | Yes 🔽     | No 🗌 | Not Present              |
| Custody seals intact on all sh                                                               | nipping container(s)/cooler(s)? | Yes ✓     | No 🗌 | Not Present              |
| Custody seals intact on all sa                                                               | ample bottles?                  | Yes       | No 🗌 | Not Present ✓            |
| Chain of custody present?                                                                    |                                 | Yes ✓     | No 🗌 |                          |
| Chain of custody signed whe                                                                  | en relinquished and received?   | Yes ✓     | No 🗌 |                          |
| Chain of custody agrees with                                                                 | n sample labels?                | Yes ✓     | No 🗌 |                          |
| Samples in proper container                                                                  | /bottle?                        | Yes ✓     | No 🗌 |                          |
| Sample containers intact?                                                                    |                                 | Yes ✓     | No 🗌 |                          |
| Sufficient sample volume for                                                                 | indicated test?                 | Yes ✓     | No 🗌 |                          |
| All samples received within h<br>(Exclude analyses that are or<br>such as pH, DO, Res Cl, Su | onsidered field parameters      | Yes 🗹     | No 🗌 |                          |
| Temp Blank received in all sl                                                                | hipping container(s)/cooler(s)? | Yes ✓     | No 🗌 | Not Applicable           |
| Container/Temp Blank tempe                                                                   | erature:                        | °C On Ice |      |                          |
| Water - VOA vials have zero                                                                  | headspace?                      | Yes       | No 🗌 | No VOA vials submitted ✓ |
| Water - pH acceptable upon                                                                   | receipt?                        | Yes ✓     | No 🗌 | Not Applicable           |
|                                                                                              |                                 |           |      |                          |

# **Standard Reporting Procedures:**

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

### **Contact and Corrective Action Comments:**

The temperature of the sample(s) for shipping container 1 was 2.0°C, shipping container 2 was 1.1°C, shipping container 3 was 1.7°C and shipping container 4 was 4.4°C.



# Chain of Custody & Analytical Request Record

|                                                 | www.erlergylab.com                                        | C 3- 1 ODGG    |
|-------------------------------------------------|-----------------------------------------------------------|----------------|
| Account Information (Billing information)       | Report Information if different than Account Informations | To age         |
| Company/Name Amec Foster Wheeler                | Company/Name                                              | Comments       |
| Contact Greg Selfert                            | Contact                                                   | Al analysis    |
| Phone 512-795-0360                              | Phone                                                     | proort pod Jom |
| Mailing Address 3755 S. Capital of TX Hwy. #375 | Mailing Address                                           | ころうとうことできる     |
| City, State, Zip Austin, TX 78704               | City, State, Zip                                          | 17 17 0 80     |
| Email greg. seifert @amectu, com                | Email                                                     | 11-57-8 111R   |
| Mard Cop                                        | Receive Report □ Hard Copy □ Email                        |                |
| Purchase Order Quote Bottle Order               | Special Report of mals:                                   |                |
|                                                 | □ LEVEL IV □ NELAC □ EDD/EDT (contact isboratory) □ Other |                |

| Contact Gree Selfert                                        | Contact                            | E Signs S                       |
|-------------------------------------------------------------|------------------------------------|---------------------------------|
| Phone 512-795-0360                                          | Phone                              | pront pod town                  |
| Mailing Address 3755 S. Capital of TX Huy #375              | Mailing Address                    | でいることで                          |
| City, State, Zip Austin, TX 18704                           | City, State, Zip                   |                                 |
| Email greg. Seifert Damectu, com                            | Email                              | 11-57-81118                     |
| mail Receive Repo                                           | Receive Report   Hard Copy   Email | ه.                              |
| Hottle Order                                                | Special Report Commats:            |                                 |
| Project Information                                         | Water Codes                        |                                 |
|                                                             | Maura Codes                        |                                 |
| Project Name, PWSID, Permit, etc. Clent: TMPA Project: CCRR | W- Water                           | All turnaround times are        |
| Sampler Name B. Gieselman Sampler Phone 5/2-241-2321        | S- Solids                          | standard unless marked as RUSH. |
|                                                             | V Venetation                       |                                 |

|                                                                                                                                       |                                |      |                            |                                |             | I           |               |                    |         |              |          |       |                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------|----------------------------|--------------------------------|-------------|-------------|---------------|--------------------|---------|--------------|----------|-------|----------------------------------------------------|
| Project Information                                                                                                                   |                                |      | Matrix                     | Matrix Codes                   |             |             |               |                    |         |              |          |       |                                                    |
|                                                                                                                                       |                                |      | Α - Δίτ                    |                                |             |             | A             | Analysis Requested | (equest | <del>g</del> |          |       |                                                    |
| Project Name, PWSID, Permit, etc. //ent: TMPA Project: CCRR                                                                           | Project: C                     | LRR  | W- Water                   | Vater                          |             |             |               |                    |         | -            |          |       | All turnaround times are                           |
| Sampler Name B. Giese/mag                                                                                                             | Sampler Phone 512-241-3321     | 2321 | Ś                          | Solls/<br>Solids               |             |             |               |                    |         |              | <u> </u> |       | standard unless marked as RUSH.                    |
|                                                                                                                                       | EPA/State Compliance XOes □ No | °N □ | > 60                       | V - Vegetation<br>B - Bioassay | T           | e           |               |                    |         |              |          |       | Energy Laboratories                                |
| MINING CLIENTS, please indicate sample type.  'If ore has been processed or refined, call before sending.  Byproduct 11 (e)2 material | Sec 10                         | * 1  | O - Other<br>Dw - Drinking | ther<br>rinking                | عاساه       | الداد       | <del></del> . | <del></del>        |         | _            |          | gched | RUSH sample submittal for charges and scheduling - |
|                                                                                                                                       | or growing or refin            | ea)  |                            |                                | <i>ا</i> (ج | <i>ب</i> اد |               |                    |         |              |          | :n\   | See Instructions Page                              |
| Sample Identification                                                                                                                 | Collection                     | tion | Number of                  | Matrix                         | r           | 7           |               |                    |         |              |          | / a   |                                                    |
| (Name, Location, Interval, etc.)                                                                                                      | Date                           | Time | Containers                 | (See Codes                     | S           | S           |               |                    |         |              |          | es    | RUSH KELTLABYD                                     |
| 1 SSP MW-2                                                                                                                            | 8/24/17 0920                   | 2420 | 7                          | 1.1                            | >           | <br> >      |               | $\downarrow$       |         | +            | +        | +     | TAT Laboratory (1se Dring                          |
| 2 AP MILL /                                                                                                                           | 11/20                          | 2    |                            | 3                              | <           | <           | +             | _                  |         |              |          |       | 18170X3X3X00                                       |
|                                                                                                                                       | _                              |      |                            |                                |             |             |               | _                  |         | _            |          |       |                                                    |

|                                   |                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _<br>?<br> | -<br>-                                 | _ |           | 13       |          |              |
|-----------------------------------|------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------|---|-----------|----------|----------|--------------|
| Sample Identification             | Collection       | ction    | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>Y</b>   | <b>Y</b>                               |   |           | <b>V</b> |          | •            |
| (Name, Location, Interval, etc.)  | Date             | Time     | Containers (See Codes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25         | ~S                                     |   | _         | 995      | THE THE  | LELABID      |
| 1 SSP MW-2                        | 8/24/17 09       | 0420     | 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ×          | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |   |           | 3        | Š        | Sug out      |
| 2 AP MW-6                         |                  | 0943     | <b>3</b> ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 4                                      |   |           | +        | 8170%    | 10895470     |
| 3 SSP MW-3                        |                  | 1035     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                        |   |           | +        |          | 9            |
| 4 AP MW-1D                        |                  | 1100     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                        |   |           |          | -        | 9            |
| 5 SSP MW-4                        |                  | 1/50     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          |                                        |   |           | +        |          | 9            |
| · APMW-5                          |                  | 1209     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                        |   |           | +        |          | ç<br>Q<br>Q  |
| 7 AP MW-4                         |                  | /300     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          |                                        |   |           | +        |          | 9            |
| 8 EQBK/SCM/082417                 |                  | /330     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                        |   |           |          | <u> </u> | 90           |
| * EQBK-BJG-082417                 |                  | 1335     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          |                                        |   |           |          | ,        | 00           |
| to DUP-2                          | >                | 1        | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | >          |                                        |   |           |          | +        | 9            |
| Custody Relinguished by (print) 1 | [ ] Dato(Times   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          |                                        |   |           | <br>     | -<br> -  | $\hat{\rho}$ |
| Record MUST Brian Greschman       | 08/24/17 3 / 600 | /600 Par | The state of the s | Į,         | Received by (print)                    |   | Date/Time | 3        | entite   |              |
| be signed Relinquished by (print) | Date/Time        |          | ure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | Recolumn by I amount to                | 3 |           | 9        |          | 7            |
|                                   |                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Consider by Laboratory (pri            | Ë |           | 1        | 7.00     |              |

| The sound of the state of the s | A COMM        | Amount Receipt Number (cash/check only) |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------|--|
| Received by Laboratory (print)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ONLY          | Payment Type<br>CC Cash Chack           |  |
| Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LABORATORY US | Temp Femp Blank On Ice                  |  |
| Date/Time Sig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | Intact Receipt T                        |  |
| Relinquished by (print)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | Cooler ID(s) Custody Seals              |  |
| be signed Reii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | O Principal O | oupped by                               |  |

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested. This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.



# Chain of Custody & Analytical Request Record

ا م

| Account                                                                                    | Account Information (Billing information)                                                                                                                                        |                                  | Report Information (if different then Account Information) | I (if different then A         | to the transfers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |         | 5 4 26                                                                   |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------|--------------------------------------------------------------------------|
| Company/Name                                                                               | no Amec Faster Wheeler                                                                                                                                                           |                                  | Company/Name                                               |                                | (including the control of the contro |                         |         | ants                                                                     |
|                                                                                            | Greg Seifert                                                                                                                                                                     |                                  | Contact                                                    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |         |                                                                          |
| Phone $\mathcal{L}$                                                                        | 512-795-0360                                                                                                                                                                     |                                  | Phone                                                      |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |         |                                                                          |
| Mailing Addres                                                                             | 3755 S. Capital of TX                                                                                                                                                            | Hwx, #375                        | Mailing Address                                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |         |                                                                          |
| 텵                                                                                          | Austin, TX 78704                                                                                                                                                                 |                                  | City, State, Zip                                           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |         |                                                                          |
| Email 916                                                                                  | Seifert Dame                                                                                                                                                                     |                                  | Email                                                      |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | _       |                                                                          |
| Receive Invoice                                                                            | Mard Copy Memail                                                                                                                                                                 | Receive Report DHard Copy Atmail | Receive Report Urfard Copy     Email                       | y ⊟Email                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |         |                                                                          |
|                                                                                            |                                                                                                                                                                                  | Bottle Order                     | Special Report omats:                                      | ☐ EDD/EDT (contact faboratory) | aboratory) 🗆 Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |         | ٨                                                                        |
| Project In                                                                                 | Project Information                                                                                                                                                              |                                  | Matrix Codes                                               |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |         |                                                                          |
| Project Name,                                                                              | Project Name, PWSID, Permit, etc. // 'a+ : TM PL                                                                                                                                 | 00/0.7                           | A. Air                                                     |                                | Analysis Kequested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sted                    |         | All turnaround times are                                                 |
| Sampler Name                                                                               | Sampler Name Brian Gresofman Sampler Phone                                                                                                                                       | Sampler Phone 5/7_34/-3431       | S Solids                                                   |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |         | standard unless marked as RUSH.                                          |
| Sample Origin State                                                                        |                                                                                                                                                                                  | mpliance (Nes 🗆 No               | V - Vegetation B - Bioassay                                | 0 -                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |         | Energy Laboratories                                                      |
| MINING CLIENTS, please indicant of ore has been processed or re Byproduct 11 (e)2 material | MINING CLIENTS, please indicate sample type. If ore has been processed or refined, call before sending.  ☐ Byproduct 11 (e)2 material ☐ Unprocessed ore (NOT ground or refined)* | )T ground or refined)*           | O. Other Dinking DW. Water                                 | Juba                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 14                    | peyset  | RUSH sample submittal for charges and scheduling – See Instructions Page |
|                                                                                            | Sample Identification (Name, Location, Interval, etc.)                                                                                                                           | Collection                       | Number of Matrix Secontainers (See Cootes                  | 12S                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |         |                                                                          |
| 1 DWP                                                                                      | P-3                                                                                                                                                                              | 1                                |                                                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |         | Laboratory Use Coly                                                      |
| 2                                                                                          |                                                                                                                                                                                  |                                  | +                                                          |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |         | 10×35×01                                                                 |
| 3                                                                                          |                                                                                                                                                                                  |                                  |                                                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | +       |                                                                          |
| 4                                                                                          |                                                                                                                                                                                  |                                  |                                                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |         |                                                                          |
| 22                                                                                         |                                                                                                                                                                                  |                                  |                                                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |         |                                                                          |
| မ                                                                                          |                                                                                                                                                                                  |                                  |                                                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |         |                                                                          |
| 7                                                                                          |                                                                                                                                                                                  |                                  |                                                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |         |                                                                          |
| 80 0                                                                                       |                                                                                                                                                                                  |                                  |                                                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | -       |                                                                          |
| 10                                                                                         |                                                                                                                                                                                  |                                  |                                                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |         |                                                                          |
|                                                                                            |                                                                                                                                                                                  |                                  |                                                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |         |                                                                          |
| Custody Record MUST                                                                        | Relinquished by (print)  Brian Giese/Man                                                                                                                                         | 1101600                          | me Hearth                                                  | Received by (print)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date/Time               | Sis     | Signature                                                                |
| 5                                                                                          |                                                                                                                                                                                  | Date/Fime Signature              |                                                            | Received by Laboratory (print) | ratory (print)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2000                    | R<br>R  | Populari I MI Contraction                                                |
| Shipped By                                                                                 | Cooler ID(s) Custody Seals                                                                                                                                                       | Receipt                          | Tomp Block                                                 | 95 ii.                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 日本の本様のできる場合のは、大学大学のできる。 |         |                                                                          |
| ·                                                                                          | Ω<br>V<br>V                                                                                                                                                                      | O. N.                            | Y N X N                                                    | CC Cash                        | Payment Type<br>h Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Amount                  | Receipt | Receipt Number (cash/check only)                                         |

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

ELI-COC-12/16 v.1

# ANALYTICAL SUMMARY REPORT

September 21, 2017

Texas Municipal Power Agency PO Box 7000 Bryan, TX 77805-7000

Work Order: B17082605 Quote ID: B3997

Project Name: CCRR

Energy Laboratories Inc Billings MT received the following 11 samples for Texas Municipal Power Agency on 8/25/2017 for analysis.

| Lab ID        | Client Sample ID | Collect Date Receive Date | Matrix       | Test                                                              |
|---------------|------------------|---------------------------|--------------|-------------------------------------------------------------------|
| B17082605-001 | SSP MW-2         | 08/24/17 9:30 08/25/17    | Ground Water | Radium 226 + Radium 228<br>Radium 226, Total<br>Radium 228, Total |
| B17082605-003 | SSP MW-3         | 08/24/17 10:35 08/25/17   | Ground Water | Same As Above                                                     |
| B17082605-004 | AP MW-1D         | 08/24/17 11:00 08/25/17   | Ground Water | Same As Above                                                     |
| B17082605-005 | SSP MW-4         | 08/24/17 11:50 08/25/17   | Ground Water | Same As Above                                                     |
| B17082605-006 | AP MW-5          | 08/24/17 12:09 08/25/17   | Ground Water | Same As Above                                                     |
| B17082605-007 | AP MW-4          | 08/24/17 13:00 08/25/17   | Ground Water | Same As Above                                                     |
| B17082605-008 | EQBK/SCM/082417  | 08/24/17 13:30 08/25/17   | Ground Water | Same As Above                                                     |
| B17082605-009 | EQBK-BJG-082417  | 08/24/17 13:35 08/25/17   | Ground Water | Same As Above                                                     |
| B17082605-010 | DUP-2            | 08/24/17 0:00 08/25/17    | Ground Water | Same As Above                                                     |
| B17082605-011 | DUP-3            | 08/24/17 0:00 08/25/17    | Ground Water | Same As Above                                                     |

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

**CLIENT:** Texas Municipal Power Agency

Project: CCRR Report Date: 09/21/17

Work Order: B17082605 CASE NARRATIVE

Tests associated with analyst identified as ELI-CA were subcontracted to Energy Laboratories, PO Box 247, Casper, WY, EPA Number WY00002 and WY00937.



Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

Lab ID: B17082605-001 Client Sample ID: SSP MW-2

**Report Date:** 09/21/17 **Collection Date:** 08/24/17 09:30 **DateReceived:** 08/25/17

Matrix: Ground Water

|                                       |        |       |            |    | MCL/ |          |                         |
|---------------------------------------|--------|-------|------------|----|------|----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL | QCL  | Method   | Analysis Date / By      |
| RADIONUCLIDES - TOTAL                 |        |       |            |    |      |          |                         |
| Radium 226                            | 0.80   | pCi/L |            |    |      | E903.0   | 09/18/17 11:23 / eli-ca |
| Radium 226 precision (±)              | 0.19   | pCi/L |            |    |      | E903.0   | 09/18/17 11:23 / eli-ca |
| Radium 226 MDC                        | 0.16   | pCi/L |            |    |      | E903.0   | 09/18/17 11:23 / eli-ca |
| Radium 228                            | 3.5    | pCi/L |            |    |      | RA-05    | 09/12/17 12:04 / eli-ca |
| Radium 228 precision (±)              | 1.5    | pCi/L |            |    |      | RA-05    | 09/12/17 12:04 / eli-ca |
| Radium 228 MDC                        | 1.8    | pCi/L |            |    |      | RA-05    | 09/12/17 12:04 / eli-ca |
| Radium 226 + Radium 228               | 4.3    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.5    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.8    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.
ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17082605-002 Client Sample ID: AP MW-6

**Report Date:** 09/21/17 Collection Date: 08/24/17 09:42

DateReceived: 08/25/17

Matrix: Ground Water

| Analyses                              | Result U | Inits | Qualifiers | RL | MCL/<br>QCL | Method   | Analysis Date / By      |
|---------------------------------------|----------|-------|------------|----|-------------|----------|-------------------------|
| RADIONUCLIDES - TOTAL                 |          |       |            |    |             |          |                         |
| Radium 226                            | 0.64 p0  | Ci/L  |            |    |             | E903.0   | 09/18/17 12:53 / eli-ca |
| Radium 226 precision (±)              | 0.17 p(  | Ci/L  |            |    |             | E903.0   | 09/18/17 12:53 / eli-ca |
| Radium 226 MDC                        | 0.15 p(  | Ci/L  |            |    |             | E903.0   | 09/18/17 12:53 / eli-ca |
| Radium 228                            | 0.70 p0  | Ci/L  | U          |    |             | RA-05    | 09/12/17 13:37 / eli-ca |
| Radium 228 precision (±)              | 1.2 p0   | Ci/L  |            |    |             | RA-05    | 09/12/17 13:37 / eli-ca |
| Radium 228 MDC                        | 2.0 p0   | Ci/L  |            |    |             | RA-05    | 09/12/17 13:37 / eli-ca |
| Radium 226 + Radium 228               | 1.3 p0   | Ci/L  | U          |    |             | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.2 p(   | Ci/L  |            |    |             | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 MDC           | 2.0 p0   | Ci/L  |            |    |             | A7500-RA | 09/20/17 17:14 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

Lab ID: B17082605-003 Client Sample ID: SSP MW-3

**Report Date:** 09/21/17 **Collection Date:** 08/24/17 10:35 **DateReceived:** 08/25/17

Matrix: Ground Water

|                                       |        |       |            |    | MCL/ |          |                         |
|---------------------------------------|--------|-------|------------|----|------|----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL | QCL  | Method   | Analysis Date / By      |
| RADIONUCLIDES - TOTAL                 |        |       |            |    |      |          |                         |
| Radium 226                            | 7.2    | pCi/L |            |    |      | E903.0   | 09/18/17 12:53 / eli-ca |
| Radium 226 precision (±)              | 1.4    | pCi/L |            |    |      | E903.0   | 09/18/17 12:53 / eli-ca |
| Radium 226 MDC                        | 0.15   | pCi/L |            |    |      | E903.0   | 09/18/17 12:53 / eli-ca |
| Radium 228                            | 25     | pCi/L |            |    |      | RA-05    | 09/12/17 13:37 / eli-ca |
| Radium 228 precision (±)              | 4.7    | pCi/L |            |    |      | RA-05    | 09/12/17 13:37 / eli-ca |
| Radium 228 MDC                        | 1.9    | pCi/L |            |    |      | RA-05    | 09/12/17 13:37 / eli-ca |
| Radium 226 + Radium 228               | 32.2   | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 4.9    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.9    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MEC Military Control IIIIII.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17082605-004 Client Sample ID: AP MW-1D

**Report Date:** 09/21/17 Collection Date: 08/24/17 11:00 DateReceived: 08/25/17

Matrix: Ground Water

| Analyses                              | Result l | Units | Qualifiers | RL | MCL/<br>QCL | Method   | Analysis Date / By      |
|---------------------------------------|----------|-------|------------|----|-------------|----------|-------------------------|
| RADIONUCLIDES - TOTAL                 |          |       |            |    |             |          |                         |
| Radium 226                            | 0.52 p   | pCi/L |            |    |             | E903.0   | 09/18/17 12:53 / eli-ca |
| Radium 226 precision (±)              | 0.16 p   | pCi/L |            |    |             | E903.0   | 09/18/17 12:53 / eli-ca |
| Radium 226 MDC                        | 0.15 p   | pCi/L |            |    |             | E903.0   | 09/18/17 12:53 / eli-ca |
| Radium 228                            | 1.3 p    | pCi/L | U          |    |             | RA-05    | 09/12/17 13:37 / eli-ca |
| Radium 228 precision (±)              | 1.2 p    | pCi/L |            |    |             | RA-05    | 09/12/17 13:37 / eli-ca |
| Radium 228 MDC                        | 2.0 p    | pCi/L |            |    |             | RA-05    | 09/12/17 13:37 / eli-ca |
| Radium 226 + Radium 228               | 1.8 p    | pCi/L | U          |    |             | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.2 p    | pCi/L |            |    |             | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 MDC           | 2.0 p    | pCi/L |            |    |             | A7500-RA | 09/20/17 17:14 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration



Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** Lab ID: B17082605-005

Client Sample ID: SSP MW-4

**Report Date:** 09/21/17 Collection Date: 08/24/17 11:50 DateReceived: 08/25/17

Matrix: Ground Water

| Analyses                              | Result | Units | Qualifiers | RL | MCL/<br>QCL | Method   | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|----|-------------|----------|-------------------------|
| RADIONUCLIDES - TOTAL                 |        |       |            |    |             |          |                         |
| Radium 226                            | 1.3    | pCi/L |            |    |             | E903.0   | 09/18/17 12:53 / eli-ca |
| Radium 226 precision (±)              | 0.34   | pCi/L |            |    |             | E903.0   | 09/18/17 12:53 / eli-ca |
| Radium 226 MDC                        | 0.15   | pCi/L |            |    |             | E903.0   | 09/18/17 12:53 / eli-ca |
| Radium 228                            | 1.4    | pCi/L | U          |    |             | RA-05    | 09/12/17 13:37 / eli-ca |
| Radium 228 precision (±)              | 1.1    | pCi/L |            |    |             | RA-05    | 09/12/17 13:37 / eli-ca |
| Radium 228 MDC                        | 2.0    | pCi/L |            |    |             | RA-05    | 09/12/17 13:37 / eli-ca |
| Radium 226 + Radium 228               | 2.7    | pCi/L |            |    |             | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.1    | pCi/L |            |    |             | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 MDC           | 2.0    | pCi/L |            |    |             | A7500-RA | 09/20/17 17:14 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17082605-006

Client Sample ID: AP MW-5

**Report Date:** 09/21/17

Collection Date: 08/24/17 12:09

DateReceived: 08/25/17

Matrix: Ground Water

| Analyses                              | Result Units | Qualifiers | RL | MCL/<br>QCL | Method   | Analysis Date / By      |
|---------------------------------------|--------------|------------|----|-------------|----------|-------------------------|
| RADIONUCLIDES - TOTAL                 |              |            |    |             |          | •                       |
|                                       | 4.0.00#      |            |    |             |          |                         |
| Radium 226                            | 1.2 pCi/L    |            |    |             | E903.0   | 09/18/17 12:53 / eli-ca |
| Radium 226 precision (±)              | 0.31 pCi/L   |            |    |             | E903.0   | 09/18/17 12:53 / eli-ca |
| Radium 226 MDC                        | 0.13 pCi/L   |            |    |             | E903.0   | 09/18/17 12:53 / eli-ca |
| Radium 228                            | 2.2 pCi/L    |            |    |             | RA-05    | 09/12/17 13:37 / eli-ca |
| Radium 228 precision (±)              | 1.1 pCi/L    |            |    |             | RA-05    | 09/12/17 13:37 / eli-ca |
| Radium 228 MDC                        | 1.8 pCi/L    |            |    |             | RA-05    | 09/12/17 13:37 / eli-ca |
| Radium 226 + Radium 228               | 3.4 pCi/L    |            |    |             | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.2 pCi/L    |            |    |             | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.8 pCi/L    |            |    |             | A7500-RA | 09/20/17 17:14 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** Lab ID: B17082605-007

Client Sample ID: AP MW-4

**Report Date:** 09/21/17 Collection Date: 08/24/17 13:00

DateReceived: 08/25/17

Matrix: Ground Water

| Analyses                              | Result | Units | Qualifiers | RL | MCL/<br>QCL | Method   | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|----|-------------|----------|-------------------------|
| RADIONUCLIDES - TOTAL                 |        |       |            |    |             |          |                         |
| Radium 226                            | 0.85   | pCi/L |            |    |             | E903.0   | 09/19/17 13:06 / eli-ca |
| Radium 226 precision (±)              | 0.19   | pCi/L |            |    |             | E903.0   | 09/19/17 13:06 / eli-ca |
| Radium 226 MDC                        | 0.19   | pCi/L |            |    |             | E903.0   | 09/19/17 13:06 / eli-ca |
| Radium 228                            | 1.7    | pCi/L |            |    |             | RA-05    | 09/14/17 09:09 / eli-ca |
| Radium 228 precision (±)              | 0.86   | pCi/L |            |    |             | RA-05    | 09/14/17 09:09 / eli-ca |
| Radium 228 MDC                        | 1.5    | pCi/L |            |    |             | RA-05    | 09/14/17 09:09 / eli-ca |
| Radium 226 + Radium 228               | 2.6    | pCi/L |            |    |             | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 0.9    | pCi/L |            |    |             | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.5    | pCi/L |            |    |             | A7500-RA | 09/20/17 17:14 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Matrix: Ground Water



### LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17082605-008 Client Sample ID: EQBK/SCM/082417

**Report Date:** 09/21/17 Collection Date: 08/24/17 13:30

DateReceived: 08/25/17

|                                       |        |       |            |    | MCL/ |          |                         |
|---------------------------------------|--------|-------|------------|----|------|----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL | QCL  | Method   | Analysis Date / By      |
| RADIONUCLIDES - TOTAL                 |        |       |            |    |      |          |                         |
| Radium 226                            | 0.16   | pCi/L | U          |    |      | E903.0   | 09/19/17 13:06 / eli-ca |
| Radium 226 precision (±)              | 0.20   | pCi/L |            |    |      | E903.0   | 09/19/17 13:06 / eli-ca |
| Radium 226 MDC                        | 0.31   | pCi/L |            |    |      | E903.0   | 09/19/17 13:06 / eli-ca |
| Radium 228                            | 1.0    | pCi/L | U          |    |      | RA-05    | 09/14/17 09:09 / eli-ca |
| Radium 228 precision (±)              | 1.5    | pCi/L |            |    |      | RA-05    | 09/14/17 09:09 / eli-ca |
| Radium 228 MDC                        | 2.4    | pCi/L |            |    |      | RA-05    | 09/14/17 09:09 / eli-ca |
| Radium 226 + Radium 228               | 1.2    | pCi/L | U          |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.5    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 MDC           | 2.4    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17082605-009 Client Sample ID: EQBK-BJG-082417

**Report Date:** 09/21/17 Collection Date: 08/24/17 13:35

DateReceived: 08/25/17

Matrix: Ground Water

|                                       |        |       |            |    | MCL/ |          |                         |
|---------------------------------------|--------|-------|------------|----|------|----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL | QCL  | Method   | Analysis Date / By      |
| RADIONUCLIDES - TOTAL                 |        |       |            |    |      |          |                         |
| Radium 226                            | 0.02   | pCi/L | U          |    |      | E903.0   | 09/19/17 13:06 / eli-ca |
| Radium 226 precision (±)              | 0.15   | pCi/L |            |    |      | E903.0   | 09/19/17 13:06 / eli-ca |
| Radium 226 MDC                        | 0.25   | pCi/L |            |    |      | E903.0   | 09/19/17 13:06 / eli-ca |
| Radium 228                            | 0.97   | pCi/L | U          |    |      | RA-05    | 09/14/17 09:09 / eli-ca |
| Radium 228 precision (±)              | 1.2    | pCi/L |            |    |      | RA-05    | 09/14/17 09:09 / eli-ca |
| Radium 228 MDC                        | 1.9    | pCi/L |            |    |      | RA-05    | 09/14/17 09:09 / eli-ca |
| Radium 226 + Radium 228               | 1      | pCi/L | U          |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.2    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.9    | pCi/L |            |    |      | A7500-RA | 09/20/17 17:14 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR

**Lab ID:** B17082605-010

Client Sample ID: DUP-2

Report Date: 09/21/17
Collection Date: 08/24/17
DateReceived: 08/25/17

Matrix: Ground Water

| Analyses                              | Result | Units    | Qualifiers | RL | MCL/<br>QCL | Method   | Analysis Date / By      |
|---------------------------------------|--------|----------|------------|----|-------------|----------|-------------------------|
| DADIONIICI IDEC. TOTAL                |        |          |            |    |             |          | <u> </u>                |
| RADIONUCLIDES - TOTAL                 |        | <b>-</b> |            |    |             |          |                         |
| Radium 226                            | 5.4    | pCi/L    |            |    |             | E903.0   | 09/19/17 13:06 / eli-ca |
| Radium 226 precision (±)              | 1.1    | pCi/L    |            |    |             | E903.0   | 09/19/17 13:06 / eli-ca |
| Radium 226 MDC                        | 0.18   | pCi/L    |            |    |             | E903.0   | 09/19/17 13:06 / eli-ca |
| Radium 228                            | 27     | pCi/L    |            |    |             | RA-05    | 09/14/17 09:09 / eli-ca |
| Radium 228 precision (±)              | 5.0    | pCi/L    |            |    |             | RA-05    | 09/14/17 09:09 / eli-ca |
| Radium 228 MDC                        | 1.4    | pCi/L    |            |    |             | RA-05    | 09/14/17 09:09 / eli-ca |
| Radium 226 + Radium 228               | 32.6   | pCi/L    |            |    |             | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 5.2    | pCi/L    |            |    |             | A7500-RA | 09/20/17 17:14 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.4    | pCi/L    |            |    |             | A7500-RA | 09/20/17 17:14 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.
ND - Not detected at the reporting limit.

Page 12 of 18

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17082605-011

Client Sample ID: DUP-3

**Report Date:** 09/21/17 Collection Date: 08/24/17

DateReceived: 08/25/17

Matrix: Ground Water

| Analyses                              | Result I | Units | Qualifiers | RL | MCL/<br>QCL | Method   | Analysis Date / By                    |
|---------------------------------------|----------|-------|------------|----|-------------|----------|---------------------------------------|
|                                       |          |       |            |    |             |          | · · · · · · · · · · · · · · · · · · · |
| RADIONUCLIDES - TOTAL                 |          |       |            |    |             |          |                                       |
| Radium 226                            | 0.99     | pCi/L |            |    |             | E903.0   | 09/19/17 13:06 / eli-ca               |
| Radium 226 precision (±)              | 0.22     | pCi/L |            |    |             | E903.0   | 09/19/17 13:06 / eli-ca               |
| Radium 226 MDC                        | 0.19     | pCi/L |            |    |             | E903.0   | 09/19/17 13:06 / eli-ca               |
| Radium 228                            | 4.5      | pCi/L |            |    |             | RA-05    | 09/14/17 09:09 / eli-ca               |
| Radium 228 precision (±)              | 1.2      | pCi/L |            |    |             | RA-05    | 09/14/17 09:09 / eli-ca               |
| Radium 228 MDC                        | 1.4      | pCi/L |            |    |             | RA-05    | 09/14/17 09:09 / eli-ca               |
| Radium 226 + Radium 228               | 5.5      | pCi/L |            |    |             | A7500-RA | 09/20/17 17:14 / eli-ca               |
| Radium 226 + Radium 228 precision (±) | 1.3      | pCi/L |            |    |             | A7500-RA | 09/20/17 17:14 / eli-ca               |
| Radium 226 + Radium 228 MDC           | 1.5      | pCi/L |            |    |             | A7500-RA | 09/20/17 17:14 / eli-ca               |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.





Prepared by Casper, WY Branch

Client: Texas Municipal Power Agency **Report Date:** 09/20/17 Project: CCRR Work Order: B17082605

| Analyte                   | Result        | Units           | RL %REC | Low Limit | High Limit  | RPD | RPDLimit Qual     |
|---------------------------|---------------|-----------------|---------|-----------|-------------|-----|-------------------|
| Method: E903.0            |               |                 |         |           |             |     | Batch: RA226-8624 |
| Lab ID: LCS-RA226-8624    | Laboratory Co | ntrol Sample    |         | Run: G542 | M_170904C   |     | 09/19/17 13:06    |
| Radium 226                | 9.7           | pCi/L           | 95      | 80        | 120         |     |                   |
| Lab ID: MB-RA226-8624     | Method Blank  |                 |         | Run: G542 | M_170904C   |     | 09/19/17 13:06    |
| Radium 226                | 0.2           | pCi/L           |         |           |             |     | U                 |
| Radium 226 precision (±)  | 0.1           | pCi/L           |         |           |             |     |                   |
| Radium 226 MDC            | 0.2           | pCi/L           |         |           |             |     |                   |
| Lab ID: B17082605-007AMS  | Sample Matrix | Spike           |         | Run: G542 | M_170904C   |     | 09/19/17 13:06    |
| Radium 226                | 17            | pCi/L           | 82      | 70        | 130         |     |                   |
| Lab ID: B17082605-007AMSD | Sample Matrix | Spike Duplicate |         | Run: G542 | M_170904C   |     | 09/19/17 13:06    |
| Radium 226                | 18            | pCi/L           | 85      | 70        | 130         | 2.3 | 20                |
| Method: E903.0            |               |                 |         |           |             |     | Batch: RA226-8623 |
| Lab ID: LCS-RA226-8623    | Laboratory Co | ntrol Sample    |         | Run: G542 | M-2_170904B |     | 09/18/17 11:23    |
| Radium 226                | 11            | pCi/L           | 105     | 80        | 120         |     |                   |
| Lab ID: MB-RA226-8623     | Method Blank  |                 |         | Run: G542 | M-2_170904B |     | 09/18/17 11:23    |
| Radium 226                | 0.07          | pCi/L           |         |           |             |     | U                 |
| Radium 226 precision (±)  | 0.1           | pCi/L           |         |           |             |     |                   |
| Radium 226 MDC            | 0.2           | pCi/L           |         |           |             |     |                   |
| Lab ID: C17080731-002CMS  | Sample Matrix | Spike           |         | Run: G542 | M-2_170904B |     | 09/18/17 11:23    |
| Radium 226                | 29            | pCi/L           | 122     | 70        | 130         |     |                   |
| Lab ID: C17080731-002CMSD | Sample Matrix | Spike Duplicate |         | Run: G542 | M-2_170904B |     | 09/18/17 11:23    |
| Radium 226                | 26            | pCi/L           | 105     | 70        | 130         | 12  | 20                |

RL - Analyte reporting limit. MDC - Minimum detectable concentration ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration





Prepared by Casper, WY Branch

Client: Texas Municipal Power Agency **Report Date:** 09/20/17 Project: CCRR Work Order: B17082605

| Analyte                    | Result        | Units           | RL | %REC | Low Limit | High Limit     | RPD | RPDLimit  | Qual       |
|----------------------------|---------------|-----------------|----|------|-----------|----------------|-----|-----------|------------|
| Method: RA-05              |               |                 |    |      |           |                |     | Batch: RA | 228-5584   |
| Lab ID: LCS-228-RA226-8623 | Laboratory Co | ntrol Sample    |    |      | Run: TENN | NELEC-3_170904 | 4A  | 09/12     | 2/17 12:04 |
| Radium 228                 | 11            | pCi/L           |    | 100  | 80        | 120            |     |           |            |
| Lab ID: MB-RA226-8623      | Method Blank  |                 |    |      | Run: TENN | NELEC-3_170904 | 4A  | 09/12     | 2/17 12:04 |
| Radium 228                 | 1.0           | pCi/L           |    |      |           |                |     |           | U          |
| Radium 228 precision (±)   | 1             | pCi/L           |    |      |           |                |     |           |            |
| Radium 228 MDC             | 2             | pCi/L           |    |      |           |                |     |           |            |
| Lab ID: C17080731-003CMS   | Sample Matrix | Spike           |    |      | Run: TENN | NELEC-3_170904 | 4A  | 09/12     | 2/17 12:04 |
| Radium 228                 | 24            | pCi/L           |    | 105  | 70        | 130            |     |           |            |
| Lab ID: C17080731-003CMSD  | Sample Matrix | Spike Duplicate |    |      | Run: TENN | NELEC-3_170904 | 4A  | 09/12     | 2/17 12:04 |
| Radium 228                 | 22            | pCi/L           |    | 95   | 70        | 130            | 8.2 | 20        |            |
| Method: RA-05              |               |                 |    |      |           |                |     | Batch: RA | 228-5585   |
| Lab ID: LCS-228-RA226-8624 | Laboratory Co | ntrol Sample    |    |      | Run: TENN | NELEC-3_170904 | 4C  | 09/14     | /17 09:09  |
| Radium 228                 | 9.9           | pCi/L           |    | 96   | 80        | 120            |     |           |            |
| Lab ID: MB-RA226-8624      | Method Blank  |                 |    |      | Run: TENN | NELEC-3_170904 | 4C  | 09/14     | /17 09:09  |
| Radium 228                 | 0.4           | pCi/L           |    |      |           |                |     |           | U          |
| Radium 228 precision (±)   | 1.0           | pCi/L           |    |      |           |                |     |           |            |
| Radium 228 MDC             | 2             | pCi/L           |    |      |           |                |     |           |            |
| Lab ID: B17082605-008AMS   | Sample Matrix | Spike           |    |      | Run: TENN | NELEC-3_170904 | 4C  | 09/14     | /17 09:09  |
| Radium 228                 | 20            | pCi/L           |    | 94   | 70        | 130            |     |           |            |
| Lab ID: B17082605-008AMSD  | Sample Matrix | Spike Duplicate |    |      | Run: TENN | NELEC-3_170904 | 4C  | 09/14     | /17 09:09  |
| Radium 228                 | 19            | pCi/L           |    | 88   | 70        | 130            | 5.8 | 20        |            |

RL - Analyte reporting limit. MDC - Minimum detectable concentration ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

# **Work Order Receipt Checklist**

# Texas Municipal Power Agency

# B17082605

| Login completed by:                                                                          | Gina McCartney                  |           | Date I | Received: 8/25/2017      |
|----------------------------------------------------------------------------------------------|---------------------------------|-----------|--------|--------------------------|
| Reviewed by:                                                                                 | BL2000\tedwards                 |           | Red    | ceived by: se            |
| Reviewed Date:                                                                               | 8/31/2017                       |           | Carr   | rier name: FedEx         |
| Shipping container/cooler in                                                                 | good condition?                 | Yes ✓     | No 🗌   | Not Present              |
| Custody seals intact on all sh                                                               | nipping container(s)/cooler(s)? | Yes ✓     | No 🗌   | Not Present              |
| Custody seals intact on all sa                                                               | ample bottles?                  | Yes       | No 🗌   | Not Present ✓            |
| Chain of custody present?                                                                    |                                 | Yes 🗸     | No 🗌   |                          |
| Chain of custody signed whe                                                                  | n relinquished and received?    | Yes 🗸     | No 🗌   |                          |
| Chain of custody agrees with                                                                 | sample labels?                  | Yes 🗹     | No 🗌   |                          |
| Samples in proper container/                                                                 | bottle?                         | Yes 🔽     | No 🗌   |                          |
| Sample containers intact?                                                                    |                                 | Yes 🗹     | No 🗌   |                          |
| Sufficient sample volume for                                                                 | indicated test?                 | Yes 🗹     | No 🗌   |                          |
| All samples received within h<br>(Exclude analyses that are co<br>such as pH, DO, Res Cl, Su | onsidered field parameters      | Yes ✓     | No 🗌   |                          |
| Temp Blank received in all st                                                                | nipping container(s)/cooler(s)? | Yes √     | No 🗌   | Not Applicable           |
| Container/Temp Blank tempe                                                                   | erature:                        | °C On Ice |        |                          |
| Water - VOA vials have zero                                                                  | headspace?                      | Yes       | No 🗌   | No VOA vials submitted 🔽 |
| Water - pH acceptable upon                                                                   | receipt?                        | Yes √     | No 🗌   | Not Applicable           |
|                                                                                              |                                 |           |        |                          |

# **Standard Reporting Procedures:**

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

### **Contact and Corrective Action Comments:**

The temperature of the sample(s) for shipping container 1 was 2.0°C, shipping container 2 was 1.1°C, shipping container 3 was 1.7°C and shipping container 4 was 4.4°C.



# Chain of Custody & Analytical Request Record

| Account Information (Billing information)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                           | Report Information (if different than Account Information)    | Commente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Company/Name Amc Foster Wheeler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٤                                                                         | Company/Name                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Contact Grea Seifert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                           | Contact                                                       | Mad Chom Onle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Phone 512-795-0366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                           | Phone                                                         | X150000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3755 S. Capital                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of TX Hwx. #375                                                           | Mailing Address                                               | - STANDING WOLKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           | City, State, Zip                                              | / 1-se-8 ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Email greg. Seifert Damectu. com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                           | Email                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Receive Invoice Milard Copy MEmail Receive Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | teport ☐Hard Copy XEmail                                                  | Receive Report _Hard Copy   DEmail                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Purchase Order Quote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bottle Order                                                              | Special Report Confect In Section (confect laboratory)  Other |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                           | Matrix Codes Analysis Reguested                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project Name, PWSID, Permit, etc. ( ent: TMPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Project: CCRR                                                             | A - Air<br>W- Water                                           | All tumaround times are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sampler Name B. Gieselnan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sampler Phone 5/2-24/1-232/                                               | S. Soils/                                                     | standard unless marked as RUSH.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPA/State Compliance XOes □ No                                            |                                                               | Energy Laboratories MUST be contacted orior to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MINING CLIENTS, please indicate sample type. "If ore has been processed or refined, call before sending.   Byproduct 11 (e)2 material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pole type. call before sending.  Unprocessed one (NOT cnound or refined)* | O. Other Dw. Omnking Call                                     | RUSH sample submittal for charges and scheduling – See Instructions Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sample Identification (Name, Location, Interval, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Collection<br>Date Time                                                   |                                                               | Hana S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1 SSP MW-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 77                                                                        | ×                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 AP MW-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 0942                                                                    |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 SSP MW-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1035                                                                      |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4 AP MW-1D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00//                                                                      |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5 SSP MW-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1//50                                                                     |                                                               | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6 APMW-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1209                                                                      |                                                               | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7 APMW-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /300                                                                      |                                                               | 0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| " Fabk/Scm/oray17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /330                                                                      |                                                               | 009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| " EQBK-BJG-082417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /335                                                                      |                                                               | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10 DUP-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>→</b>                                                                  | <b>&gt; &gt; &gt;</b>                                         | 6/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Relinquished by (print)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Date/Time Signature OS/24/17 8 / 600 P.                                   | Received by (print)                                           | einentie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ŝ                                                                         | Received by Laboratory (print)                                | THE PARTY OF THE P |
| The second secon |                                                                           | ABORATORY LIGHT ONLY                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Snipped By Cooler ID(s) Custody Seals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | intact Receipt Temp                                                       | Temp Blank On Ice Payment Type Amount Y N C Cash Check \$     | Receipt Number (cash/check only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.



# Chain of Custody & Analytical Request Record

| 4    |
|------|
| Ö    |
| 6    |
| Page |

| Account Information (Billing information)                   | illing information)                                                         |                             |             | Report Ir                              | nformation      | I lif different t   | Report Information (if different then Account Information | 1            | (            | Lage & ot                                          |            |
|-------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------|-------------|----------------------------------------|-----------------|---------------------|-----------------------------------------------------------|--------------|--------------|----------------------------------------------------|------------|
| Companyiname Amec Faster Wheeler                            | ter Wheeler                                                                 |                             |             | Company/Name                           | g g             |                     | ווסווו שומססטר ווחו                                       | iation)      |              | comments                                           | ı          |
| Contact Grea Seifert                                        | <del></del>                                                                 |                             |             | Contact                                |                 |                     |                                                           |              | <del>_</del> |                                                    |            |
| Phone 513-795-03                                            |                                                                             |                             |             | Рһопе                                  | <br> <br>       |                     |                                                           |              |              |                                                    |            |
| Mailing Address 3755 S. Capital                             | <u> </u>                                                                    | 1 of TX HWY, #375           | 15          | Mailing Address                        | SS              |                     |                                                           |              |              |                                                    |            |
| City, State, Zip Austin, TX 75704                           | X 75704                                                                     | ,                           |             | City, State, Zip                       |                 |                     |                                                           |              | =            |                                                    |            |
| Email greg. Selfert @amecfus, com                           | amectus com                                                                 |                             |             | Email                                  |                 |                     | !                                                         |              | _            |                                                    |            |
| Receive Invoice Mard Copy Email                             |                                                                             | ō                           | y AEmail    | Receive Report                         | at Duand Copy   | y □Email            |                                                           |              | <del>-</del> |                                                    |            |
| Purchase Order Quote                                        | (e)                                                                         | Bottle Order                |             | Special Report ormats:                 | o <sub>≤</sub>  | ] EDD/EDT (α        | ☐ EDD/EDT (contact laboratory) □                          | □ Other      | <del></del>  |                                                    |            |
| Project Information                                         | n.                                                                          |                             |             | Matrix Codes                           |                 |                     |                                                           |              |              |                                                    |            |
|                                                             |                                                                             |                             |             | A - Air                                |                 |                     | Analysis Requested                                        | equested     |              |                                                    | Γ          |
| Project Name, PWSID, Permit, etc. (//entiTMP/ Project: CCRR | Client & TMPA                                                               | Project: Co                 | SRR         | W- Water                               |                 |                     |                                                           | _            | _            | All turnaround times are                           |            |
| Sampler Name Brian Gieselman                                |                                                                             | Sampler Phone 5/2-24/1-232  | -2321       | S Solids                               | T               | 8                   |                                                           |              |              | startuard unless marked as RUSH.                   |            |
| Sample Origin State                                         | EPA/State Co                                                                | EPA/State Compliance X Nes  | es 🗆 No     | B - Bioassay                           |                 | 9 -3                |                                                           |              |              | Energy Laboratories                                |            |
| fined,                                                      | mple type. call before sending.  □ Unprocessed ore (NOT ground or refined)* | OT ground or re             | (lued)*     | O - Other<br>DW . Water                | edul            | eduli               |                                                           |              | sched        | RUSH sample submittal for charges and scheduling – |            |
| Sample Identification                                       | ication                                                                     | Colle                       |             | Number of Matrix Containers (See Codes |                 | 12S                 |                                                           |              |              | -10                                                |            |
| 1 DuP-3                                                     |                                                                             | 8/24/17                     | Τ-          |                                        | X               | <b>X</b>            |                                                           |              |              | **:                                                | <b>WEI</b> |
| 2                                                           | 7.77 - 1.1                                                                  |                             |             | 3                                      |                 | >                   |                                                           |              |              | D1/082605-C                                        |            |
| က                                                           |                                                                             |                             |             |                                        |                 |                     |                                                           |              |              |                                                    |            |
| 7                                                           |                                                                             |                             |             |                                        |                 | -                   |                                                           |              | +            |                                                    |            |
| 2                                                           |                                                                             |                             |             |                                        |                 | -                   |                                                           |              | -            |                                                    |            |
| 9                                                           |                                                                             |                             |             | <u> </u>                               | -               |                     |                                                           |              | +            |                                                    | $\neg$     |
| 7                                                           |                                                                             |                             |             |                                        |                 | +                   |                                                           |              | +            |                                                    | -т         |
| 8                                                           |                                                                             |                             |             |                                        |                 |                     | +-                                                        |              |              |                                                    |            |
| 6                                                           | <b>,</b>                                                                    |                             |             |                                        |                 |                     | -                                                         | <del> </del> |              |                                                    |            |
| 10                                                          |                                                                             |                             |             |                                        | 1 1             |                     |                                                           |              | +-           |                                                    |            |
| Record MUST Brigatished by (print)                          |                                                                             | Date/Time<br>05/24/17 @1600 |             | Lich                                   | 2               | Received by (print) | rint)                                                     | Date/Time    | 188          | Simatue                                            | _, _       |
| De signed Kelinquished by (print)                           |                                                                             | ite/Timé                    | Signature   |                                        |                 | Received by         | Received by Laboratory (print)                            | 0.00         |              | Pignalur 1/1/1                                     |            |
| Shipped By Cooler Intel                                     | 4.1<br>5.0                                                                  |                             | Doods Ton-  |                                        | 2               | <b>PONIT</b>        |                                                           |              |              | 1000 CON                                           |            |
|                                                             | Y N C B                                                                     | Z<br>-                      | De Indepart | N × N                                  | <b>8∠</b><br>5≻ | ပီ<br>ပ္ပ           | Payment Type<br>Cash Check                                | Amount       | Receipt      | Receipt Number (cash/check only)                   | -          |

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.
This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

# ANALYTICAL SUMMARY REPORT

September 14, 2017

Texas Municipal Power Agency PO Box 7000 Bryan, TX 77805-7000

Work Order: B17090189

Project Name: CCRR

Energy Laboratories Inc Billings MT received the following 8 samples for Texas Municipal Power Agency on 9/5/2017 for analysis.

Lab ID Client Sample ID Collect Date Receive Date Matrix Test

B17090189-004 MNW-18 08/31/17 1 :45 09/05/17 Ground Water Metals by ICP/ICPMS, Tot. Rec.

Quote ID: B3997

|                     |                          |                  |                | Mercury, Total Recoverable<br>Fluoride<br>Anions by Ion Chromatography<br>pH<br>Metals Preparation by EPA 200.2<br>Digestion, Mercury by CVAA<br>Preparation for TDS<br>Solids, Total Dissolved |
|---------------------|--------------------------|------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B17090189-003 EQB   | K/SCM/083117 08/31/17    | 12:30 09/05/17   | Ground Water S | ame As Above                                                                                                                                                                                    |
| B17090189-006 SFL I | MW-7 08/31/1             | 7 18:25 09/05/17 | Ground Water   | Same As Above                                                                                                                                                                                   |
| B17090189-007 MN    | W-15 08/31/1             | 7 19:30 09/05/17 | Ground Water   | Same As Above                                                                                                                                                                                   |
| B17090189-008 DUF   | P-1 08/31/1 <sup>2</sup> | 7 0:00 09/05/17  | Ground Water   | Same As Above                                                                                                                                                                                   |

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17090189-003 Client Sample ID: EQBK/SCM/083117

**Report Date:** 09/14/17 Collection Date: 08/31/17 12:30 DateReceived: 09/05/17

Matrix: Ground Water

| Austra                              |        |       | <b>.</b>   | D.    | MCL/ | Madbad    | Assolution Date / Date |
|-------------------------------------|--------|-------|------------|-------|------|-----------|------------------------|
| Analyses                            | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By     |
| MAJOR IONS                          |        |       |            |       |      |           |                        |
| Calcium                             | ND     | mg/L  |            | 1     |      | E200.7    | 09/08/17 20:34 / slf   |
| Magnesium                           | ND     | mg/L  |            | 1     |      | E200.7    | 09/08/17 20:34 / slf   |
| Potassium                           | ND     | mg/L  |            | 1     |      | E200.7    | 09/08/17 20:34 / slf   |
| Sodium                              | ND     | mg/L  |            | 1     |      | E200.7    | 09/08/17 20:34 / slf   |
| PHYSICAL PROPERTIES                 |        |       |            |       |      |           |                        |
| oH                                  | 6.1    | s.u.  | Н          | 0.1   |      | A4500-H B | 09/05/17 15:29 / pjw   |
| Solids, Total Dissolved TDS @ 180 C | ND     | mg/L  |            | 10    |      | A2540 C   | 09/06/17 14:57 / rik   |
| NORGANICS                           |        |       |            |       |      |           |                        |
| Chloride                            | ND     | mg/L  |            | 1     |      | E300.0    | 09/08/17 07:43 / cjm   |
| Sulfate                             | ND     | mg/L  |            | 1     |      | E300.0    | 09/08/17 07:43 / cjm   |
| Fluoride                            | ND     | mg/L  |            | 0.1   |      | A4500-F C | 09/08/17 12:35 / cjm   |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |      |           |                        |
| Antimony                            | ND     | mg/L  |            | 0.05  |      | E200.7    | 09/08/17 20:34 / slf   |
| rsenic                              | ND     | mg/L  |            | 0.01  |      | E200.8    | 09/09/17 05:07 / rlh   |
| Barium                              | ND     | mg/L  |            | 0.01  |      | E200.7    | 09/08/17 20:34 / slf   |
| Beryllium                           | ND     | mg/L  |            | 0.001 |      | E200.7    | 09/08/17 20:34 / slf   |
| Boron                               | ND     | mg/L  |            | 0.05  |      | E200.7    | 09/08/17 20:34 / slf   |
| Cadmium                             | ND     | mg/L  |            | 0.01  |      | E200.7    | 09/08/17 20:34 / slf   |
| Chromium                            | ND     | mg/L  |            | 0.01  |      | E200.7    | 09/08/17 20:34 / slf   |
| Cobalt                              | ND     | mg/L  |            | 0.02  |      | E200.7    | 09/08/17 20:34 / slf   |
| ead                                 | ND     | mg/L  |            | 0.01  |      | E200.8    | 09/09/17 05:07 / rlh   |
| ithium                              | ND     | mg/L  |            | 0.01  |      | E200.7    | 09/08/17 20:34 / slf   |
| 1ercury                             | ND     | mg/L  |            | 0.001 |      | E245.1    | 09/07/17 13:46 / jag   |
| 1olybdenum                          | ND     | mg/L  |            | 0.05  |      | E200.7    | 09/08/17 20:34 / slf   |
| Selenium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 09/09/17 05:07 / rlh   |
| Гhallium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 09/09/17 05:07 / rlh   |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17090189-004

Client Sample ID: MNW-18

**Report Date:** 09/14/17 Collection Date: 08/31/17 13:45

DateReceived: 09/05/17

Matrix: Ground Water

|                                     |        |       |            |       | MCL/ |           |                      |
|-------------------------------------|--------|-------|------------|-------|------|-----------|----------------------|
| Analyses                            | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By   |
| MAJOR IONS                          |        |       |            |       |      |           |                      |
| Calcium                             | 444    | mg/L  |            | 1     |      | E200.7    | 09/08/17 06:49 / slf |
| Magnesium                           | 71     | mg/L  |            | 1     |      | E200.7    | 09/08/17 06:49 / slf |
| Potassium                           | 37     | mg/L  |            | 1     |      | E200.7    | 09/08/17 06:49 / slf |
| Sodium                              | 735    | mg/L  |            | 1     |      | E200.7    | 09/08/17 06:49 / slf |
| PHYSICAL PROPERTIES                 |        |       |            |       |      |           |                      |
| Н                                   | 6.9    | s.u.  | Н          | 0.1   |      | A4500-H B | 09/05/17 15:31 / pjw |
| Solids, Total Dissolved TDS @ 180 C | 4020   | mg/L  | D          | 40    |      | A2540 C   | 09/06/17 14:57 / rik |
| NORGANICS                           |        |       |            |       |      |           |                      |
| Chloride                            | 521    | mg/L  | D          | 6     |      | E300.0    | 09/08/17 08:02 / cjm |
| Sulfate                             | 2120   | mg/L  | D          | 20    |      | E300.0    | 09/08/17 08:02 / cjm |
| Fluoride                            | 0.2    | mg/L  |            | 0.1   |      | A4500-F C | 09/08/17 12:38 / cjm |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |      |           |                      |
| Antimony                            | ND     | mg/L  |            | 0.05  |      | E200.8    | 09/07/17 15:50 / rlh |
| Arsenic                             | ND     | mg/L  |            | 0.01  |      | E200.8    | 09/07/17 15:50 / rlh |
| Barium                              | 0.05   | mg/L  |            | 0.01  |      | E200.8    | 09/07/17 15:50 / rlh |
| Beryllium                           | ND     | mg/L  |            | 0.001 |      | E200.7    | 09/08/17 06:49 / slf |
| Boron                               | 0.44   | mg/L  |            | 0.05  |      | E200.7    | 09/08/17 06:49 / slf |
| Cadmium                             | ND     | mg/L  |            | 0.01  |      | E200.8    | 09/07/17 15:50 / rlh |
| Chromium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 09/07/17 15:50 / rlh |
| Cobalt                              | ND     | mg/L  |            | 0.02  |      | E200.8    | 09/07/17 15:50 / rlh |
| ∟ead                                | ND     | mg/L  |            | 0.01  |      | E200.8    | 09/07/17 15:50 / rlh |
| Lithium                             | 0.40   | mg/L  | D          | 0.04  |      | E200.7    | 09/08/17 06:49 / slf |
| Mercury                             | ND     | mg/L  |            | 0.001 |      | E245.1    | 09/06/17 14:23 / jag |
| Molybdenum                          | ND     | mg/L  |            | 0.05  |      | E200.8    | 09/07/17 15:50 / rlh |
| Selenium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 09/07/17 15:50 / rlh |
| Thallium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 09/07/17 15:50 / rlh |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17090189-006 Client Sample ID: SFL MW-7

**Report Date:** 09/14/17 Collection Date: 08/31/17 18:25 DateReceived: 09/05/17

Matrix: Ground Water

| Analyses                            | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By   |
|-------------------------------------|--------|-------|------------|-------|-------------|-----------|----------------------|
| MAJOR IONS                          |        |       |            |       |             |           |                      |
| Calcium                             | 628    | mg/L  |            | 1     |             | E200.7    | 09/08/17 06:56 / slf |
| Magnesium                           | 98     | mg/L  |            | 1     |             | E200.7    | 09/08/17 06:56 / slf |
| Potassium                           | 46     | mg/L  |            | 1     |             | E200.7    | 09/08/17 06:56 / slf |
| Sodium                              | 1200   | mg/L  |            | 1     |             | E200.7    | 09/08/17 06:56 / slf |
| PHYSICAL PROPERTIES                 |        |       |            |       |             |           |                      |
| Н                                   | 6.7    | s.u.  | Н          | 0.1   |             | A4500-H B | 09/05/17 15:36 / pjw |
| Solids, Total Dissolved TDS @ 180 C | 6650   | mg/L  | D          | 90    |             | A2540 C   | 09/06/17 14:57 / rik |
| NORGANICS                           |        |       |            |       |             |           |                      |
| Chloride                            | 2770   | mg/L  | D          | 6     |             | E300.0    | 09/08/17 08:41 / cjm |
| Sulfate                             | 768    | mg/L  | D          | 20    |             | E300.0    | 09/08/17 08:41 / cjm |
| luoride                             | ND     | mg/L  |            | 0.1   |             | A4500-F C | 09/08/17 12:43 / cjm |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |             |           |                      |
| antimony                            | ND     | mg/L  |            | 0.05  |             | E200.8    | 09/07/17 16:07 / rlh |
| arsenic                             | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/07/17 16:07 / rlh |
| arium                               | 0.03   | mg/L  |            | 0.01  |             | E200.7    | 09/08/17 06:56 / slf |
| eryllium                            | ND     | mg/L  |            | 0.001 |             | E200.8    | 09/08/17 20:21 / rlh |
| Soron                               | 0.70   | mg/L  |            | 0.05  |             | E200.7    | 09/08/17 06:56 / slf |
| admium                              | ND     | mg/L  |            | 0.01  |             | E200.7    | 09/08/17 06:56 / slf |
| Chromium                            | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/07/17 16:07 / rlh |
| Cobalt                              | ND     | mg/L  |            | 0.02  |             | E200.8    | 09/07/17 16:07 / rlh |
| ead                                 | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/07/17 16:07 / rlh |
| ithium                              | 0.40   | mg/L  | D          | 0.04  |             | E200.7    | 09/08/17 06:56 / slf |
| Mercury (1997)                      | ND     | mg/L  |            | 0.001 |             | E245.1    | 09/06/17 14:31 / jag |
| lolybdenum                          | ND     | mg/L  |            | 0.05  |             | E200.8    | 09/07/17 16:07 / rlh |
| Selenium                            | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/07/17 16:07 / rlh |
| Гhallium                            | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/07/17 16:07 / rlh |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Matrix: Ground Water

### LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

**Project: CCRR** 

B17090189-007 Lab ID:

Client Sample ID: MNW-15

Report Date: 09/14/17 Collection Date: 08/31/17 19:30

DateReceived: 09/05/17

MCL/ QCL **Analyses Result Units** Qualifiers RL Method Analysis Date / By **MAJOR IONS** Calcium 264 mg/L 1 E200.7 09/08/17 20:51 / slf Magnesium 52 mg/L 1 E200.7 09/08/17 20:51 / slf Potassium 26 mg/L 1 E200.7 09/08/17 20:51 / slf Sodium 434 mg/L D 2 E200.7 09/08/17 20:51 / slf **PHYSICAL PROPERTIES** 3.6 s.u. 09/05/17 15:39 / pjw Н 0.1 A4500-H B рΗ Solids, Total Dissolved TDS @ 180 C 09/06/17 14:57 / rik 2700 mg/L D 40 A2540 C **INORGANICS** Chloride 721 mg/L D 3 E300.0 09/08/17 09:39 / cjm Sulfate 1260 mg/L D 9 E300.0 09/08/17 09:39 / cjm A4500-F C 09/08/17 12:51 / cjm Fluoride 0.5 mg/L 0.1 **METALS, TOTAL RECOVERABLE** Antimony ND mg/L 0.05 E200.8 09/09/17 05:27 / rlh Arsenic ND mg/L 0.01 E200.8 09/09/17 05:27 / rlh 0.02 mg/L Barium 0.01 E200.7 09/08/17 20:51 / slf Beryllium 0.073 mg/L 0.001 E200.7 09/08/17 20:51 / slf 9.43 mg/L 0.05 E200.7 09/08/17 20:51 / slf Boron 0.09 mg/L 0.01 Cadmium E200.7 09/08/17 20:51 / slf 09/08/17 20:51 / slf Chromium ND mg/L 0.01 E200.7 D Cobalt 0.29 mg/L 0.03 E200.7 09/08/17 20:51 / slf Lead 0.01 mg/L 0.01 E200.8 09/09/17 05:27 / rlh Lithium D 0.02 0.05 mg/L E200.7 09/08/17 20:51 / slf Mercury ND mg/L 0.001 E245.1 09/07/17 13:48 / jag Molybdenum ND mg/L 0.05 E200.7 09/08/17 20:51 / slf Selenium ND mg/L 0.01 E200.8 09/09/17 05:27 / rlh Thallium ND mg/L 0.01 E200.8 09/09/17 05:27 / rlh

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

**Report Date:** 09/14/17

Collection Date: 08/31/17

### LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17090189-008

DateReceived: 09/05/17 Client Sample ID: DUP-1 Matrix: Ground Water

|                                     |        |       |            |       | MCL/       |                      |
|-------------------------------------|--------|-------|------------|-------|------------|----------------------|
| Analyses                            | Result | Units | Qualifiers | RL    | QCL Method | Analysis Date / By   |
| MAJOR IONS                          |        |       |            |       |            |                      |
| Calcium                             | 644    | mg/L  |            | 1     | E200.7     | 09/08/17 07:00 / slf |
| Magnesium                           | 101    | •     |            | 1     | E200.7     | 09/08/17 07:00 / slf |
| Potassium                           | 46     | mg/L  |            | 1     | E200.7     | 09/08/17 07:00 / slf |
| Sodium                              |        | mg/L  |            | 1     | E200.7     | 09/08/17 07:00 / slf |
| PHYSICAL PROPERTIES                 |        |       |            |       |            |                      |
| рΗ                                  | 6.7    | s.u.  | Н          | 0.1   | A4500-H B  | 09/05/17 15:42 / pjw |
| Solids, Total Dissolved TDS @ 180 C | 6490   | mg/L  | D          | 90    | A2540 C    | 09/06/17 14:57 / rik |
| INORGANICS                          |        |       |            |       |            |                      |
| Chloride                            | 2700   | mg/L  | D          | 6     | E300.0     | 09/08/17 09:59 / cjm |
| Sulfate                             | 785    | mg/L  | D          | 20    | E300.0     | 09/08/17 09:59 / cjm |
| Fluoride                            | ND     | mg/L  |            | 0.1   | A4500-F C  | 09/08/17 12:54 / cjm |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |            |                      |
| Antimony                            | ND     | mg/L  |            | 0.05  | E200.8     | 09/07/17 16:10 / rlh |
| Arsenic                             | ND     | mg/L  |            | 0.01  | E200.8     | 09/07/17 16:10 / rlh |
| Barium                              | 0.03   | mg/L  |            | 0.01  | E200.7     | 09/08/17 07:00 / slf |
| Beryllium                           | ND     | mg/L  |            | 0.001 | E200.7     | 09/08/17 07:00 / slf |
| Boron                               | 0.71   | mg/L  |            | 0.05  | E200.7     | 09/08/17 07:00 / slf |
| Cadmium                             | ND     | mg/L  |            | 0.01  | E200.7     | 09/08/17 07:00 / slf |
| Chromium                            | ND     | mg/L  |            | 0.01  | E200.8     | 09/07/17 16:10 / rlh |
| Cobalt                              | ND     | mg/L  |            | 0.02  | E200.8     | 09/07/17 16:10 / rlh |
| Lead                                | ND     | mg/L  |            | 0.01  | E200.8     | 09/07/17 16:10 / rlh |
| _ithium                             | 0.39   | mg/L  | D          | 0.04  | E200.7     | 09/08/17 07:00 / slf |
| Mercury                             | ND     | mg/L  |            | 0.001 | E245.1     | 09/06/17 14:33 / jag |
| Molybdenum                          | ND     | mg/L  |            | 0.05  | E200.8     | 09/07/17 16:10 / rlh |
| Selenium                            | ND     | mg/L  |            | 0.01  | E200.8     | 09/07/17 16:10 / rlh |
| Гhallium                            | ND     | mg/L  |            | 0.01  | E200.8     | 09/07/17 16:10 / rlh |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

**Report Date:** 09/13/17

# **QA/QC Summary Report**

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: CCRR Work Order: B17090189

| Analyte                | Count                                       | Result       | Units      | RL                      | %REC       | Low Limit       | High Limit            | RPD     | RPDLimit           | Qual      |
|------------------------|---------------------------------------------|--------------|------------|-------------------------|------------|-----------------|-----------------------|---------|--------------------|-----------|
| Method: A2540 C        |                                             |              |            |                         |            |                 |                       |         | Batch              | n: 113392 |
| Lab ID: MB-1133        | <b>92</b> Me                                | thod Blank   |            |                         |            | Run: BAL #      | SD-15_170906C         |         | 09/06/             | 17 14:57  |
| Solids, Total Dissolve | d TDS @ 180 C                               | ND           | mg/L       | 4                       |            |                 |                       |         |                    |           |
| Lab ID: LCS-113        | <b>392</b> Lal                              | ooratory Con | trol Sampl | le                      |            | Run: BAL #      | SD-15_170906C         |         | 09/06/             | 17 14:57  |
| Solids, Total Dissolve | d TDS @ 180 C                               | 1000         | mg/L       | 10                      | 99         | 90              | 110                   |         |                    |           |
| Lab ID: B170901        | <b>89-001A DUP</b> Sa                       | mple Duplica | ate        |                         |            | Run: BAL #      | SD-15_170906C         |         | 09/06/             | 17 14:57  |
| Solids, Total Dissolve | d TDS @ 180 C                               | 3580         | mg/L       | 39                      |            |                 |                       | 1.2     | 5                  |           |
| Lab ID: B170901        | <b>89-002A DUP</b> Sa                       | mple Duplica | ate        |                         |            | Run: BAL #      | SD-15_170906C         |         | 09/06/             | 17 14:57  |
| Solids, Total Dissolve | d TDS @ 180 C                               | 4760         | mg/L       | 93                      |            |                 |                       | 1.7     | 5                  |           |
| Lab ID: B170901        | <b>89-003A DUP</b> Sa                       | mple Duplica | ate        |                         |            | Run: BAL #      | SD-15_170906C         |         | 09/06/             | 17 14:57  |
| Solids, Total Dissolve | d TDS @ 180 C<br>etween the analytical resu | ND           | mg/L       | 10                      | ha ranarti | ing limit the D | DD verience is not as | naidara | 5<br>d significant |           |
|                        | •                                           | •            |            | iplicate is less than t | пе героп   |                 |                       | nsidere | •                  | 47 44 57  |
|                        |                                             | mple Duplica |            | 40                      |            | Run: BAL #      | SD-15_170906C         | 0.4     |                    | 17 14:57  |
| Solids, Total Dissolve | d 1DS @ 180 C                               | 4020         | mg/L       | 40                      |            |                 |                       | 0.1     | 5                  |           |
| Lab ID: B170901        | <b>89-005A DUP</b> Sa                       | mple Duplica | ate        |                         |            | Run: BAL #      | SD-15_170906C         |         | 09/06/             | 17 14:57  |
| Solids, Total Dissolve | d TDS @ 180 C                               | 8720         | mg/L       | 92                      |            |                 |                       | 1.5     | 5                  |           |
| Lab ID: B170901        | 89-006A DUP Sa                              | mple Duplica | ate        |                         |            | Run: BAL #      | SD-15_170906C         |         | 09/06/             | 17 14:57  |
| Solids, Total Dissolve |                                             | 6490         | mg/L       | 93                      |            |                 | _                     | 2.4     | 5                  |           |
| Lab ID: B1709018       | <b>89-007A DUP</b> Sa                       | mple Duplica | ate        |                         |            | Run: BAL #      | SD-15_170906C         |         | 09/06/             | 17 14:57  |
| Solids, Total Dissolve | d TDS @ 180 C                               | 2710         | mg/L       | 39                      |            |                 |                       | 0.5     | 5                  |           |
| Lab ID: B170901        | <b>89-008A DUP</b> Sa                       | mple Duplica | ate        |                         |            | Run: BAL #      | SD-15_170906C         |         | 09/06/             | 17 14:57  |
| Solids, Total Dissolve | d TDS @ 180 C                               | 6460         | mg/L       | 91                      |            |                 |                       | 0.5     | 5                  |           |



Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/13/17Project:CCRRWork Order:B17090189

| Analyte  |                  | Count        | Result        | Units               | RL    | %REC | Low Limit | High Limit   | RPD     | RPDLimit  | Qual     |
|----------|------------------|--------------|---------------|---------------------|-------|------|-----------|--------------|---------|-----------|----------|
| Method:  | A4500-F C        |              |               |                     |       |      |           | Analytic     | al Run: | MAN-TECH_ | 170908A  |
| Lab ID:  | ICV              | Initia       | al Calibratio | on Verification Sta | ndard |      |           |              |         | 09/08/    | 17 12:11 |
| Fluoride |                  |              | 1.01          | mg/L                | 0.10  | 101  | 90        | 110          |         |           |          |
| Method:  | A4500-F C        |              |               |                     |       |      |           |              |         | Batch:    | R286354  |
| Lab ID:  | MBLK             | Met          | hod Blank     |                     |       |      | Run: MAN- | TECH_170908A |         | 09/08/    | 17 12:08 |
| Fluoride |                  |              | ND            | mg/L                | 0.02  |      |           |              |         |           |          |
| Lab ID:  | LFB              | Lab          | oratory Fort  | tified Blank        |       |      | Run: MAN- | TECH_170908A |         | 09/08/    | 17 12:14 |
| Fluoride |                  |              | 1.02          | mg/L                | 0.10  | 102  | 90        | 110          |         |           |          |
| Lab ID:  | B17090189-001AMS | Sam          | ple Matrix    | Spike               |       |      | Run: MAN- | TECH_170908A |         | 09/08/    | 17 12:22 |
| Fluoride |                  |              | 1.16          | mg/L                | 0.10  | 101  | 80        | 120          |         |           |          |
| Lab ID:  | B17090189-001AMS | <b>D</b> Sam | ple Matrix    | Spike Duplicate     |       |      | Run: MAN- | TECH_170908A |         | 09/08/    | 17 12:24 |
| Fluoride |                  |              | 1.15          | mg/L                | 0.10  | 100  | 80        | 120          | 0.9     | 10        |          |
| Lab ID:  | B17090264-002AMS | Sam          | ple Matrix    | Spike               |       |      | Run: MAN- | TECH_170908A |         | 09/08/    | 17 13:15 |
| Fluoride |                  |              | 1.39          | mg/L                | 0.10  | 101  | 80        | 120          |         |           |          |
| Lab ID:  | B17090264-002AMS | <b>D</b> Sam | nple Matrix   | Spike Duplicate     |       |      | Run: MAN- | TECH_170908A |         | 09/08/    | 17 13:17 |
| Fluoride |                  |              | 1.38          | mg/L                | 0.10  | 100  | 80        | 120          | 0.7     | 10        |          |



Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/13/17Project:CCRRWork Order:B17090189

| Analyte |                  | Count  | Result        | Units       | RL            | %REC | Low Limit | High Limit  | RPD        | RPDLimit    | Qual     |
|---------|------------------|--------|---------------|-------------|---------------|------|-----------|-------------|------------|-------------|----------|
| Method: | A4500-H B        |        |               |             |               |      |           | Analytic    | al Run: PF | ISC _101-B_ | 170905A  |
| Lab ID: | pH 8             | Initia | al Calibratio | n Verificat | tion Standard |      |           |             |            | 09/05/      | 17 08:37 |
| рН      |                  |        | 7.97          | s.u.        | 0.10          | 100  | 98        | 102         |            |             |          |
| Method: | A4500-H B        |        |               |             |               |      |           |             |            | Batch:      | R286053  |
| Lab ID: | B17090189-001ADU | P Sam  | nple Duplica  | ate         |               |      | Run: PHSC | _101-B_1709 | 05A        | 09/05/      | 17 15:23 |
| рН      |                  |        | 6.81          | s.u.        | 0.10          |      |           |             | 0.0        | 3           |          |

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711



# **QA/QC Summary Report**

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/13/17Project:CCRRWork Order:B17090189

| Analyte  |                   | Count         | Result           | Units               | RL    | %REC | Low Limit  | High Limit  | RPD       | RPDLimit   | Qual      |
|----------|-------------------|---------------|------------------|---------------------|-------|------|------------|-------------|-----------|------------|-----------|
| Method:  | E300.0            |               |                  |                     |       |      |            | Analytical  | Run: IC N | IETROHM 1_ | _170907A  |
| Lab ID:  | ICV               | 2 In          | itial Calibratio | on Verification Sta | ndard |      |            |             |           | 09/07/     | 17 15:48  |
| Chloride |                   |               | 2.21             | mg/L                | 1.0   | 98   | 90         | 110         |           |            |           |
| Sulfate  |                   |               | 9.01             | mg/L                | 1.0   | 100  | 90         | 110         |           |            |           |
| Method:  | E300.0            |               |                  |                     |       |      |            |             |           | Batch:     | R286334   |
| Lab ID:  | ICB               | 2 M           | ethod Blank      |                     |       |      | Run: IC ME | TROHM 1_170 | 0907A     | 09/07/     | /17 16:07 |
| Chloride |                   |               | ND               | mg/L                | 0.006 |      |            |             |           |            |           |
| Sulfate  |                   |               | ND               | mg/L                | 0.02  |      |            |             |           |            |           |
| Lab ID:  | LFB               | 2 La          | aboratory For    | tified Blank        |       |      | Run: IC ME | TROHM 1_170 | 0907A     | 09/07/     | /17 16:27 |
| Chloride |                   |               | 10.5             | mg/L                | 1.0   | 105  | 90         | 110         |           |            |           |
| Sulfate  |                   |               | 30.9             | mg/L                | 1.0   | 103  | 90         | 110         |           |            |           |
| Lab ID:  | B17090021-002AMS  | 2 Sa          | ample Matrix     | Spike               |       |      | Run: IC ME | TROHM 1_170 | 0907A     | 09/07/     | /17 17:25 |
| Chloride |                   |               | 234              | mg/L                | 1.0   | 98   | 90         | 110         |           |            |           |
| Sulfate  |                   |               | 343              | mg/L                | 1.8   | 104  | 90         | 110         |           |            |           |
| Lab ID:  | B17090021-002AMSE | <b>)</b> 2 Sa | ample Matrix     | Spike Duplicate     |       |      | Run: IC ME | TROHM 1_170 | 0907A     | 09/07/     | /17 17:44 |
| Chloride |                   |               | 234              | mg/L                | 1.0   | 98   | 90         | 110         | 0.1       | 20         |           |
| Sulfate  |                   |               | 344              | mg/L                | 1.8   | 104  | 90         | 110         | 0.2       | 20         |           |
| Lab ID:  | B17090189-002AMS  | 2 Sa          | ample Matrix     | Spike               |       |      | Run: IC ME | TROHM 1_170 | 0907A     | 09/08/     | /17 07:04 |
| Chloride |                   |               | 3140             | mg/L                | 6.1   | 96   | 90         | 110         |           |            | E         |
| Sulfate  |                   |               | 4100             | mg/L                | 18    | 106  | 90         | 110         |           |            |           |
| Lab ID:  | B17090189-002AMSE | <b>)</b> 2 Sa | ample Matrix     | Spike Duplicate     |       |      | Run: IC ME | TROHM 1_170 | 0907A     | 09/08/     | /17 07:23 |
| Chloride |                   |               | 3130             | mg/L                | 6.1   | 95   | 90         | 110         | 0.3       | 20         | Ε         |
| Sulfate  |                   |               | 4090             | mg/L                | 18    | 106  | 90         | 110         | 0.2       | 20         |           |

### Qualifiers:

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/14/17Project:CCRRWork Order:B17090189

| Analyte   |                   | Count | Result       | Units           | RL            | %REC | Low Limit  | High Limit  | RPD       | RPDLimit     | Qual      |
|-----------|-------------------|-------|--------------|-----------------|---------------|------|------------|-------------|-----------|--------------|-----------|
| Method:   | E200.7            |       |              |                 |               |      |            | Anal        | ytical Ru | n: ICP203-B_ | _170907A  |
| Lab ID:   | ICV               | 9 Co  | ntinuing Cal | ibration Verifi | cation Standa | rd   |            |             |           | 09/07/       | 17 14:45  |
| Barium    |                   |       | 2.52         | mg/L            | 0.10          | 101  | 95         | 105         |           |              |           |
| Beryllium |                   |       | 1.24         | mg/L            | 0.010         | 99   | 95         | 105         |           |              |           |
| Boron     |                   |       | 2.48         | mg/L            | 0.10          | 99   | 95         | 105         |           |              |           |
| Cadmium   |                   |       | 2.42         | mg/L            | 0.010         | 97   | 95         | 105         |           |              |           |
| Calcium   |                   |       | 25.8         | mg/L            | 1.0           | 103  | 95         | 105         |           |              |           |
| Lithium   |                   |       | 1.29         | mg/L            | 0.10          | 104  | 95         | 105         |           |              |           |
| Magnesiun | n                 |       | 25.6         | mg/L            | 1.0           | 102  | 95         | 105         |           |              |           |
| Potassium |                   |       | 25.7         | mg/L            | 1.0           | 103  | 95         | 105         |           |              |           |
| Sodium    |                   |       | 25.8         | mg/L            | 1.0           | 103  | 95         | 105         |           |              |           |
| Method:   | E200.7            |       |              |                 |               |      |            |             |           | Batch        | n: 113363 |
| Lab ID:   | MB-113363         | 10 Me | thod Blank   |                 |               |      | Run: ICP20 | 3-B_170907A |           | 09/08/       | 17 05:49  |
| Barium    |                   |       | ND           | mg/L            | 0.0005        |      |            | _           |           |              |           |
| Beryllium |                   |       | ND           | mg/L            | 0.0001        |      |            |             |           |              |           |
| Boron     |                   |       | ND           | mg/L            | 0.003         |      |            |             |           |              |           |
| Cadmium   |                   |       | ND           | mg/L            | 0.0010        |      |            |             |           |              |           |
| Calcium   |                   |       | ND           | mg/L            | 0.08          |      |            |             |           |              |           |
| Lithium   |                   |       | ND           | mg/L            | 0.004         |      |            |             |           |              |           |
| Magnesiun | n                 |       | ND           | mg/L            | 0.01          |      |            |             |           |              |           |
| Potassium |                   |       | ND           | mg/L            | 0.07          |      |            |             |           |              |           |
| Sodium    |                   |       | ND           | mg/L            | 0.03          |      |            |             |           |              |           |
| Magnesiun | m, meq            |       | ND           | meq/L           | 0.001         |      |            |             |           |              |           |
| Lab ID:   | LCS-113363        | 9 Lat | oratory Cor  | ntrol Sample    |               |      | Run: ICP20 | 3-B_170907A |           | 09/08/       | 17 05:53  |
| Barium    |                   |       | 0.475        | mg/L            | 0.050         | 95   | 85         | 115         |           |              |           |
| Beryllium |                   |       | 0.246        | mg/L            | 0.0010        | 99   | 85         | 115         |           |              |           |
| Boron     |                   |       | 0.455        | mg/L            | 0.050         | 91   | 85         | 115         |           |              |           |
| Cadmium   |                   |       | 0.244        | mg/L            | 0.0010        | 98   | 85         | 115         |           |              |           |
| Calcium   |                   |       | 24.9         | mg/L            | 1.0           | 100  | 85         | 115         |           |              |           |
| Lithium   |                   |       | 0.479        | mg/L            | 0.10          | 96   | 85         | 115         |           |              |           |
| Magnesiun | n                 |       | 24.9         | mg/L            | 1.0           | 100  | 85         | 115         |           |              |           |
| Potassium |                   |       | 24.5         | mg/L            | 1.0           | 98   | 85         | 115         |           |              |           |
| Sodium    |                   |       | 24.1         | mg/L            | 1.0           | 96   | 85         | 115         |           |              |           |
| Lab ID:   | B17090189-001BMS3 | 9 Sai | mple Matrix  | Spike           |               |      | Run: ICP20 | 3-B_170907A |           | 09/08/       | 17 06:38  |
| Barium    |                   |       | 0.578        | mg/L            | 0.050         | 103  | 70         | 130         |           |              |           |
| Beryllium |                   |       | 0.268        | mg/L            | 0.0014        | 106  | 70         | 130         |           |              |           |
| Boron     |                   |       | 1.34         | mg/L            | 0.050         | 121  | 70         | 130         |           |              |           |
| Cadmium   |                   |       | 0.248        | mg/L            | 0.0099        | 99   | 70         | 130         |           |              |           |
| Calcium   |                   |       | 446          | mg/L            | 1.0           |      | 70         | 130         |           |              | Α         |
| Lithium   |                   |       | 1.09         | mg/L            | 0.10          | 127  | 70         | 130         |           |              |           |
| Magnesiun | n                 |       | 89.6         | mg/L            | 1.0           | 125  | 70         | 130         |           |              |           |
| •         |                   |       | 75.8         | mg/L            | 1.0           | 131  | 70         | 130         |           |              | S         |
| Potassium |                   |       |              |                 |               |      |            |             |           |              |           |

## Qualifiers:

RL - Analyte reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

S - Spike recovery outside of advisory limits.



Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency Report Date: 09/14/17 Project: CCRR Work Order: B17090189

| Analyte   |                   | Count          | Result      | Units           | RL     | %REC | Low Limit  | High Limit  | RPD | RPDLimit | Qual      |
|-----------|-------------------|----------------|-------------|-----------------|--------|------|------------|-------------|-----|----------|-----------|
| Method:   | E200.7            |                |             |                 |        |      |            |             |     | Batcl    | h: 113363 |
| Lab ID:   | B17090189-001BMSI | <b>D</b> 9 San | nple Matrix | Spike Duplicate |        |      | Run: ICP20 | 3-B_170907A |     | 09/08/   | 17 06:42  |
| Barium    |                   |                | 0.566       | mg/L            | 0.050  | 101  | 70         | 130         | 2.1 | 20       |           |
| Beryllium |                   |                | 0.258       | mg/L            | 0.0014 | 102  | 70         | 130         | 3.8 | 20       |           |
| Boron     |                   |                | 1.28        | mg/L            | 0.050  | 109  | 70         | 130         | 4.7 | 20       |           |
| Cadmium   |                   |                | 0.252       | mg/L            | 0.0099 | 101  | 70         | 130         | 1.7 | 20       |           |
| Calcium   |                   |                | 420         | mg/L            | 1.0    |      | 70         | 130         | 6.2 | 20       | Α         |
| Lithium   |                   |                | 1.03        | mg/L            | 0.10   | 115  | 70         | 130         | 5.6 | 20       |           |
| Magnesium | 1                 |                | 84.6        | mg/L            | 1.0    | 105  | 70         | 130         | 5.8 | 20       |           |
| Potassium |                   |                | 72.1        | mg/L            | 1.0    | 116  | 70         | 130         | 5.0 | 20       |           |
| Sodium    |                   |                | 739         | mg/L            | 4.2    |      | 70         | 130         | 5.6 | 20       | Α         |

### Qualifiers:

RL - Analyte reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/14/17Project:CCRRWork Order:B17090189

| Qual            | RPDLimit     | RPD         | High Limit  | Low Limit  | %REC | RL           | Units            | Result        | Count  |            | Analyte   |
|-----------------|--------------|-------------|-------------|------------|------|--------------|------------------|---------------|--------|------------|-----------|
| 170908 <i>A</i> | n: ICP203-B_ | lytical Rur | Anal        |            |      |              |                  |               |        | E200.7     | Method:   |
| 17 11:47        | 09/08/       |             |             |            | d    | tion Standar | bration Verifica | ntinuing Cali | 13 Cor | ICV        | Lab ID:   |
|                 |              |             | 105         | 95         | 100  | 0.050        | mg/L             | 2.50          |        |            | Antimony  |
|                 |              |             | 105         | 95         | 101  | 0.10         | mg/L             | 2.53          |        |            | Barium    |
|                 |              |             | 105         | 95         | 99   | 0.010        | mg/L             | 1.24          |        |            | Beryllium |
|                 |              |             | 105         | 95         | 100  | 0.10         | mg/L             | 2.50          |        |            | Boron     |
|                 |              |             | 105         | 95         | 98   | 0.010        | mg/L             | 2.45          |        |            | Cadmium   |
|                 |              |             | 105         | 95         | 100  | 1.0          | mg/L             | 24.9          |        |            | Calcium   |
|                 |              |             | 105         | 95         | 101  | 0.050        | mg/L             | 2.53          |        |            | Chromium  |
|                 |              |             | 105         | 95         | 98   | 0.020        | mg/L             | 2.46          |        |            | Cobalt    |
|                 |              |             | 105         | 95         | 99   | 0.10         | mg/L             | 1.23          |        |            | Lithium   |
|                 |              |             | 105         | 95         | 99   | 1.0          | mg/L             | 24.6          |        | ı          | Magnesium |
|                 |              |             | 105         | 95         | 101  | 0.10         | mg/L             | 2.52          |        | m          | Molybdenu |
|                 |              |             | 105         | 95         | 98   | 1.0          | mg/L             | 24.4          |        |            | Potassium |
|                 |              |             | 105         | 95         | 98   | 1.0          | mg/L             | 24.4          |        |            | Sodium    |
| : 113400        | Batch        |             |             |            |      |              |                  |               |        | E200.7     | Method:   |
| 17 20:20        | 09/08/       |             | 3-B_170908A | Run: ICP20 |      |              |                  | thod Blank    | 14 Met | MB-113400  | Lab ID:   |
|                 |              |             | _           |            |      | 0.02         | mg/L             | ND            |        |            | Antimony  |
|                 |              |             |             |            |      | 0.0005       | mg/L             | ND            |        |            | Barium    |
|                 |              |             |             |            |      | 0.0001       | mg/L             | ND            |        |            | Beryllium |
|                 |              |             |             |            |      | 0.003        | mg/L             | ND            |        |            | Boron     |
|                 |              |             |             |            |      | 0.0010       | mg/L             | ND            |        |            | Cadmium   |
|                 |              |             |             |            |      | 0.08         | mg/L             | ND            |        |            | Calcium   |
|                 |              |             |             |            |      | 0.002        | mg/L             | ND            |        |            | Chromium  |
|                 |              |             |             |            |      | 0.005        | mg/L             | ND            |        |            | Cobalt    |
|                 |              |             |             |            |      | 0.004        | mg/L             | ND            |        |            | Lithium   |
|                 |              |             |             |            |      | 0.01         | mg/L             | ND            |        | 1          | Magnesium |
|                 |              |             |             |            |      | 0.007        | mg/L             | ND            |        | m          | Molybdenu |
|                 |              |             |             |            |      | 0.07         | mg/L             | ND            |        |            | Potassium |
|                 |              |             |             |            |      | 0.03         | mg/L             | ND            |        |            | Sodium    |
|                 |              |             |             |            |      | 0.001        | meq/L            | ND            |        | n, meq     | Magnesium |
| 17 20:30        | 09/08/       |             | 3-B_170908A | Run: ICP20 |      |              | ntrol Sample     | oratory Con   | 13 Lab | LCS-113400 | Lab ID:   |
|                 |              |             | 115         | 85         | 103  | 0.021        | mg/L             | 0.515         |        |            | Antimony  |
|                 |              |             | 115         | 85         | 102  | 0.050        | mg/L             | 0.511         |        |            | Barium    |
|                 |              |             | 115         | 85         | 104  | 0.0010       | mg/L             | 0.259         |        |            | Beryllium |
|                 |              |             | 115         | 85         | 94   | 0.050        | mg/L             | 0.469         |        |            | Boron     |
|                 |              |             | 115         | 85         | 104  | 0.0010       | mg/L             | 0.259         |        |            | Cadmium   |
|                 |              |             | 115         | 85         | 106  | 1.0          | mg/L             | 26.5          |        |            | Calcium   |
|                 |              |             | 115         | 85         | 102  | 0.0050       | mg/L             | 0.512         |        |            | Chromium  |
|                 |              |             | 115         | 85         | 103  | 0.0052       | mg/L             | 0.514         |        |            | Cobalt    |
|                 |              |             | 115         | 85         | 101  | 0.10         | mg/L             | 0.507         |        |            | Lithium   |
|                 |              |             | 115         | 85         | 108  | 1.0          | mg/L             | 26.9          |        | 1          | Magnesium |
|                 |              |             | 115         | 85         | 103  | 0.0071       | mg/L             | 0.517         |        | m          | Molybdenu |
|                 |              |             | 115         | 85         | 102  | 1.0          | mg/L             | 25.6          |        |            | Potassium |

# Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/14/17Project:CCRRWork Order:B17090189

| Analyte   |                   | Count          | Result      | Units           | RL     | %REC | Low Limit  | High Limit  | RPD | RPDLimit | Qual      |
|-----------|-------------------|----------------|-------------|-----------------|--------|------|------------|-------------|-----|----------|-----------|
| Method:   | E200.7            |                |             |                 |        |      |            |             |     | Batcl    | h: 113400 |
| Lab ID:   | LCS-113400        | 13 La          | boratory Co | ntrol Sample    |        |      | Run: ICP20 | 3-B_170908A |     | 09/08/   | 17 20:30  |
| Sodium    |                   |                | 25.7        | mg/L            | 1.0    | 103  | 85         | 115         |     |          |           |
| Lab ID:   | B17090189-003BMS3 | <b>3</b> 13 Sa | mple Matrix | Spike           |        |      | Run: ICP20 | 3-B_170908A |     | 09/08/   | 17 20:44  |
| Antimony  |                   |                | 0.493       | mg/L            | 0.021  | 99   | 70         | 130         |     |          |           |
| Barium    |                   |                | 0.494       | mg/L            | 0.050  | 99   | 70         | 130         |     |          |           |
| Beryllium |                   |                | 0.249       | mg/L            | 0.0010 | 99   | 70         | 130         |     |          |           |
| Boron     |                   |                | 0.462       | mg/L            | 0.050  | 92   | 70         | 130         |     |          |           |
| Cadmium   |                   |                | 0.246       | mg/L            | 0.0010 | 98   | 70         | 130         |     |          |           |
| Calcium   |                   |                | 25.4        | mg/L            | 1.0    | 102  | 70         | 130         |     |          |           |
| Chromium  |                   |                | 0.493       | mg/L            | 0.0050 | 99   | 70         | 130         |     |          |           |
| Cobalt    |                   |                | 0.491       | mg/L            | 0.0052 | 98   | 70         | 130         |     |          |           |
| Lithium   |                   |                | 0.491       | mg/L            | 0.10   | 98   | 70         | 130         |     |          |           |
| Magnesiur | n                 |                | 26.1        | mg/L            | 1.0    | 104  | 70         | 130         |     |          |           |
| Molybdenu | ım                |                | 0.516       | mg/L            | 0.0071 | 103  | 70         | 130         |     |          |           |
| Potassium | 1                 |                | 24.8        | mg/L            | 1.0    | 99   | 70         | 130         |     |          |           |
| Sodium    |                   |                | 25.1        | mg/L            | 1.0    | 98   | 70         | 130         |     |          |           |
| Lab ID:   | B17090189-003BMSI | <b>D</b> 13 Sa | mple Matrix | Spike Duplicate |        |      | Run: ICP20 | 3-B_170908A |     | 09/08/   | 17 20:48  |
| Antimony  |                   |                | 0.487       | mg/L            | 0.021  | 97   | 70         | 130         | 1.3 | 20       |           |
| Barium    |                   |                | 0.479       | mg/L            | 0.050  | 96   | 70         | 130         | 3.0 | 20       |           |
| Beryllium |                   |                | 0.239       | mg/L            | 0.0010 | 96   | 70         | 130         | 3.9 | 20       |           |
| Boron     |                   |                | 0.447       | mg/L            | 0.050  | 89   | 70         | 130         | 3.3 | 20       |           |
| Cadmium   |                   |                | 0.234       | mg/L            | 0.0010 | 94   | 70         | 130         | 4.7 | 20       |           |
| Calcium   |                   |                | 24.5        | mg/L            | 1.0    | 98   | 70         | 130         | 3.4 | 20       |           |
| Chromium  |                   |                | 0.471       | mg/L            | 0.0050 | 94   | 70         | 130         | 4.5 | 20       |           |
| Cobalt    |                   |                | 0.471       | mg/L            | 0.0052 | 94   | 70         | 130         | 4.2 | 20       |           |
| Lithium   |                   |                | 0.482       | mg/L            | 0.10   | 96   | 70         | 130         | 1.8 | 20       |           |
| Magnesiur | n                 |                | 25.2        | mg/L            | 1.0    | 101  | 70         | 130         | 3.5 | 20       |           |
| Molybdenu | ım                |                | 0.481       | mg/L            | 0.0071 | 96   | 70         | 130         | 7.1 | 20       |           |
| Potassium | l                 |                | 24.4        | mg/L            | 1.0    | 98   | 70         | 130         | 1.5 | 20       |           |
| Sodium    |                   |                | 24.7        | mg/L            | 1.0    | 97   | 70         | 130         | 1.8 | 20       |           |

### Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/14/17Project:CCRRWork Order:B17090189

| Analyte   |                   | Count Resu       | lt Units        | RL             | %REC | Low Limit | High Limit             | RPD    | RPDLimit   | Qual             |
|-----------|-------------------|------------------|-----------------|----------------|------|-----------|------------------------|--------|------------|------------------|
| Method:   | E200.8            |                  |                 |                |      |           | Analytica              | Run: I | CPMS206-B_ | _170907 <i>A</i> |
| Lab ID:   | QCS               | 10 Initial Calib | ration Verifica | ation Standard |      |           |                        |        | 09/07/     | 17 13:33         |
| Antimony  |                   | 0.050            | )7 mg/L         | 0.050          | 101  | 90        | 110                    |        |            |                  |
| Arsenic   |                   | 0.050            | )4 mg/L         | 0.0050         | 101  | 90        | 110                    |        |            |                  |
| Barium    |                   | 0.050            | )9 mg/L         | 0.10           | 102  | 90        | 110                    |        |            |                  |
| Cadmium   |                   | 0.026            | 88 mg/L         | 0.0010         | 107  | 90        | 110                    |        |            |                  |
| Chromium  |                   | 0.053            | 31 mg/L         | 0.010          | 106  | 90        | 110                    |        |            |                  |
| Cobalt    |                   | 0.052            | 24 mg/L         | 0.010          | 105  | 90        | 110                    |        |            |                  |
| Lead      |                   | 0.051            | I0 mg/L         | 0.010          | 102  | 90        | 110                    |        |            |                  |
| Molybdenu | ım                | 0.048            | 34 mg/L         | 0.0050         | 97   | 90        | 110                    |        |            |                  |
| Selenium  |                   | 0.050            | )1 mg/L         | 0.0050         | 100  | 90        | 110                    |        |            |                  |
| Thallium  |                   | 0.054            | 16 mg/L         | 0.10           | 109  | 90        | 110                    |        |            |                  |
| Method:   | E200.8            |                  |                 |                |      |           |                        |        | Batch      | h: 113363        |
| Lab ID:   | MB-113363         | 11 Method Bla    | ank             |                |      | Run: ICPM | S206-B_170907A         | ١      | 09/07/     | 17 15:09         |
| Antimony  |                   | N                | D mg/L          | 0.00004        |      |           |                        |        |            |                  |
| Arsenic   |                   | N                | D mg/L          | 0.0002         |      |           |                        |        |            |                  |
| Barium    |                   | N                | D mg/L          | 0.00005        |      |           |                        |        |            |                  |
| Beryllium |                   | N                | D mg/L          | 0.00008        |      |           |                        |        |            |                  |
| Cadmium   |                   | N                | D mg/L          | 0.00003        |      |           |                        |        |            |                  |
| Chromium  |                   | 0.000            | )2 mg/L         | 0.0001         |      |           |                        |        |            |                  |
| Cobalt    |                   | N                | D mg/L          | 0.00002        |      |           |                        |        |            |                  |
| Lead      |                   | N                | D mg/L          | 0.00003        |      |           |                        |        |            |                  |
| Molybdenu | ım                | 0.0000           | )4 mg/L         | 0.00003        |      |           |                        |        |            |                  |
| Selenium  |                   | 0.000            | )5 mg/L         | 0.0004         |      |           |                        |        |            |                  |
| Thallium  |                   | N                | D mg/L          | 7E-06          |      |           |                        |        |            |                  |
| Lab ID:   | LCS-113363        | 11 Laboratory    | Control Sam     | ple            |      | Run: ICPM | S206-B_170907 <i>A</i> |        | 09/07/     | 17 15:29         |
| Antimony  |                   | 0.50             | )7 mg/L         | 0.0050         | 101  | 85        | 115                    |        |            |                  |
| Arsenic   |                   | 0.48             | 33 mg/L         | 0.0010         | 97   | 85        | 115                    |        |            |                  |
| Barium    |                   | 0.49             | 98 mg/L         | 0.010          | 100  | 85        | 115                    |        |            |                  |
| Beryllium |                   | 0.21             | l4 mg/L         | 0.0010         | 86   | 85        | 115                    |        |            |                  |
| Cadmium   |                   | 0.25             | 54 mg/L         | 0.0010         | 101  | 85        | 115                    |        |            |                  |
| Chromium  |                   | 0.50             | )8 mg/L         | 0.0010         | 101  | 85        | 115                    |        |            |                  |
| Cobalt    |                   | 0.50             | )7 mg/L         | 0.0010         | 101  | 85        | 115                    |        |            |                  |
| Lead      |                   | 0.50             | )2 mg/L         | 0.0010         | 100  | 85        | 115                    |        |            |                  |
| Molybdenu | ım                | 0.47             | 75 mg/L         | 0.0050         | 95   | 85        | 115                    |        |            |                  |
| Selenium  |                   | 0.49             | 91 mg/L         | 0.0050         | 98   | 85        | 115                    |        |            |                  |
| Thallium  |                   | 0.52             | 22 mg/L         | 0.0010         | 104  | 85        | 115                    |        |            |                  |
| Lab ID:   | B17090189-001BMS3 | 11 Sample Ma     | atrix Spike     |                |      | Run: ICPM | S206-B_170907A         |        | 09/07/     | 17 15:33         |
| Antimony  |                   | 0.51             | I1 mg/L         | 0.0010         | 102  | 70        | 130                    |        |            |                  |
| Arsenic   |                   | 0.49             | 98 mg/L         | 0.0010         | 99   | 70        | 130                    |        |            |                  |
| Barium    |                   | 0.53             | 38 mg/L         | 0.050          | 96   | 70        | 130                    |        |            |                  |
| Beryllium |                   | 0.20             | )9 mg/L         | 0.0010         | 84   | 70        | 130                    |        |            |                  |
| Cadmium   |                   | 0.25             | 52 mg/L         | 0.0010         | 101  | 70        | 130                    |        |            |                  |
| Chromium  |                   | 0.51             |                 | 0.0050         | 102  | 70        | 130                    |        |            |                  |

Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/14/17Project:CCRRWork Order:B17090189

| Analyte   |                   | Count           | Result      | Units     | RL      | %REC | Low Limit | High Limit     | RPD | RPDLimit | Qual      |
|-----------|-------------------|-----------------|-------------|-----------|---------|------|-----------|----------------|-----|----------|-----------|
| Method:   | E200.8            |                 |             |           |         |      |           |                |     | Batch    | n: 113363 |
| Lab ID:   | B17090189-001BMS3 | 3 11 Sar        | mple Matrix | Spike     |         |      | Run: ICPM | S206-B_170907A |     | 09/07/   | 17 15:33  |
| Cobalt    |                   |                 | 0.477       | mg/L      | 0.0050  | 95   | 70        | 130            |     |          |           |
| Lead      |                   |                 | 0.486       | mg/L      | 0.0010  | 97   | 70        | 130            |     |          |           |
| Molybdenu | m                 |                 | 0.484       | mg/L      | 0.0010  | 97   | 70        | 130            |     |          |           |
| Selenium  |                   |                 | 0.481       | mg/L      | 0.0010  | 96   | 70        | 130            |     |          |           |
| Thallium  |                   |                 | 0.489       | mg/L      | 0.00050 | 98   | 70        | 130            |     |          |           |
| Lab ID:   | B17090189-001BMSI | <b>D</b> 11 Sar | mple Matrix | Spike Dup | licate  |      | Run: ICPM | S206-B_170907A |     | 09/07/   | 17 15:36  |
| Antimony  |                   |                 | 0.500       | mg/L      | 0.0010  | 100  | 70        | 130            | 2.3 | 20       |           |
| Arsenic   |                   |                 | 0.524       | mg/L      | 0.0010  | 105  | 70        | 130            | 5.0 | 20       |           |
| Barium    |                   |                 | 0.532       | mg/L      | 0.050   | 95   | 70        | 130            | 1.1 | 20       |           |
| Beryllium |                   |                 | 0.202       | mg/L      | 0.0010  | 81   | 70        | 130            | 3.6 | 20       |           |
| Cadmium   |                   |                 | 0.263       | mg/L      | 0.0010  | 105  | 70        | 130            | 4.2 | 20       |           |
| Chromium  |                   |                 | 0.533       | mg/L      | 0.0050  | 106  | 70        | 130            | 3.7 | 20       |           |
| Cobalt    |                   |                 | 0.470       | mg/L      | 0.0050  | 94   | 70        | 130            | 1.6 | 20       |           |
| Lead      |                   |                 | 0.469       | mg/L      | 0.0010  | 94   | 70        | 130            | 3.5 | 20       |           |
| Molybdenu | m                 |                 | 0.474       | mg/L      | 0.0010  | 95   | 70        | 130            | 2.2 | 20       |           |
| Selenium  |                   |                 | 0.475       | mg/L      | 0.0010  | 95   | 70        | 130            | 1.3 | 20       |           |
| Thallium  |                   |                 | 0.494       | mg/L      | 0.00050 | 99   | 70        | 130            | 0.9 | 20       |           |

### Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/14/17Project:CCRRWork Order:B17090189

| i roject. | JOI (1 )         |                |                |               |             |      |           | WOIR           | Cidei  | . 51703010 | ,,,              |
|-----------|------------------|----------------|----------------|---------------|-------------|------|-----------|----------------|--------|------------|------------------|
| Analyte   |                  | Count          | Result         | Units         | RL          | %REC | Low Limit | High Limit     | RPD    | RPDLimit   | Qual             |
| Method:   | E200.8           |                |                |               |             |      |           | Analytical     | Run: I | CPMS206-B_ | _170908 <i>A</i> |
| Lab ID:   | QCS              | 6 Init         | ial Calibratio | on Verificati | on Standard |      |           |                |        | 09/08/     | 17 12:27         |
| Antimony  |                  |                | 0.0516         | mg/L          | 0.050       | 103  | 90        | 110            |        |            |                  |
| Arsenic   |                  |                | 0.0490         | mg/L          | 0.0050      | 98   | 90        | 110            |        |            |                  |
| Beryllium |                  |                | 0.0263         | mg/L          | 0.0010      | 105  | 90        | 110            |        |            |                  |
| Lead      |                  |                | 0.0511         | mg/L          | 0.010       | 102  | 90        | 110            |        |            |                  |
| Selenium  |                  |                | 0.0494         | mg/L          | 0.0050      | 99   | 90        | 110            |        |            |                  |
| Thallium  |                  |                | 0.0484         | mg/L          | 0.10        | 97   | 90        | 110            |        |            |                  |
| Method:   | E200.8           |                |                |               |             |      |           |                |        | Batch      | n: 113363        |
| Lab ID:   | MB-113363        | 11 Me          | thod Blank     |               |             |      | Run: ICPM | S206-B_170908A |        | 09/08/     | 17 19:43         |
| Antimony  |                  |                | ND             | mg/L          | 0.00004     |      |           |                |        |            |                  |
| Arsenic   |                  |                | ND             | mg/L          | 0.0002      |      |           |                |        |            |                  |
| Barium    |                  |                | ND             | mg/L          | 0.00005     |      |           |                |        |            |                  |
| Beryllium |                  |                | ND             | mg/L          | 0.00008     |      |           |                |        |            |                  |
| Cadmium   |                  |                | ND             | mg/L          | 0.00003     |      |           |                |        |            |                  |
| Chromium  |                  |                | 0.0002         | mg/L          | 0.0001      |      |           |                |        |            |                  |
| Cobalt    |                  |                | ND             | mg/L          | 0.00002     |      |           |                |        |            |                  |
| Lead      |                  |                | ND             | mg/L          | 0.00003     |      |           |                |        |            |                  |
| Molybdenu | m                |                | ND             | mg/L          | 0.00003     |      |           |                |        |            |                  |
| Selenium  |                  |                | ND             | mg/L          | 0.0004      |      |           |                |        |            |                  |
| Thallium  |                  |                | ND             | mg/L          | 7E-06       |      |           |                |        |            |                  |
| Method:   | E200.8           |                |                |               |             |      |           |                |        | Batch      | n: 113400        |
| Lab ID:   | MB-113400        | 5 Me           | thod Blank     |               |             |      | Run: ICPM | S206-B_170908A |        | 09/09/     | 17 05:00         |
| Antimony  |                  |                | ND             | mg/L          | 0.00004     |      |           | _              |        |            |                  |
| Arsenic   |                  |                | ND             | mg/L          | 0.0002      |      |           |                |        |            |                  |
| Lead      |                  |                | 0.00004        | mg/L          | 0.00003     |      |           |                |        |            |                  |
| Selenium  |                  |                | ND             | mg/L          | 0.0004      |      |           |                |        |            |                  |
| Thallium  |                  |                | 8E-06          | mg/L          | 7E-06       |      |           |                |        |            |                  |
| Lab ID:   | LCS-113400       | 5 Lat          | ooratory Cor   | ntrol Sample  | e           |      | Run: ICPM | S206-B_170908A |        | 09/09/     | 17 05:10         |
| Antimony  |                  |                | 0.546          | mg/L          | 0.0050      | 109  | 85        | 115            |        |            |                  |
| Arsenic   |                  |                | 0.547          | mg/L          | 0.0010      | 109  | 85        | 115            |        |            |                  |
| Lead      |                  |                | 0.532          | mg/L          | 0.0010      | 106  | 85        | 115            |        |            |                  |
| Selenium  |                  |                | 0.515          | mg/L          | 0.0050      | 103  | 85        | 115            |        |            |                  |
| Thallium  |                  |                | 0.536          | mg/L          | 0.0010      | 107  | 85        | 115            |        |            |                  |
| Lab ID:   | B17090189-003BMS | <b>3</b> 5 Saı | mple Matrix    | Spike         |             |      | Run: ICPM | S206-B_170908A |        | 09/09/     | 17 05:14         |
| Antimony  |                  |                | 0.544          | mg/L          | 0.0010      | 109  | 70        | 130            |        |            |                  |
| Arsenic   |                  |                | 0.532          | mg/L          | 0.0010      | 106  | 70        | 130            |        |            |                  |
| Lead      |                  |                | 0.501          | mg/L          | 0.0010      | 100  | 70        | 130            |        |            |                  |
| Selenium  |                  |                | 0.510          | mg/L          | 0.0010      | 102  | 70        | 130            |        |            |                  |
| Thallium  |                  |                | 0.516          | mg/L          | 0.00050     | 103  | 70        | 130            |        |            |                  |
| Lab ID:   | B17090189-003BMS | <b>D</b> 5 Sai | mple Matrix    | Spike Dupl    | icate       |      | Run: ICPM | S206-B_170908A |        | 09/09/     | 17 05:17         |
| Antimony  |                  |                | 0.538          | mg/L          | 0.0010      | 108  | 70        | 130            | 1.3    | 20         |                  |
|           |                  |                |                |               |             |      |           |                |        |            |                  |

Qualifiers:

RL - Analyte reporting limit.



Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/14/17Project:CCRRWork Order:B17090189

| Analyte  |                  | Count          | Result       | Units           | RL      | %REC | Low Limit  | High Limit     | RPD | RPDLimit | Qual     |
|----------|------------------|----------------|--------------|-----------------|---------|------|------------|----------------|-----|----------|----------|
| Method:  | E200.8           |                |              |                 |         |      |            |                |     | Batch    | : 113400 |
| Lab ID:  | B17090189-003BMS | <b>D</b> 5 Sam | ple Matrix S | Spike Duplicate |         |      | Run: ICPMS | S206-B_170908A |     | 09/09/1  | 17 05:17 |
| Arsenic  |                  |                | 0.532        | mg/L            | 0.0010  | 106  | 70         | 130            | 0.1 | 20       |          |
| Lead     |                  |                | 0.512        | mg/L            | 0.0010  | 102  | 70         | 130            | 2.0 | 20       |          |
| Selenium |                  |                | 0.496        | mg/L            | 0.0010  | 99   | 70         | 130            | 2.6 | 20       |          |
| Thallium |                  |                | 0.518        | mg/L            | 0.00050 | 104  | 70         | 130            | 0.4 | 20       |          |

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/14/17Project:CCRRWork Order:B17090189

| Analyte |                   | Count        | Result       | Units         | RL          | %REC | Low Limit | High Limit     | RPD    | RPDLimit  | Qual      |
|---------|-------------------|--------------|--------------|---------------|-------------|------|-----------|----------------|--------|-----------|-----------|
| Method: | E245.1            |              |              |               |             |      |           | Analytica      | Run:   | HGCV202-B | _170906C  |
| Lab ID: | ICV               | Initia       | l Calibratio | on Verificati | on Standard |      |           |                |        | 09/06/    | /17 13:42 |
| Mercury |                   |              | 0.00190      | mg/L          | 0.00010     | 95   | 90        | 110            |        |           |           |
| Method: | E245.1            |              |              |               |             |      |           |                |        | Batc      | h: 113365 |
| Lab ID: | MB-113365         | Meth         | nod Blank    |               |             |      | Run: HGCV | /202-B_170906C |        | 09/06/    | /17 14:06 |
| Mercury |                   |              | 1E-06        | mg/L          | 1E-06       |      |           |                |        |           |           |
| Lab ID: | LCS-113365        | Labo         | oratory Cor  | ntrol Sample  | Э           |      | Run: HGCV | /202-B_170906C |        | 09/06/    | /17 14:08 |
| Mercury |                   |              | 0.00193      | mg/L          | 0.00010     | 97   | 85        | 115            |        |           |           |
| Lab ID: | B17090102-001AMS  | Sam          | ple Matrix   | Spike         |             |      | Run: HGCV | /202-B_170906C |        | 09/06/    | /17 14:14 |
| Mercury |                   |              | 0.00189      | mg/L          | 0.00010     | 95   | 70        | 130            |        |           |           |
| Lab ID: | B17090102-001AMSI | D Sam        | ple Matrix   | Spike Dupl    | icate       |      | Run: HGCV | /202-B_170906C |        | 09/06/    | /17 14:16 |
| Mercury |                   |              | 0.00200      | mg/L          | 0.00010     | 100  | 70        | 130            | 5.5    | 30        |           |
| Method: | E245.1            |              |              |               |             |      |           | Analytica      | l Run: | HGCV202-B | _170907A  |
| Lab ID: | ICV               | Initia       | l Calibratio | on Verificati | on Standard |      |           |                |        | 09/07/    | /17 13:37 |
| Mercury |                   |              | 0.00191      | mg/L          | 0.00010     | 96   | 90        | 110            |        |           |           |
| Method: | E245.1            |              |              |               |             |      |           |                |        | Batc      | h: 113413 |
| Lab ID: | MB-113413         | Meth         | nod Blank    |               |             |      | Run: HGCV | /202-B_170907A |        | 09/07/    | /17 13:42 |
| Mercury |                   |              | 9E-07        | mg/L          | 1E-06       |      |           |                |        |           |           |
| Lab ID: | LCS-113413        | Labo         | oratory Cor  | ntrol Sample  | Э           |      | Run: HGCV | /202-B_170907A |        | 09/07/    | /17 13:44 |
| Mercury |                   |              | 0.00197      | mg/L          | 0.00010     | 98   | 85        | 115            |        |           |           |
| Lab ID: | B17090268-001CMS  | Sam          | ple Matrix   | Spike         |             |      | Run: HGCV | /202-B_170907A |        | 09/07/    | /17 13:52 |
| Mercury |                   |              | 0.00196      | mg/L          | 0.00010     | 98   | 70        | 130            |        |           |           |
| Lab ID: | B17090268-001CMSI | <b>D</b> Sam | ple Matrix   | Spike Dupl    | icate       |      | Run: HGCV | /202-B_170907A |        | 09/07/    | /17 13:54 |
| Mercury |                   |              | 0.00197      | mg/L          | 0.00010     | 99   | 70        | 130            | 0.4    | 30        |           |

### Qualifiers:

# **Work Order Receipt Checklist**

# Texas Municipal Power Agency

B17090189

| Login completed by:                                                                     | Gina McCartney                  |               | Date | Received: 9/5/2017     |
|-----------------------------------------------------------------------------------------|---------------------------------|---------------|------|------------------------|
| Reviewed by:                                                                            | BL2000\cindy                    |               | Red  | ceived by: qej         |
| Reviewed Date:                                                                          | 9/6/2017                        |               | Carı | rier name: FedEx       |
| Shipping container/cooler in                                                            | good condition?                 | Yes 🗸         | No 🗌 | Not Present            |
| Custody seals intact on all sl                                                          | nipping container(s)/cooler(s)? | Yes 🗸         | No 🗌 | Not Present            |
| Custody seals intact on all sa                                                          | ample bottles?                  | Yes           | No 🗌 | Not Present ✓          |
| Chain of custody present?                                                               |                                 | Yes 🔽         | No 🗌 |                        |
| Chain of custody signed whe                                                             | en relinquished and received?   | Yes 🔽         | No 🗌 |                        |
| Chain of custody agrees with                                                            | n sample labels?                | Yes 🔽         | No 🗌 |                        |
| Samples in proper container                                                             | /bottle?                        | Yes 🗹         | No 🗌 |                        |
| Sample containers intact?                                                               |                                 | Yes 🗸         | No 🗌 |                        |
| Sufficient sample volume for                                                            | indicated test?                 | Yes √         | No 🗌 |                        |
| All samples received within h<br>(Exclude analyses that are couch as pH, DO, Res CI, Su | onsidered field parameters      | Yes √         | No 🗌 |                        |
| Temp Blank received in all si                                                           | hipping container(s)/cooler(s)? | Yes 🗸         | No 🗌 | Not Applicable         |
| Container/Temp Blank tempe                                                              | erature:                        | °C Melted Ice |      |                        |
| Water - VOA vials have zero                                                             | headspace?                      | Yes           | No 🗌 | No VOA vials submitted |
| Water - pH acceptable upon                                                              | receipt?                        | Yes [         | No 🗹 | Not Applicable         |

## **Standard Reporting Procedures:**

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

### **Contact and Corrective Action Comments:**

The Temperature Blank temperature for shipping container 1 was 16.7°C, shipping container 2 was 9.0°C and shipping container 3 was 14.2°C.

Samples EQBK/SCM/083117 and MNW-15 for Total Metals were preserved to pH <2 with 2 mL of nitric acid per 250 mL in the laboratory. In accordance with the Clean Water Act, these samples must be held for 24 hour prior to analysis.



# Chain of Custody & Analytical Request Record

| Account Information (Billing information)                    | Report Information of different them Account Information                    |                                                                                                   |
|--------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| CompanyiName Amec Foster Wheeler                             | Company/Name                                                                |                                                                                                   |
| Contact Grea Seitert                                         | Contact                                                                     | Samples EaBK/SCM/083117                                                                           |
| Phone 512-795-0360                                           | Phone                                                                       | and MNW-15 do not                                                                                 |
| Mailing Address 3755 S. Capital of TX Hux. #375              | Mailing Address                                                             | Contain HNOs preservative.                                                                        |
| City, State, Zip Austin, TX 18704                            | City, State, Zip                                                            |                                                                                                   |
| Email greg. Settert Damectus com                             | Email                                                                       | 14/1/aNa1/5/15 DX                                                                                 |
| Receive Invoice Adhard Copy Acmail Receive Report            | <b>X</b> Email                                                              | Rod Chorn on this                                                                                 |
| Purchase Order Quote Bottle Order                            | Special Repositionnats:                                                     | work of or 9-5-17                                                                                 |
| Project Information                                          | Matrix Codes Analysis Requested                                             |                                                                                                   |
| Project Name, PWSID, Permit, etc. Client: TMPA Project: CCRR | A - Air<br>W- Water                                                         | All tumaround times are                                                                           |
| Sampler Name S. Macon                                        | S Solids S Solids                                                           | RUSH.                                                                                             |
| Sample Origin State TX EPA/State Compliance XYes             |                                                                             | _                                                                                                 |
| sample type.<br>ed, call before                              | O Other O Ower Drinking DW Drinking DW Water Col                            | RUSH sample submittal for charges and scheduling – Charges and scheduling – See Instructions Page |
| Sample Identification Colle (Name, Location, Interval, etc.) | Collection Number of Matrix S                                               | A 698                                                                                             |
| 9/8                                                          | 7                                                                           | _                                                                                                 |
| 2 MNW-II                                                     |                                                                             | 2000                                                                                              |
| 3 EQBK/SCM/083117                                            | 1230                                                                        | 2001                                                                                              |
| •                                                            |                                                                             | 600-                                                                                              |
| . ]                                                          | 1500                                                                        | -00%                                                                                              |
| 6 SFL MW-7                                                   | /825                                                                        | 900-                                                                                              |
| " MWW-15                                                     | 1930                                                                        | 7007                                                                                              |
| 。 ログドーエ                                                      | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                       | ₹-000<br>                                                                                         |
| 10                                                           |                                                                             |                                                                                                   |
| Custody Relinquished by (print) Record MUST                  | omed Cillado                                                                | (K. Simature                                                                                      |
| Date/Time                                                    |                                                                             | Signature                                                                                         |
| Shipped By Cooler ID(s) Custody Seals Intact Y N C B Y N     | ntact Receipt Temp Blank On toe Payment Type Amount  N Y N CC Cash Check \$ | Receipt Number (cash/check only)                                                                  |
|                                                              |                                                                             |                                                                                                   |

In certain circumstances, samples submitted to Energy Laboratories, Inc. mag be subcontracted to other certified beforatories in order to complete the analysis requested.

This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

ELI-COC-12/16 v.1

Page 24 of 24

# **ANALYTICAL SUMMARY REPORT**

October 04, 2017

Texas Municipal Power Agency PO Box 7000 Bryan, TX 77805-7000

Work Order: B17090193 Quote ID: B3997

Project Name: CCRR

Energy Laboratories Inc Billings MT received the following 8 samples for Texas Municipal Power Agency on 9/5/2017 for analysis.

| Lab ID          | Client Sample ID | Collect Date Receive Date | Matrix       | Test                                                              |
|-----------------|------------------|---------------------------|--------------|-------------------------------------------------------------------|
| B17090193-003 E | EQBK/SCM/083117  | 08/31/17 12:30 09/05/17   | Ground Water | Radium 226 + Radium 228<br>Radium 226, Total<br>Radium 228, Total |
| B17090193-004   | MNW-18           | 08/31/17 13:45 09/05/17   | Ground Water | Same As Above                                                     |
| B17090193-006   | SFL MW-7         | 08/31/17 18:25 09/05/17   | Ground Water | Same As Above                                                     |
| B17090193-007   | MNW-15           | 08/31/17 19:30 09/05/17   | Ground Water | Same As Above                                                     |
| B17090193-008   | DUP-1            | 08/31/17 19:30 09/05/17   | Ground Water | Same As Above                                                     |

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

**CLIENT:** Texas Municipal Power Agency

Project: CCRR Report Date: 10/04/17

Work Order: B17090193 CASE NARRATIVE

Tests associated with analyst identified as ELI-CA were subcontracted to Energy Laboratories, PO Box 247, Casper, WY, EPA Number WY00002 and WY00937.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17090193-003 Client Sample ID: EQBK/SCM/083117

**Report Date:** 10/04/17 Collection Date: 08/31/17 12:30

Matrix: Ground Water

DateReceived: 09/05/17

| Analyses                              | Result | Units | Qualifiers | RL | MCL/<br>QCL | Method   | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|----|-------------|----------|-------------------------|
| RADIONUCLIDES - TOTAL                 |        |       |            |    |             |          |                         |
| Radium 226                            | 0.22   | pCi/L |            |    |             | E903.0   | 09/28/17 16:49 / eli-ca |
| Radium 226 precision (±)              | 0.17   | pCi/L |            |    |             | E903.0   | 09/28/17 16:49 / eli-ca |
| Radium 226 MDC                        | 0.22   | pCi/L |            |    |             | E903.0   | 09/28/17 16:49 / eli-ca |
| Radium 228                            | 0.12   | pCi/L | U          |    |             | RA-05    | 09/23/17 15:22 / eli-ca |
| Radium 228 precision (±)              | 1.4    | pCi/L |            |    |             | RA-05    | 09/23/17 15:22 / eli-ca |
| Radium 228 MDC                        | 2.4    | pCi/L |            |    |             | RA-05    | 09/23/17 15:22 / eli-ca |
| Radium 226 + Radium 228               | 0.3    | pCi/L | U          |    |             | A7500-RA | 10/03/17 20:27 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.4    | pCi/L |            |    |             | A7500-RA | 10/03/17 20:27 / eli-ca |
| Radium 226 + Radium 228 MDC           | 2.4    | pCi/L |            |    |             | A7500-RA | 10/03/17 20:27 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17090193-004

Client Sample ID: MNW-18

**Report Date:** 10/04/17

Collection Date: 08/31/17 13:45 DateReceived: 09/05/17

Matrix: Ground Water

| Analyses                              | Result | Units | Qualifiers | RL | MCL/<br>QCL | Method   | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|----|-------------|----------|-------------------------|
| RADIONUCLIDES - TOTAL                 |        |       |            |    |             |          |                         |
| Radium 226                            | 1.9    | pCi/L |            |    |             | E903.0   | 09/28/17 16:49 / eli-ca |
| Radium 226 precision (±)              | 0.46   | pCi/L |            |    |             | E903.0   | 09/28/17 16:49 / eli-ca |
| Radium 226 MDC                        | 0.18   | pCi/L |            |    |             | E903.0   | 09/28/17 16:49 / eli-ca |
| Radium 228                            | 5.7    | pCi/L |            |    |             | RA-05    | 09/23/17 15:22 / eli-ca |
| Radium 228 precision (±)              | 1.4    | pCi/L |            |    |             | RA-05    | 09/23/17 15:22 / eli-ca |
| Radium 228 MDC                        | 1.9    | pCi/L |            |    |             | RA-05    | 09/23/17 15:22 / eli-ca |
| Radium 226 + Radium 228               | 7.6    | pCi/L |            |    |             | A7500-RA | 10/03/17 20:27 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.5    | pCi/L |            |    |             | A7500-RA | 10/03/17 20:27 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.9    | pCi/L |            |    |             | A7500-RA | 10/03/17 20:27 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17090193-006 Client Sample ID: SFL MW-7

**Report Date:** 10/04/17 Collection Date: 08/31/17 18:25 DateReceived: 09/05/17

Matrix: Ground Water

| Analyses                              | Result | Units | Qualifiers | RL | MCL/<br>QCL | Method   | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|----|-------------|----------|-------------------------|
| RADIONUCLIDES - TOTAL                 |        |       |            |    |             |          |                         |
| Radium 226                            | 0.77   | pCi/L |            |    |             | E903.0   | 09/28/17 16:49 / eli-ca |
| Radium 226 precision (±)              | 0.20   | pCi/L |            |    |             | E903.0   | 09/28/17 16:49 / eli-ca |
| Radium 226 MDC                        | 0.17   | pCi/L |            |    |             | E903.0   | 09/28/17 16:49 / eli-ca |
| Radium 228                            | 0.61   | pCi/L | U          |    |             | RA-05    | 09/23/17 15:22 / eli-ca |
| Radium 228 precision (±)              | 1.1    | pCi/L |            |    |             | RA-05    | 09/23/17 15:22 / eli-ca |
| Radium 228 MDC                        | 1.8    | pCi/L |            |    |             | RA-05    | 09/23/17 15:22 / eli-ca |
| Radium 226 + Radium 228               | 1.4    | pCi/L | U          |    |             | A7500-RA | 10/03/17 20:27 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.2    | pCi/L |            |    |             | A7500-RA | 10/03/17 20:27 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.8    | pCi/L |            |    |             | A7500-RA | 10/03/17 20:27 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration



Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17090193-007

Client Sample ID: MNW-15

**Report Date:** 10/04/17 Collection Date: 08/31/17 19:30

DateReceived: 09/05/17

Matrix: Ground Water

|                                       | _      |       |            |    | MCL/ |          |                         |
|---------------------------------------|--------|-------|------------|----|------|----------|-------------------------|
| Analyses                              | Result | Units | Qualifiers | RL | QCL  | Method   | Analysis Date / By      |
| RADIONUCLIDES - TOTAL                 |        |       |            |    |      |          |                         |
| Radium 226                            | 0.37   | pCi/L |            |    |      | E903.0   | 09/28/17 16:49 / eli-ca |
| Radium 226 precision (±)              | 0.16   | pCi/L |            |    |      | E903.0   | 09/28/17 16:49 / eli-ca |
| Radium 226 MDC                        | 0.19   | pCi/L |            |    |      | E903.0   | 09/28/17 16:49 / eli-ca |
| Radium 228                            | 1.7    | pCi/L |            |    |      | RA-05    | 09/23/17 13:46 / eli-ca |
| Radium 228 precision (±)              | 1.1    | pCi/L |            |    |      | RA-05    | 09/23/17 13:46 / eli-ca |
| Radium 228 MDC                        | 1.6    | pCi/L |            |    |      | RA-05    | 09/23/17 13:46 / eli-ca |
| Radium 226 + Radium 228               | 2.1    | pCi/L |            |    |      | A7500-RA | 10/03/17 20:27 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.1    | pCi/L |            |    |      | A7500-RA | 10/03/17 20:27 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.7    | pCi/L |            |    |      | A7500-RA | 10/03/17 20:27 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: **CCRR** 

Lab ID: B17090193-008

Client Sample ID: DUP-1

**Report Date:** 10/04/17 Collection Date: 08/31/17 19:30

DateReceived: 09/05/17

Matrix: Ground Water

| Analyses                              | Result Units  | Qualifiers | RL | MCL/<br>QCL | Method   | Analysis Date / By      |
|---------------------------------------|---------------|------------|----|-------------|----------|-------------------------|
| Allalyses                             | Nesult Office | Qualifiers |    |             | Metriou  | Analysis Date / By      |
| RADIONUCLIDES - TOTAL                 |               |            |    |             |          |                         |
| Radium 226                            | 0.74 pCi/L    |            |    |             | E903.0   | 09/28/17 16:49 / eli-ca |
| Radium 226 precision (±)              | 0.20 pCi/L    |            |    |             | E903.0   | 09/28/17 16:49 / eli-ca |
| Radium 226 MDC                        | 0.17 pCi/L    |            |    |             | E903.0   | 09/28/17 16:49 / eli-ca |
| Radium 228                            | 2.3 pCi/L     |            |    |             | RA-05    | 09/23/17 15:22 / eli-ca |
| Radium 228 precision (±)              | 1.0 pCi/L     |            |    |             | RA-05    | 09/23/17 15:22 / eli-ca |
| Radium 228 MDC                        | 1.9 pCi/L     |            |    |             | RA-05    | 09/23/17 15:22 / eli-ca |
| Radium 226 + Radium 228               | 3.1 pCi/L     |            |    |             | A7500-RA | 10/03/17 20:27 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.0 pCi/L     |            |    |             | A7500-RA | 10/03/17 20:27 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.9 pCi/L     |            |    |             | A7500-RA | 10/03/17 20:27 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.





Prepared by Casper, WY Branch

| Analyte                   | Result Units                  | RL %REC Low Limit High Limit RPI | D RPDLimit Qual   |
|---------------------------|-------------------------------|----------------------------------|-------------------|
| Method: E903.0            |                               |                                  | Batch: RA226-8657 |
| Lab ID: MB-RA226-8657     | Method Blank                  | Run: G542M-2_170918C             | 09/28/17 16:49    |
| Radium 226                | 0.1 pCi/L                     |                                  | U                 |
| Radium 226 precision (±)  | 0.1 pCi/L                     |                                  |                   |
| Radium 226 MDC            | 0.2 pCi/L                     |                                  |                   |
| Lab ID: B17090193-002AMS  | Sample Matrix Spike           | Run: G542M-2_170918C             | 09/28/17 16:49    |
| Radium 226                | 23 pCi/L                      | 89 70 130                        |                   |
| Lab ID: B17090193-002AMSD | Sample Matrix Spike Duplicate | Run: G542M-2_170918C             | 09/28/17 16:49    |
| Radium 226                | 25 pCi/L                      | 97 70 130 8.3                    | 3 20              |
| Lab ID: LCS-RA226-8657    | Laboratory Control Sample     | Run: G542M-2_170918C             | 09/28/17 16:49    |
| Radium 226                | 8.6 pCi/L                     | 84 80 120                        |                   |





Prepared by Casper, WY Branch

| Analyte                    | Result                                             | Units           | RL | %REC | Low Limit               | High Limit     | RPD | RPDLimit  | Qual      |  |  |
|----------------------------|----------------------------------------------------|-----------------|----|------|-------------------------|----------------|-----|-----------|-----------|--|--|
| Method: RA-05              |                                                    |                 |    |      |                         |                |     | Batch: RA | 228-5604  |  |  |
| Lab ID: LCS-228-RA226-8657 | b ID: LCS-228-RA226-8657 Laboratory Control Sample |                 |    |      | Run: TENNELEC-3_170918B |                |     |           |           |  |  |
| Radium 228                 | 8.5                                                | pCi/L           |    | 84   | 80                      | 120            |     |           |           |  |  |
| Lab ID: MB-RA226-8657      | Method Blank                                       |                 |    |      | Run: TENN               | NELEC-3_170918 | 3B  | 09/23     | /17 13:46 |  |  |
| Radium 228                 | 0.2                                                | pCi/L           |    |      |                         |                |     |           | U         |  |  |
| Radium 228 precision (±)   | 1                                                  | pCi/L           |    |      |                         |                |     |           |           |  |  |
| Radium 228 MDC             | 2                                                  | pCi/L           |    |      |                         |                |     |           |           |  |  |
| Lab ID: B17090193-007AMS   | Sample Matrix                                      | Spike           |    |      | Run: TENN               | NELEC-3_170918 | 3B  | 09/23     | /17 13:46 |  |  |
| Radium 228                 | 24                                                 | pCi/L           |    | 90   | 70                      | 130            |     |           |           |  |  |
| Lab ID: B17090193-007AMSD  | Sample Matrix                                      | Spike Duplicate |    |      | Run: TENN               | NELEC-3_170918 | 3B  | 09/23     | /17 13:46 |  |  |
| Radium 228                 | 26                                                 | pCi/L           |    | 97   | 70                      | 130            | 7.2 | 20        |           |  |  |

# **Work Order Receipt Checklist**

# Texas Municipal Power Agency B17090193

| Login completed by:                                                                          | Gina McCartney                  |               | Date | Received: 9/5/2017     |  |  |  |
|----------------------------------------------------------------------------------------------|---------------------------------|---------------|------|------------------------|--|--|--|
| Reviewed by:                                                                                 | BL2000\cindy                    |               | Re   | eceived by: qej        |  |  |  |
| Reviewed Date:                                                                               | 9/6/2017                        |               | Cai  | rrier name: FedEx      |  |  |  |
| Shipping container/cooler in                                                                 | good condition?                 | Yes 🗸         | No 🗌 | Not Present            |  |  |  |
| Custody seals intact on all sh                                                               | nipping container(s)/cooler(s)? | Yes √         | No 🗌 | Not Present            |  |  |  |
| Custody seals intact on all sample bottles?                                                  |                                 | Yes           | No 🗌 | Not Present ✓          |  |  |  |
| Chain of custody present?                                                                    |                                 | Yes √         | No 🗌 |                        |  |  |  |
| Chain of custody signed whe                                                                  | en relinquished and received?   | Yes √         | No 🗌 |                        |  |  |  |
| Chain of custody agrees with                                                                 | sample labels?                  | Yes √         | No 🗌 |                        |  |  |  |
| Samples in proper container/                                                                 | bottle?                         | Yes √         | No 🗌 |                        |  |  |  |
| Sample containers intact?                                                                    |                                 | Yes √         | No 🗌 |                        |  |  |  |
| Sufficient sample volume for                                                                 | indicated test?                 | Yes √         | No 🗌 |                        |  |  |  |
| All samples received within h<br>(Exclude analyses that are or<br>such as pH, DO, Res Cl, Su | onsidered field parameters      | Yes √         | No 🗌 |                        |  |  |  |
| Temp Blank received in all sl                                                                | nipping container(s)/cooler(s)? | Yes √         | No 🗌 | Not Applicable         |  |  |  |
| Container/Temp Blank tempe                                                                   | erature:                        | °C Melted Ice |      |                        |  |  |  |
| Water - VOA vials have zero                                                                  | headspace?                      | Yes           | No 🗌 | No VOA vials submitted |  |  |  |
| Water - pH acceptable upon                                                                   | receipt?                        | Yes           | No 🗹 | Not Applicable         |  |  |  |

## **Standard Reporting Procedures:**

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

### **Contact and Corrective Action Comments:**

The Temperature Blank temperature for shipping container 1 was 16.7°C, shipping container 2 was 9.0°C and shipping container 3 was 14.2°C.

Samples WQBK/SCM/083117 and MNW-15 for Radio-Chemistry was received at pH >2. Nitric acid (8 mL) was added to both containers in the laboratory to preserve to pH <2.

# Chain of Custody & Analytical Request Record

| - | ı |  |
|---|---|--|
| } |   |  |
|   |   |  |
|   |   |  |

RadOhem awalysu contain HNOs preseructive. Samples EaBK/Scn/083117 and MNW-15 do not All turnaround times are standard unless marked as RUSH. Month onthis i MUST be contacted prior to RUSH sample submittal for BIT090193-00 Page \_\_\_\_ of\_\_ charges and scheduling -8 ğ See Instructions Page Energy Laboratories Comments Receipt Num See Attached Analysis Requested Report Information (if different than Account Information) □ LEVEL IV □ NELAC □ EDD/EDT (contact laboratory) □ Other LINGLE JANG Payment Type th Check Mady Received by (print Receive Report Utlend Copy DEmail <u>8</u> z გ≻ Special Report ormats Matrix (See Codes Above) Mailing Address Company/Name Matrix Codes City, State, Zip B - Bioassay V - Vegetation DW - Drinking Water Temp Blank Y N S - Soils/ Solids W- Water 0 - Other A-Air Signature Contact Phone Email Number of Containers 3 9-1- (1 Signature Receipt Temp 1230 1500 1345 **X**maii 0955 1825 930 02 Time EPA/State Compliance XYes □ No Project Name, PWSID, Permit, etc. Client: TMPA Project: CCRR Sampler Phone 5/2-795-0360 Collection ☐ Unprocessed ore (NOT ground or refined)\* Receive Invoice Retard Copy NEmail Receive Report Chard Copy 11/12/8 Mailing Address 3755 S. Capital of TX Hwy. #375 **Bottle Order** Date Intact Y N Date/Time Email greg. Settert @ amectw.com MAGE Custody Seals
Y N C B CompanyiName Amec Foster Wheeler MINING CLIENTS, please indicate sample type.
If ore has been processed or refined, call before sending. Account Information (Billing information) City, State, Zip Austin, TX 78704 Sample Identification (Name, Location) interval, etc.) 711880/ 512-795-0360 ATMV C Quote Greg Seitert Cooler ID(s) Sampler Name S. Macon. Project Information □ Byproduct 11 (e)2 material EQBK/SCM, SFL MW-MNW-16 Relinquisher APMW-6 MNW-15 MNW-18 MNW-1 Sample Origin State DUP-1 Purchase Order Record MUST Shipped By be signed Custody Contact Phone

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested. This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

Amount \$

Cash

ပ္ပ

EU-COC-12/16 v.1

മ

# **ANALYTICAL SUMMARY REPORT**

December 15, 2017

Texas Municipal Power Agency PO Box 7000 Bryan, TX 77805-7000

Work Order: B17090709 Quote ID: B3997 - CCRR

Project Name: TMPA CCRR

Energy Laboratories Inc Billings MT received the following 9 samples for Texas Municipal Power Agency on 9/11/2017 for analysis.

| Lab ID        | Client Sample ID | Collect Date | Receive Date | Matrix       | Test                                                                                                                                                                                                      |
|---------------|------------------|--------------|--------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B17090709-001 | SFL MW-7         | 09/07/17 10: | 40 09/11/17  | Ground Water | Metals by ICP/ICPMS, Tot. Rec. Mercury, Total Recoverable Fluoride Anions by Ion Chromatography pH Metals Preparation by EPA 200.2 Digestion, Mercury by CVAA Preparation for TDS Solids, Total Dissolved |
| B17090709-002 | MNW-15           | 09/07/17 12: | 00 09/11/17  | Ground Water | Same As Above                                                                                                                                                                                             |
| B17090709-003 | EQBK/SCM/090717  | 09/07/17 13: | 00 09/11/17  | Ground Water | Same As Above                                                                                                                                                                                             |
| B17090709-004 | MNW-18           | 09/07/17 13: | 55 09/11/17  | Ground Water | Same As Above                                                                                                                                                                                             |

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

Texas Municipal Power Agency

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

**Revised Date:** 12/15/17 **Report Date:** 09/20/17

Project: TMPA CCRR

Work Order: B17090709

CASE NARRATIVE

Revised Report 12/15/2017

**CLIENT:** 

The reporting limits for the following analytes were lowered per request from Greg Seifert.

Analyte Original Reporting Limit (mg/L) Revised Reporting limit (mg/L)

 Antimony
 0.05
 0.006

 Cadmium
 0.01
 0.005

 Thallium
 0.01
 0.002

The report has been revised and replaces any previously issued report in its entirety.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA CCRR
Lab ID: B17090709-001
Client Sample ID: SFL MW-7

Revised Date: 12/15/17
Report Date: 09/20/17

Collection Date: 09/07/17 10:40

DateReceived: 09/11/17

Matrix: Ground Water

|                                     |        |       |            |       | MCL/ |           |                      |
|-------------------------------------|--------|-------|------------|-------|------|-----------|----------------------|
| Analyses                            | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By   |
| MAJOR IONS                          |        |       |            |       |      |           |                      |
| Calcium                             | 613    | mg/L  |            | 1     |      | E200.7    | 09/14/17 05:06 / slf |
| Magnesium                           |        | mg/L  |            | 1     |      | E200.7    | 09/14/17 05:06 / slf |
| Potassium                           |        | mg/L  |            | 1     |      | E200.7    | 09/14/17 05:06 / slf |
| Sodium                              |        | mg/L  | D          | 4     |      | E200.7    | 09/14/17 05:06 / slf |
| PHYSICAL PROPERTIES                 |        |       |            |       |      |           |                      |
| рН                                  | 6.7    | s.u.  | Н          | 0.1   |      | A4500-H B | 09/11/17 15:06 / pjw |
| Solids, Total Dissolved TDS @ 180 C | 6810   | mg/L  | D          | 90    |      | A2540 C   | 09/12/17 10:49 / rik |
| INORGANICS                          |        |       |            |       |      |           |                      |
| Chloride                            | 2820   | mg/L  | D          | 6     |      | E300.0    | 09/17/17 01:13 / cjm |
| Sulfate                             | 770    | mg/L  | D          | 20    |      | E300.0    | 09/17/17 01:13 / cjm |
| Fluoride                            | ND     | mg/L  |            | 0.1   |      | A4500-F C | 09/13/17 18:01 / cjm |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |      |           |                      |
| Antimony                            | ND     | mg/L  |            | 0.006 |      | E200.8    | 09/12/17 18:18 / rlh |
| Arsenic                             | ND     | mg/L  |            | 0.01  |      | E200.8    | 09/12/17 18:18 / rlh |
| Barium                              | 0.04   | mg/L  |            | 0.01  |      | E200.8    | 09/12/17 18:18 / rlh |
| Beryllium                           | ND     | mg/L  |            | 0.001 |      | E200.8    | 09/12/17 18:18 / rlh |
| Boron                               | 0.59   | mg/L  |            | 0.05  |      | E200.7    | 09/14/17 05:06 / slf |
| Cadmium                             | ND     | mg/L  |            | 0.005 |      | E200.8    | 09/12/17 18:18 / rlh |
| Chromium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 09/12/17 18:18 / rlh |
| Cobalt                              | ND     | mg/L  |            | 0.02  |      | E200.8    | 09/15/17 18:22 / rlh |
| Lead                                | ND     | mg/L  |            | 0.01  |      | E200.8    | 09/12/17 18:18 / rlh |
| Lithium                             | 0.37   | mg/L  | D          | 0.04  |      | E200.7    | 09/14/17 05:06 / slf |
| Mercury                             | ND     | mg/L  |            | 0.001 |      | E245.1    | 09/12/17 13:56 / jag |
| Molybdenum                          | ND     | mg/L  |            | 0.05  |      | E200.8    | 09/12/17 18:18 / rlh |
| Selenium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 09/12/17 18:18 / rlh |
| Thallium                            | ND     | mg/L  |            | 0.002 |      | E200.8    | 09/12/17 18:18 / rlh |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA CCRR Lab ID: B17090709-002

Client Sample ID: MNW-15

Revised Date: 12/15/17 **Report Date:** 09/20/17 Collection Date: 09/07/17 12:00

DateReceived: 09/11/17

Matrix: Ground Water

|                                     |        |       |            |       | MCL/ |           |                      |
|-------------------------------------|--------|-------|------------|-------|------|-----------|----------------------|
| Analyses                            | Result | Units | Qualifiers | RL    |      | Method    | Analysis Date / By   |
| MAJOR IONS                          |        |       |            |       |      |           |                      |
| Calcium                             | 260    | mg/L  |            | 1     |      | E200.7    | 09/14/17 05:30 / slf |
| Magnesium                           |        | mg/L  |            | 1     |      | E200.7    | 09/14/17 05:30 / slf |
| Potassium                           |        | mg/L  |            | 1     |      | E200.7    | 09/14/17 05:30 / slf |
| Sodium                              |        | mg/L  | D          | 2     |      | E200.7    | 09/14/17 05:30 / slf |
| PHYSICAL PROPERTIES                 |        |       |            |       |      |           |                      |
| Н                                   | 3.7    | s.u.  | Н          | 0.1   |      | A4500-H B | 09/11/17 15:08 / pjw |
| Solids, Total Dissolved TDS @ 180 C |        | mg/L  | D          | 40    |      | A2540 C   | 09/12/17 10:49 / rik |
| INORGANICS                          |        |       |            |       |      |           |                      |
| Chloride                            | 740    | mg/L  | D          | 3     |      | E300.0    | 09/17/17 02:12 / cjm |
| Sulfate                             |        | mg/L  | D          | 9     |      | E300.0    | 09/17/17 02:12 / cjm |
| Fluoride                            |        | mg/L  |            | 0.1   |      | A4500-F C | 09/13/17 18:07 / cjm |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |      |           |                      |
| Antimony                            | ND     | mg/L  |            | 0.006 |      | E200.8    | 09/12/17 18:39 / rlh |
| Arsenic                             | ND     | mg/L  |            | 0.01  |      | E200.8    | 09/12/17 18:39 / rlh |
| Barium                              | 0.03   | mg/L  |            | 0.01  |      | E200.8    | 09/12/17 18:39 / rlh |
| Beryllium                           | 0.067  | mg/L  |            | 0.001 |      | E200.8    | 09/12/17 18:39 / rlh |
| Boron                               | 9.26   | mg/L  |            | 0.05  |      | E200.7    | 09/14/17 05:30 / slf |
| Cadmium                             | 0.089  | mg/L  |            | 0.005 |      | E200.8    | 09/12/17 18:39 / rlh |
| Chromium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 09/12/17 18:39 / rlh |
| Cobalt                              | 0.29   | mg/L  | D          | 0.03  |      | E200.7    | 09/14/17 05:30 / slf |
| Lead                                | ND     | mg/L  |            | 0.01  |      | E200.8    | 09/12/17 18:39 / rlh |
| Lithium                             | 0.05   | mg/L  | D          | 0.02  |      | E200.7    | 09/14/17 05:30 / slf |
| Mercury                             | ND     | mg/L  |            | 0.001 |      | E245.1    | 09/12/17 13:58 / jag |
| Molybdenum                          | ND     | mg/L  |            | 0.05  |      | E200.8    | 09/12/17 18:39 / rlh |
| Selenium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 09/12/17 18:39 / rlh |
| Thallium                            | 0.002  | mg/L  |            | 0.002 |      | E200.8    | 09/12/17 18:39 / rlh |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA CCRR Lab ID: B17090709-003 Client Sample ID: EQBK/SCM/090717

Revised Date: 12/15/17 **Report Date:** 09/20/17 Collection Date: 09/07/17 13:00 DateReceived: 09/11/17

Matrix: Ground Water

| Analyses                            | Result | Units | Qualifiers | RL    | MCL/<br>QCL | Method    | Analysis Date / By   |
|-------------------------------------|--------|-------|------------|-------|-------------|-----------|----------------------|
| MAJOR IONS                          |        |       |            |       |             |           |                      |
| Calcium                             | ND     | mg/L  |            | 1     |             | E200.7    | 09/14/17 05:34 / slf |
| Magnesium                           | ND     | mg/L  |            | 1     |             | E200.7    | 09/14/17 05:34 / slf |
| Potassium                           | ND     | mg/L  |            | 1     |             | E200.7    | 09/14/17 05:34 / slf |
| Sodium                              | ND     | mg/L  |            | 1     |             | E200.7    | 09/14/17 05:34 / slf |
| PHYSICAL PROPERTIES                 |        |       |            |       |             |           |                      |
| Н                                   | 6.0    | s.u.  | Н          | 0.1   |             | A4500-H B | 09/11/17 15:11 / pjw |
| Solids, Total Dissolved TDS @ 180 C | ND     | mg/L  |            | 10    |             | A2540 C   | 09/12/17 10:49 / rik |
| NORGANICS                           |        |       |            |       |             |           |                      |
| Chloride                            | ND     | mg/L  |            | 1     |             | E300.0    | 09/17/17 02:31 / cjm |
| Sulfate                             | ND     | mg/L  |            | 1     |             | E300.0    | 09/17/17 02:31 / cjm |
| luoride                             | ND     | mg/L  |            | 0.1   |             | A4500-F C | 09/13/17 18:15 / cjm |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |             |           |                      |
| Antimony                            | ND     | mg/L  |            | 0.006 |             | E200.8    | 09/12/17 18:42 / rlh |
| Arsenic                             | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/12/17 18:42 / rlh |
| Barium                              | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/12/17 18:42 / rlh |
| Beryllium                           | ND     | mg/L  |            | 0.001 |             | E200.8    | 09/12/17 18:42 / rlh |
| Boron                               | ND     | mg/L  |            | 0.05  |             | E200.7    | 09/14/17 05:34 / slf |
| Cadmium                             | ND     | mg/L  |            | 0.005 |             | E200.8    | 09/12/17 18:42 / rlh |
| Chromium                            | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/12/17 18:42 / rlh |
| Cobalt                              | ND     | mg/L  |            | 0.02  |             | E200.7    | 09/14/17 05:34 / slf |
| ead                                 | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/12/17 18:42 / rlh |
| ithium                              | ND     | mg/L  |            | 0.01  |             | E200.7    | 09/14/17 05:34 / slf |
| Mercury                             | ND     | mg/L  |            | 0.001 |             | E245.1    | 09/12/17 14:00 / jag |
| Nolybdenum                          | ND     | mg/L  |            | 0.05  |             | E200.8    | 09/12/17 18:42 / rlh |
| Selenium                            | ND     | mg/L  |            | 0.01  |             | E200.8    | 09/12/17 18:42 / rlh |
| Гhallium                            | ND     | mg/L  |            | 0.002 |             | E200.8    | 09/12/17 18:42 / rlh |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

H - Analysis performed past recommended holding time.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA CCRR Lab ID: B17090709-004

Client Sample ID: MNW-18

Revised Date: 12/15/17 **Report Date:** 09/20/17 Collection Date: 09/07/17 13:55

> DateReceived: 09/11/17 Matrix: Ground Water

|                                     |        |       |            |       | MCL/ |           |                      |
|-------------------------------------|--------|-------|------------|-------|------|-----------|----------------------|
| Analyses                            | Result | Units | Qualifiers | RL    | QCL  | Method    | Analysis Date / By   |
| MAJOR IONS                          |        |       |            |       |      |           |                      |
| Calcium                             | 439    | mg/L  |            | 1     |      | E200.7    | 09/14/17 05:37 / slf |
| Magnesium                           | 71     | -     |            | 1     |      | E200.7    | 09/14/17 05:37 / slf |
| Potassium                           |        | mg/L  |            | 1     |      | E200.7    | 09/14/17 05:37 / slf |
| Sodium                              |        | mg/L  | D          | 4     |      | E200.7    | 09/14/17 05:37 / slf |
| PHYSICAL PROPERTIES                 |        |       |            |       |      |           |                      |
| рН                                  | 6.9    | s.u.  | Н          | 0.1   |      | A4500-H B | 09/11/17 15:14 / pjw |
| Solids, Total Dissolved TDS @ 180 C |        | mg/L  | D          | 40    |      | A2540 C   | 09/12/17 10:49 / rik |
| INORGANICS                          |        |       |            |       |      |           |                      |
| Chloride                            | 529    | mg/L  | D          | 6     |      | E300.0    | 09/17/17 02:51 / cjm |
| Sulfate                             | 2200   | mg/L  | D          | 20    |      | E300.0    | 09/17/17 02:51 / cjm |
| Fluoride                            | 0.1    | mg/L  |            | 0.1   |      | A4500-F C | 09/13/17 18:18 / cjm |
| METALS, TOTAL RECOVERABLE           |        |       |            |       |      |           |                      |
| Antimony                            | ND     | mg/L  |            | 0.006 |      | E200.8    | 09/12/17 18:45 / rlh |
| Arsenic                             | ND     | mg/L  |            | 0.01  |      | E200.8    | 09/12/17 18:45 / rlh |
| Barium                              | 0.05   | mg/L  |            | 0.01  |      | E200.8    | 09/12/17 18:45 / rlh |
| Beryllium                           | ND     | mg/L  |            | 0.001 |      | E200.8    | 09/12/17 18:45 / rlh |
| Boron                               | 0.30   | mg/L  |            | 0.05  |      | E200.7    | 09/14/17 05:37 / slf |
| Cadmium                             | ND     | mg/L  |            | 0.005 |      | E200.8    | 09/12/17 18:45 / rlh |
| Chromium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 09/12/17 18:45 / rlh |
| Cobalt                              | ND     | mg/L  |            | 0.02  |      | E200.8    | 09/15/17 18:42 / rlh |
| Lead                                | ND     | mg/L  |            | 0.01  |      | E200.8    | 09/12/17 18:45 / rlh |
| Lithium                             | 0.36   | mg/L  | D          | 0.04  |      | E200.7    | 09/14/17 05:37 / slf |
| Mercury                             | ND     | mg/L  |            | 0.001 |      | E245.1    | 09/12/17 14:02 / jag |
| Molybdenum                          | ND     | mg/L  |            | 0.05  |      | E200.8    | 09/12/17 18:45 / rlh |
| Selenium                            | ND     | mg/L  |            | 0.01  |      | E200.8    | 09/12/17 18:45 / rlh |
| Thallium                            | ND     | mg/L  |            | 0.002 |      | E200.8    | 09/12/17 18:45 / rlh |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.



Prepared by Billings, MT Branch

| Analyte Co                          | ount Result   | Units         | RL | %REC | Low Limit  | High Limit    | RPD | RPDLimit | Qual      |
|-------------------------------------|---------------|---------------|----|------|------------|---------------|-----|----------|-----------|
| Method: A2540 C                     |               |               |    |      |            |               |     | Batcl    | n: 113581 |
| Lab ID: MB-113581                   | Method Blank  |               |    |      | Run: BAL # | SD-15_170912C |     | 09/12/   | 17 10:49  |
| Solids, Total Dissolved TDS @ 180 0 | ND ND         | mg/L          | 4  |      |            |               |     |          |           |
| Lab ID: LCS-113581                  | Laboratory Co | ontrol Sample |    |      | Run: BAL # | SD-15_170912C |     | 09/12/   | 17 10:49  |
| Solids, Total Dissolved TDS @ 180 0 | 1000          | mg/L          | 10 | 99   | 90         | 110           |     |          |           |
| Lab ID: B17090709-001A DUP          | Sample Duplic | cate          |    |      | Run: BAL # | SD-15_170912C |     | 09/12/   | 17 10:49  |
| Solids, Total Dissolved TDS @ 180 0 | 6640          | mg/L          | 99 |      |            |               | 2.5 | 5        |           |



Prepared by Billings, MT Branch

| Analyte  |                   | Count Result    | Units             | RL         | %REC | Low Limit | High Limit   | RPD     | RPDLimit  | Qual     |
|----------|-------------------|-----------------|-------------------|------------|------|-----------|--------------|---------|-----------|----------|
| Method:  | A4500-F C         |                 |                   |            |      |           | Analytic     | al Run: | MAN-TECH_ | _170913A |
| Lab ID:  | ICV               | Initial Calibra | tion Verification | n Standard |      |           |              |         | 09/13/    | 17 16:03 |
| Fluoride |                   | 0.940           | mg/L              | 0.10       | 94   | 90        | 110          |         |           |          |
| Method:  | A4500-F C         |                 |                   |            |      |           |              |         | Batch:    | R286653  |
| Lab ID:  | MBLK              | Method Blank    | <                 |            |      | Run: MAN- | TECH_170913A |         | 09/13/    | 17 16:01 |
| Fluoride |                   | ND              | mg/L              | 0.02       |      |           |              |         |           |          |
| Lab ID:  | LFB               | Laboratory Fo   | ortified Blank    |            |      | Run: MAN- | TECH_170913A |         | 09/13/    | 17 16:06 |
| Fluoride |                   | 0.950           | mg/L              | 0.10       | 95   | 90        | 110          |         |           |          |
| Lab ID:  | B17090657-001AMS  | Sample Matri    | x Spike           |            |      | Run: MAN- | TECH_170913A |         | 09/13/    | 17 17:44 |
| Fluoride |                   | 1.71            | mg/L              | 0.10       | 103  | 80        | 120          |         |           |          |
| Lab ID:  | B17090657-001AMSI | Sample Matri    | x Spike Duplica   | ate        |      | Run: MAN- | TECH_170913A |         | 09/13/    | 17 17:47 |
| Fluoride |                   | 1.71            | mg/L              | 0.10       | 103  | 80        | 120          | 0.0     | 10        |          |
| Lab ID:  | B17090709-006AMS  | Sample Matri    | x Spike           |            |      | Run: MAN- | TECH_170913A |         | 09/13/    | 17 18:38 |
| Fluoride |                   | 1.06            | mg/L              | 0.10       | 90   | 80        | 120          |         |           |          |
| Lab ID:  | B17090709-006AMSI | Sample Matri    | x Spike Duplica   | ate        |      | Run: MAN- | TECH_170913A |         | 09/13/    | 17 18:41 |
| Fluoride |                   | 1.05            | mg/L              | 0.10       | 89   | 80        | 120          | 0.9     | 10        |          |





Prepared by Billings, MT Branch

| Analyte |                  | Count        | Result        | Units       | RL            | %REC | Low Limit | High Limit  | RPD        | RPDLimit    | Qual     |
|---------|------------------|--------------|---------------|-------------|---------------|------|-----------|-------------|------------|-------------|----------|
| Method: | A4500-H B        |              |               |             |               |      |           | Analytic    | al Run: PH | ISC _101-B_ | _170911A |
| Lab ID: | pH 8             | Initia       | al Calibratio | n Verificat | tion Standard |      |           |             |            | 09/11/      | 17 08:41 |
| рН      |                  |              | 7.98          | s.u.        | 0.10          | 100  | 98        | 102         |            |             |          |
| Method: | A4500-H B        |              |               |             |               |      |           |             |            | Batch:      | R286396  |
| Lab ID: | B17090709-007ADU | <b>P</b> San | nple Duplica  | ate         |               |      | Run: PHSC | _101-B_1709 | 11A        | 09/11/      | 17 15:24 |
| pН      |                  |              | 12.1          | s.u.        | 0.10          |      |           |             | 0.2        | 3           |          |

Prepared by Billings, MT Branch

Texas Municipal Power Agency

**Report Date:** 09/20/17 Project: TMPA CCRR Work Order: B17090709

| Analyte  |                   | Count   | Result         | Units              | RL     | %REC | Low Limit  | High Limit  | RPD       | RPDLimit   | Qual     |
|----------|-------------------|---------|----------------|--------------------|--------|------|------------|-------------|-----------|------------|----------|
| Method:  | E300.0            |         |                |                    |        |      |            | Analytical  | Run: IC M | IETROHM 1_ | _170915B |
| Lab ID:  | ICV               | 2 Initi | ial Calibratio | n Verification Sta | andard |      |            |             |           | 09/15/     | 17 13:51 |
| Chloride |                   |         | 2.22           | mg/L               | 1.0    | 99   | 90         | 110         |           |            |          |
| Sulfate  |                   |         | 9.01           | mg/L               | 1.0    | 100  | 90         | 110         |           |            |          |
| Method:  | E300.0            |         |                |                    |        |      |            |             |           | Batch:     | R286837  |
| Lab ID:  | ICB               | 2 Me    | thod Blank     |                    |        |      | Run: IC ME | TROHM 1_170 | 0915B     | 09/15/     | 17 14:11 |
| Chloride |                   |         | ND             | mg/L               | 0.006  |      |            |             |           |            |          |
| Sulfate  |                   |         | ND             | mg/L               | 0.02   |      |            |             |           |            |          |
| Lab ID:  | LFB               | 2 Lab   | oratory For    | tified Blank       |        |      | Run: IC ME | TROHM 1_170 | 0915B     | 09/15/     | 17 14:30 |
| Chloride |                   |         | 10.2           | mg/L               | 1.0    | 102  | 90         | 110         |           |            |          |
| Sulfate  |                   |         | 30.3           | mg/L               | 1.0    | 101  | 90         | 110         |           |            |          |
| Lab ID:  | B17090709-001AMS  | 2 Sar   | mple Matrix    | Spike              |        |      | Run: IC ME | TROHM 1_170 | 0915B     | 09/17/     | 17 01:33 |
| Chloride |                   |         | 3730           | mg/L               | 6.1    | 91   | 90         | 110         |           |            | E        |
| Sulfate  |                   |         | 3950           | mg/L               | 18     | 106  | 90         | 110         |           |            |          |
| Lab ID:  | B17090709-001AMSI | D 2 Sar | mple Matrix    | Spike Duplicate    |        |      | Run: IC ME | TROHM 1_170 | 0915B     | 09/17/     | 17 01:52 |
| Chloride |                   |         | 3720           | mg/L               | 6.1    | 90   | 90         | 110         | 0.3       | 20         | E        |
| Sulfate  |                   |         | 3960           | mg/L               | 18     | 106  | 90         | 110         | 0.3       | 20         |          |
| Lab ID:  | B17091041-008AMS  | 2 Sar   | mple Matrix    | Spike              |        |      | Run: IC ME | TROHM 1_170 | 0915B     | 09/17/     | 17 06:06 |
| Chloride |                   |         | 1560           | mg/L               | 6.1    | 106  | 90         | 110         |           |            |          |
| Sulfate  |                   |         | 7960           | mg/L               | 18     | 97   | 90         | 110         |           |            |          |
| Lab ID:  | B17091041-008AMSI | D 2 Sar | mple Matrix    | Spike Duplicate    |        |      | Run: IC ME | TROHM 1_170 | 0915B     | 09/17/     | 17 06:26 |
| Chloride |                   |         | 1550           | mg/L               | 6.1    | 104  | 90         | 110         | 8.0       | 20         |          |
| Sulfate  |                   |         | 7910           | mg/L               | 18     | 95   | 90         | 110         | 0.6       | 20         |          |

### Qualifiers:

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/20/17Project:TMPA CCRRWork Order:B17090709

| Analyte                |                   | Count         | Result       | Units          | RL             | %REC     | Low Limit  | High Limit  | RPD RPDLimit        | Qual       |
|------------------------|-------------------|---------------|--------------|----------------|----------------|----------|------------|-------------|---------------------|------------|
| Method:                | E200.7            |               |              |                |                |          |            | Analy       | tical Run: ICP203-E | 3_170913A  |
| Lab ID:                | ICV               | 7 Co          | ntinuing Cal | ibration Verif | ication Standa | rd       |            |             | 09/1                | 3/17 11:15 |
| Boron                  |                   |               | 2.47         | mg/L           | 0.10           | 99       | 95         | 105         |                     |            |
| Calcium                |                   |               | 24.1         | mg/L           | 1.0            | 97       | 95         | 105         |                     |            |
| Cobalt                 |                   |               | 2.41         | mg/L           | 0.020          | 96       | 95         | 105         |                     |            |
| Lithium                |                   |               | 1.20         | mg/L           | 0.10           | 96       | 95         | 105         |                     |            |
| Magnesiun              | n                 |               | 24.3         | mg/L           | 1.0            | 97       | 95         | 105         |                     |            |
| Potassium              |                   |               | 23.9         | mg/L           | 1.0            | 96       | 95         | 105         |                     |            |
| Sodium                 |                   |               | 24.0         | mg/L           | 1.0            | 96       | 95         | 105         |                     |            |
| Method:                | E200.7            |               |              |                |                |          |            |             | Bat                 | ch: 113553 |
| Lab ID:                | MB-113553         | 8 Me          | thod Blank   |                |                |          | Run: ICP20 | 3-B_170913A | 09/1                | 4/17 04:55 |
| Boron                  |                   |               | ND           | mg/L           | 0.003          |          |            | _           |                     |            |
| Calcium                |                   |               | ND           | mg/L           | 0.08           |          |            |             |                     |            |
| Cobalt                 |                   |               | ND           | mg/L           | 0.005          |          |            |             |                     |            |
| Lithium                |                   |               | ND           | mg/L           | 0.004          |          |            |             |                     |            |
| Magnesiun              | n                 |               | ND           | mg/L           | 0.01           |          |            |             |                     |            |
| Potassium              |                   |               | ND           | mg/L           | 0.07           |          |            |             |                     |            |
| Sodium                 |                   |               | ND           | mg/L           | 0.03           |          |            |             |                     |            |
| Magnesiun              | n, meq            |               | ND           | meq/L          | 0.001          |          |            |             |                     |            |
| Lab ID:                | LCS-113553        | 7 Lal         | ooratory Cor | ntrol Sample   |                |          | Run: ICP20 | 3-B_170913A | 09/1                | 4/17 04:58 |
| Boron                  |                   |               | 0.464        | mg/L           | 0.050          | 93       | 85         | _<br>115    |                     |            |
| Calcium                |                   |               | 25.2         | mg/L           | 1.0            | 101      | 85         | 115         |                     |            |
| Cobalt                 |                   |               | 0.511        | mg/L           | 0.0052         | 102      | 85         | 115         |                     |            |
| Lithium                |                   |               | 0.484        | mg/L           | 0.10           | 97       | 85         | 115         |                     |            |
| Magnesiun              | n                 |               | 25.5         | mg/L           | 1.0            | 102      | 85         | 115         |                     |            |
| Potassium              |                   |               | 24.6         | mg/L           | 1.0            | 98       | 85         | 115         |                     |            |
| Sodium                 |                   |               | 24.8         | mg/L           | 1.0            | 99       | 85         | 115         |                     |            |
| Lab ID:                | B17090709-001BMS3 | 3 7 Sa        | mple Matrix  | Spike          |                |          | Run: ICP20 | 3-B_170913A | 09/1                | 4/17 05:16 |
| Boron                  |                   |               | 1.08         | mg/L           | 0.050          | 99       | 70         | 130         |                     |            |
| Calcium                |                   |               | 626          | mg/L           | 1.0            |          | 70         | 130         |                     | Α          |
| Cobalt                 |                   |               | 0.504        | mg/L           | 0.052          | 101      | 70         | 130         |                     |            |
| Lithium                |                   |               | 0.823        | mg/L           | 0.10           | 91       | 70         | 130         |                     |            |
| Magnesiun              | n                 |               | 120          | mg/L           | 1.0            | 88       | 70         | 130         |                     |            |
| Potassium              |                   |               | 65.4         | mg/L           | 1.0            | 91       | 70         | 130         |                     |            |
| Sodium                 |                   |               | 1130         | mg/L           | 4.2            |          | 70         | 130         |                     | Α          |
| Lab ID:                | B17090709-001BMSI | <b>)</b> 7 Sa | mple Matrix  | Spike Duplic   | ate            |          | Run: ICP20 | 3-B_170913A | 09/1                | 4/17 05:27 |
| Boron                  |                   |               | 1.11         | mg/L           | 0.050          | 104      | 70         | 130         | 2.4 20              | · · · · ·  |
| Calcium                |                   |               | 631          | mg/L           | 1.0            |          | 70         | 130         | 0.7 20              | Α          |
| Cobalt                 |                   |               | 0.506        | mg/L           | 0.052          | 101      | 70         | 130         | 0.4 20              | •          |
|                        |                   |               | 0.855        | mg/L           | 0.10           | 97       | 70         | 130         | 3.8 20              |            |
| Lithium                |                   |               |              |                |                |          |            |             |                     |            |
| Lithium<br>Magnesiun   | n                 |               | 120          | ma/i           | 1 ()           | 91       | 7(1        | 1.70        | () ()               |            |
| Magnesiun<br>Potassium |                   |               | 120<br>65.7  | mg/L<br>mg/L   | 1.0<br>1.0     | 91<br>92 | 70<br>70   | 130<br>130  | 0.6 20<br>0.4 20    |            |

## Qualifiers:

RL - Analyte reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.



Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/20/17Project:TMPA CCRRWork Order:B17090709

| Analyte   |                   | Cour | nt Result     | Units           | RL     | %REC | Low Limit  | High Limit  | RPD | RPDLimit | Qual      |
|-----------|-------------------|------|---------------|-----------------|--------|------|------------|-------------|-----|----------|-----------|
| Method:   | E200.7            |      |               |                 |        |      |            |             |     | Batc     | h: 113553 |
| Lab ID:   | B17090709-001BMSE | 7    | Sample Matrix | Spike Duplicate |        |      | Run: ICP20 | 3-B_170913A |     | 09/14/   | /17 05:27 |
| Lab ID:   | B17090786-002AMS3 | 7    | Sample Matrix | Spike           |        |      | Run: ICP20 | 3-B_170913A |     | 09/14/   | /17 06:20 |
| Boron     |                   |      | 0.664         | mg/L            | 0.050  | 98   | 70         | 130         |     |          |           |
| Calcium   |                   |      | 89.3          | mg/L            | 1.0    | 103  | 70         | 130         |     |          |           |
| Cobalt    |                   |      | 0.472         | mg/L            | 0.0052 | 94   | 70         | 130         |     |          |           |
| Lithium   |                   |      | 0.552         | mg/L            | 0.10   | 94   | 70         | 130         |     |          |           |
| Magnesiur | m                 |      | 66.4          | mg/L            | 1.0    | 104  | 70         | 130         |     |          |           |
| Potassium | ı                 |      | 57.9          | mg/L            | 1.0    | 99   | 70         | 130         |     |          |           |
| Sodium    |                   |      | 128           | mg/L            | 1.0    |      | 70         | 130         |     |          | Α         |
| Lab ID:   | B17090786-002AMSD | 7    | Sample Matrix | Spike Duplicate |        |      | Run: ICP20 | 3-B_170913A |     | 09/14/   | /17 06:24 |
| Boron     |                   |      | 0.643         | mg/L            | 0.050  | 94   | 70         | 130         | 3.2 | 20       |           |
| Calcium   |                   |      | 86.2          | mg/L            | 1.0    | 90   | 70         | 130         | 3.6 | 20       |           |
| Cobalt    |                   |      | 0.468         | mg/L            | 0.0052 | 94   | 70         | 130         | 1.0 | 20       |           |
| Lithium   |                   |      | 0.532         | mg/L            | 0.10   | 90   | 70         | 130         | 3.7 | 20       |           |
| Magnesiur | n                 |      | 64.4          | mg/L            | 1.0    | 96   | 70         | 130         | 3.1 | 20       |           |
| Potassium | ı                 |      | 56.0          | mg/L            | 1.0    | 91   | 70         | 130         | 3.4 | 20       |           |
| Sodium    |                   |      | 123           | mg/L            | 1.0    |      | 70         | 130         | 4.3 | 20       | Α         |

## Qualifiers:

RL - Analyte reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/20/17Project:TMPA CCRRWork Order:B17090709

| Analyte   |                   | Count Resu       | ılt Units      | RL             | %REC | Low Limit | High Limit             | RPD      | RPDLimit  | Qual      |
|-----------|-------------------|------------------|----------------|----------------|------|-----------|------------------------|----------|-----------|-----------|
| Method:   | E200.8            |                  |                |                |      |           | Analytica              | l Run: I | CPMS206-B | _170912A  |
| Lab ID:   | QCS               | 10 Initial Calib | ration Verific | ation Standard |      |           |                        |          | 09/12/    | /17 11:34 |
| Antimony  |                   | 0.050            | 01 mg/L        | 0.050          | 100  | 90        | 110                    |          |           |           |
| Arsenic   |                   | 0.05             | 10 mg/L        | 0.0050         | 102  | 90        | 110                    |          |           |           |
| Barium    |                   | 0.049            | 92 mg/L        | 0.10           | 98   | 90        | 110                    |          |           |           |
| Beryllium |                   | 0.026            | 64 mg/L        | 0.0010         | 106  | 90        | 110                    |          |           |           |
| Cadmium   |                   | 0.026            | 60 mg/L        | 0.0010         | 104  | 90        | 110                    |          |           |           |
| Chromium  |                   | 0.050            | 06 mg/L        | 0.010          | 101  | 90        | 110                    |          |           |           |
| Lead      |                   | 0.050            | 00 mg/L        | 0.010          | 100  | 90        | 110                    |          |           |           |
| Molybdenu | ım                | 0.045            | 57 mg/L        | 0.0050         | 91   | 90        | 110                    |          |           |           |
| Selenium  |                   | 0.05             | 14 mg/L        | 0.0050         | 103  | 90        | 110                    |          |           |           |
| Thallium  |                   | 0.055            | 51 mg/L        | 0.10           | 110  | 90        | 110                    |          |           |           |
| Method:   | E200.8            |                  |                |                |      |           |                        |          | Batcl     | h: 113553 |
| Lab ID:   | MB-113553         | 11 Method Bla    | ank            |                |      | Run: ICPM | S206-B_170912 <i>A</i> | 4        | 09/12/    | /17 18:01 |
| Antimony  |                   | N                | ID mg/L        | 0.00004        |      |           |                        |          |           |           |
| Arsenic   |                   | N                | ID mg/L        | 0.0002         |      |           |                        |          |           |           |
| Barium    |                   | N                | ID mg/L        | 0.00005        |      |           |                        |          |           |           |
| Beryllium |                   | 0.000            | 02 mg/L        | 0.00008        |      |           |                        |          |           |           |
| Cadmium   |                   | N                | ID mg/L        | 0.00003        |      |           |                        |          |           |           |
| Chromium  |                   | N                | ID mg/L        | 0.0001         |      |           |                        |          |           |           |
| Cobalt    |                   | 0.0000           | 08 mg/L        | 0.00002        |      |           |                        |          |           |           |
| Lead      |                   | 0.0000           | 03 mg/L        | 0.00003        |      |           |                        |          |           |           |
| Molybdenu | ım                | 0.000            | )2 mg/L        | 0.00003        |      |           |                        |          |           |           |
| Selenium  |                   | N                | ID mg/L        | 0.0004         |      |           |                        |          |           |           |
| Thallium  |                   | 0.0000           | 09 mg/L        | 7E-06          |      |           |                        |          |           |           |
| Lab ID:   | LCS-113553        | 10 Laboratory    | Control Sam    | iple           |      | Run: ICPM | S206-B_170912 <i>F</i> | 4        | 09/12/    | /17 18:21 |
| Antimony  |                   | 0.53             | 36 mg/L        | 0.0050         | 107  | 85        | 115                    |          |           |           |
| Arsenic   |                   | 0.52             | 21 mg/L        | 0.0010         | 104  | 85        | 115                    |          |           |           |
| Barium    |                   | 0.52             | 25 mg/L        | 0.010          | 105  | 85        | 115                    |          |           |           |
| Beryllium |                   | 0.25             | 52 mg/L        | 0.0010         | 101  | 85        | 115                    |          |           |           |
| Cadmium   |                   | 0.25             | 59 mg/L        | 0.0010         | 104  | 85        | 115                    |          |           |           |
| Chromium  |                   | 0.50             | 00 mg/L        | 0.0010         | 100  | 85        | 115                    |          |           |           |
| Lead      |                   | 0.53             | 34 mg/L        | 0.0010         | 107  | 85        | 115                    |          |           |           |
| Molybdenu | ım                | 0.50             | 00 mg/L        | 0.0050         | 100  | 85        | 115                    |          |           |           |
| Selenium  |                   | 0.5              | 15 mg/L        | 0.0050         | 103  | 85        | 115                    |          |           |           |
| Thallium  |                   | 0.52             | 23 mg/L        | 0.0010         | 105  | 85        | 115                    |          |           |           |
| Lab ID:   | B17090709-001BMS3 | 11 Sample Ma     | atrix Spike    |                |      | Run: ICPM | S206-B_170912 <i>F</i> | 4        | 09/12/    | /17 18:25 |
| Antimony  |                   | 0.49             | 99 mg/L        | 0.0010         | 100  | 70        | 130                    |          |           |           |
| Arsenic   |                   | 0.53             | 31 mg/L        | 0.0010         | 106  | 70        | 130                    |          |           |           |
| Barium    |                   | 0.52             |                | 0.050          | 97   | 70        | 130                    |          |           |           |
| Beryllium |                   | 0.24             | 11 mg/L        | 0.0010         | 96   | 70        | 130                    |          |           |           |
| Cadmium   |                   | 0.25             | 55 mg/L        | 0.0010         | 102  | 70        | 130                    |          |           |           |
| Chromium  |                   | 0.50             | 04 mg/L        | 0.0050         | 101  | 70        | 130                    |          |           |           |
| Cobalt    |                   | 0.49             |                | 0.0050         | 100  | 70        | 130                    |          |           |           |

Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/20/17Project:TMPA CCRRWork Order:B17090709

| Analyte   |                   | Count R            | esult    | Units      | RL      | %REC | Low Limit | High Limit     | RPD | RPDLimit | Qual      |
|-----------|-------------------|--------------------|----------|------------|---------|------|-----------|----------------|-----|----------|-----------|
| Method:   | E200.8            |                    |          |            |         |      |           |                |     | Batc     | h: 113553 |
| Lab ID:   | B17090709-001BMS  | 3 11 Sample        | e Matrix | Spike      |         |      | Run: ICPM | S206-B_170912A |     | 09/12    | /17 18:25 |
| Lead      |                   |                    | 0.482    | mg/L       | 0.0010  | 96   | 70        | 130            |     |          |           |
| Molybdenu | ım                |                    | 0.482    | mg/L       | 0.0010  | 96   | 70        | 130            |     |          |           |
| Selenium  |                   |                    | 0.495    | mg/L       | 0.0018  | 99   | 70        | 130            |     |          |           |
| Thallium  |                   |                    | 0.447    | mg/L       | 0.00050 | 89   | 70        | 130            |     |          |           |
| Lab ID:   | B17090709-001BMSI | D 11 Sample        | e Matrix | Spike Dupl | licate  |      | Run: ICPM | S206-B_170912A |     | 09/12    | /17 18:28 |
| Antimony  |                   |                    | 0.496    | mg/L       | 0.0010  | 99   | 70        | 130            | 0.5 | 20       |           |
| Arsenic   |                   |                    | 0.538    | mg/L       | 0.0010  | 108  | 70        | 130            | 1.4 | 20       |           |
| Barium    |                   |                    | 0.514    | mg/L       | 0.050   | 96   | 70        | 130            | 1.4 | 20       |           |
| Beryllium |                   |                    | 0.249    | mg/L       | 0.0010  | 100  | 70        | 130            | 3.5 | 20       |           |
| Cadmium   |                   |                    | 0.248    | mg/L       | 0.0010  | 99   | 70        | 130            | 2.9 | 20       |           |
| Chromium  |                   |                    | 0.508    | mg/L       | 0.0050  | 101  | 70        | 130            | 0.7 | 20       |           |
| Cobalt    |                   |                    | 0.488    | mg/L       | 0.0050  | 97   | 70        | 130            | 2.2 | 20       |           |
| Lead      |                   |                    | 0.482    | mg/L       | 0.0010  | 96   | 70        | 130            | 0.0 | 20       |           |
| Molybdenu | ım                |                    | 0.472    | mg/L       | 0.0010  | 94   | 70        | 130            | 2.1 | 20       |           |
| Selenium  |                   |                    | 0.508    | mg/L       | 0.0018  | 102  | 70        | 130            | 2.6 | 20       |           |
| Thallium  |                   |                    | 0.457    | mg/L       | 0.00050 | 91   | 70        | 130            | 2.1 | 20       |           |
| Lab ID:   | B17090786-002AMS3 | 3 11 Sample        | e Matrix | Spike      |         |      | Run: ICPM | S206-B_170912A |     | 09/12    | /17 19:54 |
| Antimony  |                   |                    | 0.490    | mg/L       | 0.0010  | 98   | 70        | 130            |     |          |           |
| Arsenic   |                   |                    | 0.542    | mg/L       | 0.0010  | 107  | 70        | 130            |     |          |           |
| Barium    |                   |                    | 0.536    | mg/L       | 0.050   | 95   | 70        | 130            |     |          |           |
| Beryllium |                   |                    | 0.216    | mg/L       | 0.0010  | 86   | 70        | 130            |     |          |           |
| Cadmium   |                   |                    | 0.250    | mg/L       | 0.0010  | 100  | 70        | 130            |     |          |           |
| Chromium  |                   |                    | 0.497    | mg/L       | 0.0050  | 99   | 70        | 130            |     |          |           |
| Cobalt    |                   |                    | 0.527    | mg/L       | 0.0050  | 105  | 70        | 130            |     |          |           |
| Lead      |                   |                    | 0.484    | mg/L       | 0.0010  | 97   | 70        | 130            |     |          |           |
| Molybdenu | ım                |                    | 0.478    | mg/L       | 0.0010  | 95   | 70        | 130            |     |          |           |
| Selenium  |                   |                    | 0.467    | mg/L       | 0.0010  | 93   | 70        | 130            |     |          |           |
| Thallium  |                   |                    | 0.530    | mg/L       | 0.00050 | 106  | 70        | 130            |     |          |           |
| Lab ID:   | B17090786-002AMSI | <b>)</b> 11 Sample | e Matrix | Spike Dupl | licate  |      | Run: ICPM | S206-B_170912A |     | 09/12    | /17 19:58 |
| Antimony  |                   |                    | 0.507    | mg/L       | 0.0010  | 101  | 70        | 130            | 3.4 | 20       |           |
| Arsenic   |                   |                    | 0.535    | mg/L       | 0.0010  | 105  | 70        | 130            | 1.3 | 20       |           |
| Barium    |                   |                    | 0.553    | mg/L       | 0.050   | 98   | 70        | 130            | 3.1 | 20       |           |
| Beryllium |                   |                    | 0.229    | mg/L       | 0.0010  | 92   | 70        | 130            | 5.8 | 20       |           |
| Cadmium   |                   |                    | 0.249    | mg/L       | 0.0010  | 100  | 70        | 130            | 0.2 | 20       |           |
| Chromium  |                   |                    | 0.500    | mg/L       | 0.0050  | 100  | 70        | 130            | 0.4 | 20       |           |
| Cobalt    |                   |                    | 0.541    | mg/L       | 0.0050  | 108  | 70        | 130            | 2.6 | 20       |           |
| Lead      |                   |                    | 0.501    | mg/L       | 0.0010  | 100  | 70        | 130            | 3.6 | 20       |           |
| Molybdenu | ım                |                    | 0.490    | mg/L       | 0.0010  | 97   | 70        | 130            | 2.6 | 20       |           |
| Selenium  |                   |                    | 0.466    | mg/L       | 0.0010  | 92   | 70        | 130            | 0.2 | 20       |           |
| Thallium  |                   |                    | 0.519    | mg/L       | 0.00050 | 104  | 70        | 130            | 2.1 | 20       |           |
|           |                   |                    | 0        | ∌, ⊑       | 2.00000 | 101  | . 3       |                |     |          |           |

Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

Client:Texas Municipal Power AgencyReport Date:09/20/17Project:TMPA CCRRWork Order:B17090709

| Analyte                |                             | Count         | Result             | Units         | RL                | %REC      | Low Limit  | High Limit     | RPD    | RPDLimit   | Qual             |
|------------------------|-----------------------------|---------------|--------------------|---------------|-------------------|-----------|------------|----------------|--------|------------|------------------|
| Method:                | E200.8                      |               |                    |               |                   |           |            | Analytical     | Run: I | CPMS206-B_ | _170915 <i>A</i> |
| Lab ID:                | QCS                         |               | Initial Calibratio | n Verificatio | on Standard       |           |            |                |        | 09/15/     | 17 18:04         |
| Cobalt                 |                             |               | 0.0517             | mg/L          | 0.010             | 103       | 90         | 110            |        |            |                  |
| Method:                | E200.8                      |               |                    |               |                   |           |            |                |        | Batcl      | n: 113553        |
| Lab ID:                | MB-113553                   | 11            | Method Blank       |               |                   |           | Run: ICPM  | S206-B_170915A |        | 09/15/     | 17 18:18         |
| Antimony               |                             |               | ND                 | mg/L          | 0.00004           |           |            |                |        |            |                  |
| Arsenic                |                             |               | ND                 | mg/L          | 0.0002            |           |            |                |        |            |                  |
| Barium                 |                             |               | 0.0003             | mg/L          | 0.00005           |           |            |                |        |            |                  |
| Beryllium              |                             |               | ND                 | mg/L          | 0.00008           |           |            |                |        |            |                  |
| Cadmium                |                             |               | ND                 | mg/L          | 0.00003           |           |            |                |        |            |                  |
| Chromium               |                             |               | ND                 | mg/L          | 0.0001            |           |            |                |        |            |                  |
| Cobalt                 |                             |               | ND                 | mg/L          | 0.00002           |           |            |                |        |            |                  |
| Lead                   |                             |               | 0.00003            | mg/L          | 0.00003           |           |            |                |        |            |                  |
| Molybdenu              | m                           |               | ND                 | mg/L          | 0.00003           |           |            |                |        |            |                  |
| Selenium               |                             |               | ND                 | mg/L          | 0.0004            |           |            |                |        |            |                  |
| Thallium               |                             |               | 0.00003            | mg/L          | 7E-06             |           |            |                |        |            |                  |
| Lab ID:                | LCS-113553                  | 11            | Laboratory Cor     | trol Sample   | <b>)</b>          |           | Run: ICPM  | S206-B_170915A |        | 09/15/     | 17 18:25         |
| Antimony               |                             |               | 0.553              | mg/L          | 0.0050            | 111       | 85         | 115            |        |            |                  |
| Arsenic                |                             |               | 0.545              | mg/L          | 0.0010            | 109       | 85         | 115            |        |            |                  |
| Barium                 |                             |               | 0.542              | mg/L          | 0.010             | 108       | 85         | 115            |        |            |                  |
| Beryllium              |                             |               | 0.257              | mg/L          | 0.0010            | 103       | 85         | 115            |        |            |                  |
| Cadmium                |                             |               | 0.262              | mg/L          | 0.0010            | 105       | 85         | 115            |        |            |                  |
| Chromium               |                             |               | 0.502              | mg/L          | 0.0010            | 100       | 85         | 115            |        |            |                  |
| Cobalt                 |                             |               | 0.550              | mg/L          | 0.0010            | 110       | 85         | 115            |        |            |                  |
| Lead                   |                             |               | 0.536              | mg/L          | 0.0010            | 107       | 85         | 115            |        |            |                  |
|                        | m                           |               | 0.514              | -             | 0.0010            | 107       | 85         | 115            |        |            |                  |
| Molybdenui<br>Selenium | III                         |               | 0.506              | mg/L          | 0.0050            | 103       | 85         | 115            |        |            |                  |
| Thallium               |                             |               | 0.535              | mg/L<br>mg/L  | 0.0030            | 107       | 85         | 115            |        |            |                  |
| Lab ID:                | B17090709-001BMS3           | 3 11 9        | Sample Matrix      | -             |                   |           | Run: ICPM: | S206-B_170915A |        | 09/15/     | 17 18:29         |
| Antimony               |                             |               | 0.530              | mg/L          | 0.0010            | 106       | 70         | 130            |        | 00/10/     | 17 10.20         |
| Arsenic                |                             |               | 0.539              | mg/L          | 0.0010            | 108       | 70         | 130            |        |            |                  |
| Barium                 |                             |               | 0.541              | mg/L          | 0.050             | 100       | 70         | 130            |        |            |                  |
| Beryllium              |                             |               | 0.254              | mg/L          | 0.0010            | 101       | 70         | 130            |        |            |                  |
| Cadmium                |                             |               | 0.251              | mg/L          | 0.0010            | 100       | 70         | 130            |        |            |                  |
| Chromium               |                             |               | 0.504              | mg/L          | 0.0010            | 101       | 70         | 130            |        |            |                  |
| Cobalt                 |                             |               | 0.510              |               | 0.0050            | 101       |            | 130            |        |            |                  |
|                        |                             |               |                    | mg/L          |                   |           | 70<br>70   |                |        |            |                  |
| Lead                   |                             |               | 0.522              | mg/L          | 0.0010            | 104       | 70<br>70   | 130            |        |            |                  |
| Molybdenu              | Ш                           |               | 0.506              | mg/L          | 0.0010            | 101       | 70<br>70   | 130            |        |            |                  |
| Selenium<br>Thallium   |                             |               | 0.492<br>0.500     | mg/L<br>mg/L  | 0.0018<br>0.00050 | 98<br>100 | 70<br>70   | 130<br>130     |        |            |                  |
|                        | B17090709-001BMSE           | <b>)</b> 11 ( |                    |               |                   |           |            | S206-B 170915A |        | 00/15/     | 17 10.22         |
| Lab ID:                | 1 CINIO I 00-60 I 060 I I O | ۱۱۱ ر         | •                  |               |                   | 405       |            | _              |        |            | 17 18:32         |
| Antimony               |                             |               | 0.524              | mg/L          | 0.0010            | 105       | 70<br>70   | 130            | 1.1    | 20         |                  |
| Arsenic                |                             |               | 0.550              | mg/L          | 0.0010            | 110       | 70         | 130            | 1.9    | 20         |                  |

Qualifiers:

RL - Analyte reporting limit.

Prepared by Billings, MT Branch

| Analyte   |                   | Count          | Result     | Units           | RL      | %REC | Low Limit | High Limit     | RPD | RPDLimit | Qual      |
|-----------|-------------------|----------------|------------|-----------------|---------|------|-----------|----------------|-----|----------|-----------|
| Method:   | E200.8            |                |            |                 |         |      |           |                |     | Batch    | ı: 113553 |
| Lab ID:   | B17090709-001BMSI | <b>1</b> 1 Sam | ple Matrix | Spike Duplicate |         |      | Run: ICPM | S206-B_170915A |     | 09/15/   | 17 18:32  |
| Barium    |                   |                | 0.536      | mg/L            | 0.050   | 99   | 70        | 130            | 0.9 | 20       |           |
| Beryllium |                   |                | 0.253      | mg/L            | 0.0010  | 101  | 70        | 130            | 0.4 | 20       |           |
| Cadmium   |                   |                | 0.251      | mg/L            | 0.0010  | 101  | 70        | 130            | 0.3 | 20       |           |
| Chromium  |                   |                | 0.504      | mg/L            | 0.0050  | 101  | 70        | 130            | 0.2 | 20       |           |
| Cobalt    |                   |                | 0.508      | mg/L            | 0.0050  | 101  | 70        | 130            | 0.4 | 20       |           |
| Lead      |                   |                | 0.504      | mg/L            | 0.0010  | 101  | 70        | 130            | 3.4 | 20       |           |
| Molybdenu | m                 |                | 0.492      | mg/L            | 0.0010  | 98   | 70        | 130            | 2.8 | 20       |           |
| Selenium  |                   |                | 0.490      | mg/L            | 0.0018  | 98   | 70        | 130            | 0.3 | 20       |           |
| Thallium  |                   |                | 0.482      | mg/L            | 0.00050 | 96   | 70        | 130            | 3.6 | 20       |           |

Prepared by Billings, MT Branch

| Analyte |                   | Count | Result       | Units       | RL             | %REC | Low Limit | High Limit     | RPD       | RPDLimit  | Qual      |
|---------|-------------------|-------|--------------|-------------|----------------|------|-----------|----------------|-----------|-----------|-----------|
| Method: | E245.1            |       |              |             |                |      |           | Analytic       | al Run: l | HGCV202-B | _170912B  |
| Lab ID: | ICV               | Init  | al Calibrati | on Verifica | ition Standard |      |           |                |           | 09/12/    | /17 13:45 |
| Mercury |                   |       | 0.00191      | mg/L        | 0.00010        | 96   | 90        | 110            |           |           |           |
| Method: | E245.1            |       |              |             |                |      |           |                |           | Batcl     | h: 113565 |
| Lab ID: | MB-113565         | Me    | thod Blank   |             |                |      | Run: HGCV | /202-B_170912E | }         | 09/12/    | /17 13:50 |
| Mercury |                   |       | ND           | mg/L        | 1E-06          |      |           |                |           |           |           |
| Lab ID: | LCS-113565        | Lab   | oratory Co   | ntrol Samp  | ole            |      | Run: HGCV | /202-B_170912E | }         | 09/12/    | /17 13:52 |
| Mercury |                   |       | 0.00193      | mg/L        | 0.00010        | 96   | 85        | 115            |           |           |           |
| Lab ID: | B17090709-009BMS  | Sar   | nple Matrix  | Spike       |                |      | Run: HGCV | /202-B_170912E | }         | 09/12/    | /17 14:13 |
| Mercury |                   |       | 0.00170      | mg/L        | 0.00010        | 85   | 70        | 130            |           |           |           |
| Lab ID: | B17090709-009BMSI | D Sar | mple Matrix  | Spike Du    | olicate        |      | Run: HGCV | /202-B_170912E | }         | 09/12/    | /17 14:15 |
| Mercury |                   |       | 0.00182      | mg/L        | 0.00010        | 91   | 70        | 130            | 6.6       | 30        |           |

# **Work Order Receipt Checklist**

# **Texas Municipal Power Agency**

Login completed by: Siobhan H. Coop

# B17090709

Date Received: 9/11/2017

|                                                                                          | •                               |               | _    |                        |  |
|------------------------------------------------------------------------------------------|---------------------------------|---------------|------|------------------------|--|
| Reviewed by:                                                                             | BL2000\cindy                    |               | Re   | ceived by: shc         |  |
| Reviewed Date:                                                                           | 9/11/2017                       |               | Car  | rier name: FedEx       |  |
| Shipping container/cooler in                                                             | good condition?                 | Yes 🔽         | No 🗌 | Not Present            |  |
| Custody seals intact on all sl                                                           | nipping container(s)/cooler(s)? | Yes ✓         | No 🗌 | Not Present            |  |
| Custody seals intact on all sa                                                           | ample bottles?                  | Yes           | No 🗌 | Not Present ✓          |  |
| Chain of custody present?                                                                |                                 | Yes ✓         | No 🗌 |                        |  |
| Chain of custody signed whe                                                              | n relinquished and received?    | Yes ✓         | No 🗌 |                        |  |
| Chain of custody agrees with                                                             | sample labels?                  | Yes ✓         | No 🗌 |                        |  |
| Samples in proper container                                                              | bottle?                         | Yes ✓         | No 🗌 |                        |  |
| Sample containers intact?                                                                |                                 | Yes ✓         | No 🗌 |                        |  |
| Sufficient sample volume for                                                             | indicated test?                 | Yes ✓         | No 🗌 |                        |  |
| All samples received within h<br>(Exclude analyses that are countries pH, DO, Res Cl, Su | onsidered field parameters      | Yes ✓         | No 🗌 |                        |  |
| Temp Blank received in all sl                                                            | nipping container(s)/cooler(s)? | Yes ✓         | No 🗌 | Not Applicable         |  |
| Container/Temp Blank tempe                                                               | erature:                        | °C Melted Ice |      |                        |  |
| Water - VOA vials have zero                                                              | headspace?                      | Yes           | No 🗌 | No VOA vials submitted |  |
| Water - pH acceptable upon                                                               | receipt?                        | Yes ✓         | No 🗌 | Not Applicable         |  |
|                                                                                          |                                 |               |      |                        |  |

# **Standard Reporting Procedures:**

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

### **Contact and Corrective Action Comments:**

The Temperature Blank temperature for shipping container 1 was 3.3°C and shipping container 2 was 2.1°C.

The 3rd shipping container with samples MNW-15 and APMW-6 was received on 9/11/17 at 09:15 by Siobhan Coop at 10.0°C on ice from Fedex Express.

ENERGY (33)
Inst our People, Tust our Date.

# Chain of Custody & Analytical Request Record

Page

Page 1 of 1

MORK ORDER 9/11/17 -0031 ALL ANAMSIS EXCEPT -007 \* APPZ-4: no radium 183 Samples collected. 850 817690ABA-00 7005 g B All turnaround times are standard unless marked as MUST be contacted prior to RUSH sample submittal for CHOW SO FILE charges and scheduling -See Instructions Page Energy Laboratories Receipt Number (cash/check only) RUSH. Stepature Signature Comments See Attached ₹ Amount \$ Date/Time **Analysis Requested** Report Information (if different than Account Information) □ LEVEL IV □ NELAC □ EDD/EDT (contact taboratory) □ Other Speck aceived by Laborator Cash Received by (print) ပ္ပ ALCON. Special Report/Formats: Matrix (See Codes Above) Company/Name Mailing Address Temp Blank Y N Matrix Codes City, State, Zip 3 V - Vegetation B - Bioassa) OW - Drinking Water S - Soils/ Solids W- Water 0 - Other A-Air amel Contact Phone Number of Containers Email 1 Receipt Temp 1600 1720 0401 1450 Project: CCRR **E**mail 900 300 1355 0/8/ Sampler Phone 512-795-0360 Time **2** 9/08/17 @ 1300 ☐ Unprocessed ore (NOT ground or refined)\* EPA/State Compliance XYes 9-7-17 Mailing Address 3755 S. Capital of TX Hux. #375 **Bottle Order** Date \_ N N Project Name, PWSID, Permit, etc. Client; TMPA Custody Seals greg. Seifert Bamectwalem MINING CLIENTS, please indicate sample type. Companyiname Amec Foster Wheder Account Information (Billing information) Austin, TX 78704 Sample Identification Receive Invoice Mand Copy Pamail (Name, Location, Interval, etc.) EQBK/SCM/090717 Sew Macon Quote Relinquished by (print) Cooler ID(s) Phone 512-795-0560 Grea Selfert Sampler Name S. Macon Project Information □ Byproduct 11 (e)2 material SFL MW-7 APMW-6 MNW-18 MNW)-16 MNW-15 AP PZ-4 MNW-11 Sample Origin State DUP-1 Record MUST City, State, Zip Purchase Order Shipped By be signed Custody Contact Email

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.
This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

ELI-COC-12/16 v.1

# **ANALYTICAL SUMMARY REPORT**

October 04, 2017

Texas Municipal Power Agency PO Box 7000 Bryan, TX 77805-7000

Work Order: B17090710 Quote ID: B3997 - CCRR

Project Name: TMPA CCRR

Energy Laboratories Inc Billings MT received the following 8 samples for Texas Municipal Power Agency on 9/11/2017 for analysis.

| Lab ID        | Client Sample ID | Collect Date Receive Date | Matrix       | Test                                                              |
|---------------|------------------|---------------------------|--------------|-------------------------------------------------------------------|
| B17090710-001 | SFL MW-7         | 09/07/17 10:40 09/11/17   | Ground Water | Radium 226 + Radium 228<br>Radium 226, Total<br>Radium 228, Total |
| B17090710-002 | MNW-15           | 09/07/17 12:00 09/11/17   | Ground Water | Same As Above                                                     |
| B17090710-003 | EQBK/SCM/090717  | 09/07/17 13:00 09/11/17   | Ground Water | Same As Above                                                     |
| B17090710-004 | MNW-18           | 09/07/17 13:55 09/11/17   | Ground Water | Same As Above                                                     |

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

**Report Date:** 10/04/17

**CLIENT:** Texas Municipal Power Agency

Project: TMPA CCRR

Work Order: B17090710 CASE NARRATIVE

Tests associated with analyst identified as ELI-CA were subcontracted to Energy Laboratories, PO Box 247, Casper, WY, EPA Number WY00002 and WY00937.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA CCRR
Lab ID: B17090710-001
Client Sample ID: SFL MW-7

Report Date: 10/04/17
Collection Date: 09/07/17 10:40
DateReceived: 09/11/17

Matrix: Ground Water

| Analyses                              | Result U | Jnits | Qualifiers | RL | MCL/<br>QCL | Method   | Analysis Date / By      |
|---------------------------------------|----------|-------|------------|----|-------------|----------|-------------------------|
| RADIONUCLIDES - TOTAL                 |          |       |            |    |             |          |                         |
| Radium 226                            | 0.54 p   | Ci/L  |            |    |             | E903.0   | 10/01/17 10:34 / eli-ca |
| Radium 226 precision (±)              | 0.18 p   |       |            |    |             | E903.0   | 10/01/17 10:34 / eli-ca |
| Radium 226 MDC                        | 0.22 p   | Ci/L  |            |    |             | E903.0   | 10/01/17 10:34 / eli-ca |
| Radium 228                            | 2.4 p    | Ci/L  |            |    |             | RA-05    | 09/25/17 14:59 / eli-ca |
| Radium 228 precision (±)              | 1.0 p    | Ci/L  |            |    |             | RA-05    | 09/25/17 14:59 / eli-ca |
| Radium 228 MDC                        | 1.5 p    | Ci/L  |            |    |             | RA-05    | 09/25/17 14:59 / eli-ca |
| Radium 226 + Radium 228               | 2.9 p    | Ci/L  |            |    |             | A7500-RA | 10/03/17 20:27 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.0 p    | Ci/L  |            |    |             | A7500-RA | 10/03/17 20:27 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.5 p    | Ci/L  |            |    |             | A7500-RA | 10/03/17 20:27 / eli-ca |

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.
ND - Not detected at the reporting limit.

Page 3 of 14

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA CCRR Lab ID: B17090710-002 Client Sample ID: MNW-15

**Report Date:** 10/04/17 Collection Date: 09/07/17 12:00 DateReceived: 09/11/17

Matrix: Ground Water

| Analyses                              | Result | Units | Qualifiers | RL | MCL/<br>QCL | Method   | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|----|-------------|----------|-------------------------|
| RADIONUCLIDES - TOTAL                 |        |       |            |    |             |          |                         |
| Radium 226                            | 0.31   | pCi/L |            |    |             | E903.0   | 10/01/17 10:34 / eli-ca |
| Radium 226 precision (±)              |        | pCi/L |            |    |             | E903.0   | 10/01/17 10:34 / eli-ca |
| Radium 226 MDC                        | 0.18   | pCi/L |            |    |             | E903.0   | 10/01/17 10:34 / eli-ca |
| Radium 228                            | 1.6    | pCi/L |            |    |             | RA-05    | 09/25/17 14:59 / eli-ca |
| Radium 228 precision (±)              | 0.98   | pCi/L |            |    |             | RA-05    | 09/25/17 14:59 / eli-ca |
| Radium 228 MDC                        | 1.2    | pCi/L |            |    |             | RA-05    | 09/25/17 14:59 / eli-ca |
| Radium 226 + Radium 228               | 1.9    | pCi/L |            |    |             | A7500-RA | 10/03/17 20:27 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1      | pCi/L |            |    |             | A7500-RA | 10/03/17 20:27 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.2    | pCi/L |            |    |             | A7500-RA | 10/03/17 20:27 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA CCRR Lab ID: B17090710-003 Client Sample ID: EQBK/SCM/090717

**Report Date:** 10/04/17 Collection Date: 09/07/17 13:00 DateReceived: 09/11/17

Matrix: Ground Water

| Analyses                              | Result | Units | Qualifiers | RL | MCL/<br>QCL | Method   | Analysis Date / By      |
|---------------------------------------|--------|-------|------------|----|-------------|----------|-------------------------|
| RADIONUCLIDES - TOTAL                 |        |       |            |    |             |          |                         |
| Radium 226                            | 0.05   | pCi/L | U          |    |             | E903.0   | 10/01/17 12:15 / eli-ca |
| Radium 226 precision (±)              | 0.13   | pCi/L |            |    |             | E903.0   | 10/01/17 12:15 / eli-ca |
| Radium 226 MDC                        | 0.22   | pCi/L |            |    |             | E903.0   | 10/01/17 12:15 / eli-ca |
| Radium 228                            | 0.71   | pCi/L | U          |    |             | RA-05    | 09/25/17 16:36 / eli-ca |
| Radium 228 precision (±)              | 1.1    | pCi/L |            |    |             | RA-05    | 09/25/17 16:36 / eli-ca |
| Radium 228 MDC                        | 1.8    | pCi/L |            |    |             | RA-05    | 09/25/17 16:36 / eli-ca |
| Radium 226 + Radium 228               | 8.0    | pCi/L | U          |    |             | A7500-RA | 10/03/17 20:27 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.1    | pCi/L |            |    |             | A7500-RA | 10/03/17 20:27 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.8    | pCi/L |            |    |             | A7500-RA | 10/03/17 20:27 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

Prepared by Billings, MT Branch

Client: Texas Municipal Power Agency

Project: TMPA CCRR Lab ID: B17090710-004 Client Sample ID: MNW-18

**Report Date:** 10/04/17 Collection Date: 09/07/17 13:55 DateReceived: 09/11/17

Matrix: Ground Water

| Analyses                              | Result l | Units | Qualifiers | RL | MCL/<br>QCL | Method   | Analysis Date / By      |
|---------------------------------------|----------|-------|------------|----|-------------|----------|-------------------------|
| RADIONUCLIDES - TOTAL                 |          |       |            |    |             |          |                         |
| Radium 226                            | 1.5 p    | oCi/L |            |    |             | E903.0   | 10/01/17 12:15 / eli-ca |
| Radium 226 precision (±)              | 0.37 p   | oCi/L |            |    |             | E903.0   | 10/01/17 12:15 / eli-ca |
| Radium 226 MDC                        | 0.19 p   | oCi/L |            |    |             | E903.0   | 10/01/17 12:15 / eli-ca |
| Radium 228                            | 5.6 p    | oCi/L |            |    |             | RA-05    | 09/25/17 16:36 / eli-ca |
| Radium 228 precision (±)              | 1.4 p    | oCi/L |            |    |             | RA-05    | 09/25/17 16:36 / eli-ca |
| Radium 228 MDC                        | 1.6 p    | oCi/L |            |    |             | RA-05    | 09/25/17 16:36 / eli-ca |
| Radium 226 + Radium 228               | 7.2 p    | oCi/L |            |    |             | A7500-RA | 10/03/17 20:27 / eli-ca |
| Radium 226 + Radium 228 precision (±) | 1.4 p    | oCi/L |            |    |             | A7500-RA | 10/03/17 20:27 / eli-ca |
| Radium 226 + Radium 228 MDC           | 1.6 p    | oCi/L |            |    |             | A7500-RA | 10/03/17 20:27 / eli-ca |

Report RL - Analyte reporting limit. **Definitions:** 

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

# **QA/QC Summary Report**

Prepared by Casper, WY Branch

Client:Texas Municipal Power AgencyReport Date:10/03/17Project:TMPA CCRRWork Order:B17090710

| Analyte      |                                 | Result                | Units                | RL          | %REC      | Low Limit      | High Limit         | RPD        | RPDLimit        | Qual         |
|--------------|---------------------------------|-----------------------|----------------------|-------------|-----------|----------------|--------------------|------------|-----------------|--------------|
| Method:      | E903.0                          |                       |                      |             |           |                |                    |            | Batch: RA       | 226-8664     |
| Lab ID:      | LCS-RA226-8664                  | Laboratory Co         | ntrol Sample         |             |           | Run: G500      | 0W_170920B         |            | 10/01           | /17 10:33    |
| Radium 226   | •                               | 9.6                   | pCi/L                |             | 95        | 80             | 120                |            |                 |              |
| Lab ID:      | MB-RA226-8664                   | Method Blank          |                      |             |           | Run: G500      | 0W_170920B         |            | 10/01           | /17 10:33    |
| Radium 226   | i e                             | 0.1                   | pCi/L                |             |           |                |                    |            |                 | U            |
| Radium 226   | precision (±)                   | 0.1                   | pCi/L                |             |           |                |                    |            |                 |              |
| Radium 226   | MDC                             | 0.2                   | pCi/L                |             |           |                |                    |            |                 |              |
| Lab ID:      | B17090710-001AMS                | Sample Matrix         | Spike                |             |           | Run: G500      | 0W_170920B         |            | 10/01           | /17 10:34    |
| Radium 226   | ;                               | 15                    | pCi/L                |             | 59        | 70             | 130                |            |                 | S            |
| - Spike resp | onse is outside of the acceptan | ce range for this and | alysis. Since the LO | S and the F | RPD recov | eries are acce | ptable, the respon | se is cons | idered to be ma | atrix relate |

<sup>-</sup> Spike response is outside of the acceptance range for this analysis. Since the LCS and the RPD recoveries are acceptable, the response is considered to be matrix relate. The batch is approved.

 Lab ID:
 B17090710-001AMSD
 Sample Matrix Spike Duplicate
 Run: G5000W\_170920B
 10/01/17 10:34

 Radium 226
 17
 pCi/L
 68
 70
 130
 15
 20
 S

## Qualifiers:

<sup>-</sup> Spike response is outside of the acceptance range for this analysis. Since the LCS and the RPD recoveries are acceptable, the response is considered to be matrix relate. The batch is approved.





Prepared by Casper, WY Branch

| Analyte                    | Result Units                  | RL %REC Low Limit High Limit RPD RPDLimit Qual |
|----------------------------|-------------------------------|------------------------------------------------|
| Method: RA-05              |                               | Batch: RA228-5610                              |
| Lab ID: LCS-228-RA226-8664 | Laboratory Control Sample     | Run: TENNELEC-3_170920C 09/25/17 14:59         |
| Radium 228                 | 9.2 pCi/L                     | 87 80 120                                      |
| Lab ID: MB-RA226-8664      | Method Blank                  | Run: TENNELEC-3_170920C 09/25/17 14:59         |
| Radium 228                 | 0.7 pCi/L                     | U                                              |
| Radium 228 precision (±)   | 0.9 pCi/L                     |                                                |
| Radium 228 MDC             | 1 pCi/L                       |                                                |
| Lab ID: B17090710-005AMS   | Sample Matrix Spike           | Run: TENNELEC-3_170920C 09/25/17 14:59         |
| Radium 228                 | 26 pCi/L                      | 106 70 130                                     |
| Lab ID: B17090710-005AMSD  | Sample Matrix Spike Duplicate | Run: TENNELEC-3_170920C 09/25/17 14:59         |
| Radium 228                 | 23 pCi/L                      | 93 70 130 12 20                                |

B17090710

# **Work Order Receipt Checklist**

# Texas Municipal Power Agency

| Login completed by:                                                                          | Siobhan H. Coop                 | Date Received: 9/11/2017 |                     |                          |  |  |  |  |
|----------------------------------------------------------------------------------------------|---------------------------------|--------------------------|---------------------|--------------------------|--|--|--|--|
| Reviewed by:                                                                                 | BL2000\cindy                    |                          | Red                 | ceived by: shc           |  |  |  |  |
| Reviewed Date:                                                                               | 9/11/2017                       |                          | Carrier name: FedEx |                          |  |  |  |  |
| Shipping container/cooler in                                                                 | good condition?                 | Yes 🗸                    | No 🗌                | Not Present              |  |  |  |  |
| Custody seals intact on all shipping container(s)/cooler(s)?                                 |                                 | Yes 🔽                    | No 🗌                | Not Present              |  |  |  |  |
| Custody seals intact on all sample bottles?                                                  |                                 | Yes                      | No 🗌                | Not Present ✓            |  |  |  |  |
| Chain of custody present?                                                                    |                                 | Yes 🗸                    | No 🗌                |                          |  |  |  |  |
| Chain of custody signed whe                                                                  | en relinquished and received?   | Yes 🗸                    | No 🗌                |                          |  |  |  |  |
| Chain of custody agrees with                                                                 | n sample labels?                | Yes 🗸                    | No 🗌                |                          |  |  |  |  |
| Samples in proper container                                                                  | /bottle?                        | Yes √                    | No 🗌                |                          |  |  |  |  |
| Sample containers intact?                                                                    |                                 | Yes √                    | No 🗌                |                          |  |  |  |  |
| Sufficient sample volume for                                                                 | indicated test?                 | Yes 🗸                    | No 🗌                |                          |  |  |  |  |
| All samples received within h<br>(Exclude analyses that are or<br>such as pH, DO, Res CI, Su | onsidered field parameters      | Yes ✓                    | No 🗌                |                          |  |  |  |  |
| Temp Blank received in all sl                                                                | hipping container(s)/cooler(s)? | Yes 🗸                    | No 🗌                | Not Applicable           |  |  |  |  |
| Container/Temp Blank tempe                                                                   | erature:                        | °C Melted Ice            |                     |                          |  |  |  |  |
| Water - VOA vials have zero                                                                  | headspace?                      | Yes                      | No 🗌                | No VOA vials submitted ✓ |  |  |  |  |
| Water - pH acceptable upon                                                                   | receipt?                        | Yes ✓                    | No 🗌                | Not Applicable           |  |  |  |  |

# **Standard Reporting Procedures:**

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

### **Contact and Corrective Action Comments:**

The Temperature Blank temperature for shipping container 1 was 3.3°C and shipping container 2 was 2.1°C.

The 3rd shipping container with samples MNW-15 and APMW-6 was received on 9/11/17 at 09:15 by Siobhan Coop at 10.0°C on ice from Fedex Express.

ENERGY (3) Trust our People. Trust our Data Account Information (Billing information)

# Chain of Custody & Analytical Request Record

ww.energylab.com

- Orther this - North Orde Se allelta lad then analysis \* APPZ-4: no radium Samples collected. standard unless marked as RUSH. MUST be contacted prior to RUSH sample submittal for -000 -007 18 -8 -87 -033 ģ 613090710-00 All turnaround times are Seprenti charges and scheduling See Instructions Page Energy Laboratories Comments Slemature Signature See Attached **Analysis Requested** Report Information (if different than Account Information) ☐ LEVEL IV ☐ NELAC ☐ EDD/EDT (contact laboratory) ☐ Other Payment Typ Macalvad by Laboratory Received by (print) Receive Report DHard Copy DEmail LABORATORY USE ONLY <u>8</u> z ნ≻ Special Report/Formats; Matrix (See Codes Above) Mailing Address Company/Name Matrix Codes City, State, Zip V - Vegetation 3 B - Bioassay Temp Blank Y N DW - Drinking Water Soils/ Solids Samuel ( W- Water O - Other A - Air Contact Phone Number of Containers Email 7 Receipt Temp 1720 1600 Project: CRR 9-7-17 1040 Semail Mail Sampler Phone 512-795-0360 1200 1300 1355 1450 0/8/ EPA/State Compliance XYes □ No Time 9/03//7 @ | 300 Detertime ☐ Unprocessed ore (NOT ground or refined)\* Collection Mailing Address 3755 S. Capital of TX Hwx. #375 Date Intact Y N Project Name, PWSID, Permit, etc. Client: TMPA Custody Seals Email greg. Seifert Bamectwich CompanyiName Amec Foster Wheeler MINING CLIENTS, please indicate sample type. City, State, Zip Austin, TX 78704 Sample Identification Receive Invoice Mard Copy Amail (Name, Location, Interval, etc.) /SCM/0907/17 Sam Macon Relinquished by (print) Quote Phone 512-795-0560 Cooler ID(s) Contact Grea Settert Sample Origin State Sampler Name S. Macon Relinquished by Project Information ☐ Byproduct 11 (e)2 materfal SFL MW-7 APMW-6 MNW-15 MNW-18 MNW-16 AP PZ-4 MNE-11 DUP-1 Record MUST be signed Purchase Order Eadk Shipped By Custody

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.
This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

ELI-COC-12/16 v.1

Receipt Number (cash/chack only)

Amount

Cash Check

ပ္ပ