

Gibbons Creek Environmental Redevelopment Group, LLC

September 6, 2022

Eun Ju Lee, Ph.D., P.E. Industrial & Hazardous Waste Permits Section Waste Permits Division Texas Commission on Environmental Quality P.O. Box 13087 Austin, TX 78711-3087

Re: Technical NOD2 New CCR Registration
 Gibbons Creek Environmental Redevelopment Group, LLC – Anderson, Grimes County
 New Coal Combustion Residuals (CCR) Registration No. CCR113
 Industrial Solid Waste Registration No. 32271
 EPA Identification No. TXD000751073
 Tracking No. 27262344; RN100214550/CN6505860162

Dear Ms. Lee,

In response to your review comments dated August 12, 2022, the following includes the clarifications and/or revisions to complete the Permit Application for the Gibbons Creek Environmental Redevelopment Group (GCERG) facility.

15. Attachment L

Provide an updated periodic run-on and run-off control system plan with the required certification by a qualified P.E. Use the most current rainfall data from the National Oceanic and Atmospheric Administration. The plan provided is dated October 17, 2016 and the rule requires the plan to be revised every five years.

A revised run-on and run-off control system plan with required certification can be found in Response Item 15 Attachment.

16. Table IV.D (Att. M)

Include facility unit(s) and specify all landfill components and basic elements for inspections to match with the 2021 Site F Landfill annual inspection report (Att. M). Additionally, correct inspection intervals to "not exceeding seven days" from weekly.

The revised Table IV.D can be found in Attachment Respond Item 16.

Ms. Eun Ju Lee, Ph.D, P.E. August 26, 2022 Page 2 of 6

17. Form TCEQ 20870, p. 38

Provide a dike certification form.

The Scrubber Sludge Pond and Ash Ponds A, B, and C have been clean closed and are not subject to CCR registration.

18. <u>Table V.J</u>

Complete inspection requirements for surface impoundment inspections.

The surface impoundments (Scrubber Sludge Pond and Ash Ponds A, B, and C) have been clean closed and are not subject to CCR registration.

19. <u>Att. S</u>

Provide cross section(s) showing the geologic units and fill materials overlying the uppermost aquifer.

A cross section showing the geologic units and fill materials overlying the uppermost aquifer can be found in Response Item 19 Attachment.

20. <u>Table VI.C-1</u>

Add and complete attached "Table VI.C-1 – Groundwater Detection Monitoring Parameters.", if applicable. This table was inadvertently omitted in the application form.

Table VI.C-1 can be found in Response Item 20 Attachment.

Ms. Eun Ju Lee, Ph.D, P.E. August 26, 2022 Page 3 of 6

20. <u>Table VI.D-2</u>

Replace title of "Table VI.D.2 – Groundwater Detection Monitoring Parameters" with "Table VI.D-2-Groundwater Assessment Monitoring Parameters" and complete if applicable.

Table VI.D.2 can be found in Response Item 20 Attachment.

21. 2021 Groundwater (GW) Report

Provide historical data since the groundwater levels (ft amsl) are inconsistent with the aquifer report.

See Response Item 21 Attachment for historical groundwater levels from 2018 through 2021.

22. 2021 GW Report, Figures

Provide reports and figures signed and sealed by a P.E.

See response Item 22 Attachment for revised reports and figures.

23. Table 1.6 & V.A.

Reconcile AP and SSP dimensions and capacities with Form TCEQ-20870, Table V.A. Update Table I.6 accordingly.

See Response Item 23 Attachment for revised Table V.A. and Table I.6.

24. Att. V, Secs 2.1 & 2.2

Provide reference locations for TMPA drawings.

See Response Item 24 Attachment for referenced TMPA drawings.

HDR Engineering, Inc. 17111 Preston Road Suite 300 Dallas, TX 75248 Ms. Eun Ju Lee, Ph.D, P.E. August 26, 2022 Page 4 of 6

25. Att. V, Secs 3.2.1 and 3.2.2

Correct typographical error for SSD and correct rule citation

Please see Response Item 25 Attachment for revised Sections.

26. Att. V, Fig 2

Reconcile the geomembrane information in the final cover system with Section 2 of the 2021 Groundwater Report and Att. Y, Sheets 00C-11 & 00C-12.

Please see Response Item 26 Attachment for revised detail.

27. <u>ATT. V</u>

Include erosion control, settlement, and slope stability analyses information for landfill Site F for closure and post closure.

Please see Response Item 27 for ESC Plan for Stie F Landfill for closure and post closure.

28. Attachment VIII.34

Provide a statement that a Financial Assurance mechanism will be provided within 90 days if a registration is issued.

Please see Response Item 28 for statement that a Financial Assurance mechanism will be provided within 90 days if a registration is issued.

Ms. Eun Ju Lee, Ph.D, P.E. August 26, 2022 Page 5 of 6

6. (2) Property/Legal Description

Provide updated map(s) that depict the registration boundary throughout the application. Update all drawings accordingly if any changes affects the boundary after selling of portion(s) of the property.

Please see Response Item 6 (2) for a revised property map.

10. <u>(2) Att. A</u>

Provide updated adjacent landowner list and drawing, and pre-printed mailing labels after selling off portions of the property. Additionally, include mineral interest ownership information.

Please see Response Item 10 (2) for a revised adjacent landowner list and drawing. Pre-printed mailing labels will be sent separately to the TCEQ.

Mineral Interest Ownership Information:

Per 30 TAC 350.59(c)(3) "(B) The adjacent and potentially affected landowners' list shall be keyed to the land ownership maps and shall give each property owner's name and mailing address. The list shall comply with the requirements of §281.5 of this title ,and shall include all property owners within 1/4 mile of the facility, and all mineral interest ownership under the facility. Property and mineral interest owners' names and mailing addresses derived from the real property appraisal records as listed on the date that the application is filed will comply with this paragraph. Notice of an application is not defective if property owners or mineral interest owners did not receive notice because they were not listed in the real property appraisal records. The list shall also be provided in electronic form.

Mineral interest ownership under the CCR unit cannot be derived from real property appraisal records as suggested under 30 TAC 350.59(c)(3). Therefore, this information cannot be provided

HDR Engineering, Inc. 17111 Preston Road Suite 300 Dallas, TX 75248 Ms. Eun Ju Lee, Ph.D, P.E. August 26, 2022 Page 6 of 6

If you have any questions regarding this response, please give Dave Vogt a call at 972-960-4400 or Norman Divers at 704-472-3919. We look forward to continuing to work with you to complete the registration process.

Sincerely,

David C. Vogt, P.E. HDR Engineering, Inc.

HDR Engineering, Inc. 17111 Preston Road Suite 300 Dallas, TX 75248

Phone: (9724)9603-4400 Fax: (972) 960-4471 www.hdrinc.com

RESPONSE ITEM 15 ATTACHMENT

2021 RUN-ON RUN-OFF CONTROL SYSTEM PLAN

Gibbons Creek Environmental Redevelopment Group, LLC

Run-on and Run-off

Control System Plan

For Compliance with the Coal Combustion Residuals Rule (40 CFR Part 257.81)

Gibbons Creek Steam Electric Station

Anderson, Texas August 26, 2022

TABLE OF CONTENTS

List o	f Figuresiii
List o	f Tablesiii
List o	f Appendicesiii
List o	f Acronymsiv
1.0	Introduction
1.1	Facility Description1
1.2	Regulatory Requirements1
2.0	Run-on / Run-off Controls for CCR Landfill
2.1	Description of the Active CCR Landfill and Drainage Area2
2.2	Description of Existing Run-on / Run-off Controls2
2.2.1	Run-on Controls
2.2.2	Run-off Controls
2.3	Surface Water Run-off Model
2.3.1	Rainfall Data
	Rainfall Data 3 Weighted Curve Number 3
2.3.2	
2.3.2 2.3.3	Weighted Curve Number
2.3.2 2.3.3	Weighted Curve Number
2.3.22.3.32.3.4	Weighted Curve Number 3 Time of Concentration 4 Active Area 4 Evaluation of Existing Run-on Controls 5
2.3.22.3.32.3.42.4	Weighted Curve Number 3 Time of Concentration 4 Active Area 4 Evaluation of Existing Run-on Controls 5
2.3.2 2.3.3 2.3.4 2.4 2.5	Weighted Curve Number 3 Time of Concentration 4 Active Area 4 Evaluation of Existing Run-on Controls 5 Evaluation of Existing Run-Off Controls 5
2.3.2 2.3.3 2.3.4 2.4 2.5 2.6	Weighted Curve Number 3 Time of Concentration 4 Active Area 4 Evaluation of Existing Run-on Controls 5 Evaluation of Existing Run-Off Controls 5 Improvements to Existing Run-on / Run-off Controls 5
2.3.2 2.3.3 2.3.4 2.4 2.5 2.6 3.0	Weighted Curve Number 3 Time of Concentration 4 Active Area 4 Evaluation of Existing Run-on Controls 5 Evaluation of Existing Run-Off Controls 5 Improvements to Existing Run-on / Run-off Controls 5 Administrative Requirements 6
2.3.2 2.3.3 2.3.4 2.4 2.5 2.6 3.0 3.1	Weighted Curve Number 3 Time of Concentration 4 Active Area 4 Evaluation of Existing Run-on Controls 5 Evaluation of Existing Run-Off Controls 5 Improvements to Existing Run-on / Run-off Controls 5 Administrative Requirements 6 Plan Amendments 6
2.3.2 2.3.3 2.3.4 2.4 2.5 2.6 3.0 3.1 3.2	Weighted Curve Number 3 Time of Concentration 4 Active Area 4 Evaluation of Existing Run-on Controls 5 Evaluation of Existing Run-Off Controls 5 Improvements to Existing Run-on / Run-off Controls 5 Administrative Requirements 6 Plan Amendments 6 Record Keeping Requirements 6

i

LIST OF FIGURES

Figure 1	Stormwater	Drainage Map

Figure 2 2021 Google Earth Image of Site F Landfill

LIST OF TABLES

Table 2-1: Summary of Site F Landfill Soils

- Table 2-1Summary of Site F Landfill SoilsTable 2-2Summary of Drainage Area 2
- Table 2-3Summary of Drainage Area 3 (Active Area)

LIST OF APPENDICES

Appendix A	Figures
Appendix B	TR-55 Model Results
Appendix C	NOAA Rainfall Data
Appendix D	Soil Conservation District Soil Report

LIST OF ACRONYMS

CCR	Coal Combustion Residuals
CFR	Code of Federal Regulations
cfs	cubic feet per second
CN	curve number
EPA	Environmental Protection Agency
HSG	hydrologic soil group
NOAA	National Oceanic and Atmospheric Administration
RCRA	Resource Conservation and Recovery Act
SCS	Soil Conservation Service
TR-55	Technical Release 55

1.0 INTRODUCTION

On April 17, 2015 the U.S. Environmental Protection Agency (EPA) published regulations under Subtitle D of the Resource Conservation and Recovery Act (RCRA) meant to control the safe disposal of coal combustion residuals (CCR) generated by coal fired electric utilities. The rule defines a set of requirements for the disposal and handling of CCR within CCR units (defined as either landfills or surface impoundments). The requirements include preparation of a Run-on and Run-off Control System Plan for all existing and new CCR landfills.

This Run-on and Run-off Control System Plan has been prepared for the Site F Landfill, a CCR landfill unit at the Gibbons Creek Steam Electric Station (GCSES). It has been prepared in accordance with the requirements of 40 CFR 257.81. The regulation requires an initial Run-on and Run-off Control System Plan be prepared no later than October 17, 2016 and updated every five years. The original Run-on and Run-off Control System was completed on October 19, 2016.

1.1 Facility Description

The GCSES is located at 12824 FM 244, Anderson, TX 77830. The Site F Landfill (Landfill) is located approximately 1.5 miles northeast of the site's administrative building. The GCSES is approximately 15 miles east of College Station, Texas.

The Site F Landfill (Landfill) is located at the Gibbons Creek Steam Electric Station (GCSES) and is approximately 96 acres in size. The Landfill was constructed in 1990 and expanded in 1995. The CCR material placed in the Landfill consists primarily of bottom ash, fly ash, fly ash mixed with dewatered scrubber sludge, and dewatered scrubber sludge. Approximately 30.1 acres of the landfill is still open and available to accept waste however, only approximately 18.3 acres is active without any temporary cover. The remainder of the Landfill has a cover system installed with a thick layer of vegetative cover.

The GCSES closed and stopped generating CCR material in 2018. The facility is currently being decommissioned. Upon completion of closure activities, the Landfill will contain approximately 8,078,000 cy of CCR material.

1.2 Regulatory Requirements

40 CFR 257.81 and 30 TAC §335.173(h) requires that an owner or operator of an existing or new CCR landfill or any lateral expansion of a CCR landfill design, construct, operate, and maintain:

1

- 1) a run-on control system to prevent flow onto the active portion of the CCR unit during the peak discharge from a 24-hour, 25-year storm;
- 2) a run-off control system from the active portion of the CCR unit to collect and control at least the water volume resulting from a 24-hour, 25-year storm; and
- a run-off control system designed to handle run-off so that it does not cause a discharge of pollutants to waters of the United States that is in violation of the requirements of the National Pollutant Discharge Elimination System (NPDES) under Section 402 of the Clean Water Act.

2.0 RUN-ON / RUN-OFF CONTROLS FOR CCR LANDFILL

A hydrologic and hydraulic analysis was completed for the active portion of the CCR landfill unit in accordance with 40 CFR 257.81 and 30 TAC §335.173(h). Per §257.53 the active portion means "*that part of the CCR unit that has received or is receiving CCR or non-CCR waste and that has not completed closure in accordance with §257.102*".

A surface water run-off model was prepared using the Soil Conservation Service (SCS) Technical Release 55 (TR-55) for computing curve numbers and times of concentration. The model is included as Appendix A. A detailed discussion of the information inputted into the model is provided below. This modeling system was used to determine whether existing run-on and run-off control systems meet the required criteria for controlling run-on and run-off from the 24-hour, 25-year storm event. The evaluation was completed using the best available information at the time and was based on an existing conditions survey May 21, 2021.

2.1 Description of the Active CCR Landfill and Drainage Area

Based on the survey data, the active area pf the CCR landfill is an approximate 18.34acre area on the south side of the Landfill (see Figure 2). It is surrounded by a diversion berm (elevation 280 feet) and swale to direct non-CCR contact stormwater away from the active area. The active area is sloped to the lowest section where it ponds and eventually evaporates. The ponded area varies based on seasonal rainfall but is typically approximately 5.5 acres in size.

2.2 Description of Existing Run-on / Run-off Controls

2.2.1 Run-on Controls

The Landfill is bounded by a perimeter berm that varies in height from approximately 20-feet to 60-feet and relies on natural topography on the southern and eastern ends to prevent stormwater run-on to the landfill.

The area identified as Drainage Area 1 in Figure 2 flows east away from the active area and goes through an existing stormwater settling pond before discharge to the surrounding area.

The area identified as Drainage Area 2 is adjacent to the active area and is diverted away from the active area by a drainage swale and minimum 3-feet high diversion berm. Drainage Area 2 is approximately 28.4 acres in area.

The active area (Drainage Area 3) of the landfill is surrounded by a drainage swale and diversion berm, a minimum of 3-feet high, to prevent surface water run-on from contacting CCR material. The active area is approximately 30.1 acres in area.

2.2.2 Run-off Controls

The active area (Drainage Areas 3) is surrounded by the diversion berm. Stormwater landing within the active area is either absorbed by the uncovered CCR material or is directed to the lowest area where it ponds and eventually evaporates. There is no outfall at the active area. The overall area of the ponded water varies and averages approximately 5.5 acres in size.

2.3 Surface Water Run-off Model

A surface water run-off model was prepared using the Soil Conservation Service (SCS) Technical Release 55 (TR-55) for computing curve numbers and times of concentration. The model is included as Appendix A. A detailed discussion of the information inputted into the model is provided below.

2.3.1 Rainfall Data

Rainfall data was taken from the National Oceanic and Atmospheric Administration (NOAA) Precipitation Frequency Data Server. Rainfall data inputted into the model included the 25 year - 24 hour storm event of 8.99 inches. The precipitation information from the NOAA Precipitation Frequency Data Server is included as Appendix B.

2.3.2 Weighted Curve Number

The weighted curve number (CN) is determined according to a hydrologic soil group (HSG) and ground cover for a delineated drainage basin. The active area of the landfill was delineated into one drainage basin which drains to the low end (refer to Figure 2). To compute the weighted CN the Soil Conservation District Web Soil Survey map was consulted to identify the hydrologic soil groups for the native soils where ash was not present. A soil report for the native soils is included in Appendix C. According to the web soil map the native soils at the Site F Landfill consist primarily of the following:

Table 2-1: Summary of Site F Landfill Soils					
Soil Type	Slope	Hydrologic Soil			
		Group			
Burlewash, fine sand loam	1-5%	D			
Bulrewash, fine sandy	5-12%	D			
loam					
Elmina loamy fine sand	1-5%	А			
Padina loamy fine sand	1-8%	А			
Shirol loamy fine sand	1-5%	D			
Singleton fine sandy laom	1-5%	D			
Water		D			

A summary of the breakdown used to calculate the weighted CN is provided in Table 2-2 and Table 2-3. The exposed CCR material was treated as "Fallow, Bare Soil" for the purposes of assigning the HSG.

Table 2-2: Summary of Drainage Area 2								
Cover TypeHSGAreaCurve Number								
Pasture, good condition	А	7.85	39					
Pasture, good condition	D	7.11	80					
Open Water	А	1.57	98					
Weighted CN	Weighted CN 62							

Table 2-3: Summary of Drainage Area 3 (Active Area)							
Cover Type HSG Area Curve Number							
Fallow, Bare Soil	A	15.9	77				
Pasture, good condition	D	80					
Open Water	А	5.5	98				
Weighted CN			78				

2.3.3 Time of Concentration

The time of concentration is defined as the time required for runoff to travel from the most hydrologically distant point of a sub-catchment to the point of collection. It is determined by summing the travel time for consecutive flow segments along the sub-catchment's hydraulic path. The path for the time of concentration used to compute surface water runoff from the active landfill area is shown on Figure 2.

2.3.4 Active Area

The active area was modeled as a retention basin with no outlet.

2.4 Evaluation of Existing Run-on Controls

The active area of the landfill is enclosed with a berm that is 3-feet high and drainage swale. To comply with 40 Part 257.81 the existing contact pond must be of sufficient size to collect and control run-on resulting from the 24-hour, 25 year storm event. The model was run to evaluate whether the diversion berm was of sufficient size to prevent the design storm event from coming into contact with exposed CCR material at the active area.

Based on the model results the existing diversion berm is of sufficient size to prevent surface water run-on from contacting CCR material in the active area. Based on the model and calculations performed, the peak stormwater runoff will be approximately 104 cfs at the discharge point from the landfill. The depth of stormwater will be approximately 1.4 feet. The diversion berm has a height of approximately 3-feet therefore, the freeboard is greater than 1-foot.

2.5 Evaluation of Existing Run-Off Controls

To comply with 40 Part 257.81 the active area must be of sufficient size to collect and control run-off resulting from the 24-hour, 25-year storm event. The model was run to evaluate whether there was sufficient volume in the active area to contain the design storm event.

Based on the model results the existing containment within the active area is of sufficient size to prevent surface water run-off from leaving the active area. Based on the model and calculations performed, the peak stormwater runoff will be approximately 100 cfs to the low point of the active area and the volume of runoff is 17.1 acre-feet. The typical water surface depth is elevation 265-feet and the total storage volume at elevation 285-feet, 1-foot below top of containment berm, is approximately 40-acre feet which is over twice the expected runoff from the design storm event.

2.6 Improvements to Existing Run-on / Run-off Controls

Based on the available information and the model results the existing run-on and run-off controls in place for the active portion of the landfill unit meet the requirements of 40 CFR Part 257.81. There are no improvements proposed for the existing run-on and run-off control systems for the active portion of the CCR landfill.

3.0 ADMINISTRATIVE REQUIREMENTS

Per the requirements of 257.81(c) the initial run-on and run-off control system plan must be prepared by October 17, 2016. Following preparation of the initial plan the owner or operator shall amend the plan whenever changes occur that affect the current plan or at a minimum at a frequency of five years following preparation of the initial plan. Additional administrative requirements are discussed below.

3.1 Plan Amendments

Amendments to the run-on and run-off control system plan may be made at any time provided the revised plan is placed in the facility's operating record. The plan must be amended whenever there is a change in conditions that would substantially affect the written plan in effect. An example of when the plan should be amended includes the closure of an existing portion or cell of the CCR landfill resulting in a possible change in the size of the active portion of the CCR landfill.

At a minimum the owner and operator must prepare periodic run-on and run-off control system plans every five years starting from the date that the initial plan is completed. Plans shall be deemed complete when it has been placed in the facility's operating record.

3.2 Record Keeping Requirements

Record keeping requirements shall be in accordance with §257.105(g).

3.3 Notifications

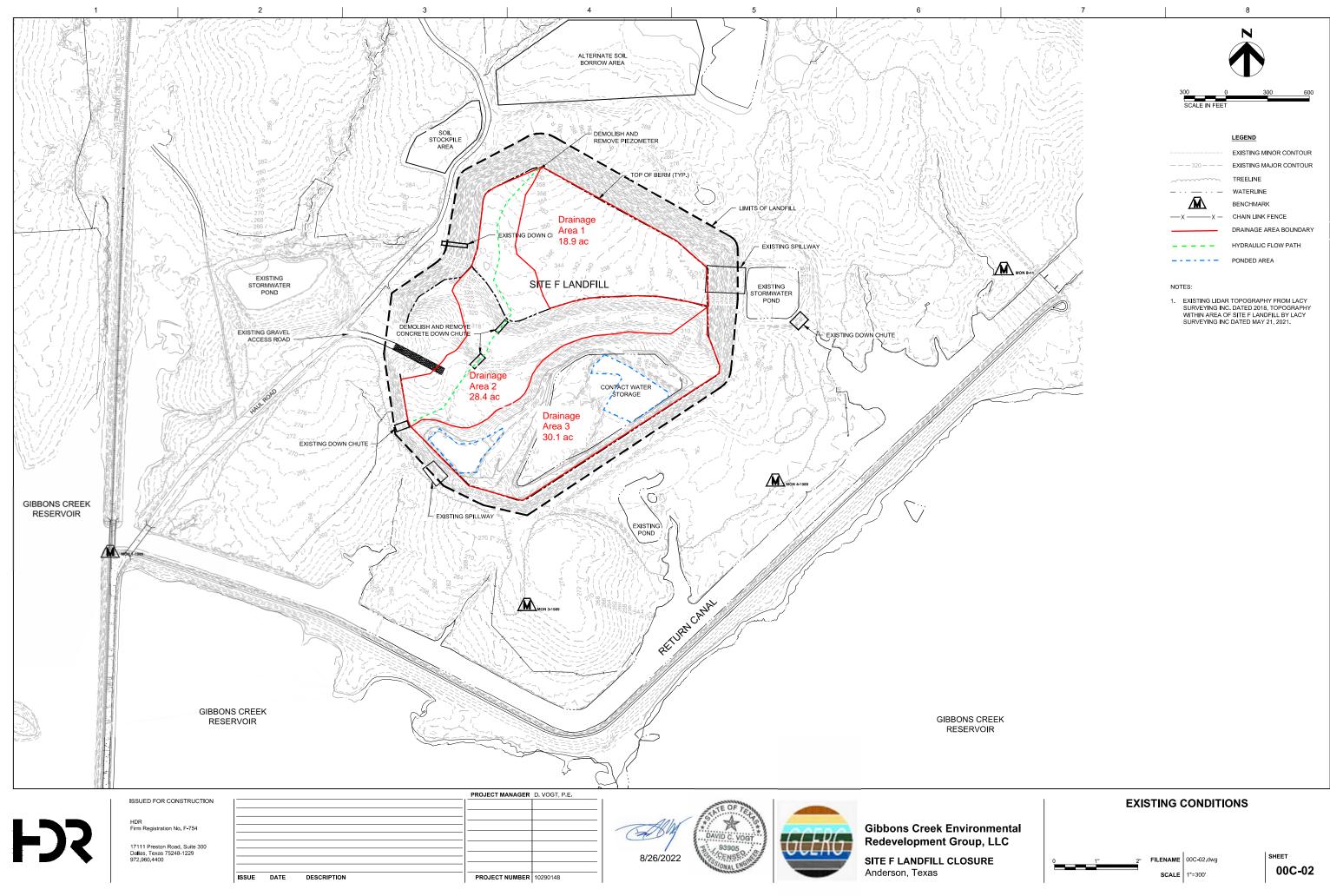
Notifications are required in accordance with §257.106(g). Notifications require that the owner or operator notify the State Director and/or appropriate Tribal authority when the initial and periodic run-on and run-off control system plans are placed in the facility's operating record.

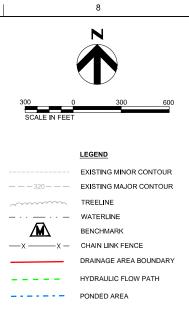
3.4 Internet Requirements

In accordance with §257.107(g) the initial and periodic run-on and run-off control system plans must be posted on the facility's web site. Only the most current plan shall be posted.

4.0 PROFESSIONAL ENGINEER CERTIFICATION

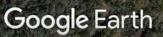
Gibbons Creek Steam Electric Station Site F Landfill 2021 Five Year Review Runon and Run-off Controls for CCR Landfills Compliance with the Federal Coal Combustion Residuals Rule


The undersigned Registered Professional Engineer is familiar with the requirements of Part 257 of Title 40 of the Code of Federal Regulations (40 CFR Part 257) and has visited and examined the facility, or has supervised examination of the facility by appropriately qualified personnel. The undersigned Registered Professional Engineer attests that this Run-on and Run-off Controls System Plan has been prepared in accordance with good engineering practice, including consideration of applicable industry standards and the requirements of 40 CFR Part 257.


This Plan is valid only to the extent that the facility owner or operator maintains existing run-on and run-off controls described in this Plan to prevent flow onto the active portion and prevent surface discharges of CCR in solution or suspension.

David C. Vogt, P.E. 8/26/2022 Texas Professional Engineer: 93905 HDR Engineering, Inc. Firm Registration No. F-754

Appendix A Figures



С

D

2021 Run-On Run-Off Report

Site F Landfill

N

Appendix B TR-55 Model Results

United States Department of Agriculture

Natural Resources Conservation Service

Conservation Engineering Division

Technical Release 55

June 1986

Urban Hydrology for Small Watersheds

TR-55

To show bookmarks which navigate through the document.

Click the show/hide navigation pane button

, and then

click the bookmarks tab. It will navigate you to the contents,

chapters, rainfall maps, and printable forms.

Worksheet 2: Runoff curve number and runoff

Project Gibbons Creek Registration		^{By} Dave Vogt			Date 8/26/2022		
Location Site F Landfill - Drainage Area 2 Project: 10)2901	48		Task	: 3
Check کا ای ای ای ای Check کا ک	Check one: X Present Developed						
1. Runoff curve nu	umber						
Soil name and	Cover description			CN ¹		Area	Product of
hydrologic group			4	5-3	2-4	X acres	CN x area
(appendix A)	(cover type, treatment, and hydrologic condii impervious; unconnected/connected impervi		Table 2-2	Figure 2-3	Figure 2-4	⊡ mi ² □ %	
Burlewash, C	Pasture, good condition	1	80			7.9	632
Burlewash, E	Pasture, good condition		80			4.7	376
Elmina, A	Pasture, good condition		39			2.8	109
Shiro, D	Pasture, good condition		80			12.8	1,024
Singleton, D	Pasture, good conditior	า	80			0.2	16
¹ / Use only one CN source	per line		-	Totals	s ▶	28.40	2,157
CN (weighted) = _total	product _ 2,157 _ 7			.	_	76	
	al area 28.4	;	Use	e CN			
2. Runoff							
	_	Storm #1		Stor	m #2		Storm #3
Frequency	yr	25					
	(24-hour) in	8.99					
(Use P and	CN with table 2-1, figure 2-1, or	6.00					
equations 2	equations 2-3 and 2-4)						

Wor	Worksheet 3: Time of Concentration (T_c) or travel time (T_t)					
Project	Gibbons Creek Registration	^{By} Dave Vogt	Date 8/26/2022			
Location	Site F Landfill - Drainage Area 2	Project: 10290148	Task: 3			

Check one: X Present \Box Developed Check one: X T_C \Box T_t through subarea

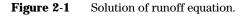
Notes: Space for as many as two segments per flow type can be used for each worksheet. Include a map, schematic, or description of flow segments.

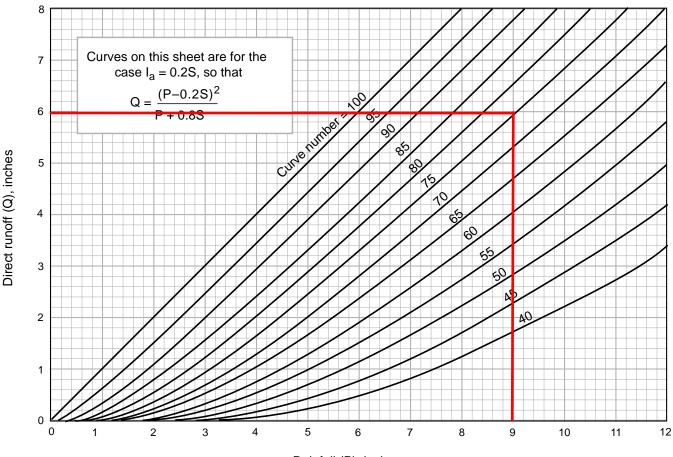
Sheet flow (Applicable to Tc only)

	Segment ID	1		
1.	Surface description (table 3-1)	short grass prai	rie	
2.	Manning's roughness coefficient, n (table 3-1)	0.15		
3.	Flow length, L (total L † 300 ft) ft	300		
4.	Two-year 24-hour rainfall, P ₂ in	4.34		
5.	Land slope, s ft/ft	0.03		
6.	$T_{t} = 0.007 (nL)^{0.8}$ Compute T_{t} hr	0.28 +	-	= 0.28
	$P_2^{0.5} s^{0.4}$			

Shallow concentrated flow

Segment ID	2]
7. Surface description (paved or unpaved)	unpaved	
8. Flow length, Lft	984	
9. Watercourse slope, s ft/ft	.015	
10. Average velocity, V (figure 3-1) ft/s	2.0	
	.14 +	= .14
3600 V		


Channel flow


Segi	ment ID	Grass Areas	Concrete Drops	
12. Cross sectional flow area, a	ft ²	30	46	
13. Wetted perimeter, p _W	ft	17.6	48.2	
14. Hydraulic radius, r= — Compute r	ft	1.70	0.95	
15 Channel slope, s		.056	0.25	
16. Manning's roughness coefficient, n		0.24	0.01	
17. V = $1.49 r^{2/3} s^{1/2}$ Compute V	ft/s	1.86	72	
		1,052	145	
19. $T_t = __L$ Compute T_t		0.16	+ 0.0	= 0.16
3600 V 20. Watershed or subarea T_c or T_t (add T_t in step	os 6, 11, an	d 19)		Hr 0.58

Worksheet 4: Graphical Peak Discharge method

Project Gibbons Creek Registration	^{By} Dave	Vogt		Date 8/26/2022
Location Site F Landfill - Drainage Area 2	Project: 102	290148		Task: 3
Check one: X Present Developed				
1. Data				
Drainage areaA _m =A _m =A	mi ² (ao	cres/640)		
Runoff curve numberCN = <u>76</u>	(From	worksheet 2	2)	
Time of concentration	8 hr (Fro	om workshe	et 3)	
Rainfall distribution	(I, IA, II	III)		
Pond and swamp areas sprea throughout watershed=0	percent of	f A _m (acr	res or mi ² covered)
	Г	Storm #1	Storm #	#2 Storm #3
2. Frequency		25	Otomin /	
3. Rainfall, P (24-hour)		8.99		
4. Initial abstraction, I _a (Use CN with table 4-1)	in	.63		
5. Compute I _a /P		0.07		
6. Unit peak discharge, q _u (Use T _c and I _a / P with exhibit 4–)	csm/in	395		
7. Runoff, Q (From worksheet 2) Figure 2-6	in [6.00		
8. Pond and swamp adjustment factor, F _p		1.0		
(Use percent pond and swamp area with table 4-2. Factor is 1.0 for zero percent pond ans swamp area.)	١			
9. Peak discharge, q _p	ft ³ /s	104		
(Where $q_p = q_u A_m QF_p$)				

Technical Release 55 Urban Hydrology for Small Watersheds

Rainfall (P), inches

Cover type

Table 2-2 addresses most cover types, such as vegetation, bare soil, and impervious surfaces. There are a number of methods for determining cover type. The most common are field reconnaissance, aerial photographs, and land use maps.

Treatment

Treatment is a cover type modifier (used only in table 2-2b) to describe the management of cultivated agricultural lands. It includes mechanical practices, such as contouring and terracing, and management practices, such as crop rotations and reduced or no tillage.

Hydrologic condition

*Hydrologic condition in*dicates the effects of cover type and treatment on infiltration and runoff and is generally estimated from density of plant and residue cover on sample areas. *Good* hydrologic condition indicates that the soil usually has a low runoff potential for that specific hydrologic soil group, cover type, and treatment. Some factors to consider in estimating the effect of cover on infiltration and runoff are (a) canopy or density of lawns, crops, or other vegetative areas; (b) amount of year-round cover; (c) amount of grass or close-seeded legumes in rotations; (d) percent of residue cover; and (e) degree of surface roughness.

					Runo	ff depth f	or curve n	umber of	·				
Rainfall	40	45	50	55	60	65	70	75	80	85	90	95	98
							-inches						
1.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.08	0.17	0.32	0.56	0.79
1.2	.00	.00	.00	.00	.00	.00	.03	.07	.15	.27	.46	.74	.99
1.4	.00	.00	.00	.00	.00	.02	.06	.13	.24	.39	.61	.92	1.18
1.6	.00	.00	.00	.00	.01	.05	.11	.20	.34	.52	.76	1.11	1.38
1.8	.00	.00	.00	.00	.03	.09	.17	.29	.44	.65	.93	1.29	1.58
2.0	.00	.00	.00	.02	.06	.14	.24	.38	.56	.80	1.09	1.48	1.77
2.5	.00	.00	.02	.08	.17	.30	.46	.65	.89	1.18	1.53	1.96	2.27
3.0	.00	.02	.09	.19	.33	.51	.71	.96	1.25	1.59	1.98	2.45	2.77
3.5	.02	.08	.20	.35	.53	.75	1.01	1.30	1.64	2.02	2.45	2.94	3.27
4.0	.06	.18	.33	.53	.76	1.03	1.33	1.67	2.04	2.46	2.92	3.43	3.77
4.5	.14	.30	.50	.74	1.02	1.33	1.67	2.05	2.46	2.91	3.40	3.92	4.26
5.0	.24	.44	.69	.98	1.30	1.65	2.04	2.45	2.89	3.37	3.88	4.42	4.76
6.0	.50	.80	1.14	1.52	1.92	2.35	2.81	3.28	3.78	4.30	4.85	5.41	5.76
7.0	.84	1.24	1.68	2.12	2.60	3.10	3.62	4.15	4.69	5.25	5.82	6.41	6.76
8.0	1.25	1.74	2.25	2.78	3.33	3.89	4.46	5.04	5.63	6.21	6.81	7.40	7.76
9.0	1.71	2.29	2.88	3.49	4.10	4.72	5.33	5.95	6.57	7.18	7.79	8.40	8.76
10.0	2.23	2.89	3.56	4.23	4.90	5.56	6.22	6.88	7.52	8.16	8.78	9.40	9.76
11.0	2.78	3.52	4.26	5.00	5.72	6.43	7.13	7.81	8.48	9.13	9.77	10.39	10.76
12.0	3.38	4.19	5.00	5.79	6.56	7.32	8.05	8.76	9.45	10.11	10.76	11.39	11.76
13.0	4.00	4.89	5.76	6.61	7.42	8.21	8.98	9.71	10.42	11.10	11.76	12.39	12.76
14.0	4.65	5.62	6.55	7.44	8.30	9.12	9.91	10.67	11.39	12.08	12.75	13.39	13.76
15.0	5.33	6.36	7.35	8.29	9.19	10.04	10.85	11.63	12.37	13.07	13.74	14.39	14.76

Table 2-1 Runoff depth for selected CN's and rainfall amounts 1

 $\underline{1}/$ Interpolate the values shown to obtain runoff depths for CN's or rainfall amounts not shown.

Table 2-2bRunoff curve numbers for cultivated agricultural lands 1/2

	Cover description			Curve num hydrologic s		
	F	Hydrologic				
Cover type	Treatment 2/	condition 3/	А	В	С	D
Fallow	Bare soil Assumed for CCR		77	86	91	94
	Crop residue cover (CR)	Poor	76	85	90	93
		Good	74	83	88	90
Row crops	Straight row (SR)	Poor	72	81	88	91
-	0 1 1	Good	67	78	85	89
	SR + CR	Poor	71	80	87	90
		Good	64	75	82	85
	Contoured (C)	Poor	70	79	84	88
		Good	65	75	82	86
	C + CR	Poor	69	78	83	87
		Good	64	74	81	85
	Contoured & terraced (C&T)	Poor	66	74	80	82
		Good	62	71	78	81
	C&T+CR	Poor	65	73	79	81
		Good	61	70	77	80
Small grain	SR	Poor	65	76	84	88
		Good	63	75	83	87
	SR + CR	Poor	64	75	83	86
		Good	60	72	80	84
	С	Poor	63	74	82	85
		Good	61	73	81	84
	C + CR	Poor	62	73	81	84
		Good	60	72	80	83
	C&T	Poor	61	72	79	82
		Good	59	70	78	81
	C&T+ CR	Poor	60	71	78	81
		Good	58	69	77	80
Close-seeded	SR	Poor	66	77	85	89
or broadcast		Good	58	72	81	85
legumes or	С	Poor	64	75	83	85
rotation		Good	55	69	78	83
meadow	C&T	Poor	63	73	80	83
		Good	51	67	76	80

 $^{\rm 1}$ Average runoff condition, and $\rm I_a{=}0.2S$

 2 Crop residue cover applies only if residue is on at least 5% of the surface throughout the year.

³ Hydraulic condition is based on combination factors that affect infiltration and runoff, including (a) density and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes, (d) percent of residue cover on the land surface (good \geq 20%), and (e) degree of surface roughness.

Poor: Factors impair infiltration and tend to increase runoff.

Good: Factors encourage average and better than average infiltration and tend to decrease runoff.

Table 2-2c Runoff curve numbers for other agricultural lands $1\!\!/$

Cover description		Curve numbers for hydrologic soil group				
Cover type	Hydrologic condition	А	В	C	D	
Pasture, grassland, or range—continuous forage for grazing. 2/	Poor Fair Good	68 49 39	79 69 61	86 79 74	89 84 80	
Meadow—continuous grass, protected from grazing and generally mowed for hay.	—	30	58	71	78	
Brush—brush-weed-grass mixture with brush the major element. ${}^{\mathcal{Y}}$	Poor Fair Good	48 35 30 ∉∕	$67 \\ 56 \\ 48$	77 70 65	83 77 73	
Woods—grass combination (orchard or tree farm). 5/	Poor Fair Good	57 43 32	73 65 58	82 76 72	86 82 79	
Woods. 🗹	Poor Fair Good	45 36 30 4⁄	66 60 55	77 73 70	83 79 77	
Farmsteads—buildings, lanes, driveways, and surrounding lots.	_	59	74	82	86	

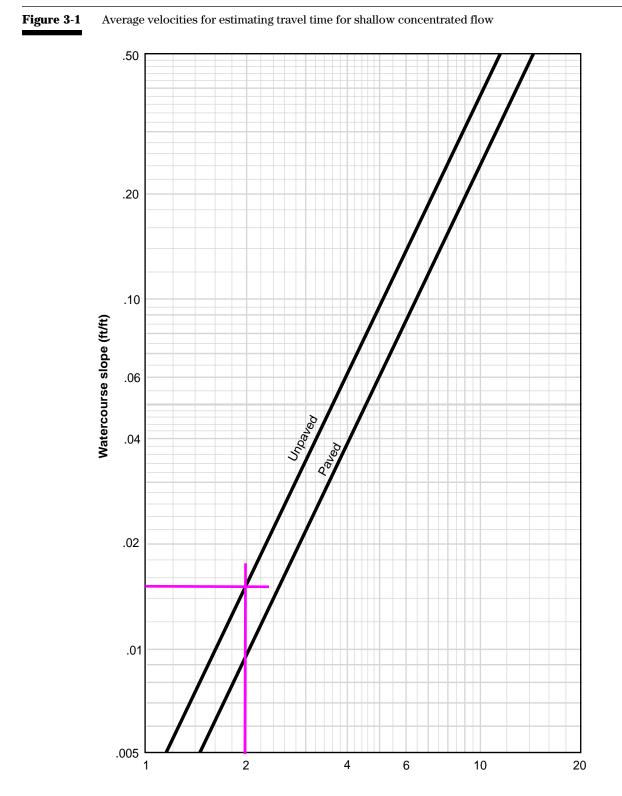
1 Average runoff condition, and $I_a = 0.2S$.

 $\mathbf{2}$ *Poor:* <50%) ground cover or heavily grazed with no mulch. Fair: 50 to 75% ground cover and not heavily grazed.

Good: > 75% ground cover and lightly or only occasionally grazed. 3

Poor: <50% ground cover.

50 to 75% ground cover. Fair:


Good: >75% ground cover.

4 Actual curve number is less than 30; use CN = 30 for runoff computations.

5CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture.

6 Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning. Fair: Woods are grazed but not burned, and some forest litter covers the soil. Good: Woods are protected from grazing, and litter and brush adequately cover the soil.

Technical Release 55 Urban Hydrology for Small Watersheds

Average velocity (ft/sec)

Technical Release 55 Urban Hydrology for Small Watersheds

Sheet flow

Sheet flow is flow over plane surfaces. It usually occurs in the headwater of streams. With sheet flow, the friction value (Manning's n) is an effective roughness coefficient that includes the effect of raindrop impact; drag over the plane surface; obstacles such as litter, crop ridges, and rocks; and erosion and transportation of sediment. These n values are for very shallow flow depths of about 0.1 foot or so. Table 3-1 gives Manning's n values for sheet flow for various surface conditions.

Table 3-1	Roughness coefficients (Manning's n) for
	sheet flow

Surface description	n 1/
Smooth surfaces (concrete, asphalt,	
gravel, or bare soil)	0.011
Fallow (no residue)	0.05
Cultivated soils:	
Residue cover ≤20%	0.06
Residue cover >20%	0.17
Grass:	
Short grass prairie	0.15
Dense grasses 2/	0.24
Bermudagrass	0.41
Range (natural)	0.13
Woods: <u>3/</u>	
Light underbrush	0.40
Dense underbrush	0.80

¹ The n values are a composite of information compiled by Engman (1986).

² Includes species such as weeping lovegrass, bluegrass, buffalo grass, blue grama grass, and native grass mixtures.

 $^3\,$ When selecting n , consider cover to a height of about 0.1 ft. This is the only part of the plant cover that will obstruct sheet flow.

For sheet flow of less than 300 feet, use Manning's kinematic solution (Overtop and Meadows 1976) to compute T_t :

$$\Gamma_{\rm t} = \frac{0.007 (\rm nL)^{0.8}}{(\rm P_2)^{0.5} \rm s^{0.4}}$$
 [eq. 3-3]

where:

- $T_t = travel time (hr),$
- n = Manning's roughness coefficient (table 3-1)
- L = flow length (ft)
- $P_2 = 2$ -year, 24-hour rainfall (in)
 - s = slope of hydraulic grade line (land slope, ft/ft)

This simplified form of the Manning's kinematic solution is based on the following: (1) shallow steady uniform flow, (2) constant intensity of rainfall excess (that part of a rain available for runoff), (3) rainfall duration of 24 hours, and (4) minor effect of infiltration on travel time. Rainfall depth can be obtained from appendix B.

Shallow concentrated flow

After a maximum of 300 feet, sheet flow usually becomes shallow concentrated flow. The average velocity for this flow can be determined from figure 3-1, in which average velocity is a function of watercourse slope and type of channel. For slopes less than 0.005 ft/ft, use equations given in appendix F for figure 3-1. Tillage can affect the direction of shallow concentrated flow. Flow may not always be directly down the watershed slope if tillage runs across the slope.

After determining average velocity in figure 3-1, use equation 3-1 to estimate travel time for the shallow concentrated flow segment.

Open channels

Open channels are assumed to begin where surveyed cross section information has been obtained, where channels are visible on aerial photographs, or where blue lines (indicating streams) appear on United States Geological Survey (USGS) quadrangle sheets. Manning's equation or water surface profile information can be used to estimate average flow velocity. Average flow velocity is usually determined for bankfull elevation.

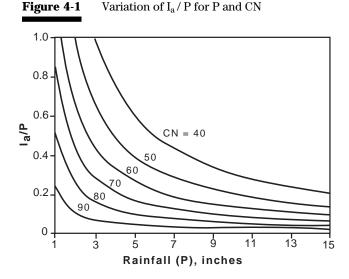
Chapter 4

This chapter presents the Graphical Peak Discharge method for computing peak discharge from rural and urban areas. The Graphical method was developed from hydrograph analyses using TR-20, "Computer Program for Project Formulation—Hydrology" (SCS 1983). The peak discharge equation used is:

$$q_{p} = q_{u}A_{m}QF_{p} \qquad [eq. 4-1]$$

where:

 $\begin{array}{ll} q_p = & peak \mbox{ discharge (cfs)} \\ q_u = & unit \mbox{ peak discharge (csm/in)} \\ A_m = & drainage \mbox{ area (mi^2)} \\ Q = & runoff \mbox{ (in)} \\ F_p = & pond \mbox{ and swamp adjustment factor} \end{array}$

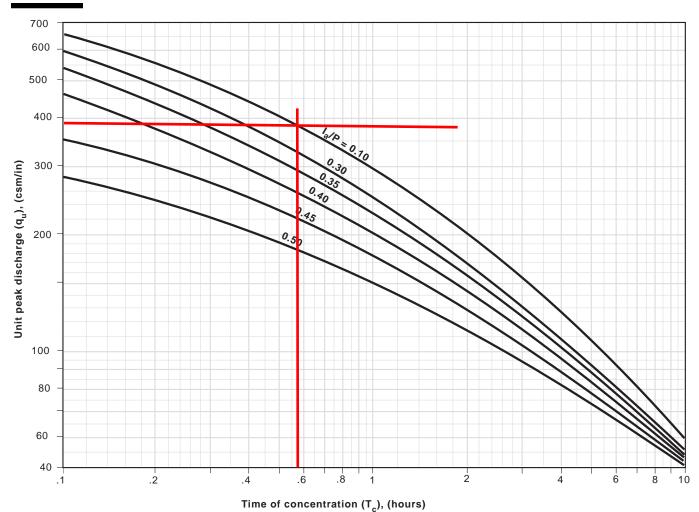

The input requirements for the Graphical method are as follows: (1) T_c (hr), (2) drainage area (mi²), (3) appropriate rainfall distribution (I, IA, II, or III), (4) 24-hour rainfall (in), and (5) CN. If pond and swamp areas are spread throughout the watershed and are not considered in the T_c computation, an adjustment for pond and swamp areas is also needed.

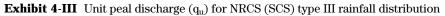
Peak discharge computation

For a selected rainfall frequency, the 24-hour rainfall (P) is obtained from appendix B or more detailed local precipitation maps. CN and total runoff (Q) for the watershed are computed according to the methods outlined in chapter 2. The CN is used to determine the initial abstraction (I_a) from table 4-1. I_a / P is then computed.

If the computed I_a / P ratio is outside the range in exhibit 4 (4-I, 4-IA, 4-II, and 4-III) for the rainfall distribution of interest, then the limiting value should be used. If the ratio falls between the limiting values, use linear interpolation. Figure 4-1 illustrates the sensitivity of I_a / P to CN and P.

Peak discharge per square mile per inch of runoff (q_{u}) is obtained from exhibit 4-I, 4-IA, 4-II, or 4-III by using T_c (chapter 3), rainfall distribution type, and I_a / P ratio. The pond and swamp adjustment factor is obtained from table 4-2 (rounded to the nearest table value). Use worksheet 4 in appendix D to aid in computing the peak discharge using the Graphical method.




I_a values for runoff curve numbers

Curve	Ia	Curve	Ia
number	(in)	number	(in)
40	3.000	70	0.857
41		71	0.817
42	2.762	72	0.778
43	2.651	73	0.740
44	2.545	74	0.703
45	2.444	75	0.667
46	2.348	76	0.632
47	2.255		0.597
48	2.167	78	0.564
49	2.082	79	0.532
50	2.000	80	0.500
51	1.922	81	0.469
52	1.846	82	0.439
53	1.774	83	0.410
54	1.704	84	0.381
55	1.636	85	0.353
56	1.571	86	0.326
57	1.509	87	0.299
58	1.448	88	0.273
59	1.390	89	0.247
60	1.333	90	0.222
61	1.279	91	0.198
62	1.226	92	0.174
63	1.175	93	0.151
64	1.125	94	0.128
65	1.077	95	0.105
66	1.030	96	0.083
67	0.985	97	0.062
68	0.941	98	0.041
60	0.000	1	

69 0.899

Technical Release 55 Urban Hydrology for Small Watersheds

United States Department of Agriculture

Natural Resources Conservation Service

Conservation Engineering Division

Technical Release 55

June 1986

Urban Hydrology for Small Watersheds

TR-55

To show bookmarks which navigate through the document.

Click the show/hide navigation pane button

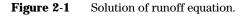
, and then

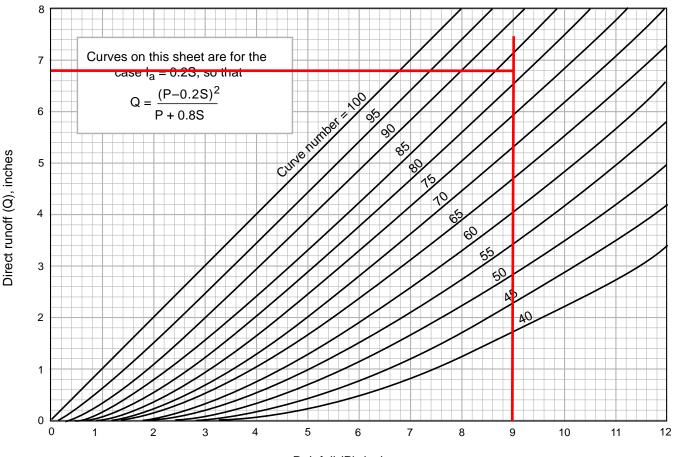
click the bookmarks tab. It will navigate you to the contents,

chapters, rainfall maps, and printable forms.

Worksheet 2: Runoff curve number and runoff

Project Gibbons Cr	^{By} Dave Vogt				Date 8/26/2022		
Location Site F Land	Location Site F Landfill - Drainage Area 3			Project: 10290148			
Check one: X Preser	nt Developed						
1. Runoff curve n	umber						
Soil name and	Cover description			CN ^{_1}	L I	Area	Product of
hydrologic group			-2	2-3	2-4	🗙 acres	CN x area
(appendix A)	(cover type, treatment, and hydrologic con impervious; unconnected/connected imper		Table 2-2	Figure 2-3	Figure 2-4	⊡ mi ² □ %	
CCR, A	Fallow, Bare Soil		77			15.9	1,224
Shiro, D	Pasture, good condition		80			8.7	696
Water			98			5.5	539
¹ / Use only one CN source	per line		•	Total	s 🗭	30.1	2,459
CN (weighted) = total	product ==	82 ;	lled	e CN		82	
	al area 30.1		030		-		
2. Runoff							
		Storm #1		Stor	m #2		Storm #3
Frequency	yr	25					
Rainfall, P ((24-hour) in	8.99					
	I CN with table 2-1, figure 2-1, or	6.81					
equations 2	2-3 and 2-4)						


Project Gibbons Creek Registration	^{By} Dave Vogt	Date 8/26/2022
Location Site F Landfill - Drainage Area 3	Project: 10290148	Task: 3
Check one: X Present Developed Check one: X T _c T _t through subarea Notes: Space for as many as two segments per flow typ Include a map, schematic, or description of flow		
Sheet flow (Applicable to Tc only)		
Segment ID 1. Surface description (table 3-1)	short grass prairie 0.15 300 4.34 0.03 0.28 + 2 unpaved 801	=[0.28]
9. Watercourse slope, s ft/ft 10. Average velocity, V (figure 3-1) ft/s 11. $T_t = \frac{L}{3600 \text{ V}}$ Compute T_t hr Channel flow	.015 1.37 .16 +	=[.16]
		_
Segment ID12. Cross sectional flow area, a		= =


Worksheet 3: Time of Concentration (T_c) or travel time (T_t)

Worksheet 4: Graphical Peak Discharge method

Project Gibbons Creek Registration			^{By} Dave Vogt				Date 8/26/2022	
Site F Landfill - Drainage Area 3			Project: 10290148			Task: 3		
Check one: X Present Developed								
. Data								
Drainage area	A _m = _	.047	mi ² (a	acres/640)				
Runoff curve number	CN = _	82	(From	n worksheet	2)			
Time of concentration	T _c = _	0.44	hr (Fi	rom workshe	et 3)			
Rainfall distribution	=		(I, IA, I	II III)				
Pond and swamp areas sprea throughout watershed = 18 percent of A _m (5.5 acres or mi ² covered					ni ² covered)			
				Storm #1	Storm :	#2 \$	Storm #3	
2. Frequency			vr	25				
3. Rainfall, P (24-hour)				8.99				
4. Initial abstraction, I _a (Use CN with table 4-1)			in	.44				
5. Compute I _a /P				0.05				
6. Unit peak discharge, q _u (Use T _c and I _a / P with exhibit 4–)		csm/in	430				
7. Runoff, Q (From worksheet 2) Figure 2-6			in	6.81				
8. Pond and swamp adjustment factor, (Use percent pond and swamp are				0.72				
with table 4-2. Factor is 1.0 for zero percent pond ans swamp are				[
9. Peak discharge, q _p			ft ³ /s	100				
(Where $q_p = q_u A_m QF_p$)								

Technical Release 55 Urban Hydrology for Small Watersheds

Rainfall (P), inches

Cover type

Table 2-2 addresses most cover types, such as vegetation, bare soil, and impervious surfaces. There are a number of methods for determining cover type. The most common are field reconnaissance, aerial photographs, and land use maps.

Treatment

Treatment is a cover type modifier (used only in table 2-2b) to describe the management of cultivated agricultural lands. It includes mechanical practices, such as contouring and terracing, and management practices, such as crop rotations and reduced or no tillage.

Hydrologic condition

*Hydrologic condition in*dicates the effects of cover type and treatment on infiltration and runoff and is generally estimated from density of plant and residue cover on sample areas. *Good* hydrologic condition indicates that the soil usually has a low runoff potential for that specific hydrologic soil group, cover type, and treatment. Some factors to consider in estimating the effect of cover on infiltration and runoff are (a) canopy or density of lawns, crops, or other vegetative areas; (b) amount of year-round cover; (c) amount of grass or close-seeded legumes in rotations; (d) percent of residue cover; and (e) degree of surface roughness.

					Runo	ff depth f	or curve n	umber of					
Rainfall	40	45	50	55	60	65	70	75	80	85	90	95	98
							-inches						
1.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.08	0.17	0.32	0.56	0.79
1.2	.00	.00	.00	.00	.00	.00	.03	.07	.15	.27	.46	.74	.99
1.4	.00	.00	.00	.00	.00	.02	.06	.13	.24	.39	.61	.92	1.18
1.6	.00	.00	.00	.00	.01	.05	.11	.20	.34	.52	.76	1.11	1.38
1.8	.00	.00	.00	.00	.03	.09	.17	.29	.44	.65	.93	1.29	1.58
2.0	.00	.00	.00	.02	.06	.14	.24	.38	.56	.80	1.09	1.48	1.77
2.5	.00	.00	.02	.08	.17	.30	.46	.65	.89	1.18	1.53	1.96	2.27
3.0	.00	.02	.09	.19	.33	.51	.71	.96	1.25	1.59	1.98	2.45	2.77
3.5	.02	.08	.20	.35	.53	.75	1.01	1.30	1.64	2.02	2.45	2.94	3.27
4.0	.06	.18	.33	.53	.76	1.03	1.33	1.67	2.04	2.46	2.92	3.43	3.77
4.5	.14	.30	.50	.74	1.02	1.33	1.67	2.05	2.46	2.91	3.40	3.92	4.26
5.0	.24	.44	.69	.98	1.30	1.65	2.04	2.45	2.89	3.37	3.88	4.42	4.76
6.0	.50	.80	1.14	1.52	1.92	2.35	2.81	3.28	3.78	4.30	4.85	5.41	5.76
7.0	.84	1.24	1.68	2.12	2.60	3.10	3.62	4.15	4.69	5.25	5.82	6.41	6.76
8.0	1.25	1.74	2.25	2.78	3.33	3.89	4.46	5.04	5.63	6.21	6.81	7.40	7.76
9.0	1.71	2.29	2.88	3.49	4.10	4.72	5.33	5.95	6.57	7.18	7.79	8.40	8.76
10.0	2.23	2.89	3.56	4.23	4.90	5.56	6.22	6.88	7.52	8.16	8.78	9.40	9.76
11.0	2.78	3.52	4.26	5.00	5.72	6.43	7.13	7.81	8.48	9.13	9.77	10.39	10.76
12.0	3.38	4.19	5.00	5.79	6.56	7.32	8.05	8.76	9.45	10.11	10.76	11.39	11.76
13.0	4.00	4.89	5.76	6.61	7.42	8.21	8.98	9.71	10.42	11.10	11.76	12.39	12.76
14.0	4.65	5.62	6.55	7.44	8.30	9.12	9.91	10.67	11.39	12.08	12.75	13.39	13.76
15.0	5.33	6.36	7.35	8.29	9.19	10.04	10.85	11.63	12.37	13.07	13.74	14.39	14.76

Table 2-1	Runoff depth for selected CN's and rainfall amounts $1/$
	$\frac{1}{1000}$

 $\underline{1}/$ Interpolate the values shown to obtain runoff depths for CN's or rainfall amounts not shown.

Table 2-2bRunoff curve numbers for cultivated agricultural lands 1/2

	Cover description		Curve numbers for hydrologic soil group			
	P	Hydrologic				
Cover type	Treatment ^{2/}	condition 3/	А	В	С	D
Fallow	Bare soil Assumed for CCR		77	86	91	94
	Crop residue cover (CR)	Poor	76	85	90	93
		Good	74	83	88	90
Row crops	Straight row (SR)	Poor	72	81	88	91
_		Good	67	78	85	89
	SR + CR	Poor	71	80	87	90
		Good	64	75	82	85
	Contoured (C)	Poor	70	79	84	88
		Good	65	75	82	86
	C + CR	Poor	69	78	83	87
		Good	64	74	81	85
	Contoured & terraced (C&T)	Poor	66	74	80	82
		Good	62	71	78	81
	C&T+ CR	Poor	65	73	79	81
		Good	61	70	77	80
Small grain	SR	Poor	65	76	84	88
		Good	63	75	83	87
	SR + CR	Poor	64	75	83	86
		Good	60	72	80	84
	С	Poor	63	74	82	85
		Good	61	73	81	84
	C + CR	Poor	62	73	81	84
		Good	60	72	80	83
	C&T	Poor	61	72	79	82
		Good	59	70	78	81
	C&T+ CR	Poor	60	71	78	81
		Good	58	69	77	80
Close-seeded	SR	Poor	66	77	85	89
or broadcast		Good	58	72	81	85
legumes or	С	Poor	64	75	83	85
rotation		Good	55	69	78	83
meadow	C&T	Poor	63	73	80	83
		Good	51	67	76	80

 $^{\rm 1}$ Average runoff condition, and $\rm I_a{=}0.2S$

 2 Crop residue cover applies only if residue is on at least 5% of the surface throughout the year.

³ Hydraulic condition is based on combination factors that affect infiltration and runoff, including (a) density and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes, (d) percent of residue cover on the land surface (good \geq 20%), and (e) degree of surface roughness.

Poor: Factors impair infiltration and tend to increase runoff.

Good: Factors encourage average and better than average infiltration and tend to decrease runoff.

Table 2-2c Runoff curve numbers for other agricultural lands $1\!\!/$

Cover description		Curve numbers for hydrologic soil group				
Cover type	Hydrologic condition	А	В	C	D	
Pasture, grassland, or range—continuous forage for grazing. 2/	Poor Fair Good	68 49 39	79 69 61	86 79 74	89 84 80	
Meadow—continuous grass, protected from grazing and generally mowed for hay.	—	30	58	71	78	
Brush—brush-weed-grass mixture with brush the major element. $^{3\!/}$	Poor Fair Good	48 35 30 ≇⁄	$67 \\ 56 \\ 48$	77 70 65	83 77 73	
Woods—grass combination (orchard or tree farm). 5/	Poor Fair Good	57 43 32	73 65 58	82 76 72	86 82 79	
Woods. 🗹	Poor Fair Good	45 36 30 4⁄	66 60 55	77 73 70	83 79 77	
Farmsteads—buildings, lanes, driveways, and surrounding lots.	_	59	74	82	86	

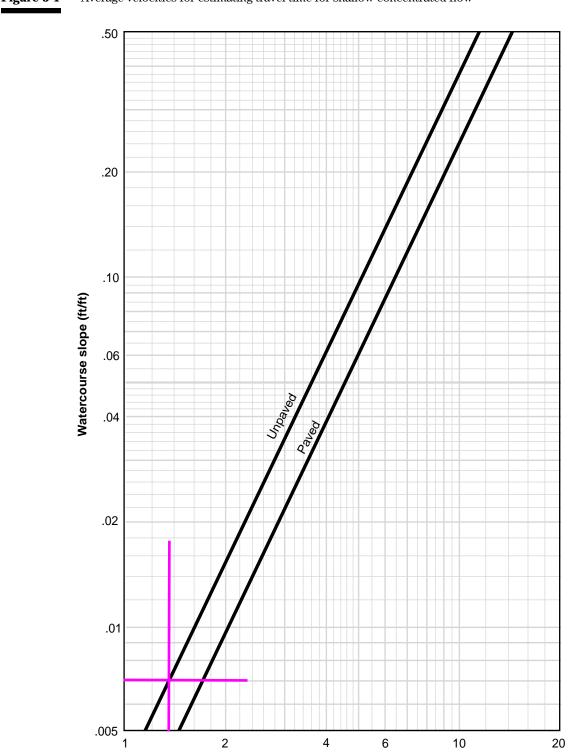
1 Average runoff condition, and $I_a = 0.2S$.

 $\mathbf{2}$ *Poor:* <50%) ground cover or heavily grazed with no mulch. Fair: 50 to 75% ground cover and not heavily grazed.

Good: > 75% ground cover and lightly or only occasionally grazed. 3

Poor: <50% ground cover.

50 to 75% ground cover. Fair:


Good: >75% ground cover.

4 Actual curve number is less than 30; use CN = 30 for runoff computations.

5CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture.

6 Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning. Fair: Woods are grazed but not burned, and some forest litter covers the soil. Good: Woods are protected from grazing, and litter and brush adequately cover the soil.

Technical Release 55 Urban Hydrology for Small Watersheds

Figure 3-1 Average velocities for estimating travel time for shallow concentrated flow

Average velocity (ft/sec)

Technical Release 55 Urban Hydrology for Small Watersheds

Sheet flow

Sheet flow is flow over plane surfaces. It usually occurs in the headwater of streams. With sheet flow, the friction value (Manning's n) is an effective roughness coefficient that includes the effect of raindrop impact; drag over the plane surface; obstacles such as litter, crop ridges, and rocks; and erosion and transportation of sediment. These n values are for very shallow flow depths of about 0.1 foot or so. Table 3-1 gives Manning's n values for sheet flow for various surface conditions.

Table 3-1	Roughness coefficients (Manning's n) for
	sheet flow

Surface description	n 1/
Smooth surfaces (concrete, asphalt,	
gravel, or bare soil)	0.011
Fallow (no residue)	0.05
Cultivated soils:	
Residue cover ≤20%	0.06
Residue cover >20%	0.17
Grass:	
Short grass prairie	0.15
Dense grasses 2/	0.24
Bermudagrass	0.41
Range (natural)	0.13
Woods: <u>3/</u>	
Light underbrush	0.40
Dense underbrush	0.80

¹ The n values are a composite of information compiled by Engman (1986).

² Includes species such as weeping lovegrass, bluegrass, buffalo grass, blue grama grass, and native grass mixtures.

 $^3\,$ When selecting n , consider cover to a height of about 0.1 ft. This is the only part of the plant cover that will obstruct sheet flow.

For sheet flow of less than 300 feet, use Manning's kinematic solution (Overtop and Meadows 1976) to compute T_t :

$$\Gamma_{\rm t} = \frac{0.007 (\rm nL)^{0.8}}{(\rm P_2)^{0.5} \rm s^{0.4}}$$
 [eq. 3-3]

where:

- $T_t = travel time (hr),$
- n = Manning's roughness coefficient (table 3-1)
- L = flow length (ft)
- $P_2 = 2$ -year, 24-hour rainfall (in)
 - s = slope of hydraulic grade line (land slope, ft/ft)

This simplified form of the Manning's kinematic solution is based on the following: (1) shallow steady uniform flow, (2) constant intensity of rainfall excess (that part of a rain available for runoff), (3) rainfall duration of 24 hours, and (4) minor effect of infiltration on travel time. Rainfall depth can be obtained from appendix B.

Shallow concentrated flow

After a maximum of 300 feet, sheet flow usually becomes shallow concentrated flow. The average velocity for this flow can be determined from figure 3-1, in which average velocity is a function of watercourse slope and type of channel. For slopes less than 0.005 ft/ft, use equations given in appendix F for figure 3-1. Tillage can affect the direction of shallow concentrated flow. Flow may not always be directly down the watershed slope if tillage runs across the slope.

After determining average velocity in figure 3-1, use equation 3-1 to estimate travel time for the shallow concentrated flow segment.

Open channels

Open channels are assumed to begin where surveyed cross section information has been obtained, where channels are visible on aerial photographs, or where blue lines (indicating streams) appear on United States Geological Survey (USGS) quadrangle sheets. Manning's equation or water surface profile information can be used to estimate average flow velocity. Average flow velocity is usually determined for bankfull elevation.

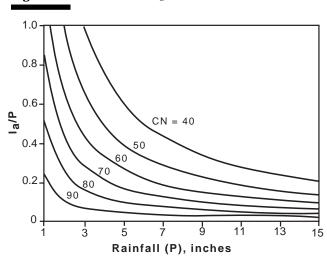
Chapter 4

This chapter presents the Graphical Peak Discharge method for computing peak discharge from rural and urban areas. The Graphical method was developed from hydrograph analyses using TR-20, "Computer Program for Project Formulation—Hydrology" (SCS 1983). The peak discharge equation used is:

$$q_{p} = q_{u}A_{m}QF_{p} \qquad [eq. 4-1]$$

where:

 $\begin{array}{ll} q_p = & peak \mbox{ discharge (cfs)} \\ q_u = & unit \mbox{ peak discharge (csm/in)} \\ A_m = & drainage \mbox{ area (mi^2)} \\ Q = & runoff \mbox{ (in)} \\ F_p = & pond \mbox{ and swamp adjustment factor} \end{array}$

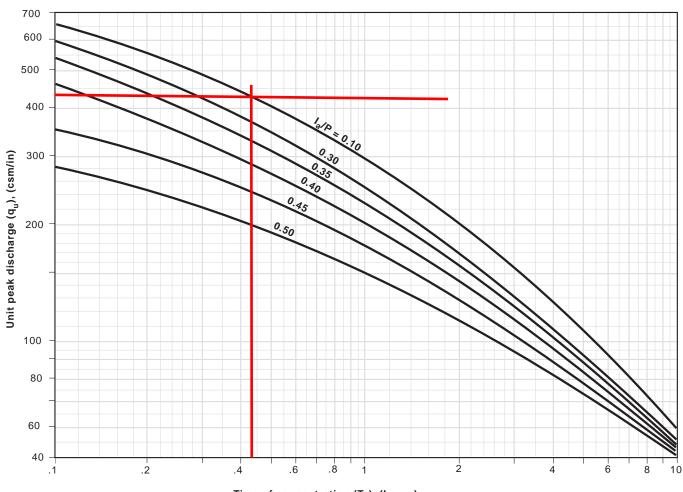

The input requirements for the Graphical method are as follows: (1) T_c (hr), (2) drainage area (mi²), (3) appropriate rainfall distribution (I, IA, II, or III), (4) 24-hour rainfall (in), and (5) CN. If pond and swamp areas are spread throughout the watershed and are not considered in the T_c computation, an adjustment for pond and swamp areas is also needed.

Peak discharge computation

For a selected rainfall frequency, the 24-hour rainfall (P) is obtained from appendix B or more detailed local precipitation maps. CN and total runoff (Q) for the watershed are computed according to the methods outlined in chapter 2. The CN is used to determine the initial abstraction (I_a) from table 4-1. I_a / P is then computed.

If the computed I_a / P ratio is outside the range in exhibit 4 (4-I, 4-IA, 4-II, and 4-III) for the rainfall distribution of interest, then the limiting value should be used. If the ratio falls between the limiting values, use linear interpolation. Figure 4-1 illustrates the sensitivity of I_a / P to CN and P.

Peak discharge per square mile per inch of runoff (q_{u}) is obtained from exhibit 4-I, 4-IA, 4-II, or 4-III by using T_c (chapter 3), rainfall distribution type, and I_a / P ratio. The pond and swamp adjustment factor is obtained from table 4-2 (rounded to the nearest table value). Use worksheet 4 in appendix D to aid in computing the peak discharge using the Graphical method.


Тэ	hl	e	1	1
Ia	U	ue.	4-	

I_a values for runoff curve numbers

Curve	Ia	Curve	Ia
number	(in)	number	(in)
40	3.000	70	0.857
41	2.878	71	0.817
42	2.762	72	0.778
43	2.651	73	0.740
44	2.545	74	0.703
45	2.444	75	0.667
46	2.348	76	0.632
47	2.255	77	0.597
48	2.167	78	0.564
49	2.082	79	0.532
50	2.000	80	0.500
51	1.922	81	0.469
52	1.846	82	0.439
53	1.774		0.410
54	1.704	84	0.381
55	1.636	85	0.353
56	1.571	86	0.326
57	1.509	87	0.299
58	1.448	88	0.273
59	1.390	89	0.247
60	1.333	90	0.222
61	1.279	91	0.198
62	1.226	92	0.174
63	1.175	93	0.151
64	1.125	94	0.128
65	1.077	95	0.105
66	1.030	96	0.083
67	0.985	97	0.062
68	0.941	98	0.041
<u>ao</u>		1	

69 0.899

Technical Release 55 Urban Hydrology for Small Watersheds

 $\textbf{Exhibit 4-III} \hspace{0.1 in the peak discharge (q_u) for NRCS (SCS) type III rainfall distribution}$

Time of concentration (T_c) , (hours)

Table 4-2	Adjustment factor (F _p) for pond and swamp
	areas that are spread throughout the
	watershed

Percentage of pond and swamp areas	$\mathbf{F}_{\mathbf{p}}$
0	1.00
0.2	0.97
1.0	0.87
3.0	0.75
5.0	0.72

Limitations

The Graphical method provides a determination of peak discharge only. If a hydrograph is needed or watershed subdivision is required, use the Tabular Hydrograph method (chapter 5). Use TR-20 if the watershed is very complex or a higher degree of accuracy is required.

- The watershed must be hydrologically homogeneous, that is, describable by one CN. Land use, soils, and cover are distributed uniformly throughout the watershed.
- The watershed may have only one main stream or, if more than one, the branches must have nearly equal $T_{\rm C}{}^{\prime}$ s.
- The method cannot perform valley or reservoir routing.
- The $F_{\rm p}$ factor can be applied only for ponds or swamps that are not in the $T_{\rm c}$ flow path.
- Accuracy of peak discharge estimated by this method will be reduced if I_a/P values are used that are outside the range given in exhibit 4. The limiting I_a/P values are recommended for use.
- This method should be used only if the weighted CN is greater than 40.

- When this method is used to develop estimates of peak discharge for both present and developed conditions of a watershed, use the same procedure for estimating T_c .
- $\bullet~T_{\rm c}$ values with this method may range from 0.1 to 10 hours.

Example 4-1

Compute the 25-year peak discharge for the 250-acre watershed described in examples 2-2 and 3-1. Figure 4-2 shows how worksheet 4 is used to compute $q_{\rm p}$ as 345 cfs.

Appendix C NOAA Rainfall Data

NOAA Atlas 14, Volume 11, Version 2 Location name: Iola, Texas, USA* Latitude: 30.6379°, Longitude: -96.0674° Elevation: 269.48 ft** * source: ESRI Maps ** source: USGS

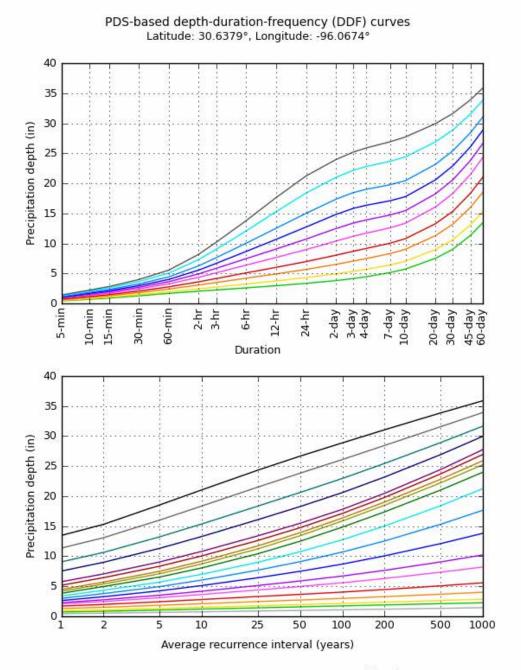
POINT PRECIPITATION FREQUENCY ESTIMATES

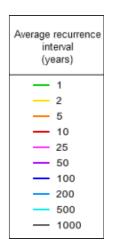
Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

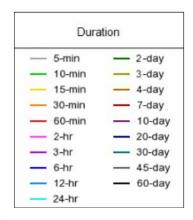
NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

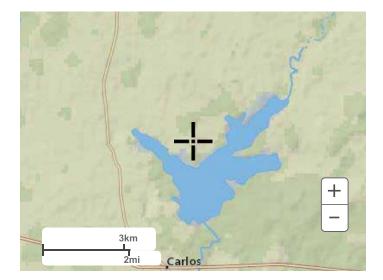

PDS-k	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹									
Duration	Average recurrence interval (years)									
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.462 (0.349-0.610)	0.534 (0.409-0.701)	0.655 (0.500-0.862)	0.754 (0.566-1.00)	0.887 (0.643-1.22)	0.986 (0.697-1.39)	1.09 (0.749-1.57)	1.19 (0.801-1.77)	1.33 (0.866-2.05)	1.44 (0.914-2.28)
10-min	0.734 (0.556-0.970)	0.851 (0.652-1.12)	1.05 (0.797-1.38)	1.20 (0.904-1.60)	1.42 (1.03-1.95)	1.58 (1.12-2.23)	1.74 (1.20-2.52)	1.90 (1.28-2.82)	2.11 (1.37-3.24)	2.26 (1.43-3.57)
15-min	0.927 (0.702-1.23)	1.07 (0.820-1.41)	1.31 (0.998-1.72)	1.50 (1.13-2.00)	1.76 (1.28-2.42)	1.96 (1.38-2.76)	2.15 (1.49-3.12)	2.36 (1.59-3.51)	2.63 (1.71-4.06)	2.85 (1.80-4.49)
30-min	1.31 (0.995-1.74)	1.51 (1.16-1.99)	1.84 (1.40-2.42)	2.10 (1.58-2.80)	2.46 (1.78-3.36)	2.72 (1.92-3.83)	2.98 (2.06-4.32)	3.28 (2.20-4.87)	3.68 (2.39-5.67)	4.01 (2.54-6.33)
60-min	1.72 (1.30-2.27)	1.98 (1.52-2.61)	2.43 (1.86-3.20)	2.80 (2.10-3.73)	3.29 (2.38-4.50)	3.66 (2.58-5.14)	4.03 (2.78-5.84)	4.46 (3.00-6.64)	5.07 (3.30-7.82)	5.58 (3.53-8.80)
2-hr	2.08 (1.58-2.72)	2.47 (1.89-3.20)	3.10 (2.37-4.04)	3.64 (2.74-4.81)	4.39 (3.20-5.96)	4.96 (3.52-6.94)	5.58 (3.87-8.03)	6.30 (4.25-9.29)	7.34 (4.79-11.2)	8.21 (5.21-12.8)
3-hr	2.27 (1.74-2.98)	2.76 (2.11-3.54)	3.52 (2.70-4.57)	4.18 (3.16-5.51)	5.13 (3.75-6.95)	5.88 (4.19-8.19)	6.70 (4.66-9.59)	7.65 (5.18-11.2)	9.05 (5.91-13.7)	10.2 (6.50-15.9)
6-hr	2.62 (2.02-3.41)	3.27 (2.50-4.12)	4.24 (3.27-5.46)	5.12 (3.90-6.71)	6.42 (4.73-8.66)	7.49 (5.37-10.4)	8.69 (6.06-12.3)	10.1 (6.83-14.6)	12.1 (7.93-18.2)	13.8 (8.82-21.2)
12-hr	2.99 (2.31-3.86)	3.79 (2.88-4.69)	4.95 (3.83-6.31)	6.04 (4.62-7.86)	7.68 (5.71-10.3)	9.09 (6.57-12.5)	10.7 (7.50-15.0)	12.5 (8.55-18.1)	15.3 (10.1-22.8)	17.6 (11.3-26.9)
24-hr	3.38 (2.63-4.35)	4.34 (3.30-5.31)	5.69 (4.43-7.22)	7.00 (5.39-9.06)	8.99 (6.74-12.0)	10.7 (7.82-14.7)	12.7 (8.98-17.8)	15.0 (10.3-21.4)	18.4 (12.1-27.1)	21.2 (13.7-32.0)
2-day	3.84 (3.00-4.90)	4.96 (3.79-6.02)	6.53 (5.11-8.23)	8.06 (6.25-10.4)	10.4 (7.87-13.9)	12.5 (9.16-17.0)	14.8 (10.5-20.5)	17.4 (11.9-24.5)	21.0 (13.9-30.6)	24.0 (15.5-35.7)
3-day	4.18 (3.28-5.31)	5.38 (4.14-6.53)	7.09 (5.57-8.90)	8.72 (6.79-11.2)	11.2 (8.50-14.9)	13.4 (9.86-18.2)	15.9 (11.3-21.8)	18.5 (12.7-26.0)	22.2 (14.7-32.2)	25.2 (16.3-37.4)
4-day	4.47 (3.52-5.67)	5.71 (4.42-6.94)	7.49 (5.91-9.39)	9.17 (7.15-11.7)	11.7 (8.88-15.4)	13.9 (10.2-18.8)	16.4 (11.6-22.4)	19.0 (13.1-26.6)	22.8 (15.2-32.9)	25.9 (16.8-38.2)
7-day	5.17 (4.09-6.53)	6.44 (5.05-7.88)	8.33 (6.61-10.4)	10.1 (7.88-12.8)	12.6 (9.57-16.5)	14.7 (10.9-19.7)	17.1 (12.2-23.3)	19.8 (13.7-27.5)	23.7 (15.8-34.0)	26.9 (17.5-39.4)
10-day	5.76 (4.57-7.24)	7.06 (5.59-8.66)	9.04 (7.20-11.3)	10.8 (8.50-13.7)	13.4 (10.2-17.4)	15.5 (11.4-20.6)	17.8 (12.7-24.1)	20.5 (14.2-28.4)	24.4 (16.4-34.9)	27.7 (18.1-40.4)
20-day	7.54 (6.02-9.42)	8.99 (7.23-11.1)	11.3 (9.09-14.1)	13.3 (10.5-16.7)	16.1 (12.3-20.7)	18.3 (13.5-24.0)	20.6 (14.8-27.7)	23.2 (16.2-31.8)	26.9 (18.1-38.0)	29.9 (19.6-43.1)
30-day	9.06 (7.27-11.3)	10.6 (8.62-13.1)	13.2 (10.7-16.4)	15.4 (12.2-19.3)	18.3 (14.0-23.5)	20.6 (15.3-27.0)	22.9 (16.5-30.7)	25.4 (17.8-34.7)	28.9 (19.5-40.6)	31.6 (20.7-45.3)
45-day	11.4 (9.14-14.1)	13.1 (10.7-16.2)	16.0 (13.0-19.8)	18.4 (14.6-22.9)	21.5 (16.5-27.4)	23.8 (17.7-31.0)	26.1 (18.9-34.7)	28.4 (20.0-38.6)	31.5 (21.3-44.0)	33.9 (22.3-48.2)
60-day	13.5 (10.9-16.6)	15.3 (12.6-19.0)	18.5 (15.1-22.9)	21.0 (16.8-26.2)	24.3 (18.7-30.9)	26.6 (19.9-34.6)	28.8 (20.9-38.3)	31.0 (21.9-42.0)	33.8 (22.9-47.0)	35.9 (23.6-50.8)


¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

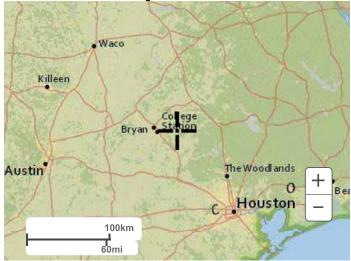

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

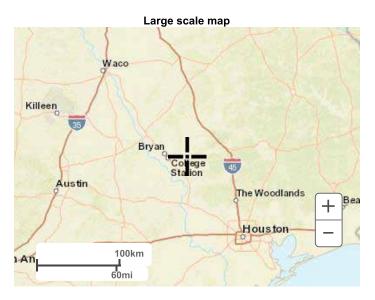
Back to Top

PF graphical

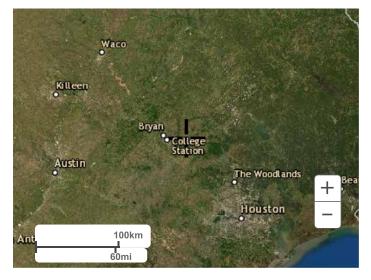

NOAA Atlas 14, Volume 11, Version 2

Created (GMT): Sat Aug 27 13:56:21 2022


Back to Top


Maps & aerials

Small scale terrain



Large scale terrain

Large scale aerial

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

Appendix D

Soil Conservation District Soil Report

United States Department of Agriculture

NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for **Grimes County, Texas**

Drainage Area 2

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface How Soil Surveys Are Made	
Soil Map	
Soil Map	9
Legend	10
Map Unit Legend	11
Map Unit Descriptions	11
Grimes County, Texas	13
BuC—Burlewash fine sandy loam, 1 to 5 percent slopes	13
BuE—Burlewash fine sandy loam, 5 to 12 percent slopes	14
EmC—Elmina loamy fine sand, 1 to 5 percent slopes	15
ShC—Shiro loamy fine sand, 1 to 5 percent slopes	16
SnC—Singleton fine sandy loam, 1 to 5 percent slopes	17
References	19

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

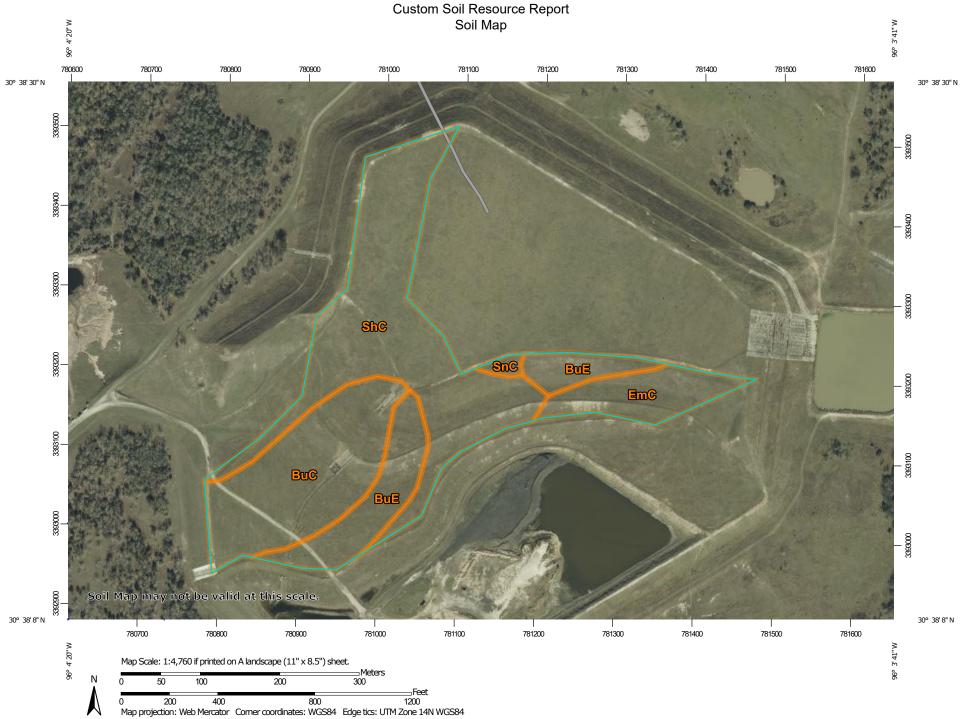
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.


Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

	MAP L	EGEND)	MAP INFORMATION		
Area of In	Area of Interest (AOI)		Spoil Area	The soil surveys that comprise your AOI were mapped at		
	Area of Interest (AOI)	٥	Stony Spot	1:24,000.		
Soils		۵	Very Stony Spot	Warning: Soil Map may not be valid at this scale.		
	Soil Map Unit Polygons	\$2	Wet Spot			
~	Soil Map Unit Lines	Δ	Other	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil		
	Soil Map Unit Points		Special Line Features	line placement. The maps do not show the small areas of		
Special	Point Features Blowout	Water Fea	atures	contrasting soils that could have been shown at a more detailed scale.		
•	Borrow Pit	\sim	Streams and Canals			
×	Clay Spot	Transport		Please rely on the bar scale on each map sheet for map		
×	Closed Depression	+++	Rails	measurements.		
<u></u>	Gravel Pit	~	Interstate Highways	Source of Map: Natural Resources Conservation Service		
X		~	US Routes	Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)		
	Gravelly Spot	~	Major Roads			
٥	Landfill	\sim	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator		
A.	Lava Flow	Backgrou		projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the		
علله	Marsh or swamp	all and a	Aerial Photography	Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.		
Ŕ	Mine or Quarry					
0	Miscellaneous Water			This product is generated from the USDA-NRCS certified data as		
0	Perennial Water			of the version date(s) listed below.		
\vee	Rock Outcrop			Soil Survey Area: Grimes County, Texas		
+	Saline Spot			Survey Area Data: Version 17, Sep 8, 2021		
° ° °	Sandy Spot		Soil map units are labeled (as space allows) for map scales			
-	Severely Eroded Spot			1:50,000 or larger.		
\$	Sinkhole			Date(s) aerial images were photographed: Dec 14, 2019—Dec		
∢	Slide or Slip			18, 2019		
ø	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.		

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI			
BuC	Burlewash fine sandy loam, 1 to 5 percent slopes	7.9	27.8%			
BuE	Burlewash fine sandy loam, 5 to 12 percent slopes	4.7	16.4%			
EmC	Elmina loamy fine sand, 1 to 5 percent slopes	2.8	10.0%			
ShC	Shiro loamy fine sand, 1 to 5 percent slopes	12.8	44.9%			
SnC	Singleton fine sandy loam, 1 to 5 percent slopes	0.3	0.9%			
Totals for Area of Interest		28.5	100.0%			

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Grimes County, Texas

BuC—Burlewash fine sandy loam, 1 to 5 percent slopes

Map Unit Setting

National map unit symbol: 2vtj0 Elevation: 200 to 450 feet Mean annual precipitation: 35 to 46 inches Mean annual air temperature: 67 to 69 degrees F Frost-free period: 262 to 288 days Farmland classification: Not prime farmland

Map Unit Composition

Burlewash and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Burlewash

Setting

Landform: Ridges Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Interfluve Down-slope shape: Linear Across-slope shape: Convex Parent material: Eocene age clayey residuum weathered from tuffaceous sandstone and siltstone

Typical profile

A - 0 to 8 inches: fine sandy loam Bt - 8 to 28 inches: clay BCt - 28 to 34 inches: clay Cr - 34 to 45 inches: cemented bedrock

Properties and qualities

Slope: 1 to 5 percent
Depth to restrictive feature: 26 to 34 inches to paralithic bedrock
Drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Low to moderately high (0.00 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 3.0
Available water supply, 0 to 60 inches: Low (about 5.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: D Ecological site: R087AY003TX - Claypan Savannah Hydric soil rating: No

Minor Components

Shalba

Percent of map unit: 10 percent Landform: Ridges Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Interfluve Down-slope shape: Linear Across-slope shape: Convex Ecological site: R087AY003TX - Claypan Savannah Hydric soil rating: No

Rehburg

Percent of map unit: 10 percent Landform: Ridges Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve Down-slope shape: Linear Across-slope shape: Convex Ecological site: R087AY006TX - Sandy Hydric soil rating: No

BuE—Burlewash fine sandy loam, 5 to 12 percent slopes

Map Unit Setting

National map unit symbol: d9mh Elevation: 150 to 500 feet Mean annual precipitation: 35 to 45 inches Mean annual air temperature: 64 to 70 degrees F Frost-free period: 260 to 280 days Farmland classification: Not prime farmland

Map Unit Composition

Burlewash and similar soils: 100 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Burlewash

Setting

Landform: Ridges Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Convex Parent material: Residuum weathered from tuffaceous shales, sandstones and siltstones in the jackson group of eocene age

Typical profile

H1 - 0 to 6 inches: fine sandy loam *H2 - 6 to 21 inches:* clay

H3 - 21 to 25 inches: clay

H4 - 25 to 60 inches: bedrock

Properties and qualities

Slope: 5 to 12 percent
Depth to restrictive feature: 20 to 40 inches to paralithic bedrock
Drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 3.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6e Hydrologic Soil Group: D Ecological site: R087AY003TX - Claypan Savannah Hydric soil rating: No

EmC—Elmina loamy fine sand, 1 to 5 percent slopes

Map Unit Setting

National map unit symbol: d9mz Elevation: 170 to 350 feet Mean annual precipitation: 40 to 46 inches Mean annual air temperature: 66 to 68 degrees F Frost-free period: 260 to 280 days Farmland classification: Not prime farmland

Map Unit Composition

Elmina and similar soils: 100 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Elmina

Setting

Landform: Interfluves Down-slope shape: Convex Across-slope shape: Linear Parent material: Clayey residuum weathered from mudstone

Typical profile

H1 - 0 to 5 inches: loamy fine sand H2 - 5 to 22 inches: loamy fine sand H3 - 22 to 55 inches: clay H4 - 55 to 72 inches: bedrock

Properties and qualities

Slope: 1 to 5 percent

Custom Soil Resource Report

Depth to restrictive feature: 40 to 60 inches to paralithic bedrock Drainage class: Somewhat poorly drained Runoff class: High Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr) Depth to water table: About 18 to 42 inches Frequency of flooding: None Frequency of ponding: None Available water supply, 0 to 60 inches: Moderate (about 6.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: A Ecological site: F133BY002TX - Seasonally Wet Upland Hydric soil rating: No

ShC—Shiro loamy fine sand, 1 to 5 percent slopes

Map Unit Setting

National map unit symbol: d9pm Elevation: 250 to 550 feet Mean annual precipitation: 35 to 40 inches Mean annual air temperature: 66 to 70 degrees F Frost-free period: 260 to 280 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Shiro and similar soils: 100 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Shiro

Setting

Landform: Ridges Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Interfluve Down-slope shape: Linear Across-slope shape: Convex Parent material: Residuum weathered from tuffaceous sandstone and siltstone in the jackson group and the catahoula formation of eocene age

Typical profile

H1 - 0 to 12 inches: loamy fine sand *H2 - 12 to 24 inches:* clay *H3 - 24 to 31 inches:* clay *H4 - 31 to 40 inches:* bedrock

Properties and qualities

Slope: 1 to 5 percent *Depth to restrictive feature:* 20 to 40 inches to paralithic bedrock *Drainage class:* Well drained Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Sodium adsorption ratio, maximum: 2.0 Available water supply, 0 to 60 inches: Low (about 3.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: D Ecological site: R087AY005TX - Sandy Loam Hydric soil rating: No

SnC—Singleton fine sandy loam, 1 to 5 percent slopes

Map Unit Setting

National map unit symbol: d9pv Elevation: 200 to 500 feet Mean annual precipitation: 34 to 40 inches Mean annual air temperature: 66 to 70 degrees F Frost-free period: 260 to 280 days Farmland classification: Not prime farmland

Map Unit Composition

Singleton, variant and similar soils: 100 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Singleton, Variant

Setting

Landform: Ridges Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Interfluve, side slope Down-slope shape: Linear Across-slope shape: Convex Parent material: Residuum weathered from tuffaceous sandstone and siltstone in the jackson group of eocene age

Typical profile

H1 - 0 to 9 inches: fine sandy loam

- H2 9 to 20 inches: clay
- H3 20 to 32 inches: clay
- H4 32 to 38 inches: clay loam
- H5 38 to 60 inches: bedrock

Properties and qualities

Slope: 1 to 5 percent *Depth to restrictive feature:* 20 to 40 inches to paralithic bedrock Drainage class: Moderately well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 10 percent
Gypsum, maximum content: 10 percent
Maximum salinity: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm)
Sodium adsorption ratio, maximum: 5.0
Available water supply, 0 to 60 inches: Low (about 5.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: D Ecological site: R087AY003TX - Claypan Savannah Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

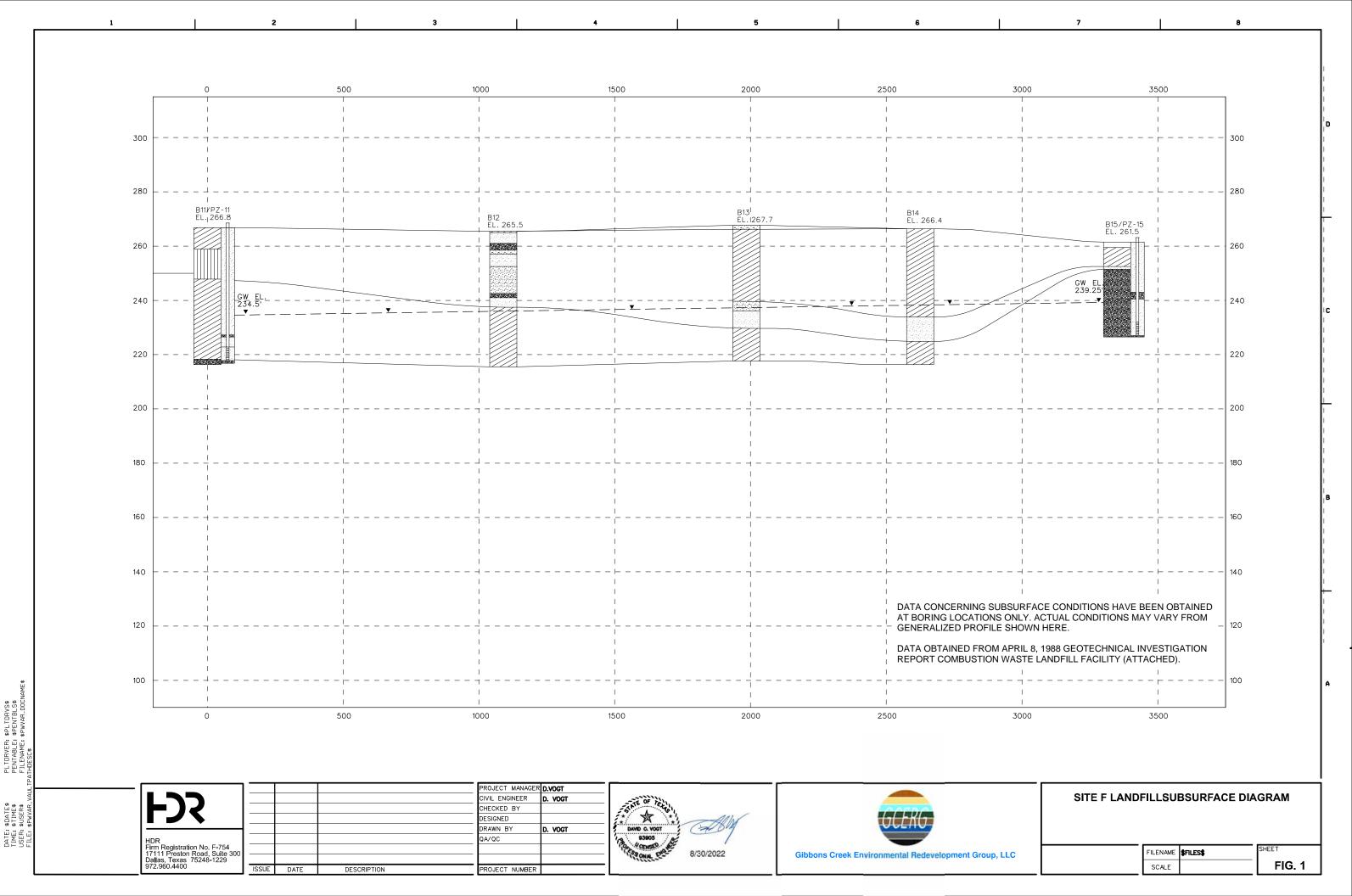
United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

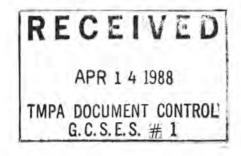
United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf


RESPONSE ITEM 16 ATTACHMENT

REVISED TABLE IV.D LANDFILL INSPECTION

Facility Unit(s) and Basic Elements	Possible Error, Malfunction, or Deterioration	Frequency of Inspection
Liner	Animal burrows or erosion damage	Not exceeding seven days/Annually
Temporary or Permanent Soil Cover	Animal burrows, inadequate vegetation, or erosion damage	Not exceeding seven days/Annually
Storm Water Control – Concrete Lined Stormwater Drainage	Broken concrete or vegetation	Not exceeding seven days/Annually
Storm Water Control – Drainage Swales	Erosion and vegetation	Not exceeding seven days/Annually
Storm Water Control – SFL Pond 1	Animal burrows, erosion damage, vegetation, leaks or seeps, slope slide, cracks, or berm failure	Not exceeding seven days/Annually
Storm Water Control – SFL Pond 3	Animal burrows, erosion damage, vegetation, leaks or seeps, slope slide, cracks, berm failure	Not exceeding seven days/Annually
Cover Area Slopes – Landfill Slopes	Animal burrows, erosion damage, vegetation, leaks or seeps, slope slide, cracks, berm failure	Not exceeding seven days/Annually
Active Area – Interior Slopes	Animal burrows, erosion damage, vegetation, leaks or seeps, slope slide, cracks, berm failure	Not exceeding seven days/Annually
Active Area – Exterior Slopes	Animal burrows, erosion damage, vegetation, leaks or seeps, slope slide, cracks, berm failure	Not exceeding seven days/Annually
Active Area – Impounded CCR Material	Unstable areas, CCR migration from containment	Not exceeding seven days/Annually
Roads, Culverts	Erosion rutting on roads, culverts collapsed or clogged	Not exceeding seven days/Annually


RESPONSE ITEM 19 ATTACHMENT

GEOLOGIC CROSS SECTINS

PLTDRVER: \$PLTDRVS\$ PENTABLE: \$PENTBLS\$ FILENAME: \$PWVAR_DOCN \$DATE\$ \$TIME\$ \$USER\$ TEXAS MUNICIPAL POWER AGENCY GIBBONS CREEK STEAM ELECTRIC STATION

GEOTECHNICAL INVESTIGATION REPORT COMBUSTION WASTE LANDFILL FACILITY

B&V PROJECT 14578 B&V FILE 41.0100

4

ISSUE DATE AND REVISION NO.

040888-0

Black & Veatch

.

CONTENTS

Pa	Page
1-	1-1
	TION 1-1
	STIGATION 1-1
	M 2-1
	TION 2-1
2-	Site Investigation 2-1
a 2-	row Area Investigation 2-2
	ING PROGRAM
3-	3-1
	3-1
	ACE STRATIGRAPHY 3-1
3-2	itions 3-1
	er Conditions 3-2
.PHY 3-2	SUBSURFACE STRATIGRAPHY 3-2
3-4	TIES OF CLAY BORROW 3-4
3 3 3-1 3-2 3-2 3-2	3-1 3-1 3-1 3-1 3-1 3-1 3-1 3-1

LIST OF TABLES

TABLE 3.1GROUNDWATER LEVEL SUMMARYTABLE 3.2CLAY BORROW QUANTITIES

LIST OF FIGURES

- FIGURE 2-1 SITE ARRANGEMENT
- FIGURE 3-1 CLAY BORROW THICKNESS, TYPE I AND TYPE II CLAY
- FIGURE 3-2 CLAY BORROW THICKNESS, TYPE I CLAY ONLY

LIST OF APPENDICES

TC-1

APPENDIX A	BORING LOGS
APPENDIX B	GROUNDWATER LEVEL OBSERVATION WELL LOGS
	TEST PIT LOCS
APPENDIX D	LABORATORY TEST RESULTS

11 Martin

1.0 INTRODUCTION

This report details the geotechnical investigation for the proposed combustion waste landfill facility for the Texas Municipal Power Agency (TMPA) Gibbons Creek Steam Electric Generating Station (GCSES) located near Carlos, Texas in Grimes County.

1.1 PROJECT DESCRIPTION

TMPA has retained Black & Veatch, Engineers-Architects (B&V) to perform a geotechnical investigation of the first stage of the proposed site for the new combustion waste landfill facility. The proposed site is located approximately one mile north of GCSES, north and west of the Gibbons Creek Reservoir. The first stage (Stage I) of the proposed landfill site is approximately 80 acres with an additional 80 acres for drainage requirements, sedimentation ponds, and a buffer zone complying with Texas Water Commission (TWC) requirements for a Class II landfill. The final landfill will be developed in six stages with five years storage per stage, thus providing approximately 30 years of storage. The later five stages will require an additional 390 acres of storage area.

1.2 PURPOSE OF INVESTIGATION

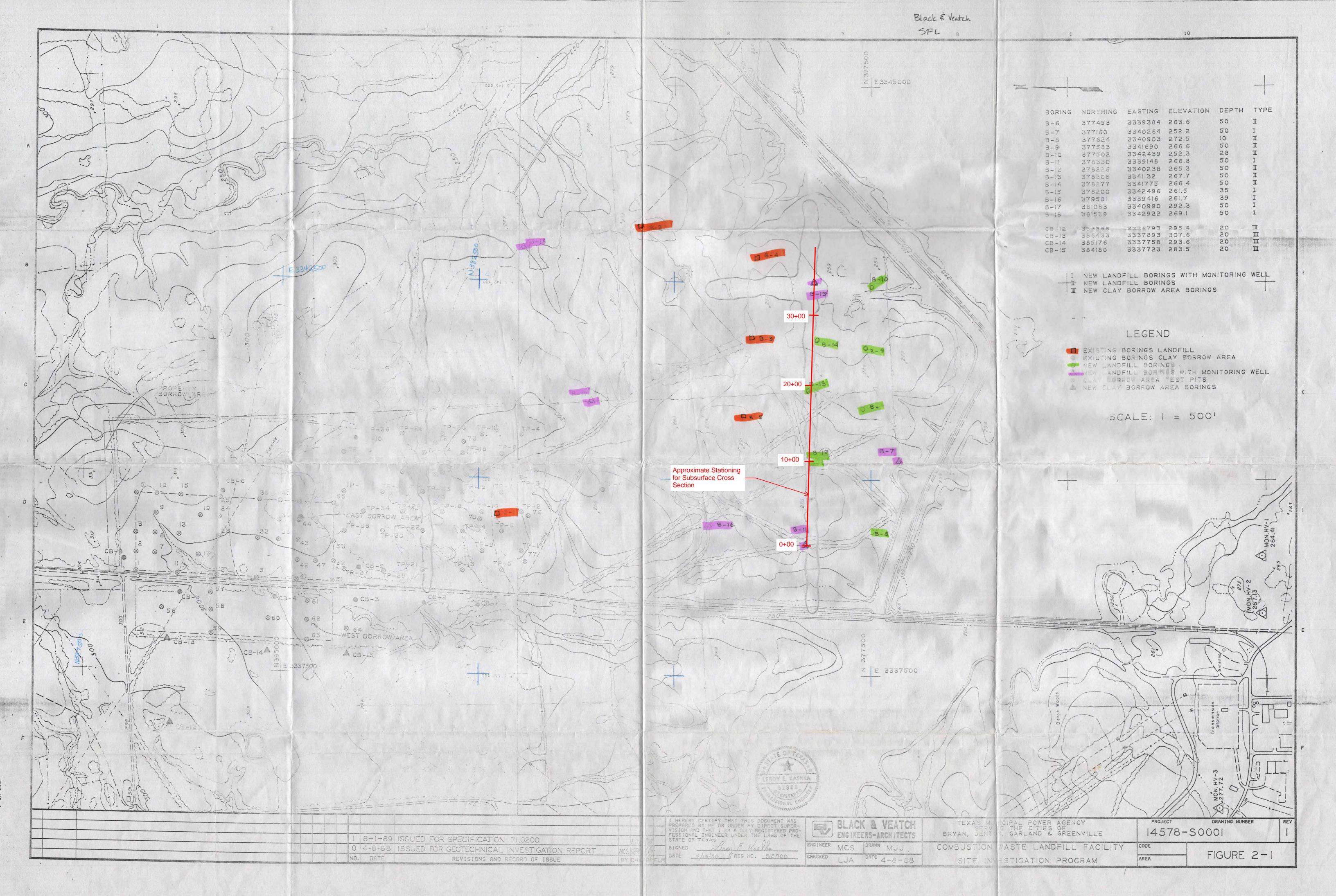
The geotechnical investigation was conducted to define subsurface conditions at the Stage I landfill area as well as to qualify and quantify potential clay borrow areas to be used for landfill construction.

The subsurface investigation in the landfill area was designed to determine soil types, engineering properties of the soil, and bedrock type and quality. Six monitoring wells were installed to obtain groundwater levels.

Borrow area investigations were performed to locate suitable clay to be used to construct the Stage I landfill liner and containment dikes.

2.1.2 Clay Borrow Area Investigation

An investigation of potential clay borrow areas was conducted in the area east and west of the GCSES railroad spur northwest of the proposed landfill site. The investigation consisted of excavating 52 test pits and advancing four soil borings. The test pits were excavated using TMPA equipment and personnel under direction of a B&V geotechnical engineer who also logged the test pits. The pits were excavated to a maximum depth of 11.0 feet or until refusal of the backhoe. Jar samples were obtained from various soil layers and submitted to BSMI for laboratory classification and index testing. Bulk soil samples were collected and submitted to the laboratory to obtain moisture-density relationships, and for permeability and strength testing.


Four soil borings, CB-12 through CB-15, were advanced west of the railroad spur in the clay borrow area. These borings were 20 feet in depth and no monitoring wells were installed. Jar samples and bulk material samples were submitted to BSMI for laboratory testing. The boring logs are listed in Appendix A and test pit logs are included in Appendix C.

2.2 LABORATORY TESTING PROGRAM

A laboratory testing program was undertaken to confirm material classification and determine engineering properties of the soils. The tests were assigned by the B&V geotechnical engineers who directed the field investigation.

The laboratory tests assigned included:

Test	Test	Number of
Description	Designation	Tests Performed
Moisture Content	ASTM D2216	89
Atterberg Limits	ASTM D4318	91
Specific Gravity	ASTM D854	5

2.0 INVESTIGATION PROGRAM

2.1 FIELD INVESTIGATION

The field program consisted of two operations; the landfill site investigation and the clay borrow area investigation. Figure 2-1 shows the north boundaries of the proposed landfill, the location of the proposed clay borrow areas and the locations of the borings and test pits.

2.1.1 Landfill Site Investigation

A total of thirteen borings ranging in depth from 10 feet to 50 feet were completed for the landfill site investigation by Buchanan/Soil Mechanics, Inc. (BSMI) of Bryan, Texas using a Failing 1500 drill rig. The soil borings were completed under the direction of B&V. Boring logs were prepared by a B&V geotechnical engineer. Soil boring locations and elevations were measured in the field by a surveying contractor employed by TMPA. Ten borings, B-6 through B-15, were advanced in the area of Stage I construction with groundwater level observation wells installed in Borings B-7, B-11, and B-15. Three additional borings, B-16, B-17, and B-18, with groundwater level observation wells, were advanced in the area north of the Stage I construction area.

The borings were advanced using a 4.5 inch rotary wash bit using water as drilling fluid. Boreholes that were to have groundwater level observation wells installed after completion were continuously sampled using thin wall tubes (ASTM D1587) in cohesive materials and standard penetration testing (ASTM D1586) in granular materials. Soil borings without observations wells were continuously sampled in the upper ten feet and at five feet intervals below ten feet. Boreholes were advanced to fifty feet below ground surface or five feet into the bedrock whichever is deeper. Where bedrock was encountered, rock coring techniques were used to advance the borehole using a standard Nx size core barrel. Rock cores were placed in wooden sample boxes for transportation to the laboratory. All samples were retained by BSMI for laboratory testing. Boring logs are included in Appendix A and observation well logs are included in Appendix B.

2-1

Test	Test	Number of
Description .	Designation	Tests Performed
Sieve Analysis	ASTM D2217	41
Hydrometer Analysis	ASTM D422	19
Moisture-Density Tests	ASTM D698	9
UU Triaxial Tests	ASTM D2850	17
Consolidation	ASTM D2435	2
Organic Content	ASTM D2974	3
Permeability	EM-1110-1906 (Falling Head)	14
Dispersive Soils	Emerson Crumb Test	4

The laboratory test results are included in Appendix D.

1

I

H

3.0 SITE CONDITIONS

3.1 SITE DESCRIPTION

The site for the proposed Stage I combustion waste landfill is located approximately one mile north of GCSES with the Gibbons Creek Reservoir located on the south and east sides and surrounded by private property on the other sides. Approximately half of the area is heavily wooded, and the other half pastureland. The site contains some TMPA land and some private property which must be purchased by TMPA. Topography is flat to gently undulating and generally slopes south to southwest.

The clay borrow areas are located approximately one mile north of the proposed landfill site. The borrow areas are split by the GCSES railroad spur with approximately 180 acres east and 30 acres west of the railroad. The areas are presently utilized as pastureland and have been cleared for the most part of standing timber.

3.2 LANDFILL SUBSURFACE STRATIGRAPHY

3.2.1 Soil Conditions

Borings B-6 through B-15 were performed in the immediate area of the proposed Stage I landfill. Boring depths ranged from 10 feet to 50 feet below ground surface. Subsurface stratigraphy consisted of stratified, heterogeneous layers of clays, silts and sands of varying thicknesses. The clays and silts consisted of fat clays with very high plasticity and high plastic silts with liquid limits ranging from 55 to 95 percent, plasticity indexes from 35 to 62, and natural moisture contents ranging from 12 to 44 percent. These materials are generally classified as CH, CH-MH, and MH according to the Unified Classification System. The silty sand layers were comprised of very fine grained, poorly graded dense sands with occasional high plasticity clay and silt lenses.

Some occasional sandstone layers were encountered in Borings B-7 and B-12. These layers were 2-3 feet thick and generally occurred between 20 and 30 feet below ground surface. Sandstone bedrock was encountered in Borings B-8, B-10, B-11, B-15, and B-16 at depths ranging from 5 feet to 48

3-1

feet from ground surface. The bedrock consisted of two layers, the upper being an argillaceous yellowish-tan, fine to medium grained sandstone. The lower sandstone was argillaceous, greenish-grey with lignitic seams and partings.

3.2.2 Groundwater Conditions

Observation wells were installed in Borings B-7, B-11, B-15, B-16, B-17, and B-18. Water level readings were taken by TMPA personnel March 28, 1988, approximately one month after installation. Groundwater elevations are listed in Table 3.1.

TABLE 3.1. GROUND WATER LEVEL SUMMARY

Ground Water		Ground	Depth Below
Observation	Ground	Water	Ground
Well Number	Elevation (FT)	Elevation (FT)	Surface (FT)
B-7	252.2	245.9	6.3
B-11	266.8	229.8	37.0
B-15	261.5	249.2	12.3
B-16	261.7	249.8	11.9
B-17	292.3	252.4	39.9
B-18	269.1	231.5	37.6

3.3 CLAY BORROW AREA SUBSURFACE STRATIGRAPHY

The clay borrow investigation concentrated primarily on the two areas adjacent to the railroad spur, north of the proposed Stage I landfill site. Thirty-four test pits were excavated east of the railroad spur in an area 1,000 feet wide by 2,500 feet long. Nine test pits were excavated on the west side of the spur in conjunction with Borings CB-12 through CB-15 to define subsurface stratigraphy in the west borrow area.

Test results indicate that soil conditions from 0 to 11 feet below ground surface generally consist of three soil types below the fine grained moist silty sand topsoil of varying thickness ranging from 0.5 feet to 2.0 feet. The topsoil layer is underlain by 1 feet to 3 feet of highly plastic firm dark brown silty clay generally classified as a CH with natural moisture contents ranging from 32 to 42 percent, liquid limits from 51 to 103 percent and plasticity indexes from 24 to 70. Organic contents in this layer varied from 3.1 to 7.2 percent and the soil was rated as highly reactive with the Emerson Crumb Test (Dispersion Test).

Below this layer a stiff tan plastic silty clay to clayey silt generally classified as CH, CH-MH was encountered in the test pits and borings. Thickness varied from 1.0 feet to 5.0 feet. Liquid limits ranged from 37 to 104 percent, plasticity indexes from 20 to 73 and natural moisture contents from 13 to 49 percent. This layer was classified as low to moderately reactive with the Emerson Crumb Test.

Underlying the tan silty clay to clayey silt was a greenish-brown firm clayey silt to silty clay generally classified as MH, CH-MH. Natural moisture contents ranged from 25 to 43 percent, liquid limit ranged from 49 to 93 percent and plasticity index ranged from 19 to 53. This layer was moderately reactive to the Emerson Crumb Test. This layer extended to maximum excavation depth of the backhoe or refusal.

Bulk material samples were obtained from seven test pits to establish moisture-density relationships using the Standard Proctor Test (ASTM D698). Samples of individual material layers and full face samples were retained. Optimum moisture contents for the tests ranged from 19.3 to 35.6 percent. Maximum dry densities ranged from 77.3 to 102.6 pounds per cubic foot (pcf). Permeability of the samples remolded at 95 percent of maximum density and at moisture contents ranging from optimum to 3 percent above optimum varied from 1.06 x 10^{-8} cm/sec to 8.98 x 10^{-9} cm/sec. Specific gravities of these samples ranged from 2.66 to 2.69. Unconsolidated-undrained (UU) triaxial compression tests were performed on samples remolded to 95 percent of maximum density at moisture contents ranging from optimum to 3 percent above optimum.

An additional nine test pits, TP-70 through TP-78, were excavated in the northern portion of the proposed landfill site. These pits revealed a brown stiff high plasticity silty clay with natural moisture contents from 23.9 to 38.0 percent, liquid limit ranged from 54 to 108 percent, and

3-3

plasticity index ranged from 34 to 71. Moisture-density testing demonstrated optimum moisture contents of 24.5 percent and 28.5 percent with maximum dry densities of 85.4 pcf and 93.0 pcf respectively. Permeabilities of these samples remolded at 95 percent of maximum density and at moisture contents ranging from optimum to 3 percent above optimum ranged from 1.16 x 10^{-8} cm/sec to 7.94 x 10^{-9} cm/sec. UU triaxial tests were performed on samples remolded at 95 percent of maximum density and at moisture contents ranging from optimum to 3 percent above optimum. This clay deposit was not found in all of the test pits excavated in this area as demonstrated by the test pit logs indicating that this deposit is limited in areal extent at this location.

3.4 ESTIMATED QUANTITIES OF CLAY BORROW

Estimates of the quantity of clay borrow available in the area investigated north of the proposed landfill site east and west of the railroad spur have been included herein. The quantity estimates were developed using the boring and test pit logs and laboratory testing results.

Quantity estimates were made using: (1) the total thickness of highly plastic material available above refusal, or maximum excavation reach of the backhoe, less the topsoil, and (2) the thickness of clay material considered acceptable for landfill liner, Type I clay.

The Type I clay material, the stiff tan plastic silty clay to clayey silt, and the underlying greenish-brown firm clayey silt to silty clay layers, meet the TWC requirement for plasticity. The permeability results obtained from testing samples remolded to 95 percent of maximum density and at moisture contents ranging from optimum to three percent above optimum ranged from 8×10^{-9} cm/sec to 1.2×10^{-8} cm/sec which are less than the 1×10^{-7} cm/sec required by TWC.

The Type I clay is overlain by a highly plastic material (Type II) classified as a highly plastic firm dark brown silty clay. The thickness of this highly plastic dark brown material varied from 1 to 3 feet in the potential borrow areas. Based on laboratory testing, this upper dark brown material has a high organic content and exhibits high dispersive

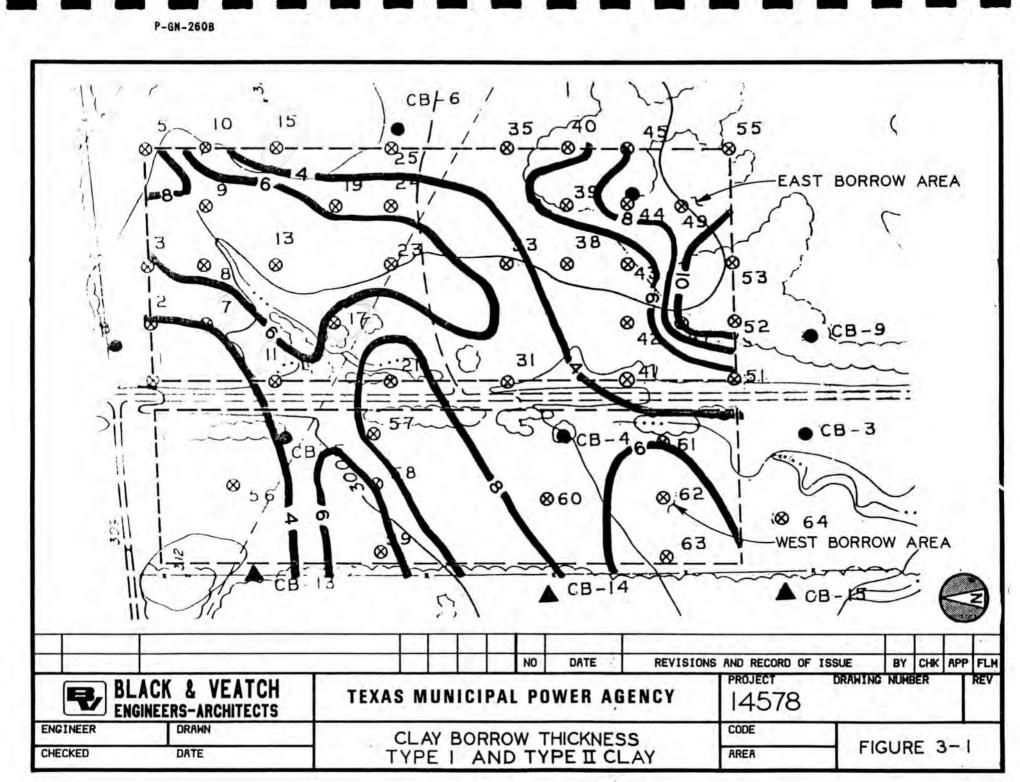
3-4

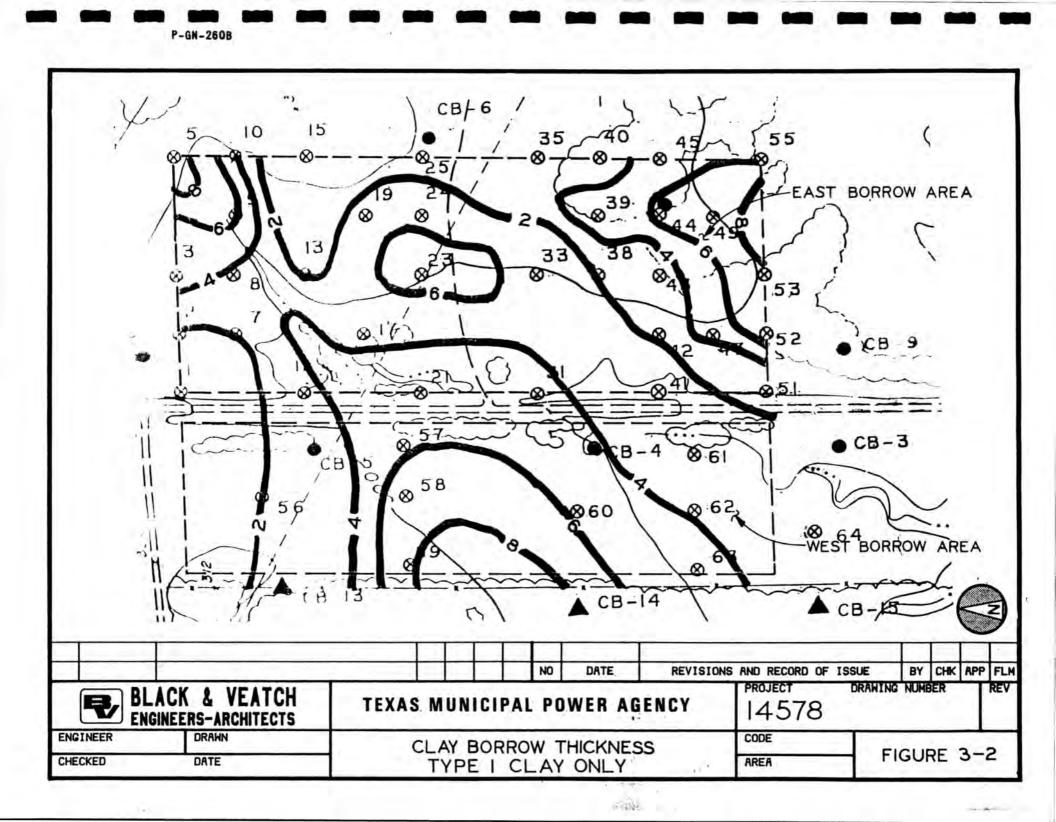
characteristics. The Type II material has similar plasticity and permeability characteristics as the Type I clay. However, the Type II material is considered unacceptable for use in a thin liner (less than 3 feet) application. This Type II material should adequately perform as an impervious barrier when used in a homogeneous embankment section.

Refusal was experienced on sandstone and in very hard layers of the greenish brown clayey material during the test pit excavations.

Table 3.2 provides the estimated quantities of Type I and Type II clay materials available in the east and west clay borrow areas. Figure 3.1 shows the thickness of the combined Type I and Type II clay layers. Figure 3.2 shows the thickness of only the Type I material.

1 A 1


TABLE 3-2. CLAY BORROW QUANTITIES


Area used for calculations - 34 acres

Area	Average C	lay Depth	Borrow Qua	ntity	Total Qua	ntity
	Type I and Type II	Type I Only	Type I and Type II	Type I Only	Type I and Type II	Type I Only
East of *						
Railroad Spur	6.0'		556,000 c.y.			
West of **						
Railroad Spur	6.7'		372,000 c.y.		928,000 c.y.	
East of *						
Railroad Spur		4.1'		380,000 c.y.		
West of **						
Railroad Spur		5.3'		294,000 c.y.		674,000 c.y.
* Area used	for calculation	s - 57 acres				

3-6

**

APPENDIX A BORING LOGS

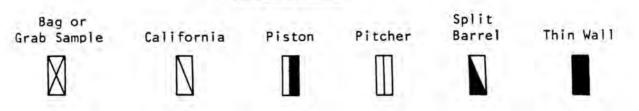
I

I

1

I

I


1

EXPLANATION

BORING LOG TERMINOLOGY

GENERAL

PP	- Compressive strength as determined by penetrometer
TV	- Compressive strength as determined by torvane
Gravel	- From 1/4 inch to 3 inches in diameter
Cobble	- From 3 to 12 inches in diameter
Boulder	- Greater than 12 inches in diameter
60°	 Represents 60 degrees measured from a plane perpendicular to the longitudinal axis of the core
Trace	- Represents 0 to 10 per cent by volume
Some	- Represents 10 to 25 per cent by volume
N Value	- Indicates the number of blows required to drive a standard split spoon sampler 12 inches with a 140-pound weight falling 30 inches
REC	 Recovery indicates total amount of core recovered for each run. Expressed as a percentage of the total length of the core run
RQD	- A modified core recovery in which all pieces of sound core over 4 inches in length are counted as recovery. The modified sum of core recovered is then expressed as a percentage of the total length of the core run
	 Dashed line in classification column indicates approximate or gradational change
	WEATHERING
Fresh	 The rock shows no discoloration, loss of strength, or any other effect due to weathering (unweathered rock)
Slightly Weathered	 Rock is slightly discolored with a slightly lower strength than unweathered rock
Moderately Weathered	 Rock is considerably discolored with a significantly lower strength than unweathered rock
Highly Weathered	 Rock is discolored and weakened so intensely that 2-inch diameter rock cores can be broken readily by hand. Wet strength is usually much lower than dry strength
	BEDDING
Laminated Thin Bedded Medium Bedded Thick Bedded Massive	 Less than 0.001 foot to 0.01 foot (.1 inch) 0.01 foot to 0.1 foot (.1 to 1.2 inches) 0.1 foot to 1.0 foot (1.2 to 12 inches) Greater than 1.0 foot Denotes no discernible internal bedding structure
	SAMPLE SYMBOLS

I

	LIENT exas Municipal Power Agency										PROJECT Gibbons Creek S		PROJECT NO. 14578	
PROJE	ECT L	Texa	ON				ORDINAT		339384		ELEVATION (DATUM) 263.6	TOTAL D	EPTH	DATE START 2-26-88
SURFA	ACE C	ONDIT		ods							INSPECTOR K. M. Blevins-M	cCosh		DATE FINISH 2-26-88
SAMP			AMPLI 2ND 6"			SAMP	CHECKER M. C.		uter		APPROVED BY L. J. Almaleh			
CORE	RUN	RUN	CORIN	G	1.8		DEPTH IN FEET		E TYPE PHICS	CL	SSIFICATION OF MATER	IAL		REMARKS
	1	LENG	RECV	RECV	ABC V	1.0	1 -		Silty <u>S</u> grained roots	AND; br ; moist	own; poorly graded; ;; trace clay; organ	fine Lcs &	using	ced boring 4 1/2" y wash
rw	2					1.0	2 -	V	Silty C	W/some	ddish-brown; low pla sand; very iron sta h plasticity below b	ined;		
TW	3					1.3	5 -						TW 3	pp. 4+
TW	4					1.2	6		plastic	ity; mo	ownish-grey; high bist; w/some sand; is silty sand layer at	ron 7.8'		
TW	5					0.9	9 - 10 -		Sandy <u>C</u> w/some sand no	silt; i	nn; low plasticity; r iron staining; w/ceme	moist; ented		
TW	6					1.2	1		w/some w/sands	sandy of tone fi	an; low plasticity; clay seams; iron sta ragments and inclusion at 17.75'	ining		
TW	7					1,5	7		8" silt	y sand	seam at 22'			
TW	8					0.9	25 6 - 7 - 8 - 9 -		Silty C moist;	LAY; da w/trac	ark grey; high plast e sand	icity;	-	

1

I

l

-		OCATI		Powe	er Ag	-	OORDINA	TEC			Gibbons Creek S	TOTAL DE	14578 DEPTH DATE START	
	_	Texa				C			3339384		263.6	50.0'	••••	2-26-88
		ONDIT ad in		ods				1 -			INSPECTOR K. M. Blevins-M	cCosh		DATE FINISH 2-26-88
SAMP	SAMP	SET	AMPLI 2ND	NG 3RD	N	SAMP	CHECKE		luter		APPROVED BY L. J. Almaleh			
	NO.	Y	6"	P	VAL	RECV	DEPTH		LE TYPE		SSIFICATION OF MATE			REMARKS
	RUN NO.			RQD RECV	RECV	RQD	FEET	LOC		CL	SSIFICATION OF MATE	RIAL		REMARKS
ew	9					0.6	1 - 2 - 3 - 4 - 35 - 6 - 7 - 8 - 8 -				ayer at 33.0' ₩/some sandy silt			
W	10			5		0.8	9 - 40 - 1 - 2 - 3 -		Grad	ing to g	reenish-grey			
W	11					0.9	4 - 45 - 6 - 7 - 8 -		plasti	<u>SILT;</u> q city; mo	reenish-grey; low ist; w/some sand			
ſW	12					1.5	9 - 50 - 2 - 3 - 4 - 55 - 6 - 7 - 8 - 9 -			greenish w/some	-grey; high plastic		at 50. Backfi w/grou concre surfac	lled boring t inserted te plug at e. water level

LOG OF BORING

CLIE		inici	pal	Powe	er Ag	ency	,			2017.7.7	PROJECT Gibbons Creek SES			PROJECT NO. 14578				
PROJ	ECT L	OCATIO	אכ				OORDINAT		340264	ELEVA 252	TION (DATUM)	TOTAL D	EPTH	DATE START 2-24-88				
		ONDIT: g in		ds ne	ear c	ooli	ing lak	te ca	inal	INSPE K. 1	ctor 1. Blevins-M	cCosh		DATE FINISH 2-25-88				
SAMP		SET	AMPLI 2ND 6"	NG 3RD 6 "		SAMP	CHECKED M. C.		uter		VED BY J. Almaleh	1.1		<u> </u>				
CORE	RUN	RUN	CORIN	G	8 RECV		DEPTH IN FEET	1	PHICS	CLASSIFI	CATION OF MATE	RIAL		REMARKS				
TW	1					0.8	1-		Silty <u>SAN</u> grained; soil)	D; brown; moist; som	poorly graded; e organics; ro	fine ots (top	using	Boring advanced using 4 1/2"				
TW	2					1.3	2 -	Z	Silty SAN	D; brown; ned with g	poorly graded; ravel	moist;	rotary wash					
TW	3					1.4	4 5	U	Silty CLA	Y; brown;	hard; low plas	ticity;						
TW	4					2.0	6 -											
TW	5					1.1	8 -							-				
3"	1	5	10' 0.7'	0		0	10 10 1 - O.: Some clay .5" - 2" diameter 2 - O.: Some clay .5" - 2" diameter						Started coring at 10' - hit gravel					
TW	6		15'			1.8	4	eo eo	grained;	D; grey; p moist; iro clay layer	oorly graded; n staining; wi at 15'	fine th trace	-					
TW	7					0.8	8 -		Few <u>SANDS</u>	TONE nodul	es below 19'							
TW	8					0.9	20 -	V			rd; low plasti d seams; iron							
TW	9					1.0	3 -		1" SANDST	eam at 22. ONE at 24' eam at 24.								
TW SPT	10 11	32/5				0.7	4		Silty CLA plasticit	Y; greenis y; moist;	h-grey; hard; w/some sand SAND w/clay be							
3" 3"	2	2'	27 · 1 · 1 ·	0	1250	0	7 8 9		thin bedd	led; fine g	eous; greenish rained; clay p - 2"; weather	artings;	Started coring at 27' SPT bouncing in hole					

1

1

I

1

1

1

1

1

1

I

1

I

۱

CLIER	1.20	inici	ipal	Powe	er Ag	gency	,		PROJECT Gibbons Creek SH	S	PROJECT NO. 14578
PROJ	ECT L	OCATI Texa	ON				OORDINA	ES 0 E3340264	ELEVATION (DATUM) 252.2'	TOTAL DEPTH	DATE START 2-24-88
SURF	ACE C	ONDIT	IONS	ds ne	ear o	:001	ing la	e canal	INSPECTOR K. M. Blevins-Mo	Cosh	DATE FINISH 2-25-88
		1.000		NG 3RD 6 "	N	SAMP	CHECKE M. C.	BY Schluter	APPROVED BY L. J. Almaleh		
CORE		RUN	6" CORIN RUN RECV		1 *		DEPTH IN FEET	GRAPHICS	CLASSIFICATION OF MATER	IAL	REMARKS
rw	12					0.9	1 -	Silty CLAY; plasticity;	greenish-grey; very ha moist; with sandstone	rd; low layers	
TW	13					0.8	2 -	fine grained	greenish-grey; poorly d; moist; with some cla	<u>y</u>	
TW	14					0.8	4 -	silty <u>CLAY</u> ; plasticity; on joints	greenish-grey; very ha moist; some sand; iron	rd; high stained	
TW	15					0.3	6 - 7 -	Cemented say			
TW	16					0.8	8 - 9 -	Silty SAND	filled joints below 38'		
TW	17					2.0	40 -	Sandy CLAV	greenish-grey; hard; h	iah	
TW	18					1.4	2 -	plasticity; filled joint	moist; with silt and s	and	
TW	19					1.4	4 -	plasticity;	moist with little sand seams; laminated	and	
TW	20					1.4	6 - 7 -	Cemented sam	nd seam 45.7'		
TW	21					1.1	8 - 9 -	Silty SAND	seams at 49.0'		
					-		50 - 1 - 2 - 3 - 4 -			at Gro uni hoj 3' W/d Was	ttom of boring 50'. Dundwater level known. Reamed Le to 50.5' 4 1/2" bit first of hole reamed 5 3/4" bit. shed cuttings
							55 - 6 - 7 - 8 -			In: sec pi sec pi	om hole. stalled 2-20' ctions 2" PVC pe and 1-6.7' ction 2" PVC pe and 5' reen.

1

1

Î

Ĩ

1

Į

1

I

1

I

	NT IS MI	unic	ipal	Powe	er Aş	gency	,				PROJECT Gibbons Cro	eek SE	S		PROJECT NO. 14578
PROJ	ECT L	OCATI	ON				OORDINA		340903		ELEVATION (DAT 272.5'	rum)	TOTAL D	EPTH	DATE START 2-24-88
SURF	ACE C	ONDIT		is							INSPECTOR K. M. Blev	ins-Mc	Cosh		DATE FINISH 2-24-88
	SAMP		AMPLI			SAMP	CHECKE M. C.		uter		APPROVED BY L. J. Alma	leh			
ORE	RUN	RUN	CORIN	G	18		DEPTH IN FEET	_	E TYPE PHICS	CL	ASSIFICATION OF	MATER	TAL		REMARKS
W	NO.	LENG	RECV	RECV	RECV	RQD	1 -		Sandy w/some	clay;	cown; poorly gr iron staining;	aded; : trace	noistr	using	g advanced 4 1/2"
SPT	2	50	30/2 50/1			1.2	2	V.	Clayey w/iron	SAND; stainin ic below	<pre>cs; (Top soil) can; poorly gra ng and sandstor y 3' (extremely)</pre>	e fragn	nents;		y wash
14	1	5	5, 2.8	0.75	56	15	5 - 6 - 7 - 8 - 9 -		fractu	re spac re surfa	in bedded; fine ing .5-4"; iron ice; some sand	stain	ing on	showi	fragments ng up in ngs at 5'
			10,				$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							at 10 Groun unkno Backf W/gro	dwater level wn. illed hole ut to surface ted concrete

1

I

1

Ĩ

1

1

ł

1

Į

I

I

LOG OF BORING

BORING NO.B-9 SHEET 1 of 2

CLIE		unic	ipal	Powe	er Ag	gency	/		PROJECT Gibbons Creek S	ES	PROJECT NO. 14578
PROJ	ECT I	OCATI Tex	ON				OORDINATES	E3341690	ELEVATION (DATUM) 266.6'	TOTAL DEP	DATE START 2-24-88
1000		Stur							INSPECTOR K. M. Blevins-M	cCosh	DATE FINISH 2-24-88
	SAME		AMPLI 2ND 6"		VAL	SAMP	CHECKED M. C. S		APPROVED BY L. J. Almaleh		
TIPE	140.		CORIN		1442	ALCV	DEPTH	MPLE TYPE			
	RUN NO.	RUN	Q. 201.000	ROD	RECV	RQD	IN FEET	GRAPHICS (CLASSIFICATION OF MATER	IAL	REMARKS
TW	1					0.9	1 -	Silty SAND; grained; we	brown; poorly graded; ; with some clay and c		Advanced boring w/4 1/2" rotary
				2			2	Loots (Top :	soil)		wash
SPT	2	3	4	10	14	0.5	3 -	Sandy <u>CLAY;</u> moist; with	brown; stiff; high pla some silt	isticity;	
							4			et et eu.	
TW	3					1.2	5 -	moist; with	brown; hard; high plas some sand; trace iron	staining	
							7 -	1			
SPT	4	8	12	18	30	1	8 -	Grading to	o tan below 7.5'		- 1 -
	1						9				
							10 -				
							1				
							2 -				
TW	5					1.4	4 -		w silt seams and iron	stained	
					81		15	seams; sar	id grading out		
							6 -				
							7 -				
							8 -		ace iron-staining, sil	t seams	
SPT	6	12	25	25/5	50	1.3	20	grading ou		1.1	
							1 -	2			
					10		2	2			
							3	Silt seam	every 3-6", very iron	stained	
TW	7					1.1	4 -		. Sierl 2 0 / Very Hom	statued	
							25				
							6				
							8 -	2			
SPT	8	23	40	32	72	1.7		Grading wi	th trace sand		

1

1

I

Î

Í

1

1

ļ

1

I

LOG OF BORING

BORING NO.B-9 SHEET 2 of 2

CLIE		unic	ipal	Pow	er Ag	gency	,		PROJECT Gibbons Creek SI	ES	PROJECT NO. 14578
PROJ	ECT L	OCATI Tex	ON			-	OORDINA	es 3 E3341690	ELEVATION (DATUM) 266.6'	TOTAL DEPTH	DATE START 2-24-88
1.022		Stur							INSPECTOR K. M. Blevins-Me	cCosh	DATE FINISH 2-24-88
	SAMP	SET	AMPLI 2ND 6"	NG 3RD 6"	N	SAMP	CHECKER M. C.	BY Schluter	APPROVED BY L. J. Almaleh	-	
CORE	RUN NO.	RUN	CORIN	G	RECV		DEPTH IN FEET	GRAPHICS CL	ASSIFICATION OF MATER	IAL	REMARKS
TW	9	30	100/ 50/3 50/1		100+	0.7	1	iron staini	k brown; lignitic bel ng on joints h some silt pockets	ow 33';	
ew	11					1.5	1	Grading to	some sand; trace lign	ite	
SPT	12	44	65	77		1.6	7	Grading lam	inated w/silt seams	at wate unkn hole	tom of boring 50'. Ground er level nown. Filled e with grout concrete plug.
							3				

I

l

1

1

1

1

1

Į

I

Į

I

LOG OF BORING

BORING NO.B-10 SHEET 1 of 1

CLIE		unic	ipal	Powe	er Ag	gency	y				PROJECT Gibbons Creek SH	ES		PROJECT NO. 14578
PROJ	ECT L	OCATI	ON				OORDINA		3342439		ELEVATION (DATUM) 252.3	TOTAL D 28.0'	epth	DATE START 2-24-88
		ONDIT	a transmission								INSPECTOR K. M. Blevins-Mo	Cosh		DATE FINISH 2-24-88
	SAMP		AMPLI 2ND 6"		N	SAMP	CHECKE M. C.		luter		APPROVED BY L. J. Almaleh			
ORE	RUN	RUN	CORIN RUN RECV	G RQD RECV	RECV	RQD	DEPTH IN FEET	-	PHICS	CL	SSIFICATION OF MATER	IAL		REMARKS
w	1					0.9	1 -		Silty <u>SAN</u> wet; with	D; bi some	own; poorly graded; a clay; roots (Top so	fine; 11)	using	g advanced a 4 1/2" y wash
PT	2	5	12	20	32	0.8	2 - 3 - 4 -	Z			an to brown; medium moist; with some si			
w	3			Ι,		1.2	5 -				own to grey; poorly list; with some clay	graded;		
SP	4	16	24	26/4	ľ	0.8	7 -	T	Sandy <u>CLA</u> plasticity stringer	¥; da y; mo	irk brown; hard; high bist with silt and sa	ndstone		
							9 - 10 - 1 - 2 -				an to brown; poorly with hard clay seams	graded;		
SPT	5	50				0.5	3 - 4 -		. Clay se	ams q	rading out below 13.	5		
							6 - 7 - 8 -							
SPT	6	24	26/1				9 - 20 -	Z	SANDSTONE	in c	18.5' with lignite suttings at about 19' nitic greenish-grey;	thin		
						ł	1 -			eams	highly weathered; wi fractures horizonta. g			
			23'				3 - 4 - 25 -							
	1	5	1.3	0.3	26	6	6 -						at 28 water	m of boring '. Ground level
			28'				- 8 - 9 -						w/gro surfa	illed hole

1

Ì

1

I

1

1

1

I

1

I

CLIE Tex.		unic	ipal	Powe	er Ag	ency	,			OJECT ibbons	Creek S	ES		PROJECT NO. 14578
	22210	OCATI	77	0		C	N3783	res 29 E3339148		EVATION 66.7'	(DATUM)	TOTAL D	EPTH	DATE START 2-26-88
10110		ONDIT g in		ds		<u> </u>	_			SPECTOR . M. B.	levins-M	cCosh		DATE FINISH 2-26-88
	SAMP	and the second sec	AMPLI	NG 3RD 6 "	N	SAMP	CHECKE M. C.	Schluter		PROVED E				
CORE	RUN NO.	RUN	CORIN	G	8 RECV		DEPTH IN FEET	GRAPHICS	CLASS	IFICATIO	N OF MATE	RIAL		REMARKS
TW	1					1.6	i) T	plast	<u>CLAY;</u> redd icity; mois ing (Top so	t; organ				ced boring /2" rotary
TW TW	2 3					0.8	2 - 3 - 4 - 5 -	bel Gra	ding brown ow 2' ding w/some vel w/trace	sandsto	ne seams a		pp. 2	.75
TW	4					1.2	6 - 7 -	/ plast	CLAY; tan icity; mois 1 and some	t; iron	stiff; lo stained; t	o₩ ₩/trace	ĺ	-
TW	5					1.4	9 -	plast stain	y <u>SILT;</u> tan icity; mois ing especia	t; some 11y on j	sand; iron	1		
TW	6					1.2	10 -		d 2-6" hori: erbedded wi		sand belo	w 10'		
TW	7					1.5	2 -	and	ding tan to few cement ow 12'	brown w ed sand	ith iron a fragments	nodules platy		
TW	8					1.3	4 -	Bloc	cky structu ented sand	re below grades o	14' ut below 1	.4' ;		
TW	9					1.5	6 -							
TW	10					1.5	8 - 9 -	CLAY; plast	ented sand greenish-g icity; mois	tey; har	d; high filled jo			
TW	11					1.8	20 -	some 22'-2	silt; trace 4'	sand; t	race lign:	te		
TW	12					1.9	3 -		ding greeni ded below 2		and dark o	irey		
TW	13					1.9	25 -		a Care an					
TW	14					1.7	6 -	Slick	ensided belo	ow 26'				
TW	15					2.0	8 -							

1

1

Î

I

Ì

1

1

I

1

1

I

LOG OF BORING

BORING NO.B-11 SHEET 2 of 2

CLIE		unic	ipal	Pow	er Ag	genc	у		Gibbons Creek S	ES	PROJECT NO. 14578
		Tex.	1000			C	N378329	s E3339148	ELEVATION (DATUM) 266.7'	TOTAL DEPTH	DATE START 2-26-88
		CONDIT g in		ds					INSPECTOR K. M. Blevins-M	cCosh	DATE FINISH 2-26-88
	SAME	SET	AMPLI		N	SAMP	CHECKED M. C. S		APPROVED BY L. J. Almaleh		
1.0	RUN	RUN	CORIN	IG ROD	RECV	1		GRAPHICS	CLASSIFICATION OF MATER	IAL	REMARKS
TW. TW	16 17					1.8	1 - 2 - 3 -	Trace py	vrite below 32'	pp. 4	1+
TW TW	18 19					1.9 2.0	4 - 35 - 6 - 7 -	Bands gr	ading out below 34'		
TW TW	20 21					1.7	8 - 9 - 40 - 1 -	Trace II	gnite below 41'	pp. 4	u - ≟-
TW	22					2.0	2 - 2 - 3 - 4 -	///	dark grey below 42'; 1/2	" silt pp. 4	+
rw rw	23					1.1 0	45 -	Silty <u>CLAY</u> plasticity	; dark grey; hard; high ; dry; some iron stainin	TW 24	no sample w/2' core 1
3"	1	2	48' 1.3	0.3	65	17	8 9 50	grained; s	argillaceous; grey; fin lightly weathered; w/tra orizontal joints	ce Botto 49.8' Groun	m of boring dwater level wn. Reamed
					-					0-3' Reame 1/2" Insta secti pipe; secti	w/6 7/8" bit d 3-50' w/4

1

1

I

I

1

1

1

1

1

I

I

CLIE		unic	ipal	Pow	er A	genci	v		PROJECT PROJECT NO. Gibbons Creek SES 14578
PROJ	ECT I	LOCATI	ON				OORDINA	5 E3340238	ELEVATION (DATUM) TOTAL DEPTH DATE START 265.3' 50' 2-29-88
		CONDIT g în		ds					INSPECTOR DATE FINISH K. M. Blevins-McCosh 2-29-88
	SAME	SET 6"	AMPLI 2ND 6"	ING 3RD 6"	N	SAMP		BY Schluter	APPROVED BY L. J. Almaleh
	RUN NO.	RUN	CORIN RUN RECV	IG RQD RECV	RECV	RQD	DEPTH IN FEET	GRAPHICS	CLASSIFICATION OF MATERIAL REMARKS
TW	1					0.3	1 -	grained	ND; brown; poorly graded; fine moist; trace clay; roots; iron ; w/sandstone seam at 0.3' (Top rotary wash
TW	2					1.4	3 -	Clayey grained	AND; brown; poorly graded; fine moist w/some silt and silty sand andstone nodules at 3.8' and 4.5'; ining
TW	3		6'	_		0.5	5 -	joint sp	E; silty; buff; fine grained; acing 1/2" - 3" horizontal; weathered; iron staining
3*	1	1.25	0.7	0		0	7 - 8 -	Silty_S/ fine_gra	ND; yellowish-buff; poorly graded; - ined; moist -
TW	4					0.8	9 10 1 2	grained	AND; brown; poorly graded; fine moist w/some silt; trace limonite staining
TW	5					0.5	3 - 4 - 15 -	Silty SA	ND; tan; poorly graded;
TW	6					1.5	7 - 8 - 9 - 20 -	fine-gra structur	ined; moist; iron stained; blocky e g with interbedded clayey sand
3"	2	2	23' 1	0	50	0	2	SANDSTON	E; silty; buff; fine grained; d; iron stained E; argillaceous; greenish-grey;
ew	7		25'			0.9	25 - 6 - 7 -	1/2-3" h Clayey S	ined; weathered; joint spacing orizontal AND; dark grey; poorly graded; ined; moist w/some silt
rw	8					1.3	8 - 9 -		AY; greenish-grey; low plasticity; some silt and silt filled joints; d

I

1

1

1

I

1

1

1

I

1

I

I

1

CLIE		unic	ipal	Pow	er Ag	genc	y		PROJECT Gibbons Creek S	ES	PROJECT NO. 14578
	ECT L los,					c	N3782	res 25 E3340238	ELEVATION (DATUM) 265.3'	TOTAL DEPTH	DATE START 2-29-88
	ACE C	0.000	IONS WOO	ds					INSPECTOR K. M. Blevins-Mo	cCosh	DATE FINISH 2-29-88
	SAMP		AMPLI 2ND 6"	NG 3RD 6"	N	SAMP	CHECKE M. C.	Schluter	APPROVED BY L. J. Almaleh		
CORE		RUN		ROD	8 RECV		DEPTH IN FEET	GRAPHICS	CLASSIFICATION OF MATER	IAL	REMARKS
IW Iw	9					1.5	1 - 2 - 3 - 4 - 35 - 6 - 7 - 8 - 9 - 40 - 1 - 2 -	plasticity	greenish-grey; high dry to moist; silt fil ace sand; laminated; blo jointed	Led ocky	
rw	11					1.9	3 - 4 - 45 - 6 -	moist; some	lish-grey; high plasticin silt; silt filled join slickensided	cy; cs;	
rw	12					1.4	8	Grey and gr	eenish-grey banded belov	Bott at 5 Grou unkn hole	om of boring 0'. Indwater level Iown. Backfill W/grout to ace.

BLACK & VEATCH LOG OF BORING ENGINEERS-ARCHITECTS

1

1

Ì

I

I

I

I

I

I

-

CLIE Texa		unici	ipal	Powe	er Ag	gency	,			PROJECT Gibbons	Creek S	ES		PROJECT NO. 14578
PROJ	ECT I	COCATI Texa	ON			c	N3783		341132	ELEVATION (267.7'	DATUM)	TOTAL D	EPTH	DATE START 2-29-88
SURF	ACE C	Sture	IONS	E			207A 7.5			INSPECTOR K. M. Bl	evins-M	Terese.		DATE FINISH 2-29-88
		SET	AMPLI	3RD	N	SAMP	CHECKER M. C.		iter	APPROVED BY L. J. Als				
1.5	RUN NO.	RUN	6" CORIN RUN RECV	6" G RQD RECV	VAL B RECV	RECV	DEPTH IN FEET	GRAP LOG	1.02.02	CLASSIFICATION	OF MATER	IAL		REMARKS
W	1					1.0	1 -		grained; m roots (Top CLAY; brow	n; med. dense;	ay; organ high plas	ics and ticity;	using rotar	g advanced 4 1/2" y wash
w w	2					1.5	3 -		trace sand	ome silt; trace		ining;	pp. 1	25
w	4					1.4	5		Lignitic	below 6'				2
W	5					1.3	8 9 10		Gypsum c	rystals at 9.8°				- (-
w	6					1.2	1 - 2 - 3 - 4 - 15 - 6 -		crystals	dark brown; lig: in joints; join structure				
w	7					1.4	7 - 8 - 9 - 20 - 1 -		Grading	đry				
w	8					1.3	2		Gradíng staining	nedium brown w∕s	some Iron			
							25 -			; brown; low pla ; some iron sta		moist		
W	٩					0.6	8 -			brown; poorly bist w/some clay		ine		

LOG OF BORING

÷.

	as t	lunic		Pow	ver A				PROJECT Gibbons Creek S	ES	PROJECT N 14578
Car	los,	LOCAT: Tex	as				COORDIN N378	NTES 109 E3341132	ELEVATION (DATUM) 267.7'	TOTAL DEPT	
		CONDIT							INSPECTOR K. M. Blevins-M		DATE FINI
SAMP	SAM	PISET	AMPLI 2ND 6"		N VAL	REC	CHECK	D BY Schluter	APPROVED BY L. J. Almaleh	ccosh	2-29-88
1.2	-		CORIN		IVAL	REC	DEPTH	SAMPLE TYPE	at of simalen	1	
CORE	RUN NO.	RUN LENG	RUN RECV	RQD	RECV	RQD	IN FEET	GRAPHICS C	LASSIFICATION OF MATER	IAL	REMARKS
	10					0.5 0.9		Grading gree joints 2-4"	greenish-grey; poorly ; some cemented seams; lark grey; hard; high hoist enish-grey w/silt fills spacing; 4 1/2" sandy .5"; slickensided	moist;	
"₩ 1	3				1		7 - 8 9 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	2" silty sand grey below 48.	layer at 49'; grading 5'	Botto at 5 Groun unkno backi to su Place	om of boring 0'. ndwater level 50wn. Hole filled w/grout 1rface. ed concrete at top.

LOG OF BORING

CLIE		unici	pal	Powe	er Ag	genc	y		PROJECT Gibbons Creek S	ES	PROJECT NO. 14578
PROJ	ECT L	OCATI	ON		6		N378277	E3341774	ELEVATION (DATUM) 266.4'	TOTAL DEP	
SURF	ACE C	ONDIT	IONS			-			INSPECTOR K. M. Blevins-M	cCosh	DATE FINISH 2-29-88
	SAMP	SET	AMPLI 2ND 6"		N	SAMP	CHECKED BY		APPROVED BY L. J. Almaleh		
CORE	RUN NO.	RUN	CORIN	G	RECV		DEPTH IN G	PLE TYPE RAPHICS	CLASSIFICATION OF MATER	RIAL	REMARKS
TW TW TW TW	1 2 3 4 5 6					1.0 2.0 1.3 1.6 1.6		moist; w/so (Topsoil) CLAY; brown plasticity; Trace org 1" sand s limonitic	brown; loose; low plas me silt; organics and i s, soft to hard; high wet to moist w/some si anics below 6'; iron st eam at 9.9'; iron stair tan; firm; moist; w/sc	ilt	Boring advanced using 4 1/2" rotary wash pp. 1.0 pp75 pp. 4+
TW	7					1.3		moist; w/tr. jointed	brown; hard; high plas ace sand; iron staining 	ticity;	
TW	9					0.9	25	plasticity;	moist; w/silt filled j ted sand fragments	oints;	

1

I

I

I

1

I

I

٦

I

I

I

1

l

1

I

1

ľ

I

I

I

I

I

I

I

I

1.000	ENT as M	unic	ipal	Pow	er A	gency	4		PROJECT Gibbons Creek S	ES	PROJECT NO 14578
		Tex				c	OORDINA N3782	es 7 E3341774	ELEVATION (DATUM) 266.4'	TOTAL DEPTH	DATE START 2-29-88
· · · · ·		Stur							INSPECTOR K. M. Blevins-M		DATE FINISE 2-29-88
SAM	SAME	SET 6"	AMPLI	NG 3RD 6 "	VAL	SAMP	CHECKER M. C.	BY Schluter	APPROVED BY L. J. Almaleh		
CORE	RUN NO.	RUN	CORIN	G	1 *		DEPTH IN FEET	GRAPHICS	CLASSIFICATION OF MATER	IAL	REMARKS
בש	10					1.2		grained; moi grey to dark	grey; poorly graded; st; some silt; grading brown; interbedded wi lignitic below 33.5'	from	
ะพ	12					1.0	2	Sandy <u>CLAY;</u> plasticity;	dark brown; hard; high moist; some silt; ligni	tic	
*W	13					1.7	8 - 9 9 - 1 2 - 1 3 - 1 55 - 1 7 - 1 8 - 1 7 - 1 7 - 1 8 - 1 7 - 1 7 - 1 8 - 1 7			at 50 Groun unkno hole surfa conce	om of boring). dwater level own. Filled w/grout to ace; inserted rete plug near ace.

I

I

1

1

I

I

I

1

I

1

I

I

I

PISHION

6 D

Te	10 K 10 - 11			al Po	wer	Agend	y				PROJECT Gibbons Creek S	ES		PROJECT NO. 14578
Can	JECT 105	, Te	xas				COORDINA N3782		3342496	5	ELEVATION (DATUM) 261.5'	TOTAL 35.0'	DEPTH	DATE START 2-23-88
	FACE En pa			IS							INSPECTOR K. M. Blevins-Me	cCosh		DATE FINISH
SAM	P SAM	PSE	T 2N	LING D 3R		L SAM	M. C.		luter		APPROVED BY L. J. Almaleh			
	E RUN E NO.				1.	4	DEPTH IN FEET	-	LE TYPE	CLA	SSIFICATION OF MATER	IAL		REMARKS
							1		Undiff	erentiat	ed overburden		using	red hole 4 1/2" / wash
rw cw	1					0.8	3 -		hard;	low plast	own; medium dense; st cicity; moist; some ; ore silt at 3'-3.5'	tiff to sand		
w	3					0.5	5		Sandy (plastic	CLAY; tar city; moj	to brown; hard; low st; trace silt		pp. 4+	*
	1	2	10'	o	0	0.8	9 - 10 - 1 -		Clayey fine qu	SAND; ta ained; ş	n to brown; poorly g ome silt; iron stain	raded; ing	Tried at 10' w/rota	to push TW SPT - cored so reamed ry wash
	2	2	12' 1.3	0	65	0	2		fine to	NE; argi medium weathere	llaceous; yellowish- grained; iron staini d	tan; ng;	Sample	at cuttings recovery L2' in 1-3"
	3	2	14'	0	60	0	4		Argill	aceous g	rading out below 14'			
•	4	2	16'	0	0	0	6 - 7 - 8 -		Gradi	ng grey b	pelow 16'			
	5	2	20.	0	0	0	9 - 20 -		Iron :	staining	on joints below 20'		18-20' washed. drillin diamete	sample at rotary Continued g with 3" r 5' core below 20'.
	6	5	4.5	0.33	90	7	1		Gradin	g greeni	gs starting at 21.7' sh-grey below 23' an			
	7	5	25'	0.83	80	12	4 - 25 - 6		slight	ly argil	laceous			
			30'				7 8 1 9		Lignit	e partin	gs grading out below	27.5'		

I

1

I

I

I

1

1

1

I

I

I

RISHION6D

	s M	_	_	Pow	er A	genc	у	1.1.1		PROJECT Gibbons Creek S	ES		PROJECT NO. 14578
		Tex				0	N3782	res DO E3342496		ELEVATION (DATUM) 261.5'	TOTAL 1 35.0'	DEPTH	DATE START 2-23-88
		Stur								INSPECTOR K. M. Blevins-M			DATE FINISH 2-23-88
SAMP	SAMP		AMPLI 2ND 6"	NG 3RD 6"		RECV	CHECKEL	Schluter		APPROVED BY L. J. Almaleh			
CORE	RUN NO.	RUN	CORIN RUN RECV	G RQD RECV	18	1	DEPTH IN FEET	GRAPHICS	CLA	SSIFICATION OF MATER	IAL		REMARKS
3"	8	5	30, 2.2	0	44	0	1 2 3 4 35 6 7 8 9 40 1 2 3 4 45 6 7 8 9 50 1 2 3 4 55 6 7 8 9 60	Horizon from 1- parting	-3" ap	ractures spaced gene art; numerous lignit ow 30'	rally	35'. level Reamed 4 1/2' cuttin hole f 1-20' 1-11' 2" PVC	n of boring Ground water unknown. H hole using bit. Flush instafled section and section of and 5' on of screen.

I

I

1

I

I

I

I

I

1

I

1

ſ

I

	JECT 1			Pow	er A		-				PROJECT Gibbons Creek S	ES		PROJECT NO 14578
Ca	rlos,	Tex	as	-		C	N3795		3339416		ELEVATION (DATUM) 261.7'	TOTAL 39.0		DATE START 2-25-88
	earin	g in	wood	ds	-						INSPECTOR K. M. Blevins-M	cCosh		DATE FINISH 2-25-88
SAM	PE NO.	SET 6"	AMPLI 2ND 6"	ING 3RD 6"		SAMP	CHECKER M. C.	Sch			APPROVED BY L. J. Almaleh	0.0140		1 22 00
COR	E RUN E NO.	RUN	CORIN RUN RECV	ROD	8 RECV	RQD	DEPTH IN FEET	-	LE TYPE APHICS	CLAS	SIFICATION OF MATER	IAL		REMARKS
TW TW TW TW TW TW	L 2 3 4 5 6 7 8				1	0.7 1.5 1.1 1.8 1.7 1.8	1		Silty <u>CLAY</u> ; d moist; Trace Silty <u>CLAY</u> ; d moist; Silty <u>CL</u> moist; Gypsum slicke Horizo below iron s Gypsum joint i	ark brow some sil gravel a AY; brow ron stai seam at nsided b ntal and 10' fill taining filled o .s 4" lor	and iron staining be m; stiff; high plas ning; jointed 7.5' and 9'; elow 7' 45 ⁰ to vertical jo ed w/gypsum crystal vertical joint at 14 Gunuan filled	(Top ticity; elow 4' ticity; ints s and	Boring using rotary pp. 1. pp. 1. pp. 2.0 pp. 2.5 pp. 2.7	wash 25 5
	9				1.	.7			spacing	general	ly 8"-1.5'		pp. 2.79	5 pp. 3.5
	10				1.		9 - 20 - 1 -		joints be trace san	low 20';	to dark grey; hard; ; with silt seams o trace iron stainin nts; occasional sil w 16'; thinly beddee	n g;	pp. 4+	
W 1	12				1.	3	2					I	pp. 4+	
W 1	.3				1.3		4 -						op. 4+	
V 1	.4				1.2	2	6 - 7 -							
1	5				0.4		8 -	1	Lignitic	below 2	9' - lignite seams	up to		

1

I

I

I

1

1

I

I

I

I

۱

LOG OF BORING

BORING NO.B-16 SHEET 2 of 2

				Pow	er Ag	_		100			Gibbons Creek S		14578
		Tex				C	N3795		339416	-	ELEVATION (DATUM) 261.7'	TOTAL DEP 39.0'	TH DATE START 2-25-88
		ONDIT g in	IONS WOO	ds							INSPECTOR K. M. Blevins-M	cCosh	DATE FINISH 2-25-88
SAMP			AMPLI		VAL	SAMP	CHECKE M. C.		uter		APPROVED BY L. J. Almaleh		
CORE	RUN	RUN	CORIN	G	1 8	1	DEPTH IN FEET		E TYPE PHICS	CLA	SSIFICATION OF MATER	IAL	REMARKS
SIZE	NO.	LENG 1	0.2	0	RECV 20	RQD 0			SANDSTON	E; arg	illaceous; greenish-	grey;	
TW	16		31,			0.5	2 -		Clayey S cemented	AND; g ; fine t (may	weathered reenish-grey; partia grained; poorly gra be extremely weather	ded;	
3*	2	5	34' 4 39'	1.3	80	26	4		fine gra	ined; al and	illaceous; greenish- weathered; w/lignite vertical joints - joints	seams;	Bottom of boring at 39'. Groundwater level Inknown. Reamed
												1 3 4 4 5	hole w/6 7/8" bit Installed 3-10' sections 4" PVC and 1-5.8' section 4" PVC; set 1-5' section .01" slot screen.
							9 - 50 - 1 - 2 - 1 - 2 - 3 - 4 - 1 - 2 - 3 - 4 - 1 - 5 - 5 - 1 - 1 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7						

I

I

I

I

1

I

LOG OF BORING

BORING NO.B-17 SHEET 1 of 2

CLIE		inici	ipal	Pow	er Ag	gency	у				PROJECT Gibbons Creek S	ES		PROJECT NO. 14578
	ECT LOS,	10000				c	OORDINAT		340991		ELEVATION (DATUM) 292.3'	TOTAL D	epth	DATE START 2-17-88
	ACE C			ture							INSPECTOR K. M. Blevins-M	cCosh		DATE FINISH 2-17-88
	SAMP		AMPLI 2ND 6"	NG 3RD 6 "	VAL	SAMP	CHECKEL M. C.		uter		APPROVED BY L. J. Almaleh			
ORE	RUN	RUN		ROD	8		DEPTH IN FEET	-	E TYPE PHICS	CLA	SSIFICATION OF MATER	IAL		REMARKS
SIZE	NO.	LENG	RECV	RECV	RECV	RQD	1651	100		differe	ntiated overburden		Advan	ced hole by
ew	1					1.5	1 -	V	Silty C very mo	LAY; br ist; w/	own; stiff; med. pla some roots	sticity;		y wash
w	2					1.2	3	Į	Gradi	ng grey	out below 3' below 2.5 with trac r at 4.25'	e sand	pp. 4	•
ew	3					1.1	6				a parta a series a	_	pp. 4	•
rw	4					0.9	7 -			moist;	rown to tan; hard; p with sand; trace li			4
ew	5					1.2	9							
ew	6					0.9	2 -				3. 11.1			
ew	7					0.7	3 -		with cen	mented	d; high plasticity; sand stringers; plat n staining at plate	y in	pp. 4.	
rw	8					1.3	15 -				y with 2" sandy silt y 15.7'	seam at		
rw	9					1.5	7 -		Clayey plastic staining	ity; mo	an to buff; hard; lo ist; with some sand ates	w and iron		
ew	10					0.9	9 - 20 -				n to buff; poorly gr e clay; trace iron s			
cw	11					0.8	1 -		plastic iron sta	ity; mo aining;	345 Berley 11	and		
w	12					1.2	3			ndy sil below	t layer at 22.5'; gr. 23	ading		
w	13					1.8	25 -			ining (ard; high plasticity on plates and joints .8'			
W	14					1.2	7 -		Clayey 1 moist;		rown; high plasticit; aining	11	pp. 4+	
W	15					1.4	8 - 9 -				-grey; high plastici ith trace silt; trace			

I

I

1

I

I

I

LOG OF BORING

BORING NO.B-17 SHEET 2 of 2

Tex		unic	ipal	Pow	er A	gency	/		-	PROJECT Gibbons Creek S	ES	PROJECT NO. 14578
		Texa	17. Au			C	N38108	ES 3 E3340991		ELEVATION (DATUM) 292.3'	TOTAL DEPT 50.0'	TH DATE START 2-17-88
0.000		conditing in		ture						INSPECTOR K. M. Blevins-M	cCosh	DATE FINISH 2-17-88
	SAME	SET 6"	AMPLI 2ND 6"		VAL	SAMP	CHECKER M. C.	BY Schluter		APPROVED BY L. J. Almaleh		
CORE	RUN NO.	RUN		ROD	RECV	I	DEPTH IN FEET	GPAPHICS LOG	CLA	SSIFICATION OF MATER	IAL	REMARKS
TW TW TW TW TW	16 17 18 19 20 21 22					2.0 1.8 1.8 1.7 1.9 1.9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Gradin (green trace	ng to 1 hish-gr lignit	race silt below 35' aminated banded ey and grey) below 3 e at 39.8';	8' with	÷.
TW	23 24					2.0 1.8	4 - 45 - 6 - 7 - 8 -		ng grad below	ing out below 44' 47'	PI	p. 4+
TW	25					1.6	9 50 1 2 3 4 55 6 7 8 9 - 1 - 1 - 1 - 1 - - - - - - - - - - - - -				at Gz ur re 6 au Se 1- 4" sc tf	ottom of boring t 50'. roundwater level known. Hole aamed using 1/2" diameter Iger bit. et 4-10' and -4.6' section of ' diameter chedule 40 hreaded Lush-jointed PVC tpe, 5' screen.

ľ

I

I

BORING NO.8-18 SHEET 1 of 2

CLIE		inici	pal	Powe	er Ag	gency	,			PROJECT Gibbons Creek S	ES		PROJECT NO. 14578
PROJ	ECT L	OCATIO	ON	100			OORDINAT		342922	ELEVATION (DATUM) 269.1	TOTAL DE	PTH	DATE START 2-17-88
		ONDIT g in		ure						INSPECTOR K. M. Blevins-M	cCosh		DATE FINISH 2-17-88
		SET		3RD	N	SAMP	CHECKED M. C.		uter	APPROVED BY L. J. Almaleh			
CORE	NO.		6" CORIN	G RQD	VAL	RECV	DEPTH IN	GRAI		CLASSIFICATION OF MATER	IAL	6	REMARKS
SIZE				RECV	RECV	RQD	FEET	LOG	Pro Kines and	lated overburden			g advanced
							1 -		Undifferent.	lated overburden		using	4 1/2" y wash
TW	ĩ					0.6	3 -		Sandy <u>SILT;</u> with cements iron staining	tan; poorly graded; mo ad sand stringers; some ng	oist; clay;		
TW	2					1.5	5 -		plasticity;	r reddish-brown; hard; moist; trace sand; iro rading some sand below	n		
TW	3					1.3	8 -					pp. 4	4
TW	4					1.7	9 - 10 - 1 -		moist; with grading to s lignitic cla	reddish-brown; poorly clay and iron staining silty clay; interbeddin ay below 10'; few gypsu	g with		
TW	5					1.3	2 -		crystals Silty CLAY;	dark brown to black; h	ard;		
TW	6					1.5	4 -		highly plast	ic; moist; lignitic; i th trace sand below 16	ron	pp. 44	
TW	7					0.9	6			14			
TW	8				1 h	0.9	8		Silty SAND;	tan; poorly graded; mo	ist;	pp. 44	•
TW	9					0.7	9 - 20 -		Clayey SILT:	iron staining greenish-grey; highly st; with trace thin si		pp. 44	•
TW	10					1.4	1			ice iron staining			
TW	11					1.8	3 -						
TW	12					0.8	25 -			greenish-grey; poorly trace to some clay	graded;		
TW	13					1.2	7 -			greenish-grey; high moist; with some sandy	silt		
TW	14					1.3	9 -						

LOG OF BORING

BORING NO.B-18 SHEET 2 of 2

_	cas Mi			Pow	er A					PROJECT Gibbons Creek S	SES	PROJECT NO 14578
Car	los,	Texa	as			C	COORDINA N3815		3342922	ELEVATION (DATUM) 269.1	TOTAL DEP	PTH DATE START 2-17-88
	FACE C	g in	past		0					INSPECTOR K. M. Blevins-M	1 cCosh	DATE FINISH 2-17-88
	P SAMP		SAMPLI 2ND 6"	1.1	N VAL	SAMP	M. C.	Schl		APPROVED BY L. J. Almaleh		
		RUN	CORING RUN RECV	RQD	RECV	RQD	DEPTH IN FEET	-	PHICS CI	LASSIFICATION OF MATE	RIAL	REMARKS
TW TW TW TW TW	15 16 17 18 19 20 21					1.4 1.4 1.5 0.9 2.0 2.1 2.1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		low plasticit fractures spa Grading to greenish gr trace cemen 2" sandy si Grading gre Grading to sandy silt	t seam at 32.5'; grad: ty; sandy silt filled acing about 4" in samp interbedded green and rey silty clay below 3 nted sand ilt seam at 37.8' eenish-grey below 38' high plasticity below seam grading out; bec rey and grey banded cl	ple d 34'; * 40'; :coming	
	22 23 24					1.7	4 4 5 7 8 9 50 1 2 3 4 5 5 6 7 8 9 50 1 2 3 4 5 5 6 7 8 9 50 1 7 8 9 50 1 7 8 9 50 1 7 8 9 50 1 7 7 1 1 1 7 1 7 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1		Slickenside	is at 44.5'	a G u h 6 I I a 0	Nottom of boring it 50'. Froundwater level inknown. Reamed iole twice using 3/4" auger bit. installed 4-10' nd 1-5.5' section f 4" PVC, 1-5' ection of screen.

۲

LOG OF BORING

BORING NO.CB 12 SHEET 1 of 1

CLIEN		inici	ipal	Pow	er Ag	gency	,		PROJECT Gibbons Creek SE	s	PROJECT NO. 14578
		Texa	0.000			c	N3863	res 38 E3336793	ELEVATION (DATUM) 295.4'	TOTAL DEPTH 20'	DATE START 2-16-88
		ONDIT g in	IONS pasi	ture					INSPECTOR K. M. Blevins-Mc	Cosh	DATE FINISH 2-16-88
SAMP		1.5	AMPLI	21.2	N	SAMP	CHECKEI M. C.	Schluter	APPROVED BY L. J. Almaleh		
		. 40	CORIN	G	Local State	1	DEPTH	GRAPHICS	CLASSIFICATION OF MATERI		REMARKS
CORE	RUN NO.			RQD RECV	RECV	RQD	FEET	LOG	CLASSIFICATION OF MATERI	AL	REMARKS
TW	1					0.9	1 -	Silty CLAY	tiated Overburden ; dark brown; hard; high ; moist with roots	with	ing advanced n 3" continuous ght auger
rw	2					1.4	3 -	Grading Staining Grading	grey below 2 1/2'		
TW	3					1.0	6 -		with sand stringers below ganics at 7.8'; 1" silt s		4+
TW	4					1.8	8 -		j tan to light brown; har		n in the second se
TW	5					1.2	10 -	Clayey <u>SIL</u> plasticity	<pre>; moist; iron staining <u>T;</u> tan to light brown; ha ; moist; iron staining</pre>		
TW	6					1.4	2 -	Silty CLAY	<pre>silt at 11.2' tan to light brown; har moist; iron staining; w gers</pre>	d; high ìth	
TW	7					1.7	4	graded; mo. staining	; tan to light brown; poo ist with some clay; iron	rly	
TW	9				D	1.4	6 -		; tan to light brown; har ; moist; iron staining; t		4+
TW	10					1.8	9 -		to dark brown below 16' below 18'	Bott	om of boring
							20 1 2 1 2 3 1 2 3 4 2 5 1 1 2 5 1 1 1 1 1 1 1 1 1			unkr back cutt	O'. indwater level iown. Hole filled with ings and 2' rete plug.

I

I

1

I

J

LOG OF BORING

BORING NO.CB 13 SHEET 1 of 1

Texas Municipal Power Agency									Gibbons Creek S	563	PROJECT NO 14578	
					37896	ELEVATION (DATUM) 307.6'	TOTAL DE	EPTH	DATE START 2-16-88			
Pasture						INSPECTOR K. M. Blevins-N	cCosh		DATE FINIS 2-16-88			
SAMP				NVAL	RECV	M. C.	Schlut		APPROVED BY L. J. Almaleh			
	RUN	RUN	ROD	RECV	RQD	DEPTH IN FEET			CLASSIFICATION OF MATE	RIAL	1	REMARKS
1					1.3	1 -	S	ilty SAND;	brown; grev; poorly g	raded:	using contin	advanced 3" uous flight
2					1.4	3 -	SP	ilty <u>CLAY;</u> lasticity;	dark brown; hard; high		pp. 1.	
3					1.2	5 -	As	andy CLAY;	med. brown to grey; ha	the second se		25
4					1.1	7 -		ilty CLAY;	moist grey to brown; hard; h			t
5					1.5	9 - 10 -					pp. 4+	
6					1.2	1 -	// ta	an; hard; 1	ow plasticity; moist;	with	pp. 3.5	
7					1.6	3 - 4 -						
8					1.3	15		Grading to	grey below 16'		pp. 4+	
9					1.8	8 -		Grading to areas	sandy below 18'; lami:	nated in		
10					0.8	20	dr	Y; with cen	mented sand layers (weat	ity; athered	pp. 4+	
						2 3 4 25 6 7 8				i I c	20'. Gi level un Backfill cuttings	with and 2'
	ACE C ture SAMP NO. RUN NO. 1 2 3 4 5 6 7 8 9	ACE CONDIT ture S SAMP SET 6" RUN RUN NO. LENG 1 1 2 3 4 5 6 7 8 9	ACE CONDITIONS ture SAMPLI SAMPLI SAMPLI SAMPLI SAMPLI CORIN RUN RUN RUN RUN RUN RUN RUN RUN RUN RU	PACE CONDITIONS ture SAMPLING SAMPLING CORING RUN RUN RUN RUN RUN RUN RUN RUN RUN RU	PACE CONDITIONS ture SAMPLING CORING RUN RUN RUN RQD * CORING RUN RUN RUN RQD * 1 1 1 2 3 4 5 6 7 8 9 9	NACE CONDITIONS ture SAMPLING 5" SAMPLING 6" NAL SAMP RECV CORING RUN RUN RUN RQD % RQD 1 LENG RECV RECV RECV RQD 1 LENG RECV RECV RUN 1.3 2 LENG LENG LENG 1.2 4 LI.1 LI.2 1.5 1.5 6 LI.2 LI.2 1.6 1.3 9 LI.8 LI.3 1.8 1.8	CONDITIONS SAMPLING SAMP SET 2ND 3RD N SAMP 6" 6" 6" 0" VAL RECV CHECKEI M. C. CORING NO. LENG RECV RECV RECV RQD DEPTH IN PEET 1 1.3 1 2 1.4 4 3 1.2 6 4 1.1 8 5 1.5 10 6 1.2 2 7 1.6 4 8 1.3 6 9 1.8 8 10 0.8 20 10 0.8 20	ACE CONDITIONS SAMPLING 6* 6* 6* VAL SAMP NO. 6* 6* 6* VAL RECV SAMP NO. SAMPLING 6* 6* 6* VAL RECV SAMPLE RECV RUN RUN RUN RUN RQD LENG RECV RECV RQD SAMPLE FEET SAMPLE GRAPH LOG 1 1.3 1 1 2 1.4 3 2 3 1.2 6 5 4 1.1 8 9 5 1 1.5 10 6 1.2 2 3 7 1.6 4 5 8 1.3 6 9 1.8 9 5 10 0.8 2 3	ACE CONDITIONS ture SAMP SET 2ND NO. 5" 5" 6" VAL RECV NO. 5" 5" 6" VAL RECV CORING CORING RUN RUN RUN ROD & VAL RECV NO. LENG RECV RECV RECV ROD 2 1 1 1.3 2 1.4 3 1.3 4 1.3 5 1.5 6 1.2 7 1.6 8 1.3 6 1.3 7 1.6 8 1.3 6 1.3 7 1.6 8 1.3 6 1.3 7 1.6 8 1.3 10 1/2" Undi 10 1	Los, Texas N386433 E3337896 307.6' TACE CONDITIONS INSPECTOR UITE SAMPLINC INSPECTOR SAMPLINC N SAMP SAMPLE TYPE ISAM BST 2ND ST 6' NO. LENG BECV RECV RECV RECV RECV RECV REC REC NO. LENG BECV RECV RECV RECV RECV RECV RECU CORING 1 1.3 1.3 2 1.4 1.3 1 1.4 1.4 1.2 1.4 1.4 1.1 1.5 1.2 6 1.2 1.6 1.2 1.6 1.3 1.6 1.3 1.7 1.6 1.8 1.3 6 1.2 1.8 1.3 1.9 1.6 1.1 1.6	Los, Texas N386433 E3337896 307.6' 20.0' ARCE CONDITIONS INSPECTOR INSPECTOR SAMPLING SAMPLING INSPECTOR SAMPLING CHECKED EX APPROVED BY INO. 5' 5'''' VAL RECKED EX APPROVED BY INO. ENC RECV RECV NO. SAMPLING CLASSIFICATION OF MATERIAL INO. DEFN SAMPLING CLASSIFICATION OF MATERIAL I I I.3 I I.4 I III (J2'' Undifferentiated overburden I I.4 I III (J2''' Undifferentiated overburden Silty SAND brown; grey; pooly graded; I I.4 III (J2''' Undifferentiated overburden Silty CLAY; dark brown; hard; high plasticity; moist with some sand pockets S I.4 III (J2''''''''''''''''''''''''''''''''''''	Los, Texas N386433 E3337896 J07.6' 20.0' PACE CONDITIONS INSPECTOR INSPECTOR INSPECTOR SAMPLING CARCKED BY APROVED BY L. J. Almaleh SAMPLING CONING CARCKED BY APROVED BY L. J. Almaleh CONING CONING CARSIFICATION OF MATERIAL DEFTH GRAPHICS CLASSIFICATION OF MATERIAL Ising NO. LENG RECV RECV RECV RECV RECV ROME STILL SAMP SILY CLAY dark brown igrey poorly graded; Boring 1 1.3 1 GRAPHICS CLASSIFICATION OF MATERIAL Boring 2 1.4 1.3 1 GRAPHICS CLASSIFICATION OF MATERIAL Boring 2 1.4 1.3 1 GRAPHICS CLASSIFICATION OF MATERIAL Boring 2 1.4 1.3 1 Grading to grey with little sand Boring Boring Boring 3 1.2 5 Grading to grey with little sand Pp. 4: 1.2 1.4 1.4 Silty CLAY or clayey SILT; light brown to the sand some sand pockets Pp. 4: 5 1.5 0 Grading to

LOG OF BORING

BORING NO.CB-14 SHEET 1 of 1

CLIENT Texas Municipal Power Agency							PROJECT Gibbons Creek SES			PROJECT NO. 14578		
PROJECT Carlos		- C - C - C - C - C - C - C - C - C - C			C	N38517	 337758	21	ELEVATION (DATUM) 293.6'	TOTAL DE 20.0'	PTH	DATE START 2-16-88
surface Clearin			ture						INSPECTOR K. M. Blevins-M	cCosh		DATE FINISH 2-16-88
SAMPLING SAMP SAMP SET 2ND 3RD N SAMP TYPE NO. 6" 6" 6" VAL RECV M. C. Schluter							APPROVED BY L. J. Almaleh	1				
CORE RUN	RUN	CORIN		1.		DEPTH IN FEET	 E TYPE PHICS	CLA	SSIFICATION OF MATER	IAL		REMARKS
SIZE NO. TW 1 TW 2 TW 3 TW 4 TW 5 TW 6 TW 7 TW 9 TW 10 TW 12 TW 13	LENG	RECV	RECV	RECV	RQD 1.1 0.9 0.9 0.6 1.0 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.8	1 1 2 3 4 5 7 8 9 10 1 2 3 4 10 1 2 3 4 10 1 2 3 4 10 1 2 3 4 10 1 2 3 4 12 3 4 20 1 21 3 4 25 6 7 8 7 8 7 8 7 8 1 1 1 <	Undiff Silty moist; Grad trac Grad 7'; Silty Silty Silty Silty Silty Silty Graine stainin Silty Graine stainin Silty Grad Grad Grad T'; Silty Silty Grad Grad T'; Silty Silty Grad T'; Silty Silty Grad Grad Grad Grad Grad Grad T'; Silty Silty Silty Grad T'; Grad T'; Grad T'; Grad T'; Silty Silty Grad T'; Grad T'; Grad T'; Silty Silty Silty Silty Grad Grad T'; Silty Silty Grad Grad T'; Grad T'; Grad T'; Grad Grad T'; Grad Grad T'; Grad T'; Silty Silty Grad Grad Grad Grad Grad Grad Grad Grad	CLAY; gr with so ing brow e gravel ing grey with occ SAND; li graded; CLAY; gr city; dr SAND: li d; poorl d; poorl city; mo city; mo cockets ilty sar and seam ing to t	ed overburden ey; hard; high plast me sand; trace roots m; sand grading to t with iron staining asional fine sand po ght brown; fine grain dry with iron staining ght brown; hard; 1 y; iron staining ght brown to tan; fi y graded; dry with i e gravel eyish-brown; hard; h ist; iron staining; d layer at 13.5 between 14' and 15' an below 16' grading out below 1	below below bekets ned; ing ow ne ron ligh some	<pre>with fligh pp. 4 pp. 2 pp. 4 </pre>	.0

1

1

PISHI

0360

LOG OF BORING

BORING NO.CB-15 SHEET 1 of 1

Texas Municipal Power Agency PROJECT LOCATION COORDINATES							PROJECT Gibbons Creek	SES		PROJECT NO. 14578			
Carlo	s, Te	xas			C	N3841	2027	3337723	23	ELEVATION (DATUM) 283.5'	TOTAL	DEPTH	DATE START 2-16-88
1964 - State 1975	E COND ing i	ITIONS n pas	ture							INSPECTOR K. M. Blevins-M	icCosh		DATE FINISH 2-16-88
SAMP S	AMP SET			N VAL	SAMP	CHECKER M. C.		uter		APPROVED BY L. J. Almaleh			
CORE RISIZE N		CORIN RUN IG RECV	RQD	RECV	RQD	depth In Feet	-	PHICS	CLA	SSIFICATION OF MATE	RIAL		REMARKS
rw 1 rw 2 rw 3 rw 4 rw 5 rw 6 rw 7 w 8 w 9 w 10					1.1 1.1 1.1 1.3 1.5 1.7 1.8 1.5 1.8 1.8 1.8	1		Silty CLA plasticit Grading Grading Clayey SI plasticit iron stai Sandy SII plasticit thin stri Silty CLA Silty SAN grained; Silty CLA	AY; bro ty; hay g trace g silty LLT; li y; ver ning T; lig y; som ngers Y; dar iron s nd sea D; lig poorly Y; dar]	ed overburden whish-grey; moist; d; trace roots a sand w/gypsum and medium plastic ght brown; moist; ha y stiff; w/some san ht brown; moist; har taining; trace limo ms below 14' at brown; moist; fl graded; trace clay t brown; moist; har taining with sand s	at 7' high hd; and ard; low ng; with d; nite	with fligh pp. 1 pp. 4 pp. 4 pp. 4 pp. 3 pp. 4 pp. 4 p	at 4' at 6' 5

APPENDIX B GROUND WATER LEVEL OBSERVATION WELL LOGS

× 11

1

1

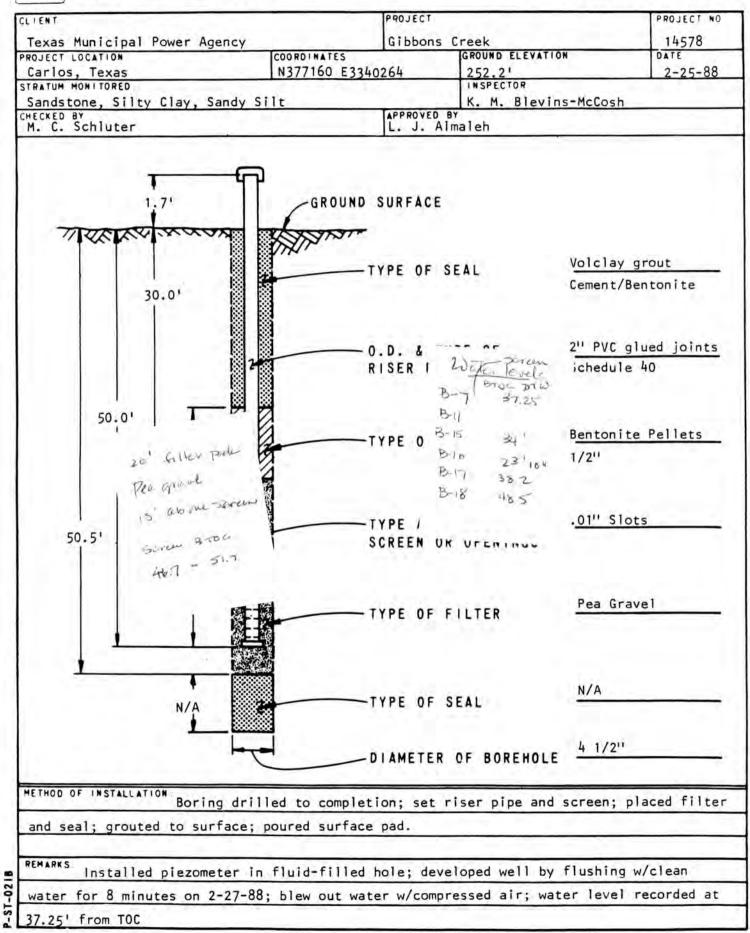
1

1

1

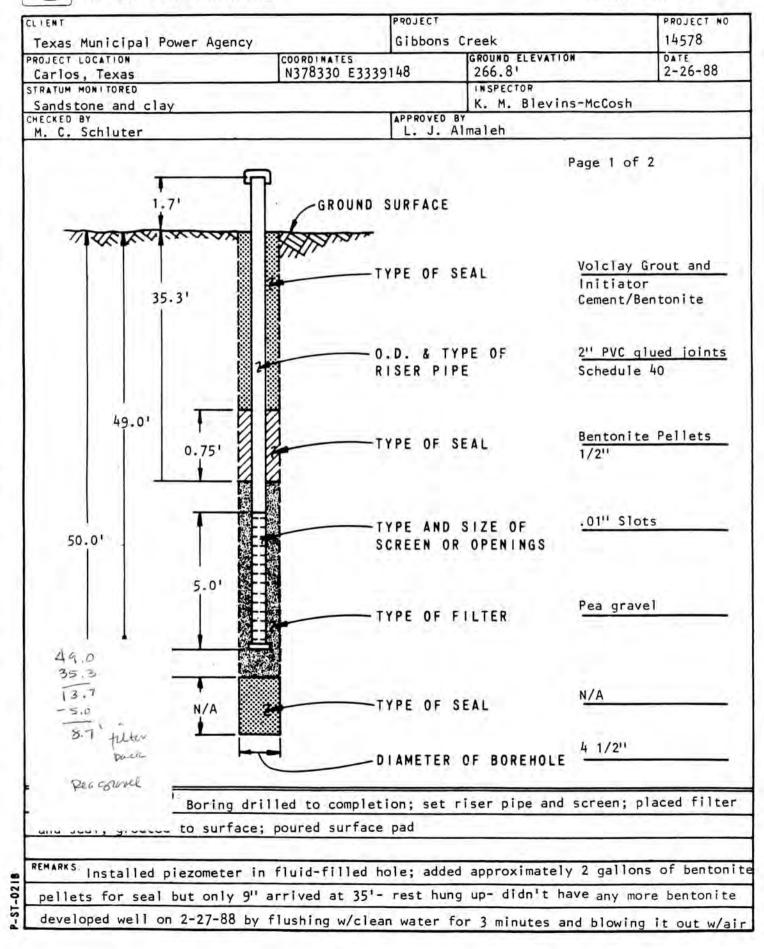
I

,


ł

BLACK 3 VEATCH PIEZOMETER INSTALLATION LOG

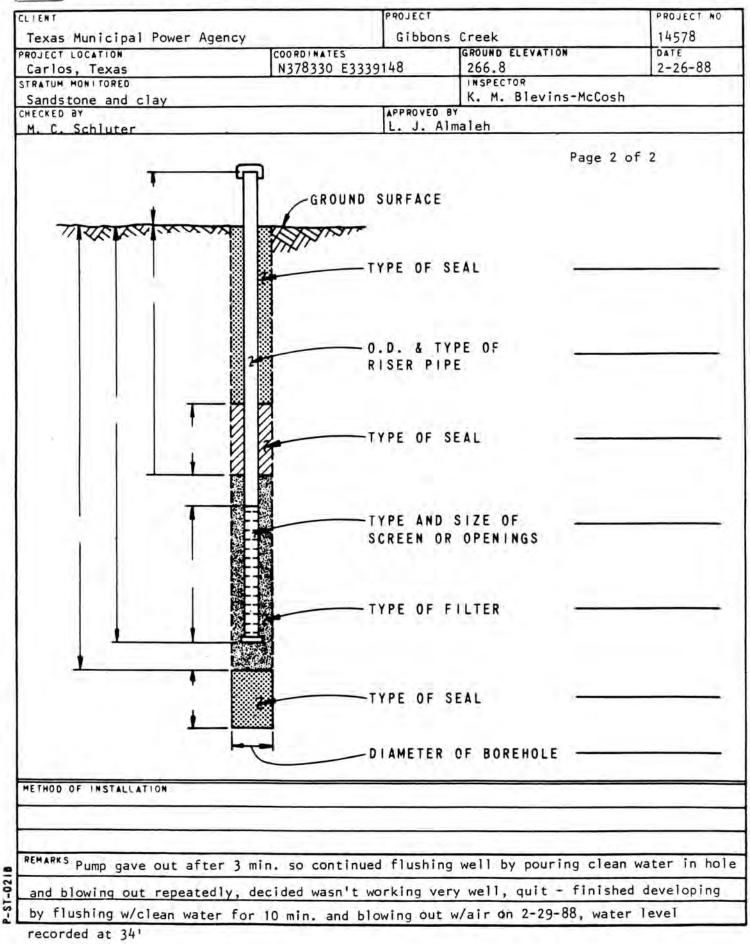
CONSULTING ENGINEERS

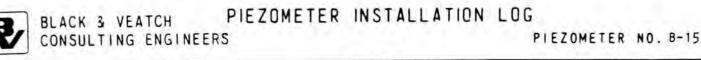

PIEZOMETER NO. 8-7

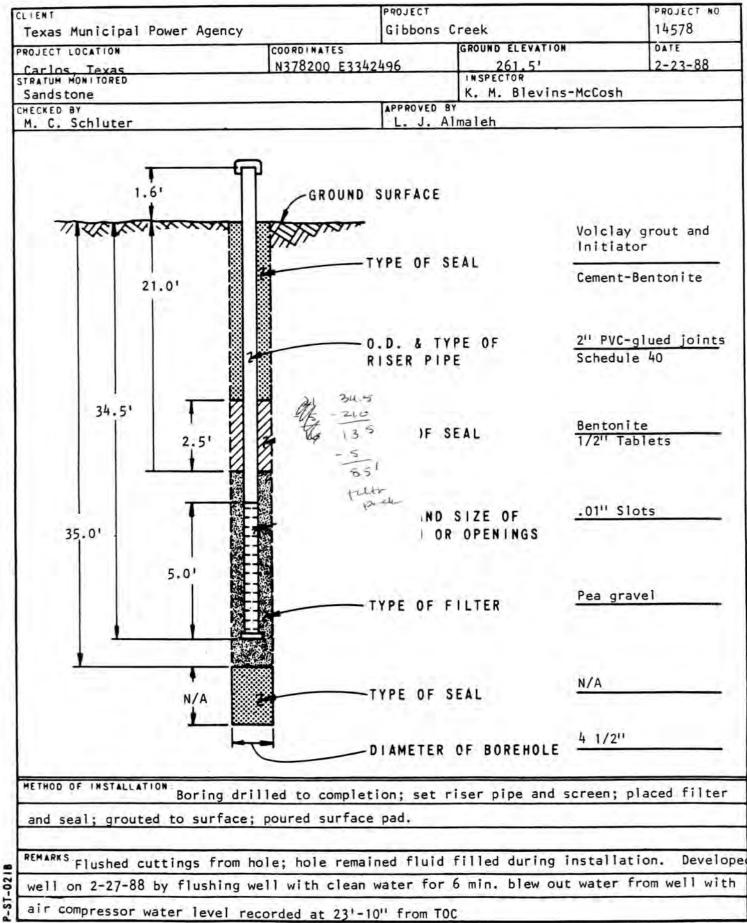
BLACK & VEATCH PIEZOMETER INSTALLATION LOG

CONSULTING ENGINEERS

PIEZOMETER NO. B-11

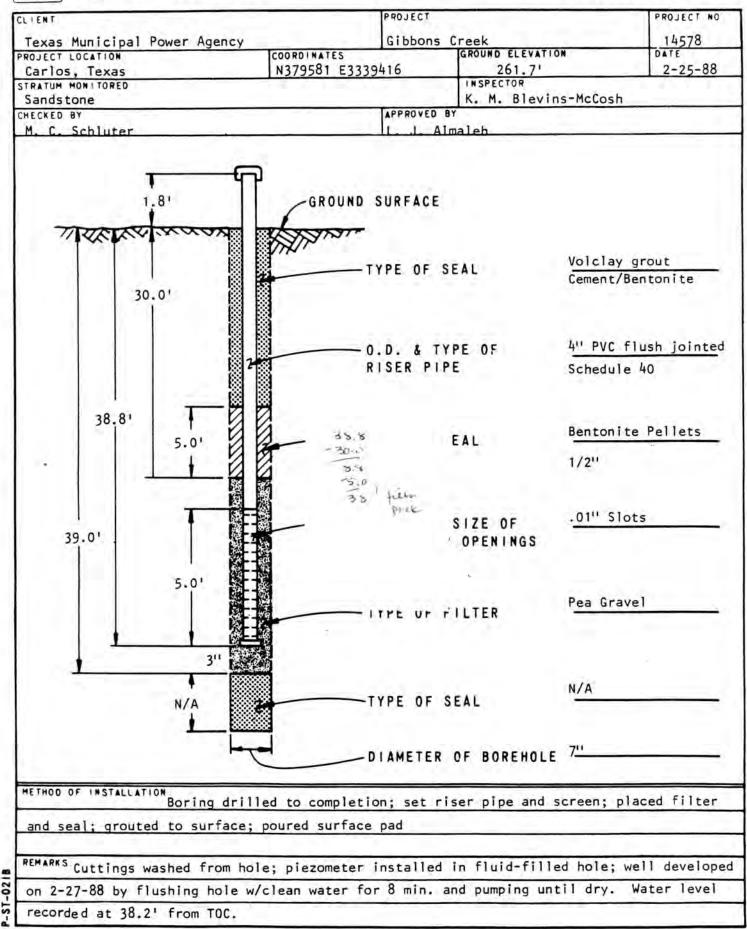



₹⁄


BLACK & VEATCH PIEZOMETER INSTALLATION LOG

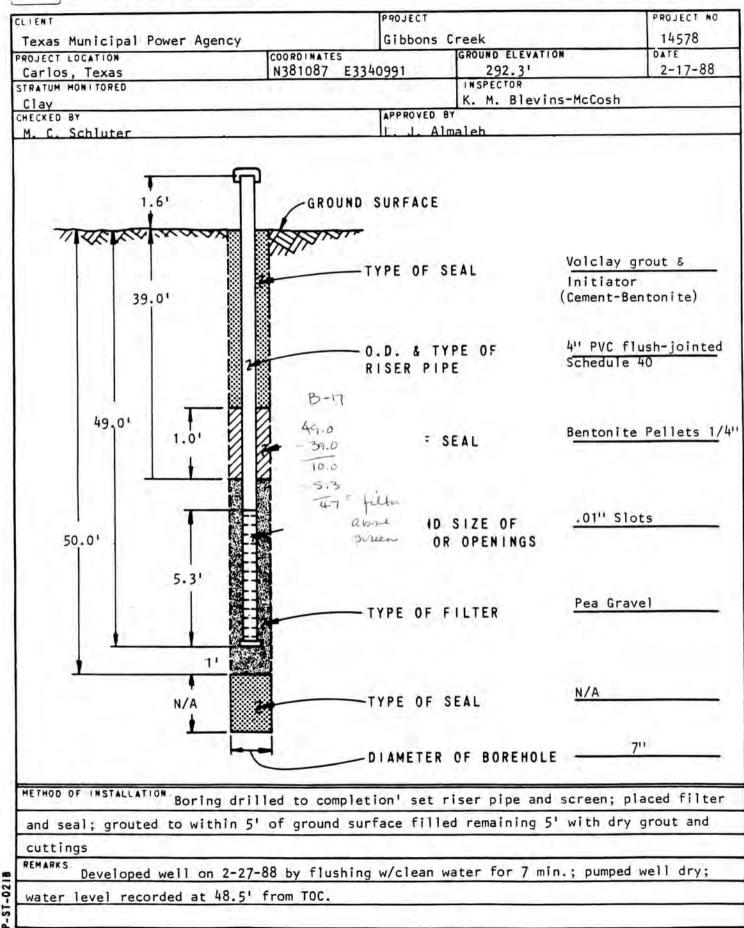
CONSULTING ENGINEERS

PIEZOMETER NO. 8-11



BLACK & VEATCH PIEZOMETER INSTALLATION LOG

CONSULTING ENGINEERS


PIEZOMETER NO. B-16

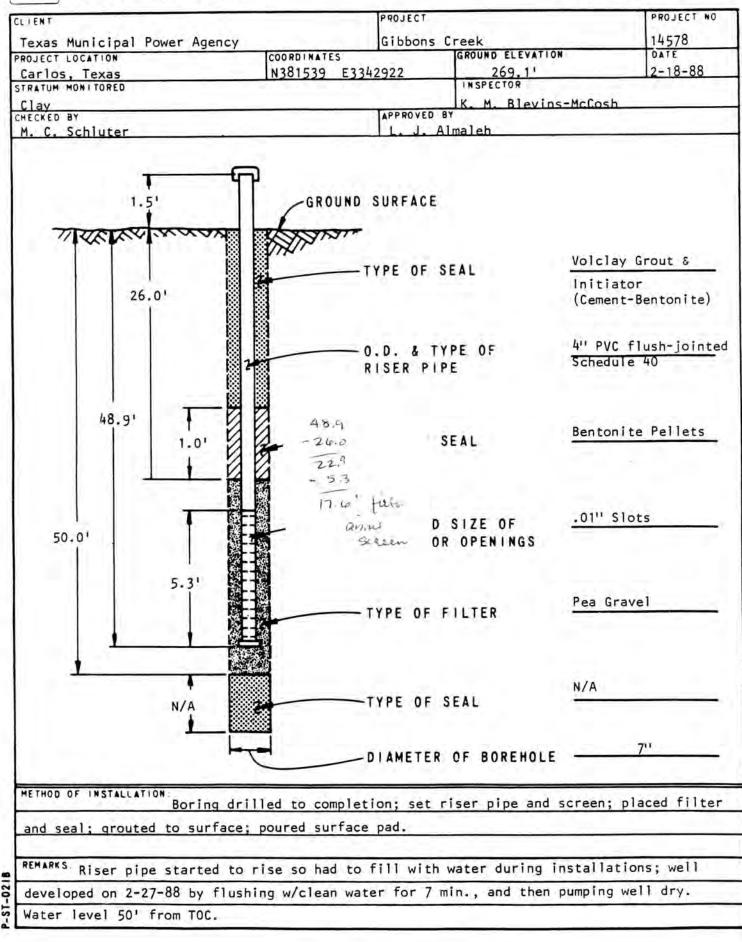
BLACK & VEATCH PIEZOMETER INSTALLATION LOG

CONSULTING ENGINEERS

PIEZOMETER NO. 8-17

.

1



PIEZOMETER INSTALLATION LOG

CONSULTING ENGINEERS

BLACK 3 VEATCH

PIEZOMETER NO. 8-18

.

RESPONSE ITEM 20 ATTACHMENT

GROUNDWATER DETECTION AND ASSESMENT MONITORING PARAMETERS

Table V	I.C-1. – Groundw	ater Detection Monito	oring Parameters	
Parameter	Sampling Frequency	Analytical Method	Practical Quantification Limit (units) ⁵	Concentration Limit ^{1,3}
Boron	Semi-Annual	EPA 6020B	0.080	0.621 and 1.490
Calcium	Semi-Annual	EPA 6020B	0.500	542 and 728
Chloride	Semi-Annual	EPA 9056A	2.50	649 and 1,770
рН	Semi-Annual	EPA 150.2	N/A	6.02-7.56 and 5.26-6.35
Sulfate	Semi-Annual	EPA 9056A	25.0	2,640 and 3,320
TDS	Semi-Annual	SM 2540C	20.0	4,930 and 8,180
Antimony	Semi-Annual	EPA 6020B	0.002	0.006
Arsenic	Semi-Annual	EPA 6020B	0.001	0.01
Barium	Semi-Annual	EPA 6020B	0.010	2
Beryllium	Semi-Annual	EPA 6020B	0.001	0.004
Cadmium	Semi-Annual	EPA 6020B	0.001	0.005
Chromium	Semi-Annual	EPA 6020B	0.002	0.1
Cobalt	Semi-Annual	EPA 6020B	0.0005	0.006
Fluoride	Semi-Annual	EPA 9056A	0.250	4
Lead	Semi-Annual	EPA 6020B	0.001	0.015
Lithium ⁴	Semi-Annual	EPA 6020B	0.005	0.552 and 1.66
Mercury	Semi-Annual	EPA 7470A	0.0002	0.002
Molybdenum	Semi-Annual	EPA 6020B	0.005	0.1
Selenium	Semi-Annual	EPA 6020B	0.005	0.05
Thallium	Semi-Annual	EPA 6020B	0.001	0.002
Radium 226+228 ⁴	Semi-Annual	EPA 903 / 904	5.00	10.1 and 5

Table VI.C-1. – Groundwater Detection Monitoring Parameters			
	Table VI.C-1	 Groundwater Detection 	Monitoring Parameters

1 The concentration limit is the basis for determining whether a release has occurred from the CCR unit/area.

2 The limit varies by CCR Unit. In the table, limits are presented in the order of SFL and SSP/AP.

3 Limits for Appendix III constituents are based on background threshold values. Appendix IV constituents are based on EPA maximum contaminant levels or 40 CFR 257.95(h)(2), unless otherwise specified.

4 Background threshold values are used for Lithium limits. Also for the SFL Radium limit.

5 Limits based on the reporting limits in the most recent 2021 sampling event.

N.O.R. Unit No.	Unit Description ^{1,2}	Well(s)	Constituent(s)	Date of SSI Determination ⁴	Date of Assessment Monitoring Notification ³
	Site F Landfill (SFL)	SFL MW-2 SFL MW-3 SFL MW-4 SFL MW-5 SFL MW-6 SFL MW-7 SFL MW-15	Arsenic, Beryllium, Boron, Cadmium, Calcium, Chloride, Cobalt, Lead, Lithium, Mercury, Radium 226+228, Thallium, TDS, and pH.	January 2022	August 18, 2018
	Scrubber Sludge Pond (SSP)	SSP MW-2 SSP MW-3 SSP MW-4	Arsenic, Cadmium, Calcium, Chloride, Chromium, Cobalt, Beryllium, Boron, Molybdenum, Radium 226+228, Thallium, TDS, and pH.	January 2022	August 18, 2018
	Ash Ponds (AP)	AP MW-1D AP MW-3 AP MW-4 AP MW-5	Arsenic, Beryllium, Boron, Cadmium, Cobalt, Fluoride, Mercury, Molybdenum, TDS, and pH.	January 2022	August 18, 2018

Table VI.D. - CCR Units Under Assessment Monitoring

1 Indicates a unit for which a 30 TAC Chapter 352/40 CFR Part 257, Subpart D alternative closure determination has been requested pursuant to 40 CFR §257.103.

2 Indicates a unit for which a 30 TAC Chapter 352/40 CFR Part 257, Subpart D alternative closure determination has been made pursuant to 40 CFR §257.103.

3 Enter month, day, and year

4 Most recent determination reported in the 2021 annual report.

Parameter	Sampling Frequency	Analytical Method	Practical Quantification Limit (units) ⁵	Concentration Limit ^{1,3}
Boron	Semi-Annual	EPA 6020B	0.080	0.621 and 1.490
Calcium	Semi-Annual	EPA 6020B	0.500	542 and 728
Chloride	Semi-Annual	EPA 9056A	2.50	649 and 1,770
рН	Semi-Annual	EPA 150.2	N/A	6.02-7.56 and 5.26-6.35
Sulfate	Semi-Annual	EPA 9056A	25.0	2,640 and 3,320
TDS	Semi-Annual	SM 2540C	20.0	4,930 and 8,180
Antimony	Semi-Annual	EPA 6020B	0.002	0.006
Arsenic	Semi-Annual	EPA 6020B	0.001	0.01
Barium	Semi-Annual	EPA 6020B	0.010	2
Beryllium	Semi-Annual	EPA 6020B	0.001	0.004
Cadmium	Semi-Annual	EPA 6020B	0.001	0.005
Chromium	Semi-Annual	EPA 6020B	0.002	0.1
Cobalt	Semi-Annual	EPA 6020B	0.0005	0.006
Fluoride	Semi-Annual	EPA 9056A	0.250	4
Lead	Semi-Annual	EPA 6020B	0.001	0.015
Lithium ⁴	Semi-Annual	EPA 6020B	0.005	0.552 and 1.66
Mercury	Semi-Annual	EPA 7470A	0.0002	0.002
Molybdenum	Semi-Annual	EPA 6020B	0.005	0.1
Selenium	Semi-Annual	EPA 6020B	0.005	0.05
Thallium	Semi-Annual	EPA 6020B	0.001	0.002
Radium 226+228 ⁴	Semi-Annual	EPA 903 / 904	5.00	10.1 and 5

Table VI.D-2 Groundwater Assessment Monitoring Parameters

1 The concentration limit is the basis for determining whether a release has occurred from the CCR unit/area.

2 The limit varies by CCR Unit. In the table, limits are presented in the order of SFL and SSP/AP.

3 Limits for Appendix III constituents are based on background threshold values. Appendix IV constituents are based on EPA maximum contaminant levels or 40 CFR 257.95(h)(2), unless otherwise specified.

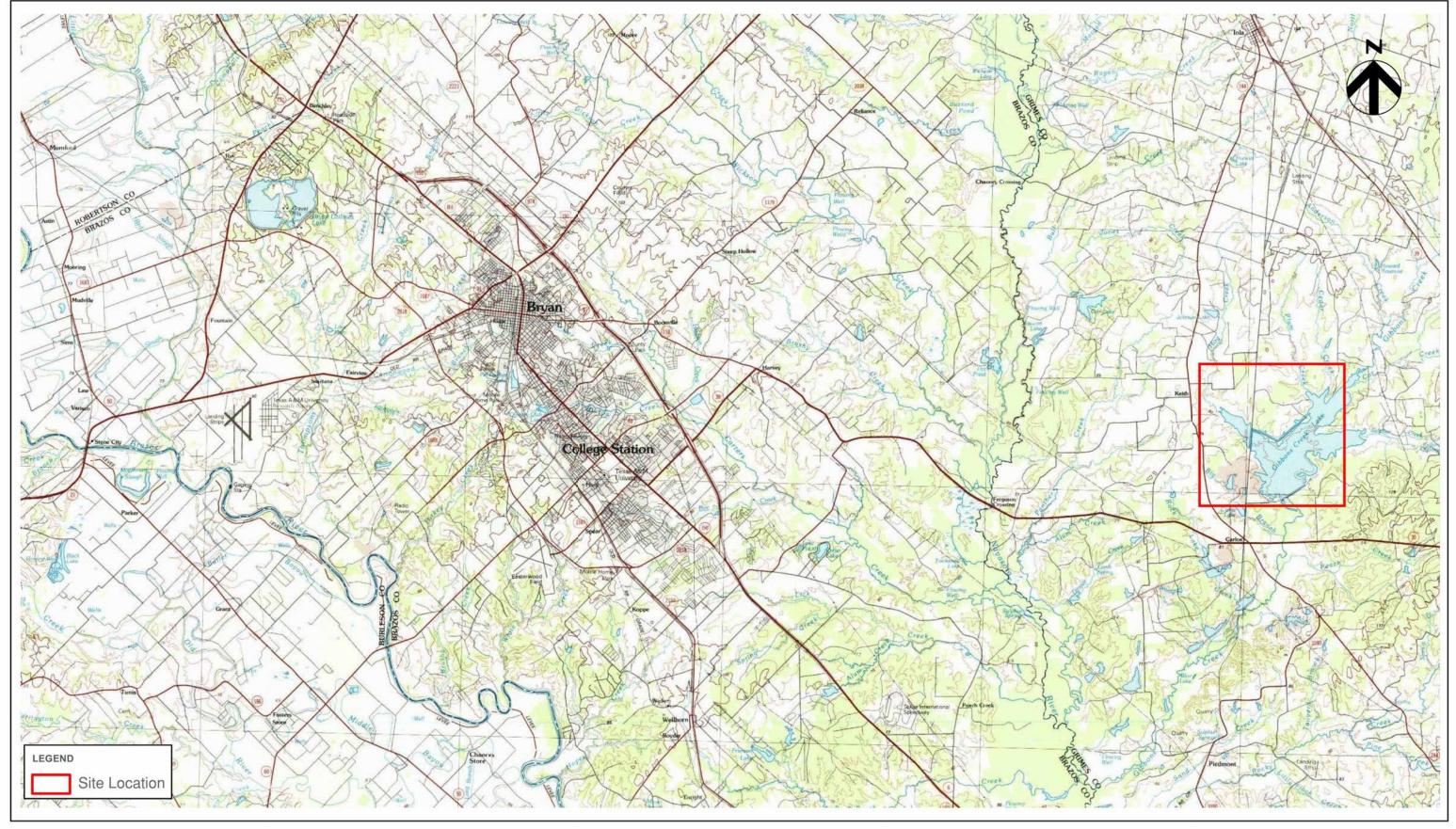
4 Background threshold values are used for Lithium limits. Also for the SFL Radium limit.

5 Limits based on the reporting limits in the most recent 2021 sampling event.

RESPONSE ITEM 21 ATTACHMENT

HISTORICAL GROUNDWATER LEVELS

	тоо	20	21	20	20	20	19	20	18
Well	TOC Elevation	Jul 2021	Feb 2022	Jun 2020	Dec 2019	Jun 2019	Jan 2019	Jun 2018	Mar 2018
AP MW-1	271.56	258.53	258.34	264.40	264.45	265.21	264.73	264.74	265.17
AP MW-1D	272.04	257.56	257.21	257.53	257.07	257.90	257.94	258.16	258.38
AP MW-2	274.97	262.32	267.46	NC ²					
AP MW-3	274.68	262.09	263.29	263.50	263.18	264.04	264	264.06	264.04
AP MW-4	274.16	259.47	260.64	260.79	260.15	261.06	261	261.07	261.4
AP MW-5	274.13	259.66	262.04	262.38	261.89	262.86	262.75	263.01	262.94
AP MW-6	277.95	260.92	261.31	261.39	261.05	261.76	261.62	261.41	262.19
AP PZ-1	265.67	260.31	259.03	258.97	259.56	259.28	260.05	257.98	259.26
AP PZ-2	274.91	257.84	254.45	256.00	254.39	257.72	257.76	256.15	256.81
AP PZ-3	259.11	254.35	253.11	253.85	253.46	254.52	254.46	254.3	254.68
AP PZ-4	273.65	259.62	263.30	263.41	262.76	264.11	264.79	264.94	264.97
SSP MW-1	281.18	267.23	265.32	264.40	264.45	265.21	264.73	264.74	265.17
SSP MW-2	283.66	260.64	259.82	260.01	260.26	262.48	261.84	261.48	261.64
SSP MW-3	283.97	256.85	255.79	256.30	256.07	257.62	257.53	256.38	257.14
SSP MW-4	283.86	259.38	259.21	259.16	259.35	259.99	260.04	259.49	260.02
SSP/AP MW-1	272.53	264.82	264.19	264.40	264.45	265.21	264.73	264.74	265.17
SFL MW-2	268.31	257.93	256.74	257.60	257.3	258.2	257.5	257.4	257.43
SFL MW-3	275.00	257.08	256.88	257.45	258.02	258.61	258	258.08	258.24
SFL MW-4	269.53	254.75	253.85	254.32	255.18	255.32	254.93	254.73	255.1
SFL MW-5	276.25	260.17	259.81	260.52	260.35	261.22	260.45	260.42	260.46
SFL MW-6	286.66	267.66	268.07	268.35	269.41	269.35	268.17	268.09	268.36
SFL MW-7	264.63	251.41	250.05	250.63	249.66	251.66	252.19	251.7	251.86
MNW-11	267.95	247.25	247.68	247.58	248.11	247.25	248.67	248.15	248.38
MNW-15	257.331	252.45	251.11	252.27	251.44	253.52	253.73	253.23	253.61
MNW-16	263.191	250.69	249.07	250.16	248.94	250.84	251.39	250.71	251.02
MNW-17	293.724	264.36	260.22	248.22	253.85	250.01	259.04	248.39	260.73
MNW-18	270.755	262.05	262.40	263.41	261.59	262.54	265.28	261.98	262.49


Historical Water Surface Level Data¹ at Gibbons Creek SES Monitoring Wells, Years 2018 through 2022

¹ Historical data is from annual groundwater monitoring reports. 2022 levels have not yet been reported.

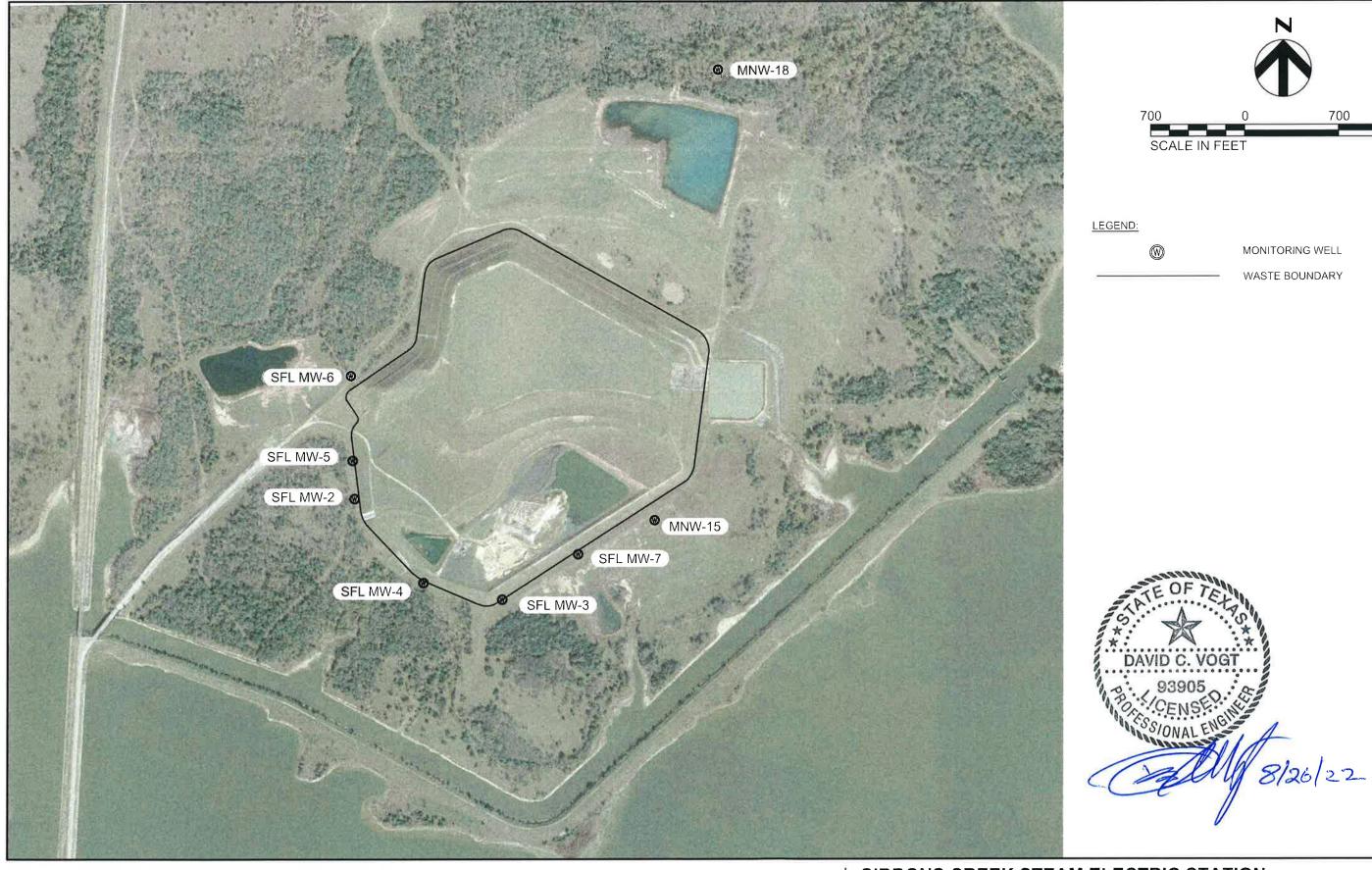
² NC for Not Collected. The reason for not collecting the water surface elevation is unknown.

RESPONSE ITEM 22 ATTACHMENT

REVISED FIGURES

æ 8/26/22

ID C. VI


GIBBONS CREEK STEAM ELECTRIC STATION GC ENVIRONMENTAL REDEVELOPMENT GROUP SITE LOCATION MAP

2021 GROUNDWATER MONITORING & CORRECTIVE ACTION REPORT

FIGURE 1

FIGURE

DATE MAY 2021

F

GIBBONS CREEK STEAM ELECTRIC STATION GC ENVIRONMENTAL REDEVELOPMENT GROUP **MONITORING NETWORK - SITE F LANDFILL**

TEXAS ENGINEERING FIRM F-754 2021 GROUNDWATER MONITORING & CORRECTIVE ACTION REPORT


IGURE

MAY 2021

FIGURE 2

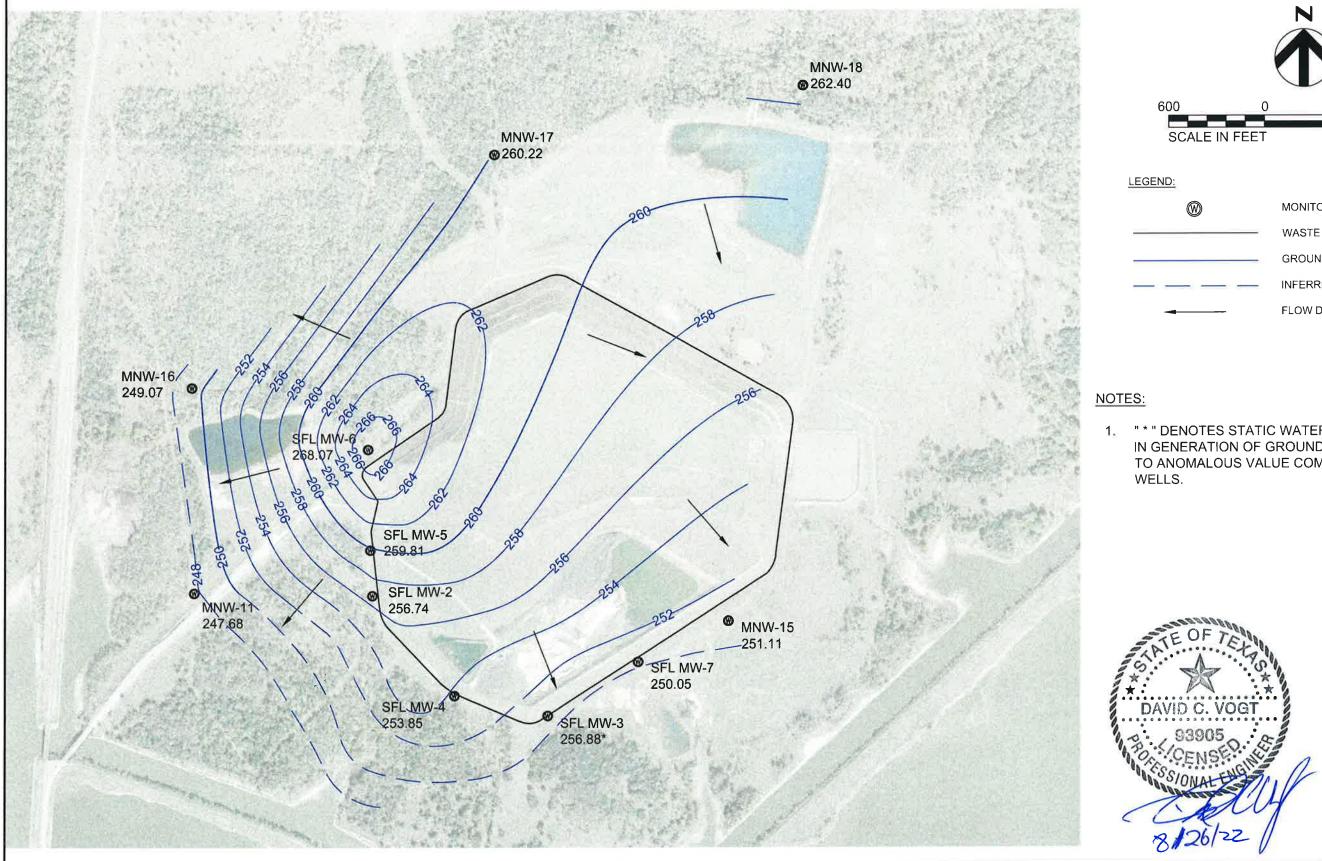
1400

DATE

GIBBONS CREEK STEAM ELECTRIC STATION GC ENVIRONMENTAL REDEVELOPMENT GROUP MONITORING NETWORK - ASH PONDS/SCRUBBER SLUDGE

2021 GROUNDWATER MONITORING & CORRECTIVE ACTION REPORT

FIGURE 3


FIGURE

DATE MAY 2021

MONITORING WELL POND BOUNDARIES

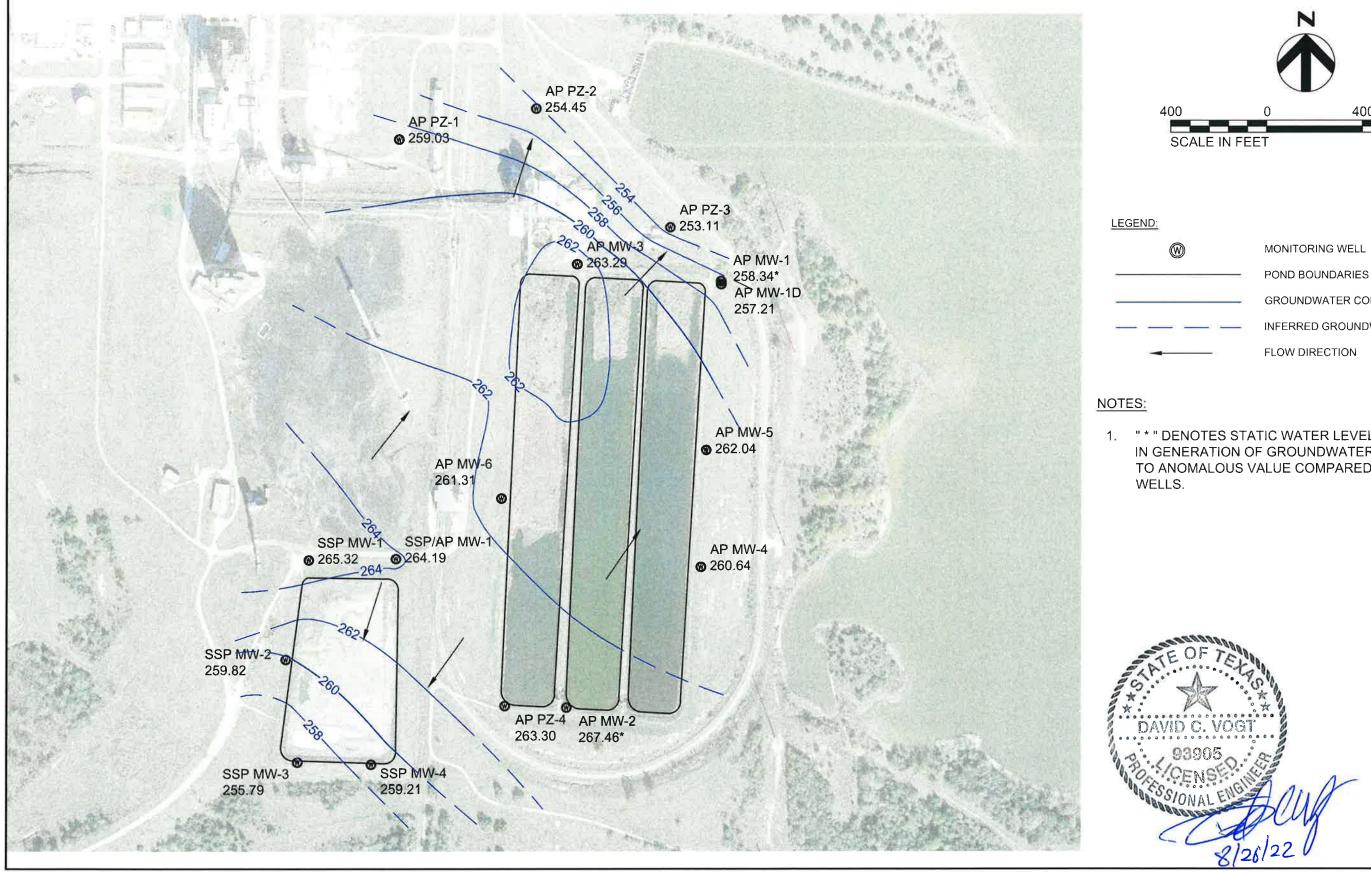
800 400 SCALE IN FEET

GIBBONS CREEK STEAM ELECTRIC STATION GC ENVIRONMENTAL REDEVELOPMENT GROUP SITE F LANDFILL - FEBRUARY 2021 CONTOUR MAP

HR TEXAS ENGINEERING FIRM F-754

2021 GROUNDWATER MONITORING & CORRECTIVE ACTION REPORT

	N
600 0	600 1200
SCALE IN FEET	
EGEND:	
	MONITORING WELL
	WASTE BOUNDARY
	GROUNDWATER CONTOUR
	INFERRED GROUNDWATER CONTOUR
	FLOW DIRECTION


1, " * " DENOTES STATIC WATER LEVEL WAS NOT UTILIZED IN GENERATION OF GROUNDWATER CONTOUR MAP DUE TO ANOMALOUS VALUE COMPARED TO SURROUNDING

DATE

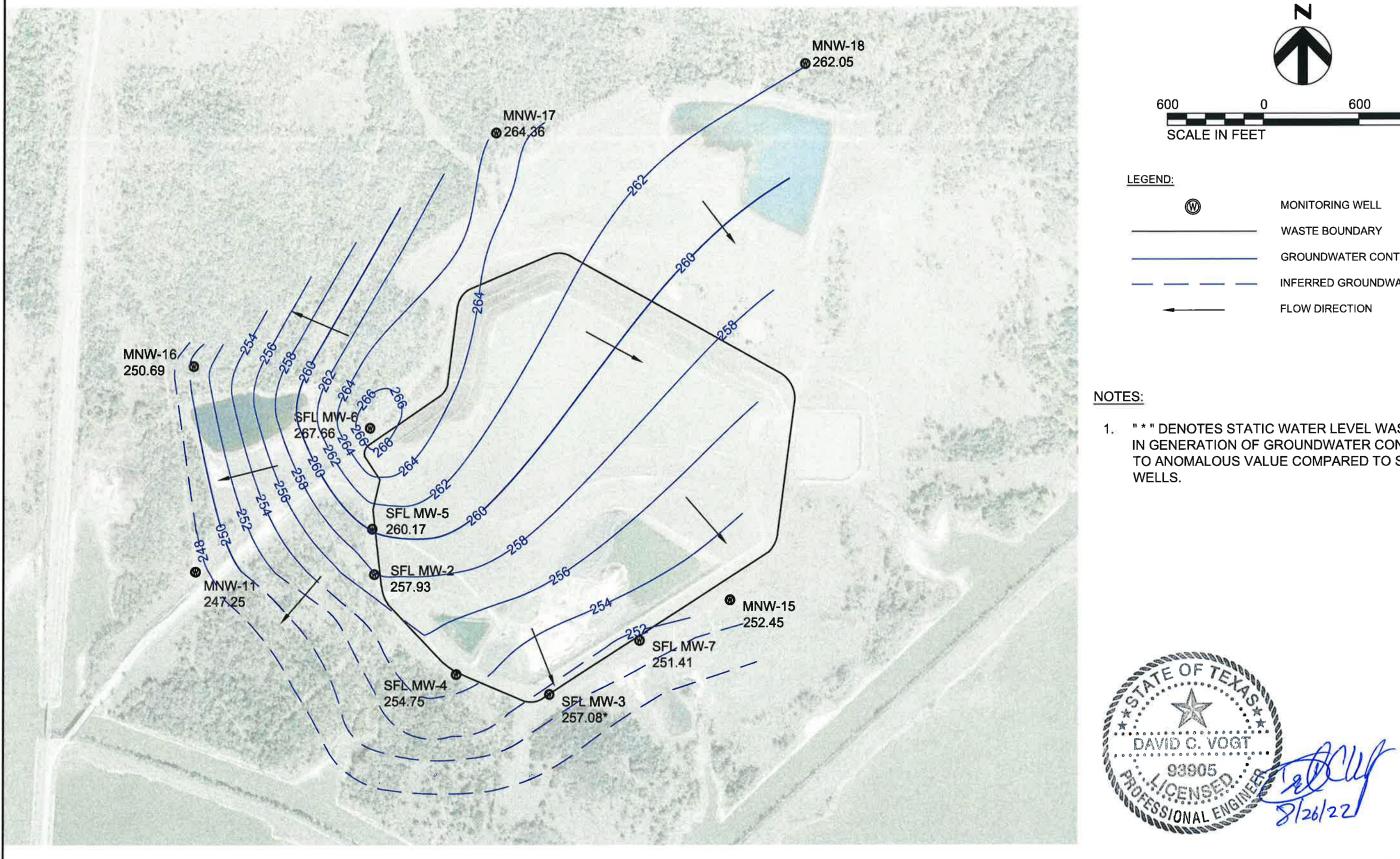
MAY 2021

FIGURE 4

FIGURE

FJS

GIBBONS CREEK STEAM ELECTRIC STATION GC ENVIRONMENTAL REDEVELOPMENT GROUP ASH PONDS/SCRUBBER SLUDGE - FEBRUARY 2021 CONTOUR MAP


	►		
400	0	400	800
SCALE IN FEE	T		J
GEND:			
\bigotimes	MONITORING V	VELL	
	POND BOUNDA	RIES	
<u>_</u> _	GROUNDWATE	R CONTOUR	
; ;	INFERRED GRO	OUNDWATER C	ONTOUR
	FLOW DIRECTI	ON	
<u>ES:</u>			
" * " DENOTES STA IN GENERATION OF TO ANOMALOUS V WELLS.	GROUNDW	ATER CONT	OUR MAP DUE

DATE

MAY 2021

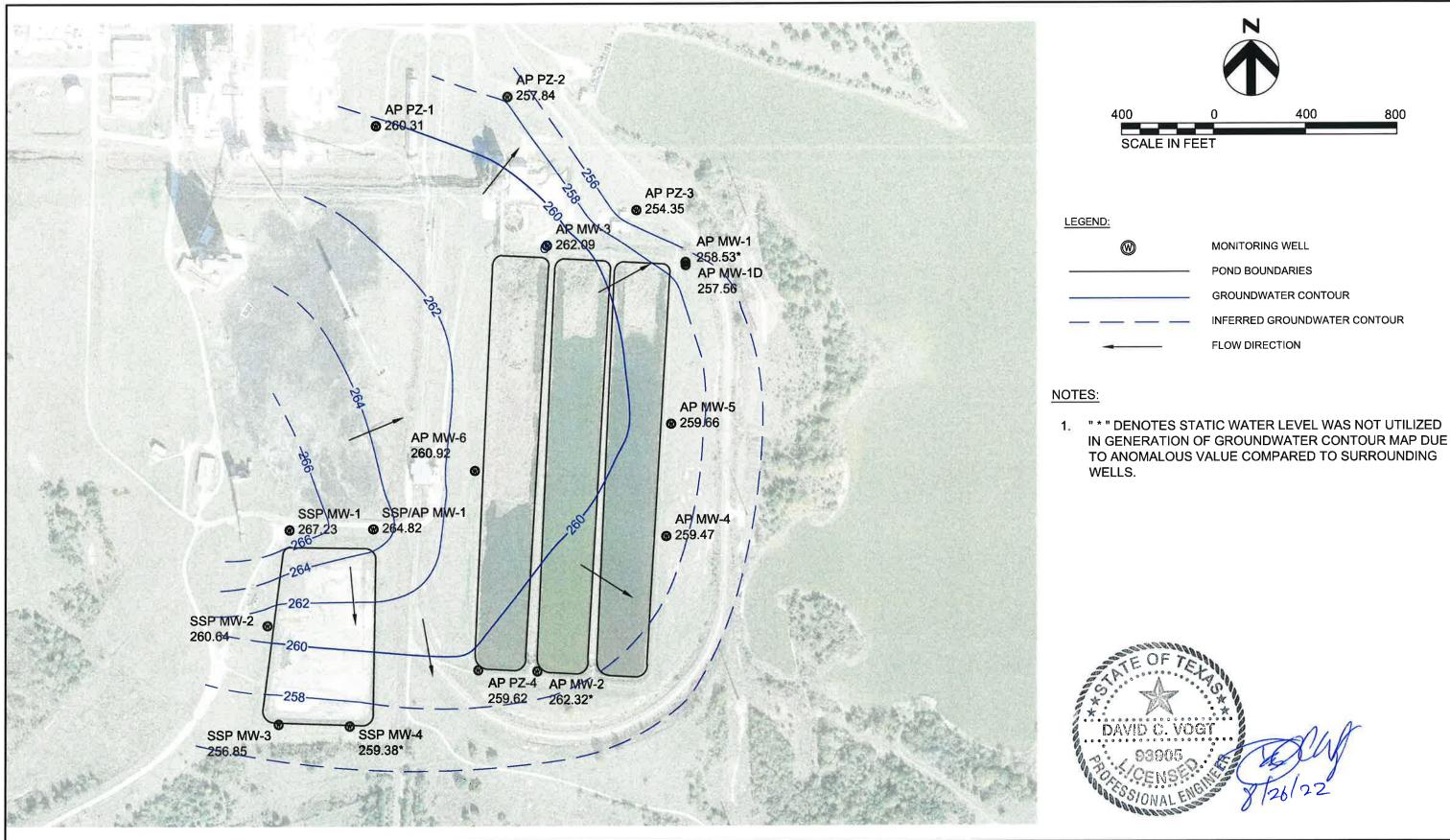
FIGURE

FIGURE 4

GIBBONS CREEK STEAM ELECTRIC STATION GC ENVIRONMENTAL REDEVELOPMENT GROUP SITE F LANDFILL - JULY 2021 CONTOUR MAP

FJS

N						
600 0	600 1200					
SCALE IN FEET						
EGEND:						
	MONITORING WELL					
	WASTE BOUNDARY					
	GROUNDWATER CONTOUR					
	INFERRED GROUNDWATER CONTOUR					
	FLOW DIRECTION					


1. " * " DENOTES STATIC WATER LEVEL WAS NOT UTILIZED IN GENERATION OF GROUNDWATER CONTOUR MAP DUE TO ANOMALOUS VALUE COMPARED TO SURROUNDING

DATE

FIGURE

AUGUST 2021

FIGURE 6

GIBBONS CREEK STEAM ELECTRIC STATION GC ENVIRONMENTAL REDEVELOPMENT GROUP ASH PONDS/SCRUBBER SLUDGE - JULY 2021 CONTOUR MAP

FJS

ION	REPORT

FIGURE

AUGUST 2021

FIGURE 7

DATE

RESPONSE ITEM 23 ATTACHMENT

REVISED TABLE V.A AP AND SSP DIMENSIONS AND CAPACITIES

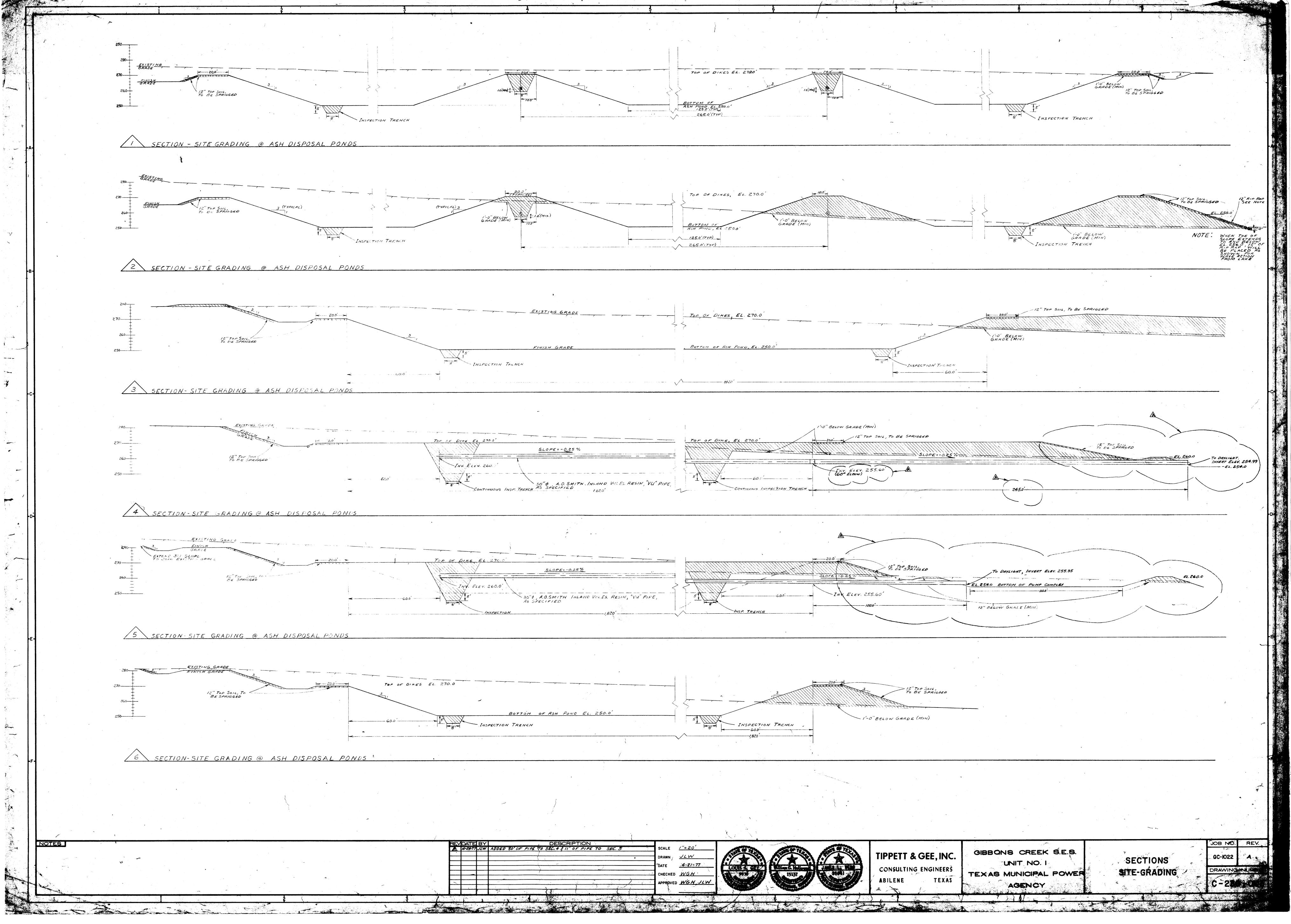
CCR Unit No. ¹	Unit Name	N.O.R. No. ¹	Unit Description ³	Capacity	Unit Status ²
001	Site F Landfill	32271	Landfill	7,398,346 cy	Active
004	Scrubber Sludge Pond	32271	Surface (Impoundment (190,000 cy (117.8 acre-feet)	Undergoing Closure by Removal
006	Ash Ponds A, B and C	32271	Surface (Impoundment (720,000 cy (148.8 acre-ft)	Undergoing Closure by Removal

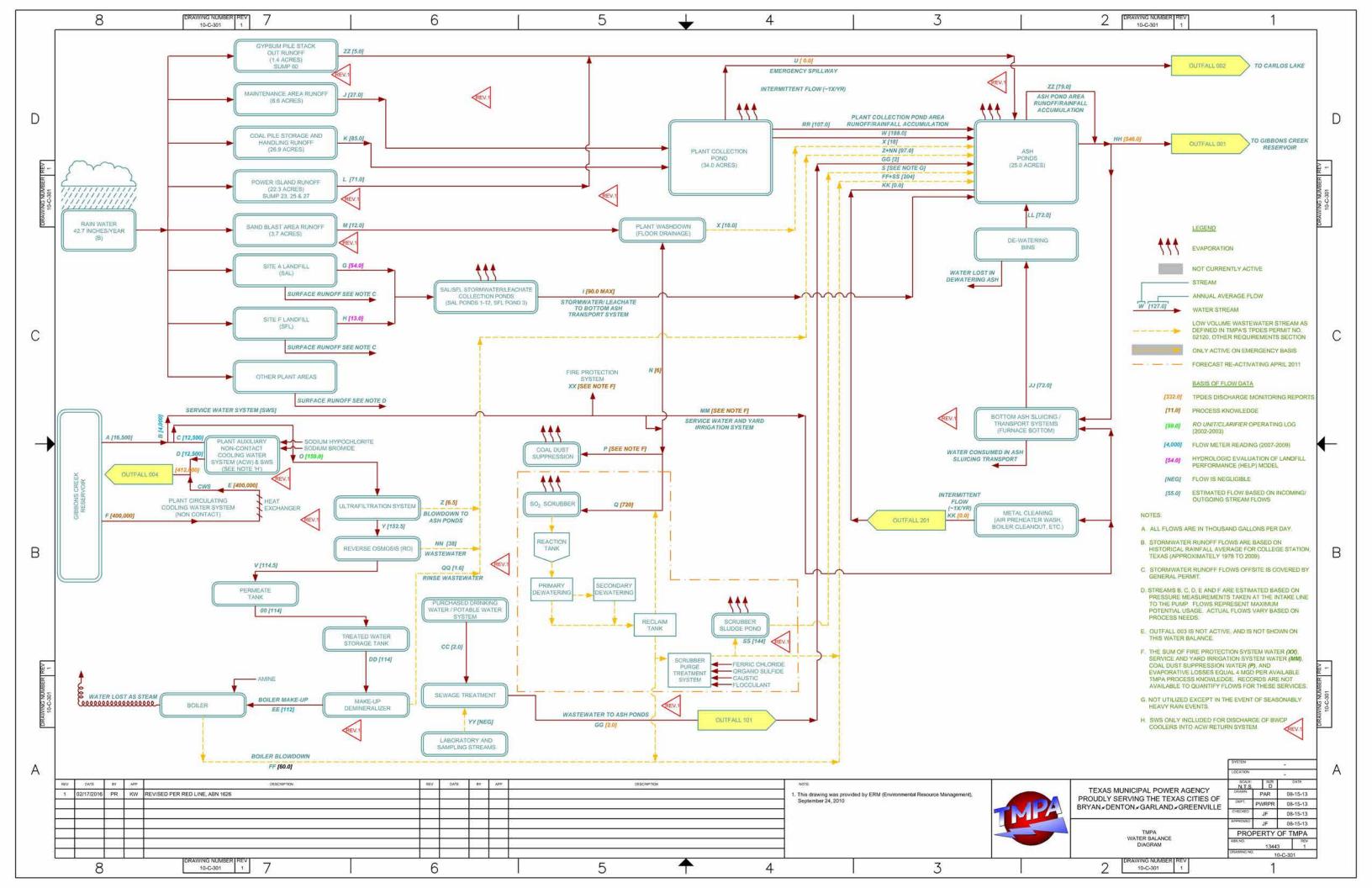
Table I.6. - CCR Waste Management Units

1 Registered Unit No. and N.O.R. No. cannot be reassigned to new units or used more than once. 2 Unit Status options: Active, Closed, Inactive (built but not managing waste), Proposed (not yet built), Never Built, Transferred, Post-Closure.

3 If a unit has been transferred, the applicant should indicate which facility/permit it has been transferred to in the Unit Description column.

Registered Unit No.	Surface Impoundment Name	N.O.R. No.	Waste Nos. ¹	Rated Capacity	Dimensions ²	Distance from lowest liner to groundwater	Action Leakage Rate (if required)	Unit will manage CCR Waste and non-CCR Waste (state all that apply)
2	Scrubber Sludge Pond	32271		190,000 cy (117.8 acre- feet)	750' x 425' x 20' 7.3 acres (total surface acreage))8-feet	N/A	Unit is undergoing closure by removal and all CCR and non- CCR wastes are being removed and disposed at the Site F Landfill
6	Ash Ponds	32271		720,000 cy (148.8 acre- ft)	1820' x 245' x 20' (each Ash Pond) 30.7 acres (total surface acreage combined)	6-feet	N/A	Unit is undergoing closure by removal and all CCR and non- CCR wastes are being removed and disposed at the Site F Landfill
				·····	·····			


Table V.A. – Surface Impoundment Characteristics


1 From Table I.6.A., first column


2 Dimensions should be provided as average length, width and depth, also include the surface acreage for the unit.

RESPONSE ITEM 24 ATTACHMENT

TMPA DRAWINGS

DESCRIPTION	REV.	DATE	BY		DESCRIPTION	
OM NAVASOTA MINING DWG. / DATE SURVEYED 2/20/85	1					SCAL
	1					DRA\
						DEPT
						DATE
						СНЕС
						APPR
5 6				7	8	-

	10	11	-	12	
			₩ <u></u>	No 2014 - Marine Contra Con	
1.0000 *** 369022.3153 *** 3337359.381 *** ~280.8000 ***	12.6 369698.8 3337474. 268.1	3665 *** .072 ***	23.0000 *** 369075.2555 *** 3337508.462 *** 264.0200 ***		
2.0000 *** 369063.6709 *** 3337343.775 *** 281.0700 ***	13.8 369669.9 3337476. 265.5	9725 *** 993 ***	24.0000 *** 369179.4469 *** 3337512.850 *** 261.2100 ***	•	9051 KH 6066 0f
3.0000 *** 369167.4568 *** 3337356.102 *** 279.8100 ***	14.8 369565.1 3337469. 262.8	555 *** 796 ***	25.0000 *** 369287.1443 *** 3337517.682 *** 260.6000 ***	· · · · · · · · · · · · · · · · · · ·	All the second sec
4.0000 *** 369267.2696 *** 3337367.664 *** 280.4000 ***	15.0 369457.8 3337456. 263.0	1595 ### 848 ###	26.0000 *** 369393.4210 *** 3337524.048 *** 260.1800 ***		in the second
5.0000 *** 369377.3727 *** 3337381.380 *** 280.6600 ***	16.0 369350.1 3337445. 262.8	153 *** 848 ***	27.0000 *** 369496.3412 *** 3337529.770 *** 260.1400 ***	-	B
6.0000 *** 369483.2411 *** 3337393.590 *** 280.3600 ***	17.0 369244.5 3337431. 262.0	611 *** 242 ***	28.0000 *** 369604.4745 *** 3337533.191 *** 261.1400 ***		essentaringes
7.0000 *** 369593.2493 *** 3337405.693 *** 280.4200 ***	18.0 369137.9 3337411. 262.8	744 *** 604 ***	29.0000 *** 369708.3918 *** 3337539.482 *** 264.0100 ***		
8.0000 *** 369729.2299 *** 3337424.188 *** 280.7800 ***	19.0 369872.6 3337400. 266.0	135 *** 657 ***	38.0000 *** 369768.5234 *** 3337539.771 *** 280.1300 ***		
9.0000 *** 369762.7054 *** 3337435.772 *** 280.3900 ***	20.0 369076.8 3337431. 264.1	761 *** 158 ***	31.0000 *** 369767.9708 *** 3337636.757 *** 280.9100 ***		
10.0000 *** 369770.4072 *** 3337475.916 *** 279.8400 ***	21.00 369009.44 3337412.3 260.90	433 *** 381 ***	32.0000 *** 369698.2803 *** 3337635.075 *** 261.9800 ***		· · · · · · · · · · · · · · · · · · ·
11.0000 *** 369698.6360 *** 3337500.396 *** 266.0900 ***	22.00 369008.87 3337506.0 280.83	7 60 *** 533 ***	33.0000 *** 369590.5990 *** 3337632.381 *** 259.6800 ***		
· .					
					- de cadade
34.0000 ***		888 ***	56.8008 ***	67.0000	
369482.9465 *** 3337628.822 *** 258.7300 ***	369515.7 3337700. 259.2	134 *** 700 ***	369304.0985 *** 3337759.780 *** 261.9700 ***	3337825.788	***
35.0000 ***	46.8 369622.3	975 ***	57.0000 *** 369198.9978 ***	68.0000 369583.7707	
 369378.9112 *** 3337627.412 ***	3337708. 26 0. 1	494 *** 288 ***	3337757.180 *** 262.5200 ***	3337821.693 280.4700	***
258.6400 *** 36.0000 *** 369277.1258 ***	47.0 369702.8 3337716.	315 ***	58.0000 *** 369108.6502 *** 3337757.621 ***	69.0000 369598.6060 3337820.970	***
3337625.653 *** 259.9400 ***	262.0		263.2000 ***	280.4600	
37.0000 *** 369169.4011 *** 3337621.334 ***	48.0 369768.0 3337719. 281.4	348 *** 665 ***	59.0000 *** 369071.8490 *** 3337757.858 ***	70.0000 369661.9942 3337823.655	
260.6800 ***	49.0		264.7000 ***	280.3400	
38.0000 *** 369074.2725 *** 3337619.348 *** 262.5600 ***	49.0 369768.3 3337774. 280.9	766 *** 655 ***	68.0808 *** 369807.3879 *** 3337790.922 *** ~279.7608 ***	71.0008 369724.9342 3337821.935 280.2900	### PR-MIT 0.4 PR-MIT
39.0000 *** 369008.1973 ***	58.0 369702.2 3337761.	094 ***	61.0000 *** 369018.3436 *** 3337821.579 ***	72.0000 369762.2245	

369762.2245 *** 3337802.377 *** 260.6300 *** 369018.3436 *** 3337821.579 *** 369008.1973 *** 3337761.068 *** 3337616.272 *** 263.5708 *** 280.1008 *** 280.5400 *** 51.0000 *** 62.0000 *** 40.0000 *** 369618.9639 *** 369056.1540 *** 369006.1150 *** 3337756.829 *** 3337826.718 *** 3337719.255 *** 261.5100 *** 288.5308 *** 280.0800 *** 52.0080 *** 369598.6664 *** 63.0000 *** 369168.3900 *** 41.0000 *** 369076.8498 *** 3337773.054 *** 3337826.291 *** 281.3800 *** 3337722.382 *** 263.9600 *** 263.2300 *** 53.0000 *** 369583.3352 *** 3337773.267 *** 64.0000 *** 369266.5332 *** 42.0000 *** 369189.7483 *** 3337827.488 *** 281.1300 *** 3337715.362 *** 264.1788 *** 261.7000 *** 54.0000 *** 65.8808 *** 369374.4838 *** 43.0000 *** 369518.8188 *** 369297.9878 *** 3337759.366 *** 3337827.829 *** 3337703.927 *** 261.6788 *** 280.7108 *** 268.2988 *** 55.0000 *** 66.0000 *** 44.0000 *** 369411.8413 *** 3337762.980 *** 262.3800 *** 369481.9448 *** 369406.7330 *** 3337826.633 *** 3337697.428 *** 281.0000 *** 259.4200 ***

G

ALE <u>|" = 50'</u> AWN <u>FJC</u> T. <u>PWR ENG</u> . <u>4/16/87</u> JOB NO. REV. TEXAS MUNICIPAL POWER AGENCY TMPA SERVING THE CITIES OF OGC-1050 BRYAN • DENTON • GARLAND • GREENVILLE DRAWING NO. SLUDGE POND CKED _____ //-C-019./ SURVEY PROVED RWA 9 10 11 12 •

RESPONSE ITEM 25 ATTACHMENT

REVISED CLOSURE/POST-CLOSURE PLAN

3.0 CCR UNIT CLOSURE PLAN

The closure concept for this revised closure plan is to close the APs and SSP by removing the CCR and by leaving CCR in place at the SFL. Closure by removal procedures will comply with the requirements found in 40 CFR §257.102(c) for the surface impoundments. Closure of the landfill by leaving CCR material in place will comply with requirements in 40 CFR §257.102(d). This section describes the steps necessary to close the CCR units consistent with recognized and generally accepted good engineering practices and in accordance with 40 CFR§257.102(b), including:

A written closure plan for each CCR unit is required by 40 CFR 256.102(b). Each closure plan is required to include:

- the closure performance standard;
- a narrative description of the closure;
- a description of the procedures to remove the CCR and decontaminate the CCR unit;
- a description of the final cover system;
- the maximum CCR inventory;
- the maximum area covered; and,
- the closure schedule.

The CCR unit closure plan is described in this section.

3.1 CLOSURE PERFORMANCE STANDARDS

The performance standards for closure by removal of CCR for the surface impoundments is in accordance with 40 CFR §257.102(c)(closure by removal).

The performance standards for closure by leaving CCR in place at the landfill is in place in accordance with 40 CFR §257.102(d)(closure in place).

3.1.1 Closure By Removal

GCERG will close the APs and SSP by removing the CCR material in accordance with the performance standards stated in 40 CFR §257.102(c):

- *Remove and decontaminate all areas affected by releases from the CCR unit.*
- Groundwater monitoring concentrations do not exceed the groundwater protection standard established pursuant to §257.95(h) for constituents listed in appendix IV to this part.

3.1.2 Closure In Place

GCERG will close the Site F Landfill by leaving CCR in place and constructing a final cover system in accordance with the performance standards stated in 40 CFR §257.102(d)(1):

- Control, minimize or eliminate, to the maximum extent feasible, post-closure infiltration of liquids into the waste and releases of CCR, leachate, or contaminated run-off to the ground or surface waters or to the atmosphere;
- Preclude the probability of future impoundment of water, sediment, or slurry;
- Include measures that provide for major slope stability to prevent the sloughing or movement of the final cover system during the closure and post-closure care period;
- Minimize the need for further maintenance of the CCR unit; and,

hdrinc.com

17111 Preston Road Suite 300 Dallas, TX 75248-1232 (972) 960-4400 • Be completed in the shortest amount of time consistent with recognized and generally accepted good engineering practices.

In addition, requirements for closure of the CCR unit using TRRP Remedy Standard B in accordance with 30 TAC §350 will also apply to closure of a CCR unit by leaving CCR in place.

3.2 NARRATIVE DESCRIPTION OF CLOSURE BY REMOVAL

Closure by removal of CCR at the surface impoundments will be accomplished in steps related to the closure performance standard <u>40 CFR §257.102(c)</u>.

3.2.1 Description of Closure by Removal

<u>Remove Liquids</u>: Free liquids will be eliminated by removing liquid wastes and/or solidifying the remaining CCR and CCR residues in the CCR unit.

- Liquids may be pumped from <u>SSP</u> to APs or from APs to SSD to dewater the CCR unit.
- Liquids may be pumped from APs, <u>SSP</u>, and/or SFL and discharged to the reservoir in accordance with the TPDES permit. If treatment is required, liquids will be treated before discharge.
- Liquids may be transferred from <u>SSP</u> and APs to SFL and evaporated by pumping it through an evaporator (atomizer) system and spraying over CCR material.
- Coagulants, flocculants, and/or chemical stabilizers may be mixed with the scrubber sludge to promote dewatering and solidification.

<u>Remove CCR Material</u>: Once the ponds have been sufficiently dewatered, CCR material and any contaminated soil and sediment will be mechanically excavated with standard earthmoving equipment. The excavated material will be hauled by trucks to the SFL for disposal. The pond will be visually inspected to verify all CCR materials and any contaminated soils and sediment have been removed from the impoundment.

<u>Stabilization</u>: After the CCR material has been removed, the area will be seeded to establish vegetation and stabilize the bare soils. Additional surface grading, spillways, outfalls, berms, swales, and other measures may be installed to minimize erosion and control stormwater.

Conceptual representations of the APs and SSP grading plans are presented in Figures 2 through 3.

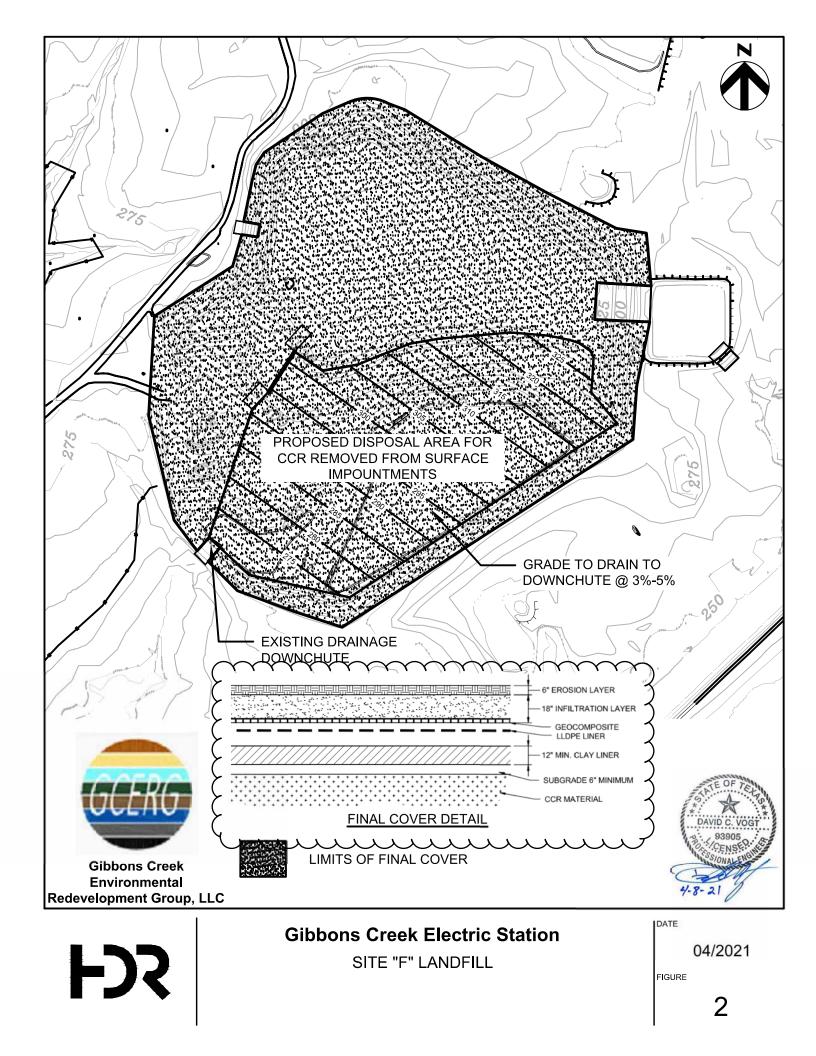
3.3 NARRATIVE DESCRIPTION OF CLOSURE IN PLACE

Closure of the SFL will be accomplished in steps related to the closure performance standard (40 CFR §257.102(d)), the characteristics of the bottom liner, the CCR properties contained in the landfill, and the surrounding area.

In addition, requirements for closure of the CCR unit using TRRP Remedy Remedy Standard B for closure in place in accordance with 30 TAC §350 will also be implemented for the closure chosen by TMPA.

3.3.1 Description of Closure In Place

The SFL at the GCSES will be closed by leaving CCR in place (closure in place), the closure will be accomplished in the following steps:


<u>TRRP Planning Deliverables</u>: GCERG will prepare, submit to the TCEQ, and obtain TCEQ approval of an Affected Property Assessment Report (APAR) and Response Action Plan (RAP) for closure of the SFL in accordance with Remedy Standard B and related rules in 30 TAC §350.

hdrinc.com

17111 Preston Road Suite 300 Dallas, TX 75248-1232 (972) 960-4400

RESPONSE ITEM 26 ATTACHMENT

REVISED LANDFILL CAP DETAIL

RESPONSE ITEM 27 ATTACHMENT

ESC PLAN

Gibbons Creek Environmental Redevelopment Group, LLC

Erosion and Sediment Control Plan

For Compliance with the Coal Combustion Residuals Rule (40 CFR Part 257.102)

Gibbons Creek Steam Electric Station

Anderson, Texas June 28, 2021

Calculation Cover Sheet

Client:	Charah Solutions		
Project:	Gibbons Creek Site F Landfill Erosion and Sediment	Control	
Project No:	10290148	Rev:	0
Title:	Modified Site F Cap Erosion and Sediment Control	Page:	1 of 6
Purpose:	Site F landfill has been conceptually regraded to allow for impoundments elsewhere on the site. The revised landfill require a new hydraulic analysis to determine what impro made to the site to facilitate the drainage and stabilization area.	cap and its exi vements, if any	sting outfalls , need to be
Originator:	David C. Vogt, PE and Patrick D. Brownson	Computed:	6/28/2021
Checked by:	Philip A. Westmoreland	Checked:	6/28/2021

Objective

Locate and design the necessary sediment basins to capture stormwater flow across the mine site while observing buffers.

References

Elements of Urban Stormwater Design, Malcom, H. Rooney (1989 & 2003 Supplement), NC State Univ., Raleigh, NC.

TCEQ Regulatory Guidance RG-417: Surface Water Drainage and Erosional Stability Guidelines for a Municipal Solid Waste Landfill, Texas Commission on Environmental Quality – Waste Permits Division (Rev. May 2018), Austin, TX.

HydroCAD Stormwater Modeling System, Version 10.0, HydroCAD Software Solutions, LLC (2019). Chororua, New Hampshire.

Perica, Sanja, et. al., "NOAA Atlas 14, Volume 11, Version 2, Point Precipitation Frequency Estimates", NOAA National Weather Service, obtained June 3, 2021.

Assumptions

There are existing concrete downchutes that function as stormwater outfalls from the existing Pond 1 and around the perimeter of the landfill that will be maintained through the regrading of the landfill.

Runoff was conservatively computed assuming there is bare soil in Hydrologic Soil Group D according to the United States Department of Agriculture (USDA) Natural Resources Conservation Service's (NRCS) Web Soil Survey. These assumptions generated a curve number of 94 for all drainage areas (see Attachment 1). In addition, times of concentration were conservatively modeled using the minimum value of six (6) minutes as specified by the NRCS Technical Release 55 (TR-55).

The analysis is based on the 25 year-24 hour design storm as defined by the NOAA Atlas 14, Volume 11, Version 2 for Anderson, TX. The depth of rainfall for this design storm is 9.02 inches (see Attachment 2).

Analysis

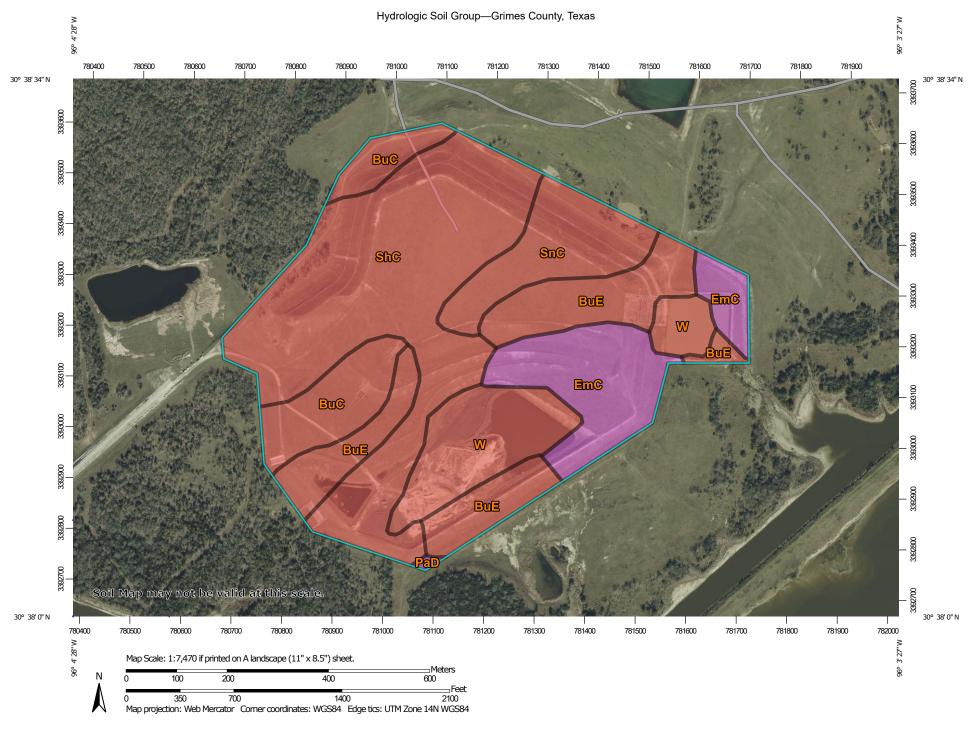
HDR used the following approach to check, and revise if necessary, the designs for each stormwater management device for the revised Site F Landfill Cap:

- 1. The site was broken up into individual drainage areas by identifying high points, ridge lines, and areas where water would naturally begin to collect. The landfill is designed to have an upper and a lower plateau, with a distinct ridgeline separating the landfill into east and west sections. The east sections drain to the existing sediment basin, Pond 1. The west sections drain out via concrete downchutes to baffled spillways that run off into the wooded areas to the south of the site. Both the discharges from Pond 1 and via overland flow to the south of the site reach the nearby Gibbons Creek Reservoir.
- 2. With the drainage areas identified, the runoff on each plateau needed to be sent either to the east, to Pond 1, or to the west to the southern outfalls. This was accomplished through diversion berms around the top deck of each plateau and through the installation of perimeter channels around the landfill base. These reaches were designed in HydroCAD by routing the design storm runoff for each drainage area to the channels and checking them for a minimum of one (1) foot of freeboard as well as flow velocities no greater than 5 feet per second, the TCEQ definition of "erosive."
- 3. Channels, downchutes, and the pond were all determined to have adequate capacity as well as acceptable discharge velocities according to the guidelines set forth in the TCEQ's *Regulatory Guidance RG-417: Surface Water Drainage and Erosional Stability Guidelines for a Municipal Solid Waste Landfill.*

Calculations

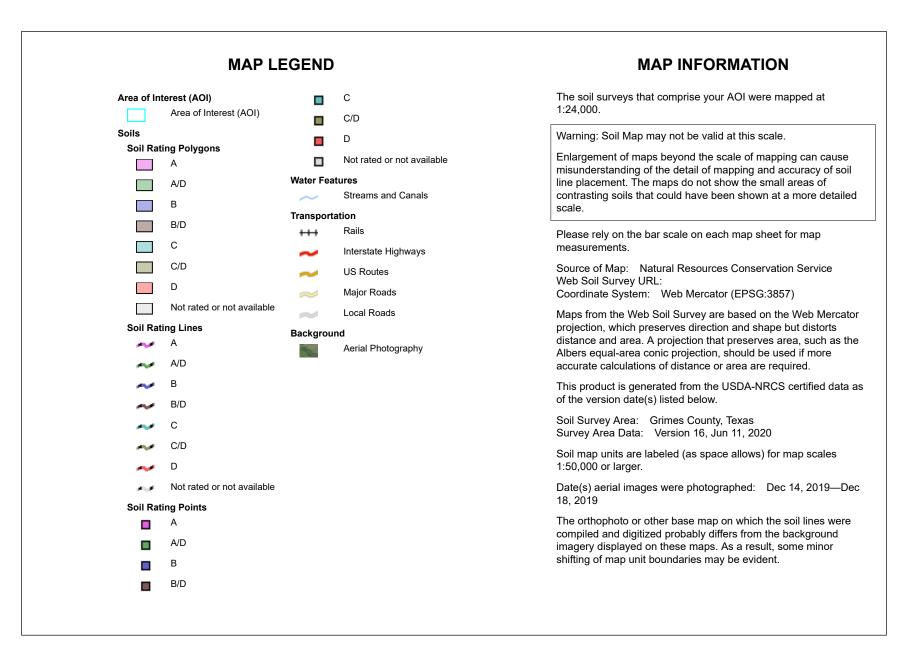
All calculations were performed using HydroCAD software. The model and outputs are included in Attachment 3.

Conclusions


The combination of the perimeter channels, diversion berms, concrete downchutes, and sediment basin at the site effectively capture, direct, detain, stabilize, and carefully discharge stormwater flows at the site, controlling sediment and preventing erosion.

Attachments

- Attachment 1: NRCS Web Soil Survey
- Attachment 2: NOAA Precipitation Frequency Data
- Attachment 3: HydroCAD Report


Attachment 1: NRCS Web Soil Survey

hdrinc.com 440 S Church Street, Suite 1000, Charlotte, NC 28202-2075 704.338.6700

USDA **Natural Resources**

Conservation Service

Hydrologic Soil Group

		1		
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
BuC	Burlewash fine sandy loam, 1 to 5 percent slopes	D	13.0	9.3%
BuE	Burlewash fine sandy loam, 5 to 12 percent slopes	D	23.8	17.2%
EmC	Elmina loamy fine sand, 1 to 5 percent slopes	A	18.7	13.5%
PaD	Padina loamy fine sand, 1 to 8 percent slopes	A	0.2	0.2%
ShC	Shiro loamy fine sand, 1 to 5 percent slopes	D	53.1	38.3%
SnC	Singleton fine sandy loam, 1 to 5 percent slopes	D	13.1	9.5%
W	Water	D	16.7	12.0%
Totals for Area of Inter	rest		138.6	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

Attachment 2: NOAA Precipitation Frequency Data

hdrinc.com 440 S Church Street, Suite 1000, Charlotte, NC 28202-2075 704.338.6700

Precipitation Frequency Data Server

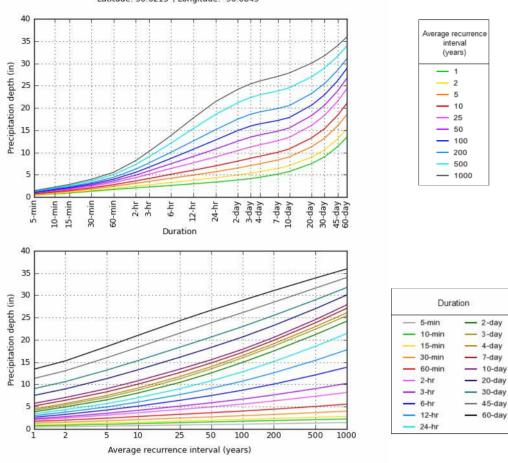
NOAA Atlas 14, Volume 11, Version 2 Location name: Anderson, Texas, USA* Latitude: 30.6215°, Longitude: -96.0845° Elevation: 283.2 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_& aerials


PF tabular

		Average recurrence interval (years)											
Duration	1	2	5	10	25	50	100	200	500	1000			
	· ·		-										
5-min	0.462 (0.350-0.610)	0.534 (0.409-0.702)	0.655 (0.500-0.862)	0.753 (0.565-1.00)	0.886 (0.642-1.21)	0.984 (0.696-1.39)	1.08 (0.747-1.57)	1.19 (0.799-1.77)	1.33 (0.864-2.05)	1.44 (0.912-2.27			
10-min	0.735	0.851	1.05	1.20	1.42	1.58	1.74	1.90	2.10	2.25			
10-11111	(0.556-0.971)	(0.652-1.12)	(0.797-1.38)	(0.903-1.60)	(1.03-1.95)	(1.12-2.23)	(1.20-2.52)	(1.27-2.82)	(1.37-3.23)	(1.43-3.56)			
15-min	0.928 (0.703-1.23)	1.07 (0.821-1.41)	1.31 (0.998-1.72)	1.50 (1.13-2.00)	1.76 (1.28-2.41)	1.96 (1.38-2.75)	2.15 (1.48-3.11)	2.35 (1.58-3.50)	2.63 (1.71-4.04)	2.84 (1.80-4.48)			
20 min	1.32	1.51	1.84	2.10	2.46	2.71	2.98	3.27	3.67	4.00			
30-min	(0.995-1.74)	(1.16-1.99)	(1.40-2.42)	(1.58-2.80)	(1.78-3.36)	(1.92-3.82)	(2.05-4.31)	(2.20-4.86)	(2.39-5.66)	(2.53-6.31			
60-min	1.72	1.99	2.43	2.80	3.29	3.65	4.02	4.45	5.06	5.57			
	(1.30-2.27)	(1.52-2.61)	(1.86-3.20)	(2.10-3.73)	(2.38-4.49)	(2.57-5.13)	(2.78-5.83)	(2.99-6.62)	(3.29-7.80)	(3.52-8.78			
2-hr	2.08 (1.58-2.73)	2.47 (1.89-3.20)	3.10 (2.38-4.04)	3.64 (2.75-4.81)	4.38 (3.19-5.96)	4.96 (3.52-6.93)	5.58 (3.86-8.01)	6.29 (4.25-9.28)	7.33 (4.78-11.2)	8.21 (5.21-12.8			
	2.28	2.76	3.52	4.18	5.13	5.88	6.70	7.65	9.05	10.2			
3-hr	(1.74-2.98)	(2.11-3.54)	(2.70-4.57)	(3.17-5.51)	(3.75-6.95)	(4.19-8.19)	(4.66-9.58)	(5.18-11.2)	(5.91-13.7)	(6.51-15.9			
6-hr	2.63	3.27	4.25	5.13	6.43	7.50	8.70	10.1	12.1	13.8			
•	(2.02-3.41)	(2.50-4.12)	(3.27-5.46)	(3.91-6.72)	(4.74-8.66)	(5.38-10.4)	(6.07-12.3)	(6.84-14.6)	(7.95-18.2)	(8.85-21.3			
12-hr	2.99 (2.31-3.85)	3.79 (2.88-4.69)	4.95 (3.83-6.31)	6.04 (4.64-7.87)	7.70 (5.73-10.3)	9.12 (6.59-12.6)	10.7 (7.53-15.1)	12.6 (8.59-18.1)	15.4 (10.1-22.9)	17.7 (11.4-27.0			
	3.38	4.34	5.70	7.01	9.02	10.8	12.8	15.1	18.5	21.4			
24-hr	(2.63-4.33)	(3.30-5.30)	(4.44-7.21)	(5.41-9.06)	(6.77-12.0)	(7.86-14.8)	(9.03-17.9)	(10.3-21.5)	(12.2-27.3)	(13.8-32.3			
2-day	3.83	4.96	6.54	8.07	10.4	12.6	14.9	17.5	21.2	24.2			
- aay	(3.00-4.88)	(3.79-6.00)	(5.12-8.22)	(6.27-10.4)	(7.90-13.9)	(9.21-17.1)	(10.6-20.6)	(12.0-24.7)	(14.0-30.9)	(15.6-36.1			
3-day	4.17	5.38	7.09	8.74	11.3	13.5	16.0	18.6	22.4	25.4			
	(3.28-5.29)	(4.14-6.50)	(5.58-8.89)	(6.81-11.2)	(8.54-14.9)	(9.92-18.3)	(11.3-22.0)	(12.8-26.1)	(14.9-32.4)	(16.5-37.7			
4-day	4.46 (3.52-5.65)	5.70 (4.42-6.92)	7.49 (5.92-9.37)	9.18 (7.18-11.7)	11.7 (8.92-15.5)	14.0 (10.3-18.8)	16.4 (11.7-22.5)	19.1 (13.2-26.8)	23.0 (15.3-33.1)	26.1 (16.9-38.5			
7	5.16	6.44	8.33	10.1	12.6	14.8	17.2	19.9	23.8	27.1			
7-day	(4.09-6.50)	(5.06-7.85)	(6.62-10.4)	(7.91-12.8)	(9.61-16.5)	(10.9-19.7)	(12.3-23.4)	(13.8-27.6)	(15.9-34.1)	(17.6-39.6			
10-day	5.74 (4.57-7.21)	7.05 (5.59-8.63)	9.04 (7.22-11.3)	10.8 (8.52-13.7)	13.4 (10.2-17.4)	15.5 (11.5-20.6)	17.9 (12.8-24.2)	20.5 (14.3-28.5)	24.5 (16.4-35.0)	27.9 (18.1-40.6			
	7.52	8.98	11.3	13.3	16.1	18.3	20.6	23.2	27.0	30.1			
20-day	(6.02-9.38)	(7.23-11.0)	(9.10-14.0)	(10.5-16.7)	(12.3-20.7)	(13.5-24.0)	(14.9-27.7)	(16.3-31.9)	(18.2-38.1)	(19.7-43.3			
30-day	9.03	10.6	13.2	15.4	18.3	20.6	23.0	25.5	29.0	31.7			
JJ-uay	(7.27-11.2)	(8.63-13.1)	(10.7-16.3)	(12.2-19.2)	(14.1-23.4)	(15.3-26.9)	(16.6-30.7)	(17.9-34.8)	(19.6-40.7)	(20.8-45.4			
45-day	11.3 (9.14-14.0)	13.1 (10.7-16.1)	16.0 (13.0-19.7)	18.3 (14.7-22.8)	21.5 (16.5-27.3)	23.8 (17.7-30.9)	26.1 (18.9-34.7)	28.5 (20.0-38.6)	31.6 (21.4-44.1)	34.0 (22.3-48.3			
60-day	13.4	15.3	18.5	21.0	24.3	26.6	28.9	31.0	33.9	35.9			
ou-uay	(10.9-16.6)	(12.6-18.9)	(15.1-22.8)	(16.8-26.1)	(18.7-30.8)	(19.9-34.5)	(20.9-38.2)	(21.9-42.0)	(23.0-47.0)	(23.6-50.8			

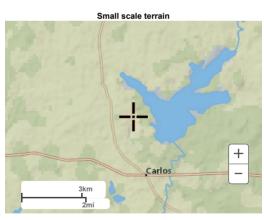
¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS). Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. at Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

PDS-based depth-duration-frequency (DDF) curves Latitude: 30.6215°, Longitude: -96.0845°

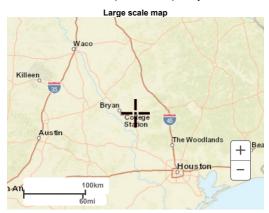
NOAA Atlas 14, Volume 11, Version 2


Created (GMT): Thu Jun 3 12:34:38 2021

7-day

10-day

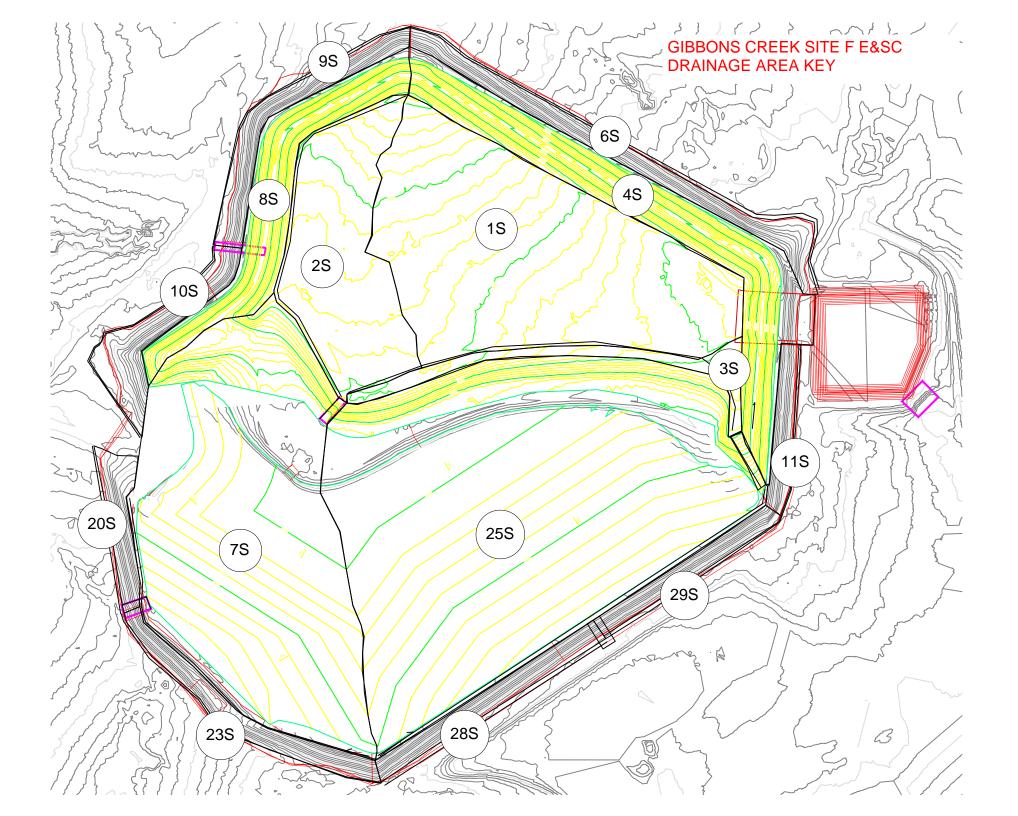
Back to Top

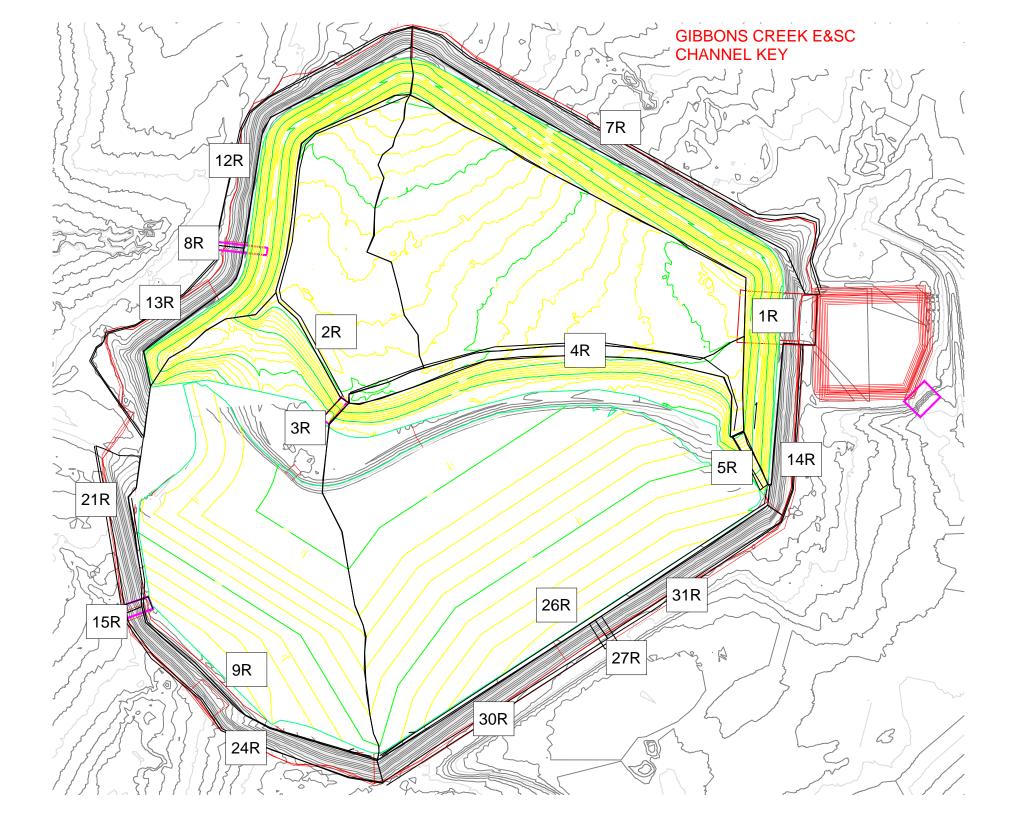

Maps & aerials


Large scale terrain

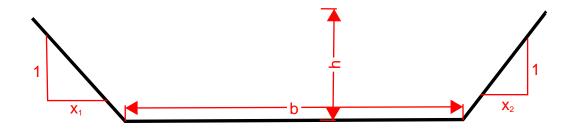
Precipitation Frequency Data Server

Large scale aerial

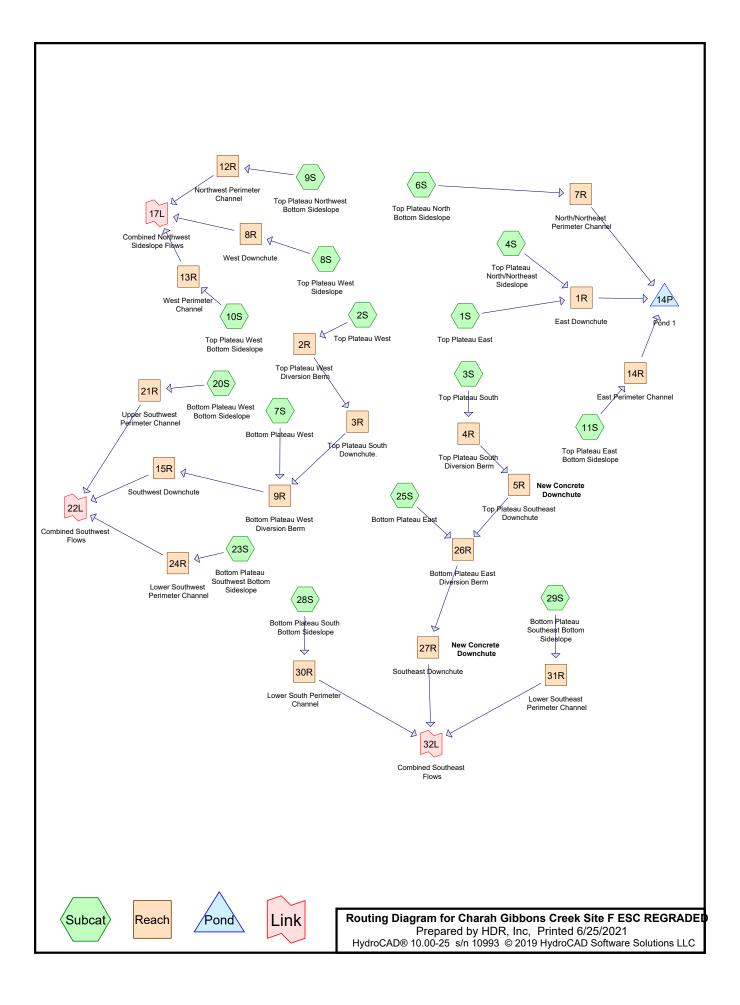



Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>


Disclaimer

Attachment 3: HydroCAD Report



CHANNEL SCHEDULE

Channel ID	Channel Type	b (ft)	h (ft)	x ₁ (ft)	x ₂ (ft)	Slope (%)	Channel Lining
1R	Downchute	200	1.5	3	3	20	Concrete
2R	Top Plateau Diversion Berm	0	3.5	3	2	1.5	ECB
3R	Downchute	25	1.5	3	3	15	Concrete
4R	Top Plateau Diversion Berm	0	3.5	3	2	1.5	ECB
5R	Downchute	40	1.5	3	3	12	Concrete
7R	Perimeter Channel	0	3	3	3	1	ECB
8R	Downchute	25	1.5	3	3	24	Concrete
9R	Bttm. Plateau Diversion Berm	0	7	3	2	1	ECB
12R	Perimeter Channel	0	3	3	3	1	ECB
13R	Perimeter Channel	0	3	3	3	1	ECB
14R	Perimeter Channel	0	3	3	3	1	ECB
15R	Downchute	50	1.5	3	3	26	Concrete
21R	Perimeter Channel	0	3	3	3	3	ECB
24R	Perimeter Channel	0	3	3	3	1	ECB
26R	Bttm. Plateau Diversion Berm	0	7	3	2	1	ECB
27R	Downchute	50	1.5	3	3	20	Concrete
30R	Perimeter Channel	0	3	3	3	1	ECB
31R	Perimeter Channel	0	3	3	3	1	ECB

Project Notes

Rainfall events imported from "Charah Gibbons Creek Site F ESC.hcp"

Area Listing (all nodes)

Area (acres)	CN	Description (subcatchment-numbers)
 114.204	94	Fallow, bare soil, HSG D (1S, 2S, 3S, 4S, 6S, 7S, 8S, 9S, 10S, 11S, 20S, 23S, 25S, 28S, 29S)
114.204	94	TOTAL AREA

Charah Gibbons Creek Site F ESC REGRADED

Prepared by HDR, Inc HydroCAD® 10.00-25 s/n 10993 © 2019 HydroCAD Software Solutions LLC

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
0.000	HSG C	
114.204	HSG D	1S, 2S, 3S, 4S, 6S, 7S, 8S, 9S, 10S, 11S, 20S, 23S, 25S, 28S, 29S
0.000	Other	
114.204		TOTAL AREA

Charah Gibbons Creek Site F ESC REGRADED

Prepared by HDR, Inc HydroCAD® 10.00-25 s/n 10993 © 2019 HydroCAD Software Solutions LLC

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
0.000	0.000	0.000	114.204	0.000	114.204	Fallow, bare soil	1S, 2S, 3S, 4S,
							6S, 7S, 8S, 9S,
							10S, 11S, 20S,
							23S, 25S, 28S,
							29S
0.000	0.000	0.000	114.204	0.000	114.204	TOTAL AREA	

Ground Covers (all nodes)

Charah Gibbons Creek Site F ESC REGRADED

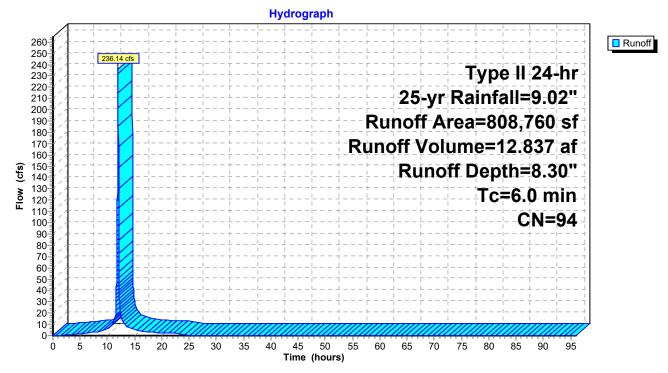
Prepared by HDR, Inc HydroCAD® 10.00-25 s/n 10993 © 2019 HydroCAD Software Solutions LLC

Time span=0.00-96.00 hrs, dt=0.01 hrs, 9601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: Top Plateau East	Runoff Area=808,760 sf 0.00% Impervious Runoff Depth=8.30" Tc=6.0 min CN=94 Runoff=236.14 cfs 12.837 af
Subcatchment2S: Top Plateau West	Runoff Area=355,269 sf 0.00% Impervious Runoff Depth=8.30" Tc=6.0 min CN=94 Runoff=103.73 cfs 5.639 af
Subcatchment3S: Top Plateau South	Runoff Area=79,119 sf 0.00% Impervious Runoff Depth=8.30" Tc=6.0 min CN=94 Runoff=23.10 cfs 1.256 af
Subcatchment4S: Top Plateau	Runoff Area=357,237 sf 0.00% Impervious Runoff Depth=8.30" Tc=6.0 min CN=94 Runoff=104.30 cfs 5.670 af
Subcatchment6S: Top Plateau North	Runoff Area=127,070 sf 0.00% Impervious Runoff Depth=8.30" Tc=6.0 min CN=94 Runoff=37.10 cfs 2.017 af
Subcatchment7S: Bottom Plateau West	Runoff Area=1,022,944 sf 0.00% Impervious Runoff Depth=8.30" Tc=6.0 min CN=94 Runoff=298.67 cfs 16.237 af
Subcatchment8S: Top Plateau West	Runoff Area=208,646 sf 0.00% Impervious Runoff Depth=8.30" Tc=6.0 min CN=94 Runoff=60.92 cfs 3.312 af
Subcatchment9S: Top Plateau Northwest	Runoff Area=89,298 sf 0.00% Impervious Runoff Depth=8.30" Tc=6.0 min CN=94 Runoff=26.07 cfs 1.417 af
Subcatchment10S: Top Plateau West	Runoff Area=92,560 sf 0.00% Impervious Runoff Depth=8.30" Tc=6.0 min CN=94 Runoff=27.02 cfs 1.469 af
Subcatchment11S: Top Plateau East	Runoff Area=48,135 sf 0.00% Impervious Runoff Depth=8.30" Tc=6.0 min CN=94 Runoff=14.05 cfs 0.764 af
Subcatchment20S: Bottom Plateau West	Runoff Area=53,199 sf 0.00% Impervious Runoff Depth=8.30" Tc=6.0 min CN=94 Runoff=15.53 cfs 0.844 af
Subcatchment23S: Bottom Plateau	Runoff Area=84,299 sf 0.00% Impervious Runoff Depth=8.30" Tc=6.0 min CN=94 Runoff=24.61 cfs 1.338 af
Subcatchment25S: Bottom Plateau East Runoff Area=1,507,374 sf 0.00% Impervious Runoff Depth=8.30" Tc=6.0 min CN=94 Runoff=440.11 cfs 23.926 af	
Subcatchment28S: Bottom Plateau South	Runoff Area=75,491 sf 0.00% Impervious Runoff Depth=8.30" Tc=6.0 min CN=94 Runoff=22.04 cfs 1.198 af
Subcatchment29S: Bottom Plateau	Runoff Area=65,341 sf 0.00% Impervious Runoff Depth=8.30" Tc=6.0 min CN=94 Runoff=19.08 cfs 1.037 af
Reach 1R: East Downchute Avg. Flow Depth=0.15' Max Vel=11.08 fps Inflow=340.44 cfs 18.507 af n=0.017 L=300.0' S=0.1967 '/' Capacity=15,333.40 cfs Outflow=339.33 cfs 18.507 af	

Charah Gibbons Creek Site F ESC REGRADED Type II 24-hr 25-yr Ra Prepared by HDR, Inc Printe	a <i>infall=9.02"</i> d 6/25/2021
HydroCAD® 10.00-25 s/n 10993 © 2019 HydroCAD Software Solutions LLC	Page 7
Deach 2D: Tan Distance Weat Ave Elaw Death=2.17' Max Val=9.21 fps_ Inflow=102.72	ofo 5 620 of
Reach 2R: Top Plateau West Avg. Flow Depth=2.17' Max Vel=8.21 fps Inflow=103.73 n=0.022 L=1,430.0' S=0.0147 '/' Capacity=345.90 cfs Outflow=96.77	
1-0.022 L-1,450.0 0-0.01477 Capacity-545.50 Cis Outliow-50.77	CI3 0.009 al
Reach 3R: Top Plateau South Avg. Flow Depth=0.27' Max Vel=13.97 fps Inflow=96.77	cfs 5.639 af
n=0.017 L=110.0' S=0.1545 '/' Capacity=1,795.50 cfs Outflow=96.65	
Reach 4R: Top Plateau South Avg. Flow Depth=1.26' Max Vel=4.92 fps Inflow=23.10	
n=0.022 L=1,649.0' S=0.0109 '/' Capacity=298.22 cfs Outflow=19.44	cts 1.256 at
Reach 5R: Top Plateau Southeast Avg. Flow Depth=0.08' Max Vel=5.75 fps Inflow=19.44	cfs 1 256 af
n=0.017 L=220.0' S=0.1182 '/' Capacity=2,448.71 cfs Outflow=19.39	
Reach 7R: North/NortheastPerimeter Avg. Flow Depth=1.29' Max Vel=6.35 fps Inflow=37.10	
n=0.022 L=1,947.0' S=0.0169 '/' Capacity=300.38 cfs Outflow=31.81	cfs 2.017 af
	afa 0.040 - f
Reach 8R: West Downchute Avg. Flow Depth=0.18' Max Vel=13.37 fps Inflow=60.92 n=0.017 L=200.0' S=0.2400 '/' Capacity=2,237.50 cfs Outflow=60.75	
H=0.017 L=200.0 S=0.24007 Capacity=2,237.50 Cis Outilow=60.75	
Reach 9R: Bottom Plateau West Avg. Flow Depth=3.74' Max Vel=10.14 fps Inflow=371.13 d	ofs 21.875 af
n=0.022 L=1,475.0' S=0.0108 '/' Capacity=1,887.62 cfs Outflow=354.24 c	
Reach 12R: Northwest Perimeter Avg. Flow Depth=1.14' Max Vel=6.11 fps Inflow=26.07	
n=0.022 L=1,190.0' S=0.0185 '/' Capacity=313.72 cfs Outflow=24.01	cfs 1.417 af
Reach 13R: West Perimeter Channel Avg. Flow Depth=1.51' Max Vel=3.40 fps Inflow=27.02	ofc 1 460 of
n=0.022 L=1,015.0' S=0.0039 '/' Capacity=144.84 cfs Outflow=23.30	
Reach 14R: East Perimeter Channel Avg. Flow Depth=1.11' Max Vel=3.50 fps Inflow=14.05	cfs 0.764 af
n=0.022 L=635.0' S=0.0063 '/' Capacity=183.12 cfs Outflow=13.07	cfs 0.764 af
Reach 15R: Southwest Downchute Avg. Flow Depth=0.33' Max Vel=21.01 fps Inflow=354.24 (
n=0.017 L=100.0' S=0.2600 '/' Capacity=4,503.90 cfs Outflow=353.99 c	IS 21.075 al
Reach 21R: Upper Southwest Avg. Flow Depth=0.89' Max Vel=6.43 fps Inflow=15.53	cfs 0.844 af
n=0.022 L=625.0' S=0.0288 '/' Capacity=391.56 cfs Outflow=15.10	
Reach 24R: Lower SouthwestAvg. Flow Depth=1.28'Max Vel=4.41 fpsInflow=24.61	
n=0.022 L=1,200.0' S=0.0083 '/' Capacity=210.63 cfs Outflow=21.59	cfs 1.338 af
Reach 26R: Bottom Plateau East Avg. Flow Depth=5.34' Max Vel=5.99 fps Inflow=449.09 d	fc 25 191 of
n=0.022 L=850.0' S=0.0024 '/' Capacity=879.14 cfs Outflow=427.27 c	
	20.101 4
Reach 27R: Southeast Downchute Avg. Flow Depth=0.40' Max Vel=20.86 fps Inflow=427.27 d	ofs 25.181 af
n=0.017 L=100.0' S=0.2000 '/' Capacity=3,950.18 cfs Outflow=426.89 c	
Reach 30R: Lower South Perimeter Avg. Flow Depth=1.19' Max Vel=4.74 fps Inflow=22.04	
n=0.022 L=950.0' S=0.0105 '/' Capacity=236.72 cfs Outflow=20.22	cis 1.198 af
Reach 31R: Lower Southeast Avg. Flow Depth=1.20' Max Vel=4.07 fps Inflow=19.08	cfs 1 037 af
n=0.022 L=780.0' S=0.0077 '/' Capacity=202.36 cfs Outflow=17.60	
	515 1.007 di

Charah Gibbons Creek Site F E Prepared by HDR, Inc HydroCAD® 10.00-25 s/n 10993 © 2019		II 24-hr 25-yr Rainfall=9.02" Printed 6/25/2021 Page 8
Pond 14P: Pond 1	Peak Elev=263.17' Storage=927,301	cf Inflow=368.86 cfs 21.288 af Outflow=0.00 cfs 0.000 af
Link 17L: Combined Northwest Sides	lope Flows	Inflow=94.25 cfs 6.198 af Primary=94.25 cfs 6.198 af
Link 22L: Combined Southwest Flows	5	Inflow=387.91 cfs 24.058 af Primary=387.91 cfs 24.058 af
Link 32L: Combined Southeast Flows		Inflow=463.98 cfs 27.417 af Primary=463.98 cfs 27.417 af
Total Runoff Area = 114.2	204 ac Runoff Volume = 78.961 at 100.00% Pervious = 114.204 ac	Average Runoff Depth = 8.30" 0.00% Impervious = 0.000 ac

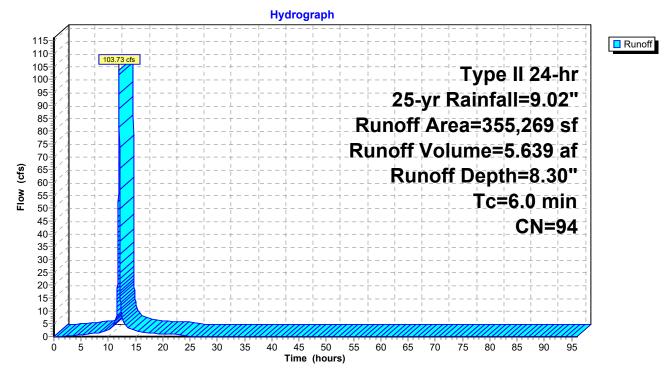

Summary for Subcatchment 1S: Top Plateau East

Runoff = 236.14 cfs @ 11.97 hrs, Volume= 12.837 af, Depth= 8.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=9.02"

Area (sf)	CN	N Description						
808,760	94	Fallow, bare soil, HSG D						
808,760		100.00% Pervious Area						
Tc Length (min) (feet)	Slop (ft/f	,	Capacity (cfs)	Description				
6.0				Direct Entry,				

Subcatchment 1S: Top Plateau East

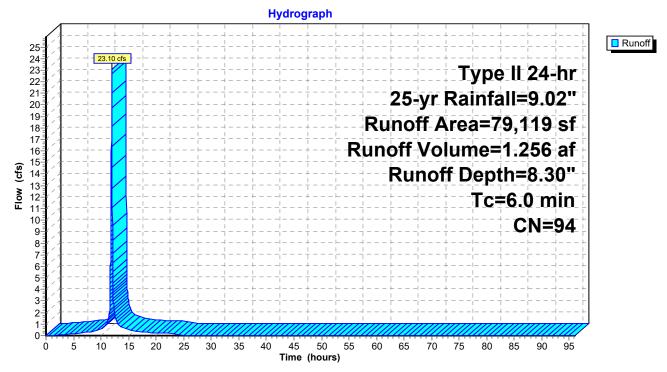

Summary for Subcatchment 2S: Top Plateau West

Runoff = 103.73 cfs @ 11.97 hrs, Volume= 5.639 af, Depth= 8.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=9.02"

Area (sf)	CN	Description					
355,269	94	Fallow, bare soil, HSG D					
355,269		100.00% Pervious Area					
Tc Length (min) (feet)	Slop (ft/f	,	Capacity (cfs)	Description			
6.0				Direct Entry,			

Subcatchment 2S: Top Plateau West

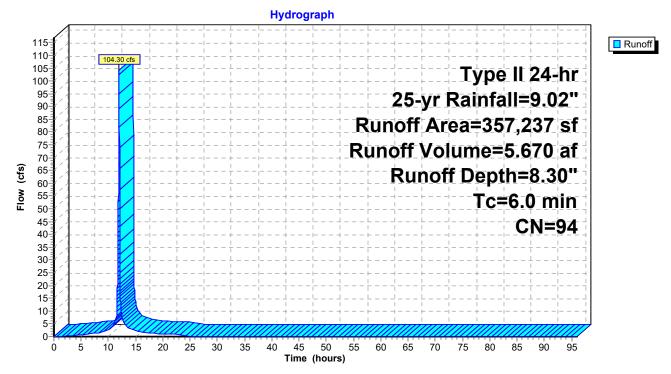

Summary for Subcatchment 3S: Top Plateau South

Runoff = 23.10 cfs @ 11.97 hrs, Volume= 1.256 af, Depth= 8.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=9.02"

Ar	ea (sf)	CN	CN Description					
7	79,119	94	94 Fallow, bare soil, HSG D					
7	79,119		100.00% Pervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Subcatchment 3S: Top Plateau South

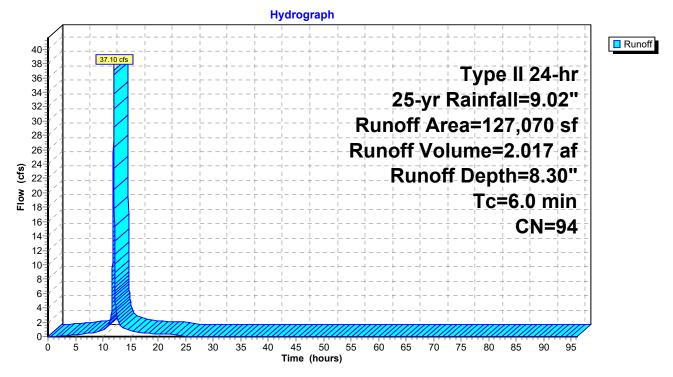

Summary for Subcatchment 4S: Top Plateau North/Northeast Sideslope

Runoff = 104.30 cfs @ 11.97 hrs, Volume= 5.670 af, Depth= 8.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=9.02"

Area (sf)	CN	Description						
357,237	′ 94	Fallow, bar	Fallow, bare soil, HSG D					
357,237	,	100.00% Pervious Area						
Tc Lengt (min) (fee			Capacity (cfs)	Description				
6.0				Direct Entry,				

Subcatchment 4S: Top Plateau North/Northeast Sideslope

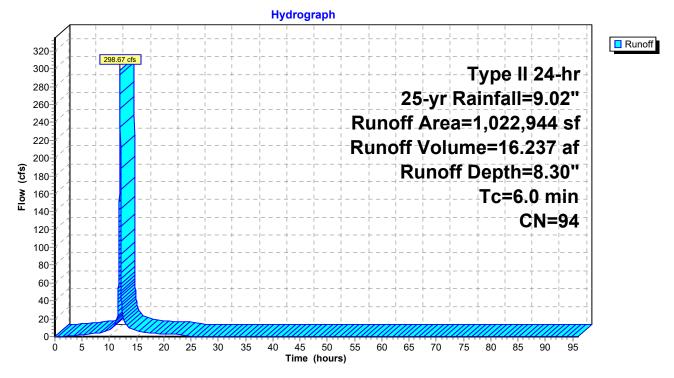

Summary for Subcatchment 6S: Top Plateau North Bottom Sideslope

Runoff = 37.10 cfs @ 11.97 hrs, Volume= 2.017 af, Depth= 8.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=9.02"

	A	rea (sf)	CN	Description						
	1	27,070	94	94 Fallow, bare soil, HSG D						
	1	27,070		100.00% Pervious Area						
- (mi	Гc n)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description				
6	.0					Direct Entry,				

Subcatchment 6S: Top Plateau North Bottom Sideslope

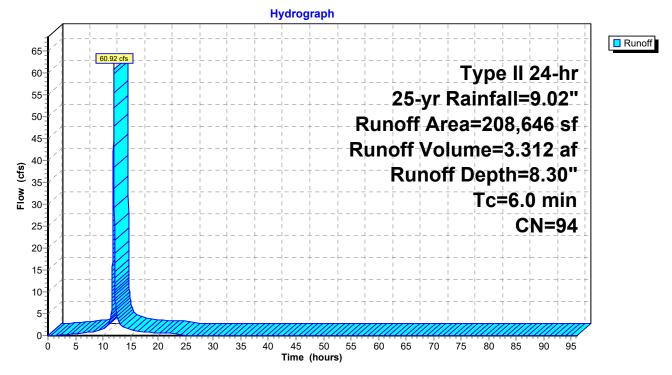

Summary for Subcatchment 7S: Bottom Plateau West

Runoff = 298.67 cfs @ 11.97 hrs, Volume= 16.237 af, Depth= 8.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=9.02"

Area (sf)	CN	Description					
1,022,944	94	Fallow, bare soil, HSG D					
1,022,944		100.00% Pervious Area					
Tc Length (min) (feet)	Slop (ft/ft	,	Capacity (cfs)	Description			
6.0				Direct Entry,			

Subcatchment 7S: Bottom Plateau West

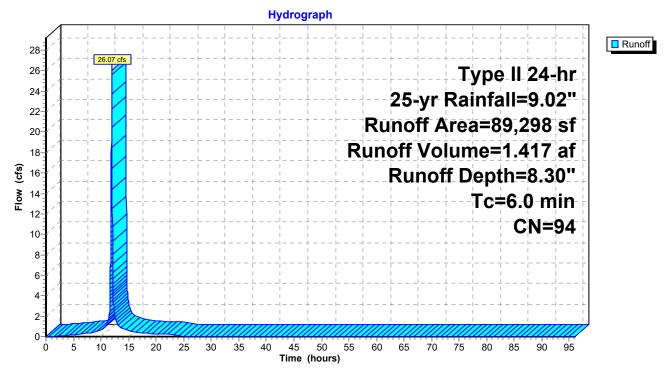

Summary for Subcatchment 8S: Top Plateau West Sideslope

Runoff = 60.92 cfs @ 11.97 hrs, Volume= 3.312 af, Depth= 8.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=9.02"

A	rea (sf)	CN E	Description					
2	08,646	94 F	4 Fallow, bare soil, HSG D					
2	08,646	1	100.00% Pervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Subcatchment 8S: Top Plateau West Sideslope

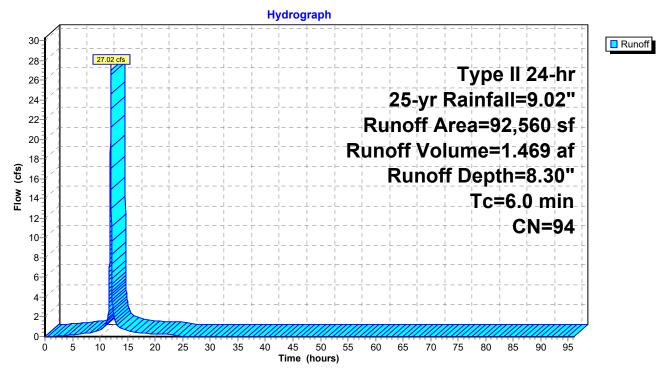

Summary for Subcatchment 9S: Top Plateau Northwest Bottom Sideslope

Runoff = 26.07 cfs @ 11.97 hrs, Volume= 1.417 af, Depth= 8.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=9.02"

A	rea (sf)	CN E	Description					
	89,298	94 F	4 Fallow, bare soil, HSG D					
	89,298	1	100.00% Pervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Subcatchment 9S: Top Plateau Northwest Bottom Sideslope

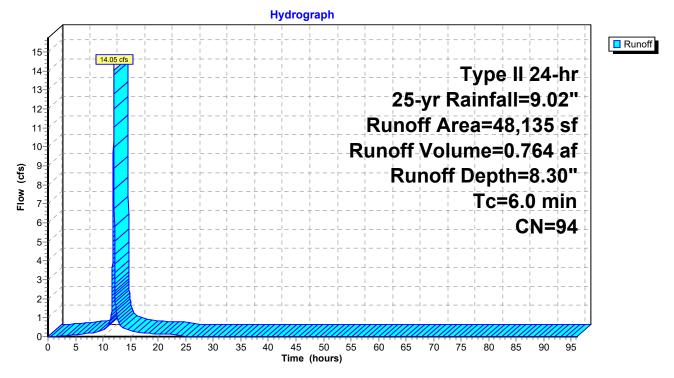

Summary for Subcatchment 10S: Top Plateau West Bottom Sideslope

Runoff = 27.02 cfs @ 11.97 hrs, Volume= 1.469 af, Depth= 8.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=9.02"

Area (sf)	CN	CN Description					
92,560	94	94 Fallow, bare soil, HSG D					
92,560		100.00% Pervious Area					
Tc Length (min) (feet)	Slop (ft/ft	,	Capacity (cfs)	Description			
6.0				Direct Entry,			

Subcatchment 10S: Top Plateau West Bottom Sideslope

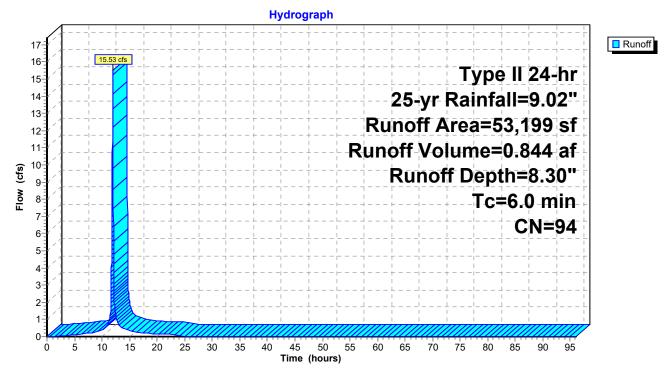

Summary for Subcatchment 11S: Top Plateau East Bottom Sideslope

Runoff = 14.05 cfs @ 11.97 hrs, Volume= 0.764 af, Depth= 8.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=9.02"

A	rea (sf)	CN E	Description					
	48,135	94 F	94 Fallow, bare soil, HSG D					
	48,135	1	100.00% Pervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0			· · ·		Direct Entry,			

Subcatchment 11S: Top Plateau East Bottom Sideslope

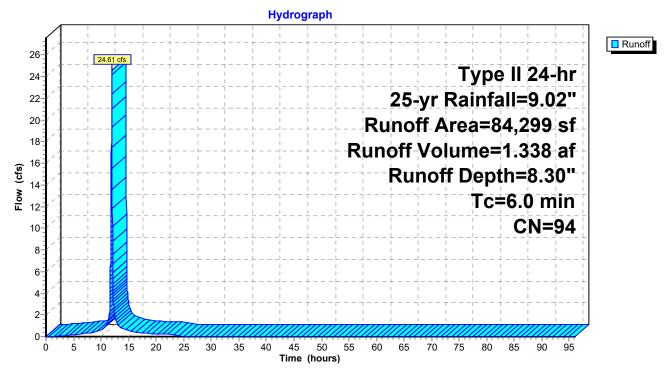

Summary for Subcatchment 20S: Bottom Plateau West Bottom Sideslope

Runoff = 15.53 cfs @ 11.97 hrs, Volume= 0.844 af, Depth= 8.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=9.02"

	Area (sf)	CN	Description				
	53,199 94 Fallow, bare soil, HSG D						
	53,199		100.00% P	ervious Are	a		
To (min)	5	Slope (ft/ft)	,	Capacity (cfs)	Description		
6.0)				Direct Entry,		

Subcatchment 20S: Bottom Plateau West Bottom Sideslope


Summary for Subcatchment 23S: Bottom Plateau Southwest Bottom Sideslope

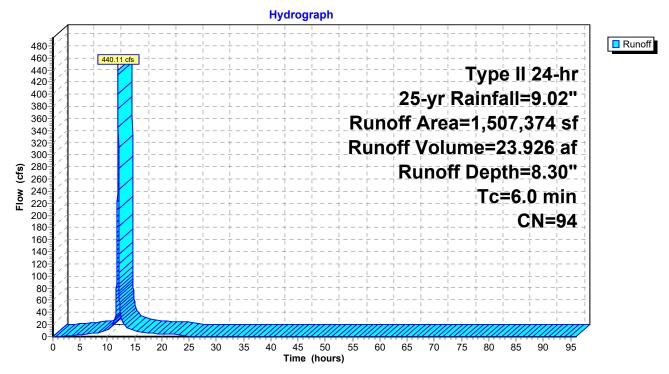
Runoff = 24.61 cfs @ 11.97 hrs, Volume= 1.338 af, Depth= 8.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=9.02"

Area (sf)	CN	Description					
84,299	94	94 Fallow, bare soil, HSG D					
84,299		100.00% P	ervious Are	28			
Tc Length (min) (feet			Capacity (cfs)	Description			
6.0				Direct Entry,			

Subcatchment 23S: Bottom Plateau Southwest Bottom Sideslope

Prepared by HDR, Inc HydroCAD® 10.00-25 s/n 10993 © 2019 HydroCAD Software Solutions LLC

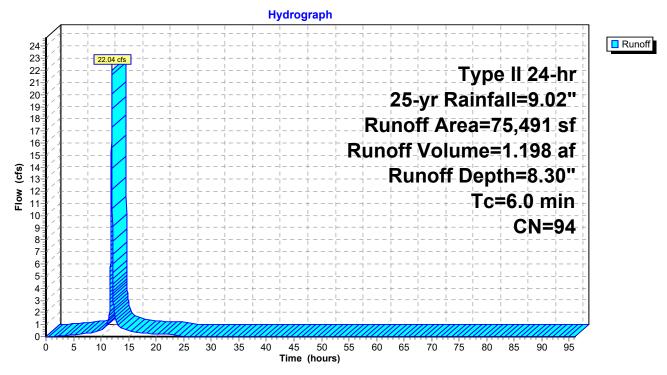

Summary for Subcatchment 25S: Bottom Plateau East

Runoff = 440.11 cfs @ 11.97 hrs, Volume= 23.926 af, Depth= 8.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=9.02"

Area (sf)	CN	Description		
1,507,374	G D			
1,507,374	100.00% Pervious Area			ea
Tc Length (min) (feet)	Slop (ft/fl	,	Capacity (cfs)	Description
6.0				Direct Entry,

Subcatchment 25S: Bottom Plateau East

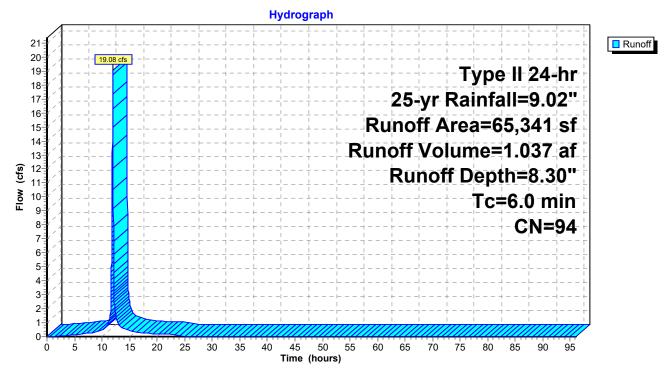

Summary for Subcatchment 28S: Bottom Plateau South Bottom Sideslope

Runoff = 22.04 cfs @ 11.97 hrs, Volume= 1.198 af, Depth= 8.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=9.02"

A	rea (sf)	CN E	Description					
	75,491	94 F	94 Fallow, bare soil, HSG D					
	75,491 100.00% Pervious Area				a			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Subcatchment 28S: Bottom Plateau South Bottom Sideslope


Summary for Subcatchment 29S: Bottom Plateau Southeast Bottom Sideslope

Runoff = 19.08 cfs @ 11.97 hrs, Volume= 1.037 af, Depth= 8.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type II 24-hr 25-yr Rainfall=9.02"

A	rea (sf)	CN E	Description					
	65,341	94 F	94 Fallow, bare soil, HSG D					
	65,341 100.00% Pervious Area				a			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

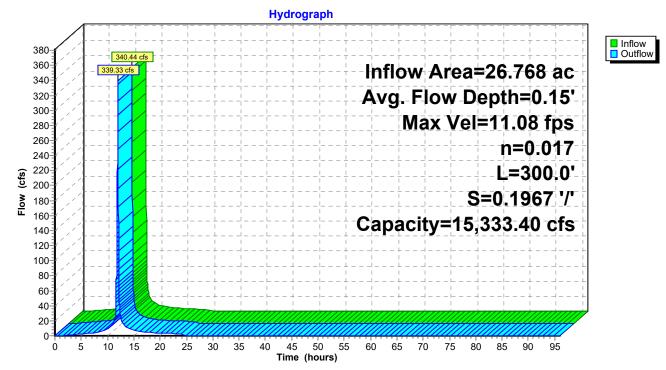
Subcatchment 29S: Bottom Plateau Southeast Bottom Sideslope

Summary for Reach 1R: East Downchute

 Inflow Area =
 26.768 ac,
 0.00% Impervious,
 Inflow Depth =
 8.30"
 for 25-yr event

 Inflow =
 340.44 cfs @
 11.97 hrs,
 Volume=
 18.507 af

 Outflow =
 339.33 cfs @
 11.98 hrs,
 Volume=
 18.507 af,


Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Max. Velocity= 11.08 fps, Min. Travel Time= 0.5 min Avg. Velocity = 2.65 fps, Avg. Travel Time= 1.9 min

Peak Storage= 9,201 cf @ 11.97 hrs Average Depth at Peak Storage= 0.15' Bank-Full Depth= 1.50' Flow Area= 306.8 sf, Capacity= 15,333.40 cfs

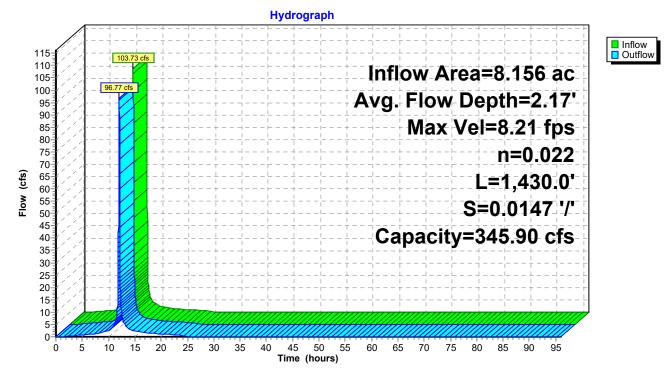
200.00' x 1.50' deep channel, n= 0.017 Concrete, unfinished Side Slope Z-value= 3.0 '/' Top Width= 209.00' Length= 300.0' Slope= 0.1967 '/' Inlet Invert= 325.00', Outlet Invert= 266.00'

Reach 1R: East Downchute

Summary for Reach 2R: Top Plateau West Diversion Berm

 Inflow Area =
 8.156 ac,
 0.00% Impervious,
 Inflow Depth =
 8.30"
 for 25-yr event

 Inflow =
 103.73 cfs @
 11.97 hrs,
 Volume=
 5.639 af


 Outflow =
 96.77 cfs @
 12.04 hrs,
 Volume=
 5.639 af,
 Atten= 7%,
 Lag= 4.6 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Max. Velocity= 8.21 fps, Min. Travel Time= 2.9 min Avg. Velocity = 2.57 fps, Avg. Travel Time= 9.3 min

Peak Storage= 16,858 cf @ 12.00 hrs Average Depth at Peak Storage= 2.17' Bank-Full Depth= 3.50' Flow Area= 30.6 sf, Capacity= 345.90 cfs

0.00' x 3.50' deep channel, n= 0.022 Earth, clean & straight Side Slope Z-value= 3.0 2.0 '/' Top Width= 17.50' Length= 1,430.0' Slope= 0.0147 '/' Inlet Invert= 359.00', Outlet Invert= 338.00'

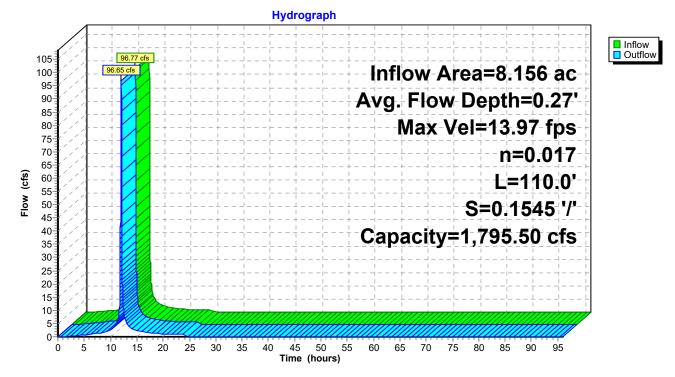
Reach 2R: Top Plateau West Diversion Berm

Summary for Reach 3R: Top Plateau South Downchute.

 Inflow Area =
 8.156 ac,
 0.00% Impervious,
 Inflow Depth =
 8.30"
 for
 25-yr event

 Inflow =
 96.77 cfs @
 12.04 hrs,
 Volume=
 5.639 af

 Outflow =
 96.65 cfs @
 12.05 hrs,
 Volume=
 5.639 af,
 Atten= 0%,
 Lag= 0.2 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Max. Velocity= 13.97 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.88 fps, Avg. Travel Time= 0.6 min

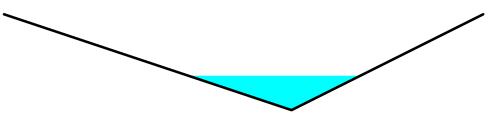
Peak Storage= 762 cf @ 12.04 hrs Average Depth at Peak Storage= 0.27' Bank-Full Depth= 1.50' Flow Area= 44.3 sf, Capacity= 1,795.50 cfs

25.00' x 1.50' deep channel, n= 0.017 Concrete, unfinished Side Slope Z-value= 3.0 '/' Top Width= 34.00' Length= 110.0' Slope= 0.1545 '/' Inlet Invert= 335.00', Outlet Invert= 318.00'

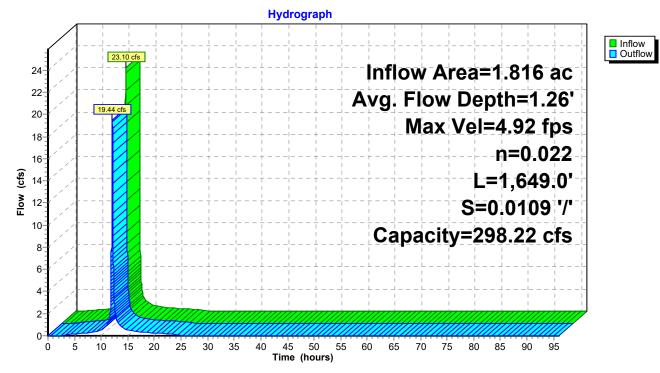
Reach 3R: Top Plateau South Downchute.

Summary for Reach 4R: Top Plateau South Diversion Berm

 Inflow Area =
 1.816 ac, 0.00% Impervious, Inflow Depth = 8.30" for 25-yr event


 Inflow =
 23.10 cfs @
 11.97 hrs, Volume=
 1.256 af

 Outflow =
 19.44 cfs @
 12.10 hrs, Volume=
 1.256 af, Atten= 16%, Lag= 8.2 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Max. Velocity= 4.92 fps, Min. Travel Time= 5.6 min Avg. Velocity = 1.56 fps, Avg. Travel Time= 17.6 min

Peak Storage= 6,522 cf @ 12.01 hrs Average Depth at Peak Storage= 1.26' Bank-Full Depth= 3.50' Flow Area= 30.6 sf, Capacity= 298.22 cfs

0.00' x 3.50' deep channel, n= 0.022 Earth, clean & straight Side Slope Z-value= 3.0 2.0 '/' Top Width= 17.50' Length= 1,649.0' Slope= 0.0109 '/' Inlet Invert= 340.00', Outlet Invert= 322.00'

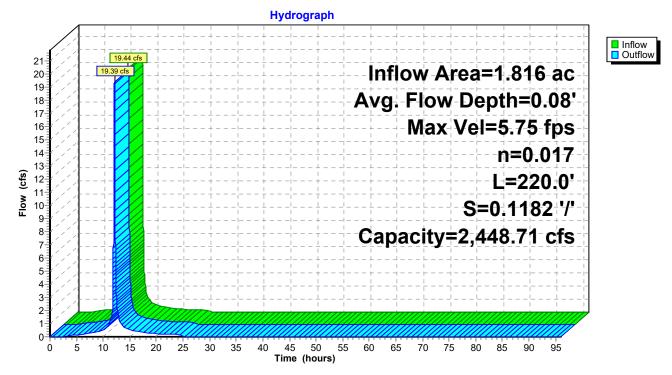
Reach 4R: Top Plateau South Diversion Berm

Summary for Reach 5R: Top Plateau Southeast Downchute

 Inflow Area =
 1.816 ac,
 0.00% Impervious,
 Inflow Depth =
 8.30"
 for
 25-yr
 event

 Inflow =
 19.44 cfs @
 12.10 hrs,
 Volume=
 1.256 af

 Outflow =
 19.39 cfs @
 12.12 hrs,
 Volume=
 1.256 af,
 Atten= 0%,
 Lag= 1.0 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Max. Velocity= 5.75 fps, Min. Travel Time= 0.6 min Avg. Velocity = 1.90 fps, Avg. Travel Time= 1.9 min

Peak Storage= 742 cf @ 12.11 hrs Average Depth at Peak Storage= 0.08' Bank-Full Depth= 1.50' Flow Area= 66.8 sf, Capacity= 2,448.71 cfs

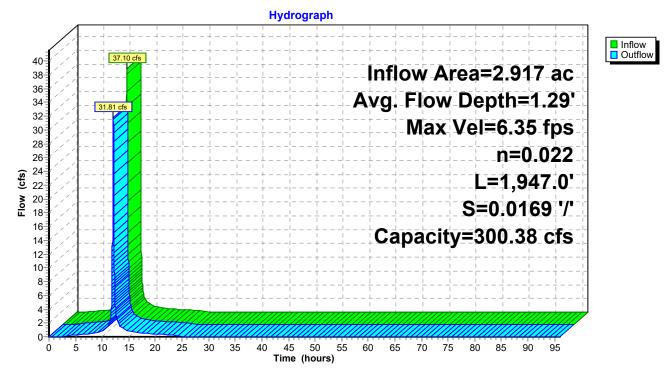
40.00' x 1.50' deep channel, n= 0.017 Concrete, unfinished Side Slope Z-value= 3.0 '/' Top Width= 49.00' Length= 220.0' Slope= 0.1182 '/' Inlet Invert= 318.00', Outlet Invert= 292.00'

Reach 5R: Top Plateau Southeast Downchute

Summary for Reach 7R: North/Northeast Perimeter Channel

 Inflow Area =
 2.917 ac,
 0.00% Impervious, Inflow Depth =
 8.30" for 25-yr event

 Inflow =
 37.10 cfs @
 11.97 hrs, Volume=
 2.017 af


 Outflow =
 31.81 cfs @
 12.09 hrs, Volume=
 2.017 af, Atten=

Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Max. Velocity= 6.35 fps, Min. Travel Time= 5.1 min Avg. Velocity = 1.98 fps, Avg. Travel Time= 16.4 min

Peak Storage= 9,768 cf @ 12.01 hrs Average Depth at Peak Storage= 1.29' Bank-Full Depth= 3.00' Flow Area= 27.0 sf, Capacity= 300.38 cfs

0.00' x 3.00' deep channel, n= 0.022 Earth, clean & straight Side Slope Z-value= 3.0 '/' Top Width= 18.00' Length= 1,947.0' Slope= 0.0169 '/' Inlet Invert= 299.00', Outlet Invert= 266.00'

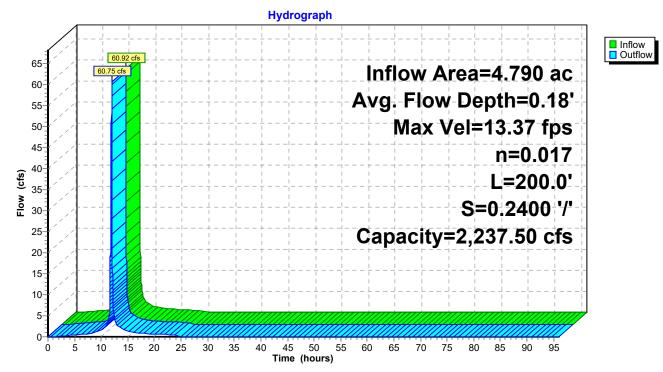
Reach 7R: North/Northeast Perimeter Channel

Summary for Reach 8R: West Downchute

 Inflow Area =
 4.790 ac,
 0.00% Impervious,
 Inflow Depth =
 8.30"
 for 25-yr event

 Inflow =
 60.92 cfs @
 11.97 hrs,
 Volume=
 3.312 af

 Outflow =
 60.75 cfs @
 11.97 hrs,
 Volume=
 3.312 af,


Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Max. Velocity= 13.37 fps, Min. Travel Time= 0.2 min Avg. Velocity = 3.05 fps, Avg. Travel Time= 1.1 min

Peak Storage= 911 cf @ 11.97 hrs Average Depth at Peak Storage= 0.18' Bank-Full Depth= 1.50' Flow Area= 44.3 sf, Capacity= 2,237.50 cfs

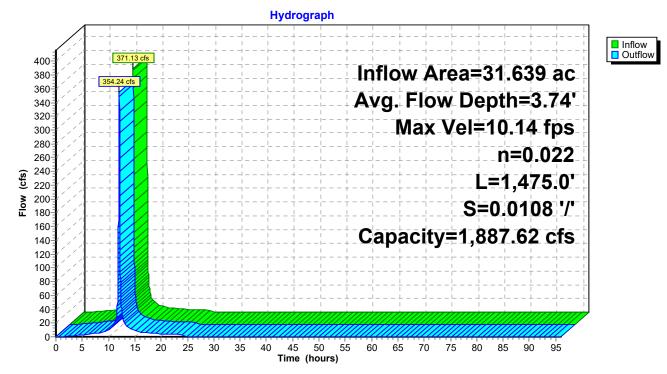
25.00' x 1.50' deep channel, n= 0.017 Concrete, unfinished Side Slope Z-value= 3.0 '/' Top Width= 34.00' Length= 200.0' Slope= 0.2400 '/' Inlet Invert= 328.00', Outlet Invert= 280.00'

Reach 8R: West Downchute

Summary for Reach 9R: Bottom Plateau West Diversion Berm

 Inflow Area =
 31.639 ac,
 0.00% Impervious,
 Inflow Depth =
 8.30"
 for 25-yr event

 Inflow =
 371.13 cfs @
 11.98 hrs,
 Volume=
 21.875 af


 Outflow =
 354.24 cfs @
 12.04 hrs,
 Volume=
 21.875 af,
 Atten= 5%,
 Lag= 4.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Max. Velocity= 10.14 fps, Min. Travel Time= 2.4 min Avg. Velocity = 3.15 fps, Avg. Travel Time= 7.8 min

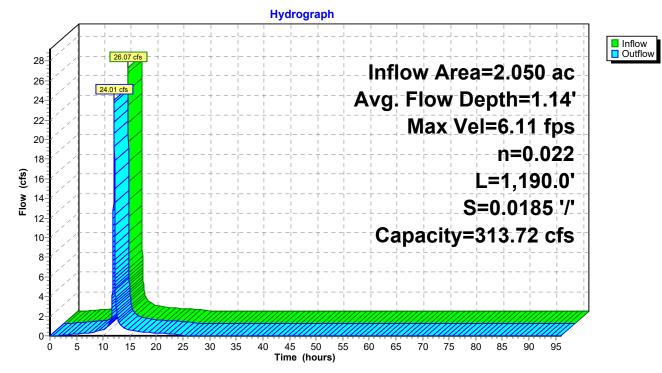
Peak Storage= 51,524 cf @ 12.00 hrs Average Depth at Peak Storage= 3.74' Bank-Full Depth= 7.00' Flow Area= 122.5 sf, Capacity= 1,887.62 cfs

0.00' x 7.00' deep channel, n= 0.022 Earth, clean & straight Side Slope Z-value= 3.0 2.0 '/' Top Width= 35.00' Length= 1,475.0' Slope= 0.0108 '/' Inlet Invert= 300.00', Outlet Invert= 284.00'

Reach 9R: Bottom Plateau West Diversion Berm

Prepared by HDR, Inc HydroCAD® 10.00-25 s/n 10993 © 2019 HydroCAD Software Solutions LLC

Summary for Reach 12R: Northwest Perimeter Channel


Inflow Area = 2.050 ac, 0.00% Impervious, Inflow Depth = 8.30" for 25-yr event Inflow 26.07 cfs @ 11.97 hrs, Volume= 1.417 af = Outflow 24.01 cfs @ 12.05 hrs, Volume= 1.417 af, Atten= 8%, Lag= 5.1 min =

Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Max. Velocity= 6.11 fps, Min. Travel Time= 3.2 min Avg. Velocity = 2.00 fps, Avg. Travel Time= 9.9 min

Peak Storage= 4,680 cf @ 12.00 hrs Average Depth at Peak Storage= 1.14' Bank-Full Depth= 3.00' Flow Area= 27.0 sf, Capacity= 313.72 cfs

0.00' x 3.00' deep channel, n= 0.022 Earth, clean & straight Side Slope Z-value= 3.0 '/' Top Width= 18.00' Length= 1,190.0' Slope= 0.0185 '/' Inlet Invert= 302.00', Outlet Invert= 280.00'

Reach 12R: Northwest Perimeter Channel

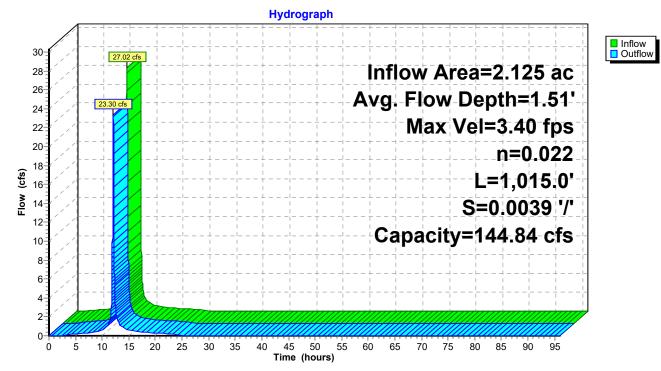
Page 32

Summary for Reach 13R: West Perimeter Channel

 Inflow Area =
 2.125 ac,
 0.00% Impervious,
 Inflow Depth =
 8.30"
 for 25-yr event

 Inflow =
 27.02 cfs @
 11.97 hrs,
 Volume=
 1.469 af

 Outflow =
 23.30 cfs @
 12.09 hrs,
 Volume=
 1.469 af,


 Atten=
 1469 af,
 Atten=
 1469 af,

Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Max. Velocity= 3.40 fps, Min. Travel Time= 5.0 min Avg. Velocity = 1.04 fps, Avg. Travel Time= 16.3 min

Peak Storage= 6,966 cf @ 12.01 hrs Average Depth at Peak Storage= 1.51' Bank-Full Depth= 3.00' Flow Area= 27.0 sf, Capacity= 144.84 cfs

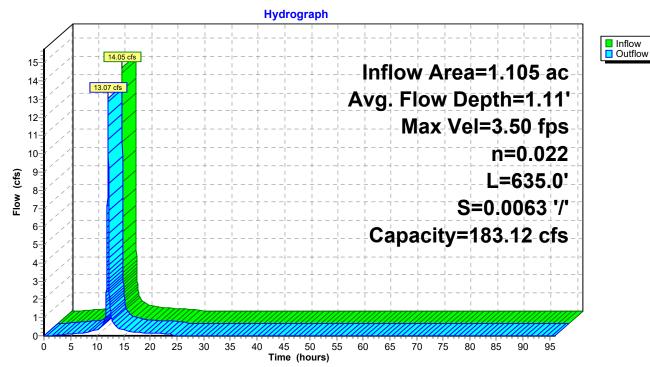
0.00' x 3.00' deep channel, n= 0.022 Earth, clean & straight Side Slope Z-value= 3.0 '/' Top Width= 18.00' Length= 1,015.0' Slope= 0.0039 '/' Inlet Invert= 284.00', Outlet Invert= 280.00'

Reach 13R: West Perimeter Channel

Summary for Reach 14R: East Perimeter Channel

 Inflow Area =
 1.105 ac, 0.00% Impervious, Inflow Depth = 8.30" for 25-yr event

 Inflow =
 14.05 cfs @
 11.97 hrs, Volume=
 0.764 af


 Outflow =
 13.07 cfs @
 12.05 hrs, Volume=
 0.764 af, Atten= 7%, Lag= 4.8 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Max. Velocity= 3.50 fps, Min. Travel Time= 3.0 min Avg. Velocity = 1.15 fps, Avg. Travel Time= 9.2 min

Peak Storage= 2,367 cf @ 12.00 hrs Average Depth at Peak Storage= 1.11' Bank-Full Depth= 3.00' Flow Area= 27.0 sf, Capacity= 183.12 cfs

0.00' x 3.00' deep channel, n= 0.022 Earth, clean & straight Side Slope Z-value= 3.0 '/' Top Width= 18.00' Length= 635.0' Slope= 0.0063 '/' Inlet Invert= 270.00', Outlet Invert= 266.00'

Reach 14R: East Perimeter Channel

Summary for Reach 15R: Southwest Downchute

[62] Hint: Exceeded Reach 9R OUTLET depth by 4.00' @ 0.00 hrs

 Inflow Area =
 31.639 ac,
 0.00% Impervious,
 Inflow Depth =
 8.30"
 for 25-yr event

 Inflow =
 354.24 cfs @
 12.04 hrs,
 Volume=
 21.875 af

 Outflow =
 353.99 cfs @
 12.04 hrs,
 Volume=
 21.875 af,

Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Max. Velocity= 21.01 fps, Min. Travel Time= 0.1 min Avg. Velocity = 4.23 fps, Avg. Travel Time= 0.4 min

Peak Storage= 1,686 cf @ 12.04 hrs Average Depth at Peak Storage= 0.33' Bank-Full Depth= 1.50' Flow Area= 81.8 sf, Capacity= 4,503.90 cfs

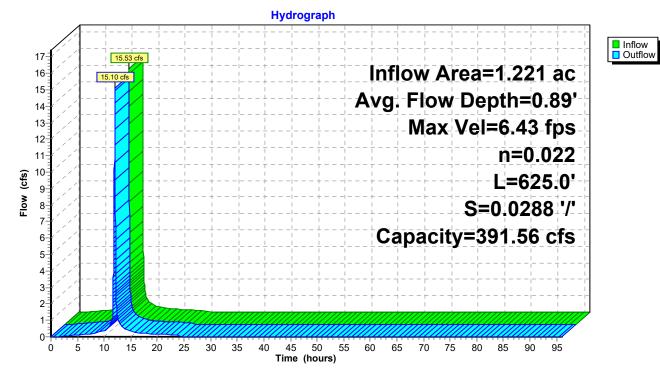
50.00' x 1.50' deep channel, n= 0.017 Concrete, unfinished Side Slope Z-value= 3.0 '/' Top Width= 59.00' Length= 100.0' Slope= 0.2600 '/' Inlet Invert= 288.00', Outlet Invert= 262.00'

Reach 15R: Southwest Downchute

Summary for Reach 21R: Upper Southwest Perimeter Channel

 Inflow Area =
 1.221 ac,
 0.00% Impervious,
 Inflow Depth =
 8.30"
 for 25-yr event

 Inflow =
 15.53 cfs @
 11.97 hrs,
 Volume=
 0.844 af


 Outflow =
 15.10 cfs @
 12.01 hrs,
 Volume=
 0.844 af,
 Atten= 3%,
 Lag= 2.7 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Max. Velocity= 6.43 fps, Min. Travel Time= 1.6 min Avg. Velocity = 2.19 fps, Avg. Travel Time= 4.8 min

Peak Storage= 1,470 cf @ 11.98 hrs Average Depth at Peak Storage= 0.89' Bank-Full Depth= 3.00' Flow Area= 27.0 sf, Capacity= 391.56 cfs

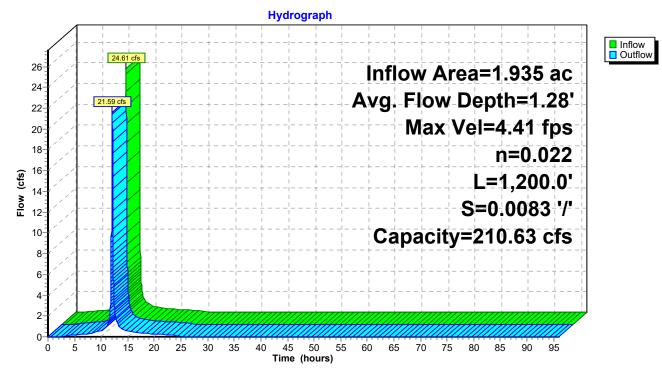
0.00' x 3.00' deep channel, n= 0.022 Earth, clean & straight Side Slope Z-value= 3.0 '/' Top Width= 18.00' Length= 625.0' Slope= 0.0288 '/' Inlet Invert= 280.00', Outlet Invert= 262.00'

Reach 21R: Upper Southwest Perimeter Channel

Summary for Reach 24R: Lower Southwest Perimeter Channel

 Inflow Area =
 1.935 ac,
 0.00% Impervious,
 Inflow Depth =
 8.30"
 for 25-yr event

 Inflow =
 24.61 cfs @
 11.97 hrs,
 Volume=
 1.338 af


 Outflow =
 21.59 cfs @
 12.08 hrs,
 Volume=
 1.338 af,
 Atten=
 12%,
 Lag=
 6.8 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Max. Velocity= 4.41 fps, Min. Travel Time= 4.5 min Avg. Velocity = 1.39 fps, Avg. Travel Time= 14.3 min

Peak Storage= 5,875 cf @ 12.01 hrs Average Depth at Peak Storage= 1.28' Bank-Full Depth= 3.00' Flow Area= 27.0 sf, Capacity= 210.63 cfs

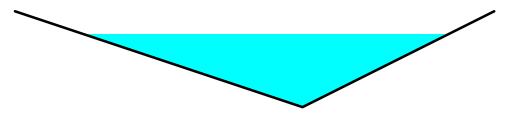
0.00' x 3.00' deep channel, n= 0.022 Earth, clean & straight Side Slope Z-value= 3.0 '/' Top Width= 18.00' Length= 1,200.0' Slope= 0.0083 '/' Inlet Invert= 272.00', Outlet Invert= 262.00'

Reach 24R: Lower Southwest Perimeter Channel

Summary for Reach 26R: Bottom Plateau East Diversion Berm

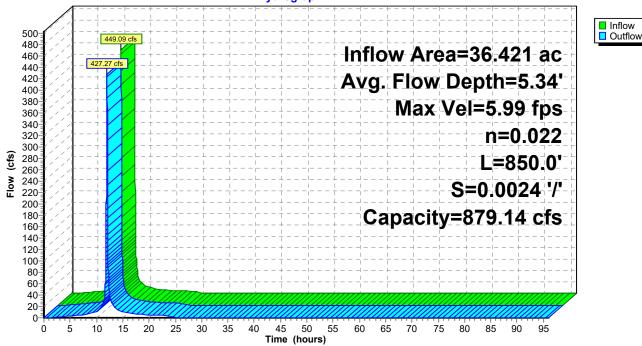
[62] Hint: Exceeded Reach 5R OUTLET depth by 1.28' @ 11.99 hrs

 Inflow Area =
 36.421 ac, 0.00% Impervious, Inflow Depth = 8.30" for 25-yr event


 Inflow =
 449.09 cfs @
 11.97 hrs, Volume=
 25.181 af

 Outflow =
 427.27 cfs @
 12.03 hrs, Volume=
 25.181 af, Atten= 5%, Lag= 3.8 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Max. Velocity= 5.99 fps, Min. Travel Time= 2.4 min Avg. Velocity = 1.73 fps, Avg. Travel Time= 8.2 min


Peak Storage= 60,626 cf @ 11.99 hrs Average Depth at Peak Storage= 5.34' Bank-Full Depth= 7.00' Flow Area= 122.5 sf, Capacity= 879.14 cfs

0.00' x 7.00' deep channel, n= 0.022 Earth, clean & straight Side Slope Z-value= $3.0 \ 2.0 \ '/$ Top Width= 35.00'Length= 850.0' Slope= $0.0024 \ '/$ Inlet Invert= 288.00', Outlet Invert= 286.00'

Reach 26R: Bottom Plateau East Diversion Berm

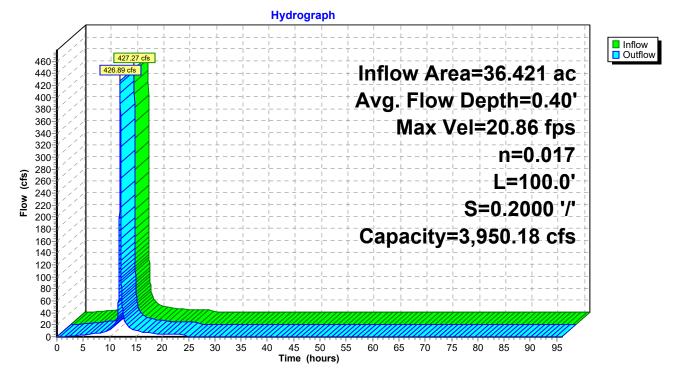
Hydrograph

Summary for Reach 27R: Southeast Downchute

 Inflow Area =
 36.421 ac,
 0.00% Impervious,
 Inflow Depth =
 8.30"
 for 25-yr event

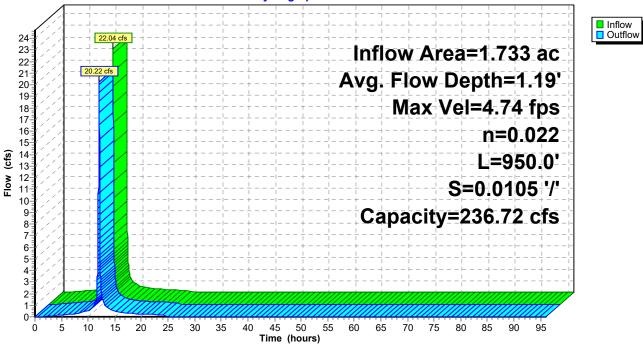
 Inflow =
 427.27 cfs @
 12.03 hrs,
 Volume=
 25.181 af

 Outflow =
 426.89 cfs @
 12.03 hrs,
 Volume=
 25.181 af,


Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Max. Velocity= 20.86 fps, Min. Travel Time= 0.1 min Avg. Velocity = 4.00 fps, Avg. Travel Time= 0.4 min

Peak Storage= 2,048 cf @ 12.03 hrs Average Depth at Peak Storage= 0.40' Bank-Full Depth= 1.50' Flow Area= 81.8 sf, Capacity= 3,950.18 cfs

50.00' x 1.50' deep channel, n= 0.017 Concrete, unfinished Side Slope Z-value= 3.0 '/' Top Width= 59.00' Length= 100.0' Slope= 0.2000 '/' Inlet Invert= 282.00', Outlet Invert= 262.00'



Reach 27R: Southeast Downchute

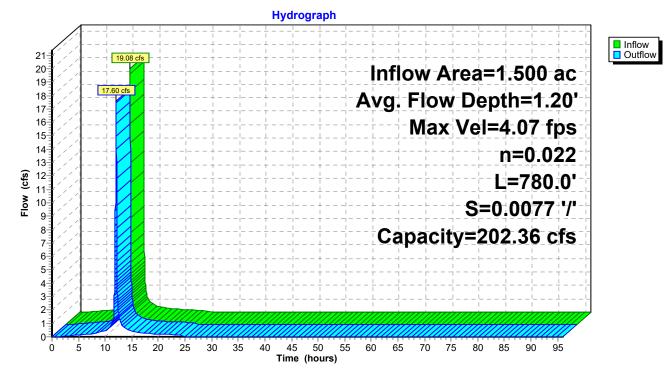
Summary for Reach 30R: Lower South Perimeter Channel

Inflow Area = 1.733 ac. 0.00% Impervious, Inflow Depth = 8.30" for 25-yr event Inflow 22.04 cfs @ 11.97 hrs, Volume= 1.198 af Outflow 20.22 cfs @ 12.05 hrs, Volume= 1.198 af, Atten= 8%, Lag= 5.2 min = Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Max. Velocity= 4.74 fps, Min. Travel Time= 3.3 min Avg. Velocity = 1.54 fps, Avg. Travel Time= 10.3 min Peak Storage= 4,058 cf @ 12.00 hrs Average Depth at Peak Storage= 1.19' Bank-Full Depth= 3.00' Flow Area= 27.0 sf, Capacity= 236.72 cfs 0.00' x 3.00' deep channel, n= 0.022 Earth, clean & straight Side Slope Z-value= 3.0 '/' Top Width= 18.00' Length= 950.0' Slope= 0.0105 '/' Inlet Invert= 272.00', Outlet Invert= 262.00' **Reach 30R: Lower South Perimeter Channel Hydrograph** 24 22.04 cfs 23-Inflow Area=1.733 ac

Summary for Reach 31R: Lower Southeast Perimeter Channel

 Inflow Area =
 1.500 ac,
 0.00% Impervious,
 Inflow Depth =
 8.30"
 for 25-yr event

 Inflow =
 19.08 cfs @
 11.97 hrs,
 Volume=
 1.037 af


 Outflow =
 17.60 cfs @
 12.05 hrs,
 Volume=
 1.037 af,
 Atten= 8%,
 Lag= 5.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Max. Velocity= 4.07 fps, Min. Travel Time= 3.2 min Avg. Velocity = 1.33 fps, Avg. Travel Time= 9.8 min

Peak Storage= 3,377 cf @ 12.00 hrs Average Depth at Peak Storage= 1.20' Bank-Full Depth= 3.00' Flow Area= 27.0 sf, Capacity= 202.36 cfs

0.00' x 3.00' deep channel, n= 0.022 Earth, clean & straight Side Slope Z-value= 3.0 '/' Top Width= 18.00' Length= 780.0' Slope= 0.0077 '/' Inlet Invert= 268.00', Outlet Invert= 262.00'

Reach 31R: Lower Southeast Perimeter Channel

Prepared by HDR, Inc

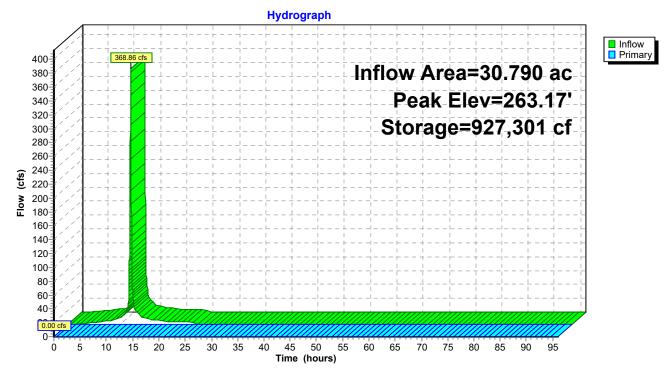
HydroCAD® 10.00-25 s/n 10993 © 2019 HydroCAD Software Solutions LLC

Summary for Pond 14P: Pond 1

Inflow Area	a =	30.790 ac,	0.00% Impervious, Inflow	Depth = 8.30" for 25-yr event
Inflow	=	368.86 cfs @	11.98 hrs, Volume=	21.288 af
Outflow	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af, Atten= 100%, Lag= 0.0 min
Primary	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Peak Elev= 263.17' @ 47.88 hrs Surf.Area= 144,918 sf Storage= 927,301 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no outflow)

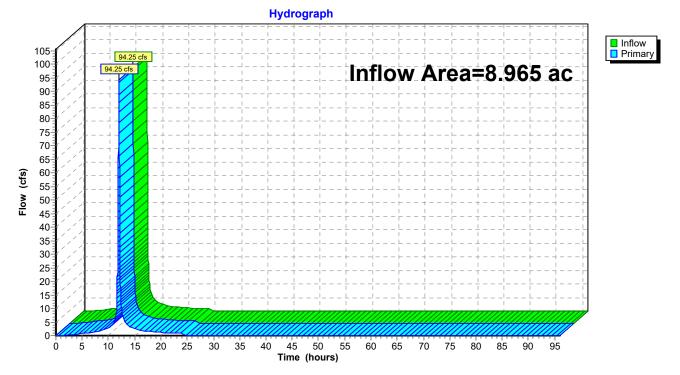

Volume	Inve	ert Avail.Sto	rage Storage	e Description	
#1	256.0	00' 1,356,3	86 cf Custom	n Stage Data (Prismatic) Listed below (Recalc)	
Elevatio	on	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
256.0	0	114,495	0	0	
258.0	00	122,621	237,116	237,116	
260.0	00	131,024	253,645	490,761	
262.0	00	139,702	270,726	761,487	
264.0	00	148,656	288,358	1,049,845	
266.0	0	157,885	306,541	1,356,386	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	265.00'	100.0' long >	x 20.0' breadth Broad-Crested Rectangular Weir	
			Head (feet) C	0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60	
			Coef. (English	sh) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63	
	0 (5)	M 0.00 f			

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=256.00' (Free Discharge)

Charah Gibbons Creek Site F ESC REGRADED

Prepared by HDR, Inc HydroCAD® 10.00-25 s/n 10993 © 2019 HydroCAD Software Solutions LLC

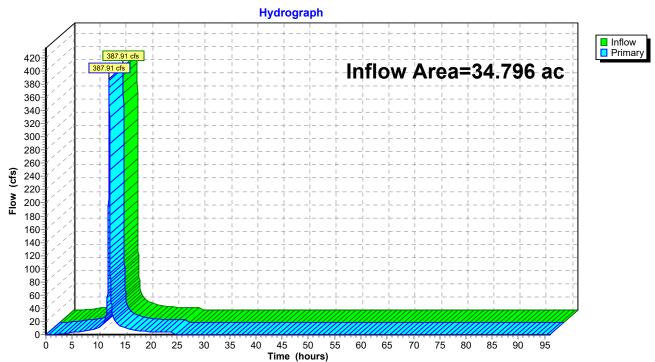
Pond 14P: Pond 1



Summary for Link 17L: Combined Northwest Sideslope Flows

Inflow Are	a =	8.965 ac,	0.00% Impervious, I	nflow Depth = 8.30"	for 25-yr event
Inflow	=	94.25 cfs @	11.99 hrs, Volume=	6.198 af	-
Primary	=	94.25 cfs @	11.99 hrs, Volume=	6.198 af, Atte	en= 0%, Lag= 0.0 min

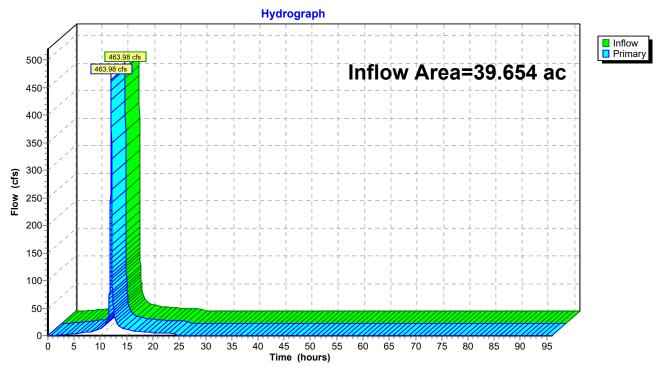
Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs


Link 17L: Combined Northwest Sideslope Flows

Summary for Link 22L: Combined Southwest Flows

Inflow Area =		34.796 ac,	0.00% Impervious, Inflow	Depth = 8.30"	for 25-yr event
Inflow	=	387.91 cfs @	12.04 hrs, Volume=	24.058 af	
Primary	=	387.91 cfs @	12.04 hrs, Volume=	24.058 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs



Link 22L: Combined Southwest Flows

Summary for Link 32L: Combined Southeast Flows

Inflow Area =		39.654 ac,	0.00% Impervious, Inflow	Depth = 8.30"	for 25-yr event
Inflow	=	463.98 cfs @	12.04 hrs, Volume=	27.417 af	-
Primary	=	463.98 cfs @	12.04 hrs, Volume=	27.417 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs

Link 32L: Combined Southeast Flows

RESPONSE ITEM 28 ATTACHMENT

FINANCIAL ASSURANCE STATEMENT

August 26, 2022

Texas Commission for Environmental Quality Industrial and Hazardous Waste Permits Section MC-130 PO Box 13087 Austin, Texas 78711-3087 Attn.: Brent Wade submitted via email

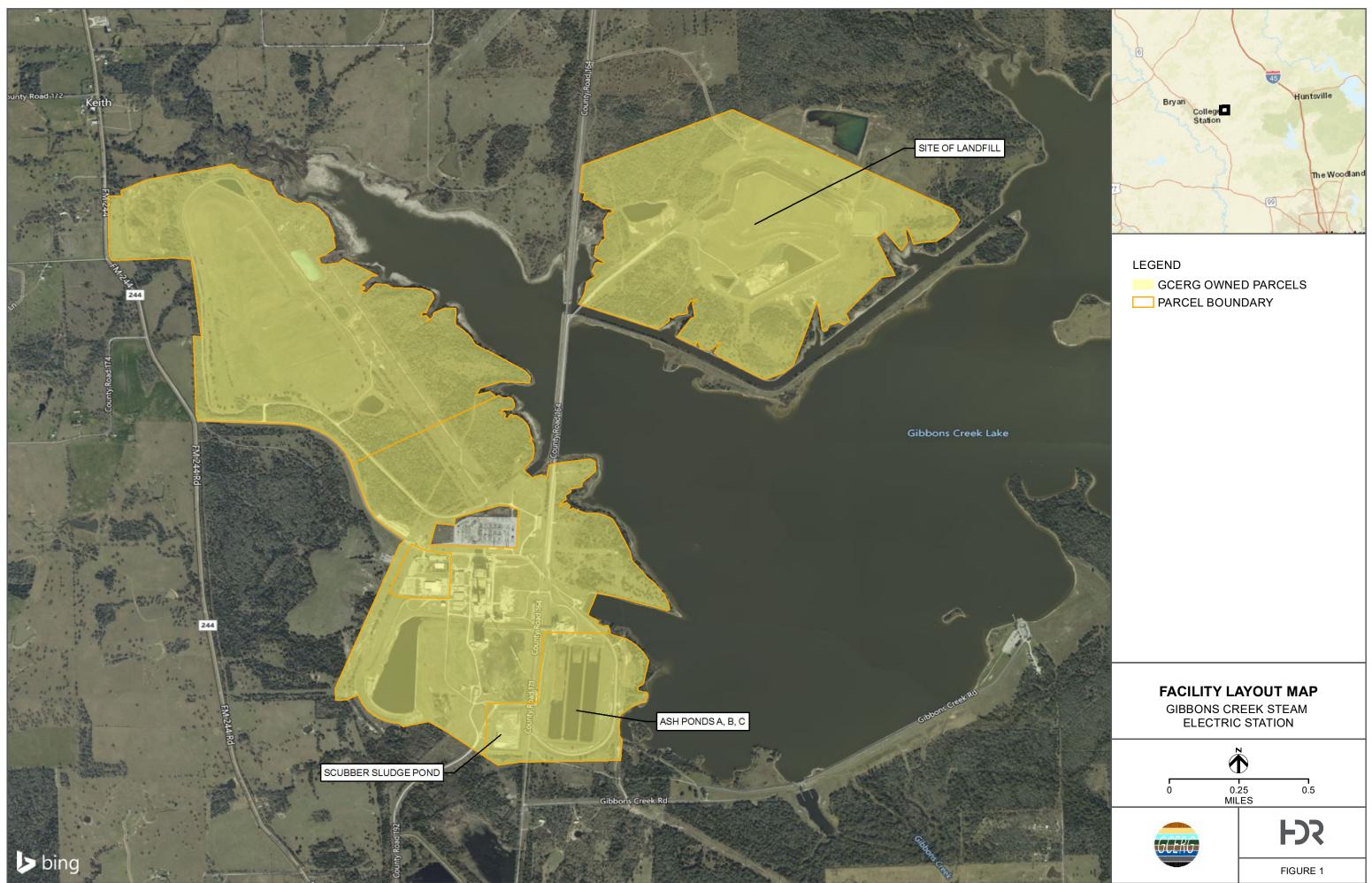
RE: Financial Assurance Post Closure Care Gibbons Creek Reservoir – Solid Waste Registration 32271 (CCR113).

Dear Mr. Wade:

In accordance with 30 TAC §352.1241 and 40 C.F.R. §257.104, the owner or operator of a coal combustion residuals (CCR) unit must prepare a post closure care cost estimate. The post closure care of each CCR unit must continue for at least 30 years after the date of completing closure of the unit and must consist of monitoring and reporting of the groundwater monitoring systems, in addition to the maintenance and monitoring of the CCR unit and continuation of certain security requirements.

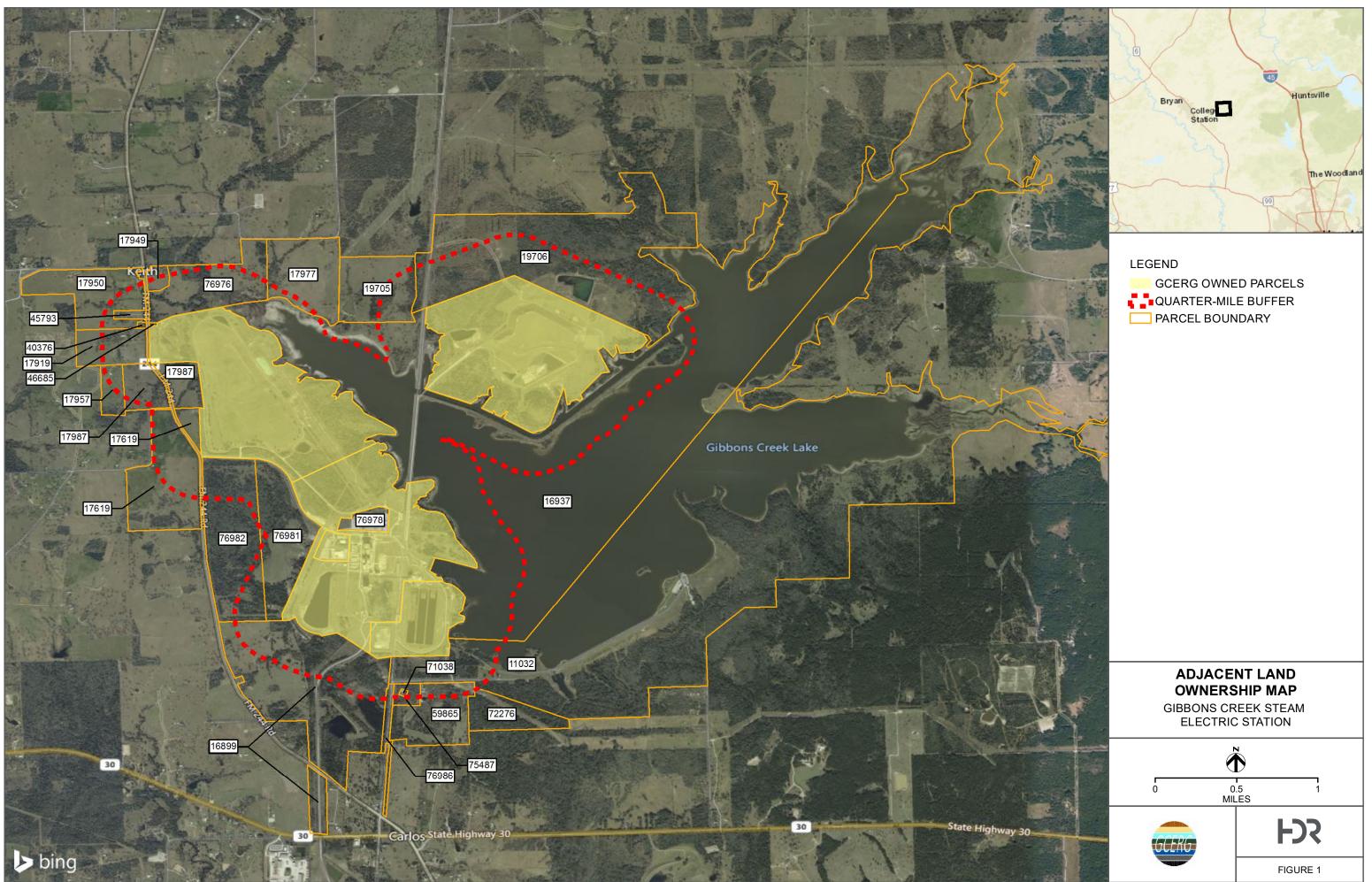
As detailed in the Closure and Post-Closure Plan for the Gibbons Creek Steam Electric Station dated April 9, 2021, the Gibbons Creek Environmental Redevelopment Group, LLC (GCERG) intends to close the CCR units at the facility (see gcerg-ccrule.com). Specifically, the GCERG intends to close the Scrubber Sludge Pond (SSP), Ash Ponds (APs), and Site F Landfill (SFL) consistent with the Closure and Post Closure Plan. The SSP and APs will be closed by removing the CCR material in accordance with 40 C.F.R. §257.102(c) and the SFL will be closed by leaving CCR materials in place in accordance with 40 C.F.R. §257.102(d). The closure activities are expected to be completed in 2023.

In accordance with 30 TAC §352.1101, the GCERG will submit a financial assurance mechanism acceptable to the executive director no more than 90 days after the executive director's approval of the registration.


Best regards, Gibbons Creek Environmental Redevelopment Group, LLC

Norman E. Divers, III, VP – Quality, Environment, Health & Safety /nd

> 12601 Plantside Drive Louisville, KY 40299 (502) 245-1353


RESPONSE ITEM 6 (2) ATTACHMENT

UPDATED REGISTRATION BOUNDARY

RESPONSE ITEM 10 (2) ATTACHMENT

UPDATED ADJACENT LANDOWNER LIST AND DRAWING

PATH: 0:110290148_10189_GIBBONSCCRIMAP_DOCS\FIGURES\GIBBONS_CCR_LANDOWNERS_20220822_8X11.MXD - USER: MCOWLING - DATE: 8/22/2022

ADJACENT PROPERTY OWNERSHIP DATA

Landowners Cross-Referenced to Adjacent Land Ownership Map

The persons identified below would be considered as affected persons.

- 11032 GIBBONS TRACT 1, LP 11801 PRIVATE RD NORMANGEE, TX 77871
- 16899 3S REAL ESTATE INVESTMENTS, LLC P. O. BOX 433 GARWOOD, TX 77442
- 16937 GIBBONS TRACT 1, LP 11801 PRIVATE RD NORMANGEE, TX 77871
- 17619 SMITH FAMILY PARTNERS L.P. SMITH PARTNERS 4315 VALENCIA CT COLLEGE STATION, TX 77845-1934
- 17919 JONES, JAMES H & CYNTHIA L 13585 FM 244 IOLA, TX 77861
- 17949 ROYALL, JASON 13998 FM 244 IOLA, TX 77861-3672
- 17950 TRANT, BOBBY JOE 13769 FM 244 IOLA, TX 77861
- 17957 LYNDEL BEENE FAMILY PARTNERSHIP LP BEENE PARTNERSHIP 4315 VELENCIA CT COLLEGE STATION, TX 77845-1934
- 17977 TRANT, JAMES RAY & CYNTHIA 17988 FM 244 IOLA, TX 77861-3659

- 17987 FINLEY, LENA L (ESTATE) 24423 SPLIT ROCK FLS TOMBALL, TX 77375-5357
- 17987 FINLEY, LENA L (ESTATE) 24423 SPLIT ROCK FLS TOMBALL, TX 77375-5357
- 19705 TRANT, JAMES RAY & CYNTHIA 17988 FM 244 IOLA, TX 77861-3659
- 19706 GIBBONS TRACT 8, LP 11801 PRIVATE RD NORMANGEE, TX 77871
- 40376 TRANT, BOBBY JOE 13769 FM 244 IOLA, TX 77861-3673
- 45793 TRANT, BOBBY JOE 13769 FM 244 IOLA, TX 77861
- 46685 FAIRBANKS, LLOYD JR & LUCILLE AVERA 5121 HWY 30 ANDERSON, TX 77830-8907
- 59865 GILBERT, ROY E & SHERYL J 9028 GIBBONS CREEK RD ANDERSON, TX 77830-4102
- 71038 ROEHLING, MELVIN V & CINDY 8952 GIBBONS CREEK RD ANDERSON, TX 77830
- 72276 GILBERT, ROY E ET AL 9028 GIBBONS CREEK RD ANDERSON, TX 77830
- 75487 ROEHLING, MELVIN V & CINDY 8952 GIBBONS CREEK RD ANDERSON, TX 77830
- 76976 GIBBONS TRACT 7, LP 11801 PRIVATE RD NORMANGEE, TX 77871

- 76978 T M P A ATTN: MURPHY HAWKINS P O BOX 7000 BRYAN, TX 77805-7000
- 76981 GIBBONS TRACT 9, LP 11801 PRIVATE RD NORMANGEE, TX 77871
- 76982 GIBBONS TRACT 10, LP 11801 PRIVATE RD NORMANGEE, TX 77871
- 76986 GIBBONS TRACT 12A, LP 11801 PRIVATE RD NORMANGEE, TX 77871